Keyword: linac
Paper Title Other Keywords Page
MOXGB2 ARIEL at TRIUMF: Science and Technology TRIUMF, ISAC, target, cyclotron 6
 
  • J.A. Bagger, F. Ames, Y. Bylinskii, A. Gottberg, O.K. Kester, S.R. Koscielniak, R.E. Laxdal, M. Marchetto, P. Schaffer
    TRIUMF, Vancouver, Canada
  • M. Hayashi
    TRIUMF Innovations Inc., Vancouver, Canada
 
  The Ad­vanced Rare Iso­tope Lab­o­ra­tory (ARIEL) is TRI­UMF's flag­ship pro­ject to cre­ate iso­topes for sci­ence, med­i­cine and busi­ness. ARIEL will triple TRI­UMF's rare iso­tope beam ca­pa­bil­ity, en­abling more and new ex­per­i­ments in ma­te­ri­als sci­ence, nu­clear physics, nu­clear as­tro­physics, and fun­da­men­tal sym­me­tries, as well as the de­vel­op­ment of new iso­topes for the life sci­ences. Beams from ARIEL's new 35 MeV, 100kW elec­tron lin­ear ac­cel­er­a­tor and from TRI­UMF's orig­i­nal 500 MeV cy­clotron will en­able break­through ex­per­i­ments with the lab­o­ra­tory's suite of world-class ex­per­i­ments at the Iso­tope Sep­a­ra­tor and Ac­cel­er­a­tor (ISAC) fa­cil­ity. This in­vited talk will pre­sent an overview of TRI­UMF, the ARIEL pro­ject, and the ex­cit­ing sci­ence they en­able.  
slides icon Slides MOXGB2 [65.004 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOXGB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYGB1 Status and Future Strategy for Advanced High Power Microwave Sources for Accelerators klystron, electron, cavity, operation 12
 
  • F. Gerigk
    CERN, Geneva, Switzerland
 
  The need for more en­ergy ef­fi­cient high power mi­crowave de­vices for ac­cel­er­a­tor ap­pli­ca­tions con­tin­ues to in­crease. This is im­por­tant for de­vel­op­ment of cost ef­fec­tive ac­cel­er­a­tor de­signs that are com­ing up in the near fu­ture. Ef­forts are al­ready in place to de­sign new de­vices that could stretch the lim­its of RF power con­ver­sion to the high­est lev­els pos­si­ble. De­vices in­clud­ing new tech­nolo­gies and de­sign in­no­va­tions like multi beam, in­creased num­ber of cav­i­ties de­signs are being con­sid­ered. Ad­vances in the ap­pli­ca­tion of solid state am­pli­fiers to ac­cel­er­a­tors are also being re­al­ized. This in­vited talk will cover the re­cent ad­vances and sta­tus of such ef­forts. It will dis­cuss fu­ture needs and a strat­egy for pur­su­ing these ef­forts on a faster time scale for the ben­e­fit of the ac­cel­er­a­tor com­mu­nity.  
slides icon Slides MOYGB1 [11.575 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOYGB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOYGB2 The LCLS-II: A High Power Upgrade to the LCLS cavity, undulator, cryomodule, electron 18
 
  • J.N. Galayda
    SLAC, Menlo Park, California, USA
 
  Funding: The work is supported by DOE under grant No. DE-AC02-76SF00515
The LCLS-II is an up­grade of the LCLS X-ray FEL based on a 4 GeV su­per­con­duct­ing RF linac. The LCLS-II is de­signed to pro­duce 100's of Watts of X-rays from 200 eV up to 5 keV. The linac uses 1.3 GHz 9-cell cav­i­ties processed using the N2-dop­ing tech­nique and will be the first large scale CW SCRF linac with a Q of roughly 3x1010 at a gra­di­ent of 16 MV/m. The in­jec­tor which will be com­mis­sioned in spring 2018, is based on the nor­mal con­duct­ing CW RF APEX gun de­vel­oped at LBNL. The LCLS-II will have two un­du­la­tors: the soft X-ray un­du­la­tor is a 39 mm pe­riod hy­brid PM with an ad­justable ver­ti­cal gap to cover the range from 200 eV to 1.5 keV and hard X-ray un­du­la­tor is a novel ad­justable hor­i­zon­tal gap hy­brid PM un­du­la­tor with 26 mm pe­riod to gen­er­ate ver­ti­cally po­lar­ized X-rays from 1 to 5 keV. The talk will re­view the per­for­mance goals as well as the hard­ware fab­ri­ca­tion.
 
slides icon Slides MOYGB2 [11.367 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOYGB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZGBD5 A Proposal for Coherent Hard X-Ray Generation Based on Two-Stage EEHG FEL, electron, laser, radiation 38
 
  • Z.T. Zhao, J.H. Chen, C. Feng, Z. Wang, K.Q. Zhang
    SINAP, Shanghai, People's Republic of China
 
  A two stage echo-en­abled har­monic gen­er­a­tion (EEHG) scheme to pro­duce co­her­ent hard X-rays is pre­sented. Elec­tron bunchs of quite dif­fer­ent lengths are sep­a­rately used in each stage of EEHG and a mono­chro­ma­tor is em­ployed to pu­rify the ra­di­a­tion from the first stage for seed­ing the sec­ond one. The­o­ret­i­cal analy­sis and 3D sim­u­la­tions show that the pro­posed scheme can gen­er­ate fully co­her­ent hard X-ray pulses di­rectly from a con­ven­tional UV seed laser.  
slides icon Slides MOZGBD5 [7.330 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBD5  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZGBF4 Evolution of the Superconducting Linac Output Energy at the Spallation Neutron Source cavity, cryomodule, operation, SRF 73
 
  • S.-H. Kim, D.E. Anderson, M.T. Crofford, M. Doleans, J. Galambos, S.W. Gold, M.P. Howell, M.A. Plum, D.J. Vandygriff
    ORNL, Oak Ridge, Tennessee, USA
  • R. Afanador, D.L. Barnhart, B. DeGraff, J.D. Mammosser, C.J. McMahan, T.S. Neustadt, C.C. Peters, J. Saunders, D.M. Vandygriff
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
The SNS linac out­put en­ergy has in­creased since the start of neu­tron pro­duc­tion in FY2007. The var­i­ous im­prove­ments that con­tributed to the in­crease of the linac out­put en­ergy are LLRF/con­trol sys­tem im­prove­ment, high volt­age con­verter mod­u­la­tor sys­tem im­prove­ment, high-power RF sys­tem im­prove­ment, cry­omod­ule re­pairs, spare cry­omod­ule de­vel­op­ment and ac­cel­er­at­ing gra­di­ent im­prove­ment through in-situ plasma pro­cess­ing. In this paper, the his­tory of the SNS SCL out­put en­ergy is re­ported, and plans for the near-term fu­ture and for the Pro­ton Power Up­grade (PPU) pro­ject are also pre­sented.
 
slides icon Slides MOZGBF4 [34.185 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBF4  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF001 Bunch Schedules for the FCC-ee Pre-injector injection, collider, booster, positron 79
 
  • S. Ogur, K. Oide, Y. Papaphilippou, F. Zimmermann
    CERN, Geneva, Switzerland
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
 
  The lat­est de­sign of the Fu­ture Cir­cu­lar elec­tron-positron Col­lider (FCC-ee) fore­sees a lu­mi­nos­ity per in­ter­ac­tion point above 2.0·1036/cm2/s for op­er­a­tion at the Z pole. The fill­ing from zero cur­rent oc­curs in col­li­sion to profit from the bunch length­en­ing due to beam­strahlung (so-called boot­strap­ping). At any time when new e- and e+ buck­ets or bunch­lets are in­jected into the col­lider, they will col­lide in­stantly. For this rea­son, we may pro­vide the charge in each in­jected bunch in a way to pre-com­pen­sate for an­tic­i­pated beam loss, and to reach the tar­get lu­mi­nos­ity as soon as pos­si­ble after the first in­jec­tion. In this way, we op­ti­mise the in­jec­tion sched­ules for Z-mode so as to reach the peak lu­mi­nos­ity in less than 20 min­utes by in­ter­leaved in­jec­tion of the two species at some por­tion of full bucket charge. Fill­ing from zero the in­jec­tor should allow ac­cu­mu­lat­ing 1.7·1011 par­ti­cles in one col­lider bucket within at least 10 in­jec­tions, as­sum­ing a total trans­mis­sion above 80%. In steady-state op­er­a­tion, the in­jec­tor chain con­tin­u­ally pro­duces and ac­cel­er­ates lower bunch charges so as to main­tain nearly con­stant bunch cur­rents and con­stant peak lu­mi­nos­ity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF005 Beam Formation in the Alternative JLEIC Ion Complex booster, collider, injection, proton 91
 
  • B. Mustapha, J.L. Martinez Marin
    ANL, Argonne, USA
  • Y.S. Derbenev, F. Lin, V.S. Morozov, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by the U.S. Department of Energy / ONP, under Contract No. DE-AC02-06CH11357 for ANL and by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The pro­posed al­ter­na­tive de­sign ap­proach for the JLab-EIC (JLEIC) ion com­plex uses a more com­pact linac and pre-booster, and con­sol­i­dates the elec­tron stor­age ring (e-ring) as a large booster for the ions. Fol­low­ing a pa­ra­me­ter study* show­ing the fea­si­bil­ity of this al­ter­na­tive de­sign ap­proach, we have adapted the e-ring lat­tice by adding RF sec­tions to ac­cel­er­ate ion beams**. In this study, we focus on the beam for­ma­tion for pro­tons and lead ions from the linac to the pre-booster, then into the e-ring until in­jec­tion to the ion col­lider ring. Ef­fects such as space charge, in­tra-beam scat­ter­ing and the need for beam cool­ing will de­ter­mine the total ac­cu­mu­lated charge in each ring and the time re­quired from in­jec­tion from the in­jec­tor linac to col­li­sion in the col­lider ring.
* B. Mustapha et al, Proceedings of NAPAC-2016, October 9-14, Chicago, IL.
** B. Mustapha et al, Proceedings of IPAC-2017, May 14-19, Copenhagen, Denmark.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF034 Layout and Performance of the FCC-ee Pre-Injector Chain emittance, damping, injection, cavity 169
 
  • S. Ogur, T.K. Charles, K. Oide, Y. Papaphilippou, L. Rinolfi, F. Zimmermann
    CERN, Geneva, Switzerland
  • A.M. Barnyakov, A.E. Levichev, P.V. Martyshkin, D.A. Nikiforov
    BINP SB RAS, Novosibirsk, Russia
  • I. Chaikovska, R. Chehab
    LAL, Orsay, France
  • K. Furukawa, N. Iida, T. Kamitani, F. Miyahara
    KEK, Ibaraki, Japan
  • E.V. Ozcan
    Bogazici University, Bebek / Istanbul, Turkey
  • S.M. Polozov
    MEPhI, Moscow, Russia
 
  The Fu­ture Cir­cu­lar e+e Col­lider pre-in­jec­tor chain con­sists of a 6 GeV S-Band linac, a damp­ing ring at 1.54 GeV and pre-booster ring to reach 20 GeV for in­jec­tion to the main booster. The elec­tron and positron beams use the same ac­cel­er­a­tor chain al­ter­na­tively. The e+ beam is gen­er­ated from a novel low level RF-gun pro­vid­ing 6.5 nC charge at 11 MeV with 0.5 mi­cron geo­met­ric emit­tance. The e+ beam is pro­duced by the im­pact of a 4.46 GeV e- beam onto a hy­brid tar­get, ac­cel­er­ated in the linac up to 1.54 GeV, and in­jected to the damp­ing ring for emit­tance cool­ing. Sim­u­la­tions on the per­for­mance of the DR are pre­sented for reach­ing the re­quired equi­lib­rium emit­tances at the re­quired damp­ing time. As an al­ter­na­tive op­tion, a 20 GeV linac is con­sid­ered util­is­ing C-Band cav­i­ties and sim­u­la­tions stud­ies have been un­der­taken re­gard­ing the beam trans­port and trans­mis­sion ef­fi­ciency up to that en­ergy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF055 Update of the CLIC Positron Source positron, target, electron, simulation 236
 
  • Y. Han, L. Ma
    SDU, Shandong, People's Republic of China
  • C. Bayar
    Ankara University, Faculty of Sciences, Ankara, Turkey
  • S. Döbert, A. Latina, D. Schulte
    CERN, Geneva, Switzerland
 
  The base­line positron source of CLIC has been op­ti­mised for the 3 TeV c.o.m. en­ergy. Now the first stage of the CLIC is pro­posed to be at 380 GeV. Re­cently, the positron trans­mis­sion ef­fi­ciency from the tung­sten tar­get to the damp­ing rings in­jec­tion has been im­proved by 2.5 times. This opened the pos­si­bil­ity for an op­ti­mi­sa­tion of the whole positron source, com­pris­ing the in­jec­tor linacs, aimed at im­prov­ing its per­for­mance and its over­all power ef­fi­ciency. In this paper the key pa­ra­me­ters of the positron source, which in­clude the cur­rent and the en­ergy of the pri­mary elec­tron beam, the thick­ness of the crys­tal and amor­phous tung­sten tar­gets, the dis­tance be­tween the two tar­gets, the adi­a­batic match­ing de­vice (AMD) and pre-in­jec­tor linacs, are op­ti­mized to im­prove the over­all power ef­fi­ciency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF073 Rejuvenation of 7-Gev SuperKEKB Injector Linac positron, electron, emittance, injection 300
 
  • K. Furukawa, M. Akemoto, D.A. Arakawa, Y. Arakida, H. Ego, A. Enomoto, Y. Enomoto, T. Higo, H. Honma, N. Iida, M. Ikeda, H. Kaji, K. Kakihara, T. Kamitani, H. Katagiri, M. Kawamura, M. Kurashina, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Miura, F. Miyahara, H. Nakajima, K. Nakao, T. Natsui, M. Nishida, Y. Ogawa, Y. Ohnishi, S. Ohsawa, F. Qiu, I. Satake, M. Satoh, Y. Seimiya, A. Shirakawa, H. Sugimura, T. Suwada, T. Takenaka, M. Tanaka, N. Toge, Y. Yano, K. Yokoyama, M. Yoshida, R. Zhang, X. Zhou
    KEK, Ibaraki, Japan
 
  KEK in­jec­tor linac has de­liv­ered elec­trons and positrons for par­ti­cle physics and pho­ton sci­ence ex­per­i­ments for more than 30 years. It was up­graded for the Su­perKEKB pro­ject, which aims at a 40-fold in­crease in lu­mi­nos­ity over the pre­vi­ous pro­ject KEKB, in order to in­crease our un­der­stand­ing of fla­vor physics be­yond the stan­dard model of el­e­men­tary par­ti­cle physics. Su­perKEKB en­ergy-asym­met­ric elec­tron-positron col­lider with its ex­tremely high lu­mi­nos­ity re­quires a high cur­rent, low emit­tance and low en­ergy spread in­jec­tion beam from the in­jec­tor. The elec­tron beam is gen­er­ated by a new type of RF gun, that pro­vides a much higher beam cur­rent to cor­re­spond to a large stored beam cur­rent and a short life­time in the ring. The positron source is an­other major chal­lenge that en­hances the positron bunch in­ten­sity from 1 to 4 nC by in­creas­ing the positron cap­ture ef­fi­ciency, and the positron beam emit­tance is re­duced from 2000 μm to 10 μm in the ver­ti­cal plane by in­tro­duc­ing a damp­ing ring, fol­lowed by the bunch com­pres­sor and en­ergy com­pres­sor. The sum­mary of the re­ju­ve­na­tion is re­ported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF074 Beam Phase Space Jitter and Effective Emittance for SuperKEKB Injector Linac emittance, target, electron, positron 304
 
  • Y. Seimiya, N. Iida, T. Kamitani, M. Satoh
    KEK, Ibaraki, Japan
 
  In Su­perKEKB linac, sta­ble high charged low emit­tance beam is nec­es­sary. Trans­ported beam to Su­perKEKB Main Ring (MR) must be sta­ble to the ex­tent that the beam can be in­jected in­side MR ac­cep­tance. Su­perKEKB re­quire­ment must be sat­is­fied for emit­tance in­clud­ing beam phase space jit­ter, called as ef­fec­tive emit­tance. Large am­pli­tude beam po­si­tion jit­ter has been mea­sured at linac end. We eval­u­ated that the ef­fect of the beam po­si­tion jit­ter on ef­fec­tive emit­tance and in­ves­ti­gated the source of the beam phase space jit­ter.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF076 Energy Spread Compensation in Arbitrary Format Multi-Bunch Acceleration With Standing Wave and Traveling Wave Accelerators beam-loading, acceleration, positron, cavity 307
 
  • M. Kuriki
    HU/AdSM, Higashi-Hiroshima, Japan
 
  In the E-dri­ven ILC (In­ter­na­tional Lin­ear Col­lider) positron source, the beam is gen­er­ated and ac­cel­er­ated in a multi-bunch for­mat with mini-trains. The macro-pulse con­tains 2 to 8 mini-trains with sev­eral train gaps, be­cause the pulse for­mat is a copy of a part of the bunch stor­age pat­tern in DR (Damp­ing Ring). This pulse for­mat causes a vari­a­tion of the ac­cel­er­a­tor field in the pulse due to the tran­sient beam load­ing and an in­ten­sity fluc­tu­a­tion of cap­tured positron. In this ar­ti­cle, we dis­cuss the com­pen­sa­tion of the en­ergy spread of such beam in stand­ing wave and trav­el­ing wave ac­cel­er­a­tors. For stand­ing wave ac­cel­er­a­tor, it can be com­pen­sated by switch­ing input RF at ap­pro­pri­ate tim­ings. For trav­el­ing wave ac­cel­er­a­tor, it can be com­pen­sated by am­pli­tude mod­u­la­tion of the input RF.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF084 The Progress of CEPC Positron Source Design positron, target, electron, collider 319
 
  • C. Meng, X.P. Li, G. Pei, J.R. Zhang
    IHEP, Beijing, People's Republic of China
 
  Cir­cu­lar Elec­tron-Positron Col­lider (CEPC) is a 100 km ring e+ e col­lider for a Higgs fac­tory. The in­jec­tor is com­posed of 10 GeV linac and 120 GeV booster. The linac of CEPC is a nor­mal con­duct­ing S-band linac with fre­quency in 2856.75 MHz and pro­vide elec­tron and positron beam at an en­ergy up to 10 GeV and rep­e­ti­tion fre­quency in 100 Hz. The positron source of CEPC is com­posed of tar­get, flux con­cen­tra­tor, pre-ac­cel­er­at­ing sec­tion and beam sep­a­ra­tion sys­tem. The de­tailed de­sign of each sec­tion of positron source will be pre­sented and dis­cussed, mean­while the start-to-end dy­namic sim­u­la­tion re­sults will be pre­sented also in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMK015 Development of a Bunched-Beam Electron Cooler for the Jefferson Lab Electron-Ion Collider electron, kicker, gun, cathode 382
 
  • S.V. Benson, Y.S. Derbenev, D. Douglas, F.E. Hannon, A. Hutton, R. Li, R.A. Rimmer, Y. Roblin, C. Tennant, H. Wang, H. Zhang, Y. Zhang
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S.DOE Contract No. DE-AC05-06OR23177.
Jef­fer­son Lab is in the process of de­sign­ing an elec­tron-ion col­lider with un­prece­dented lu­mi­nos­ity at a 65 GeV cen­ter-of-mass en­ergy. This lu­mi­nos­ity re­lies on ion cool­ing in both the booster and the stor­age ring of the ac­cel­er­a­tor com­plex. The cool­ing in the booster will use a con­ven­tional DC cooler sim­i­lar to the one at COSY. The high-en­ergy stor­age ring, op­er­at­ing at a mo­men­tum of up to 100 GeV/nu­cleon, re­quires novel use of bunched-beam cool­ing. We will pre­sent a new de­sign for a Cir­cu­la­tor Cooler Ring for bunched-beam elec­tron cool­ing. This re­quires the gen­er­a­tion and trans­port of very high-charge mag­ne­tized bunches, ac­cel­er­a­tion of the bunches in an en­ergy re­cov­ery linac, and trans­fer of these bunches to a cir­cu­lat­ing ring that passes the bunches 11 times through the pro­ton or ion beam in­side cool­ing so­le­noids. This de­sign re­quires the sup­pres­sion of the ef­fects of space charge and co­her­ent syn­chro­tron ra­di­a­tion using shield­ing and RF com­pen­sa­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMK015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML014 Status of the Commissioning of the LIGHT Prototype DTL, MMI, rfq, proton 425
 
  • A. Degiovanni, J. Adam, D. Aguilera Murciano, S. Ballestrero, A. Benot-Morell, R. Bonomi, F.C.M. Cabaleiro Magallanes, M. Caldara, G. D'Auria, G. De Michele, M. Esposito, S. Fanella, D. Fazio, D.A. Fink, Y. Fusco, M. Gonzalez, P. Gradassi, A. Jeff, L. Kobzeva, G. Levy, G. Magrin, A. Marraffa, A. Milla, R. Moser, P. Nadig, G. Nuessle, A. Patino-Revuelta, T. Rutter, F. Salveter, A. Samoshkin, L. Wallet
    A.D.A.M. SA, Meyrin, Switzerland
  • M. Cerv, V.A. Dimov, L.S. Esposito, S. H. Gibson, M. Giunta, Ye. Ivanisenko, V. F. Khan, S. Magnoni, C. Mellace, J.L. Navarro Quirante, H. Pavetits, PPA. Paz Neira, P. Stabile, K. Stachyra, D. Ungaro, A. Valloni, C. Zannini
    AVO-ADAM, Meyrin, Switzerland
 
  The com­pany A.D.A.M. (Ap­pli­ca­tion of De­tec­tors and Ac­cel­er­a­tors to Med­i­cine), a CERN spin-off, is work­ing on the con­struc­tion and test­ing of its first lin­ear ac­cel­er­a­tor for med­ical ap­pli­ca­tion: LIGHT (Linac for Im­age-Guided Hadron Ther­apy). LIGHT is an in­no­v­a­tive high fre­quency pro­ton linac de­signed to ac­cel­er­ate pro­ton beams up to 230 MeV for pro­ton­ther­apy ap­pli­ca­tions. The LIGHT ac­cel­er­a­tor con­sists of three dif­fer­ent linac sec­tions: a 750 MHz Radio Fre­quency Quadru­pole (RFQ) ac­cel­er­at­ing the beam up to 5 MeV; a 3 GHz Side Cou­pled Drift Tube Linac (SCDTL) up to 37.5 MeV; and a 3 GHz Cell Cou­pled Linac (CCL) sec­tion up to 230 MeV. The com­pact and mod­u­lar de­sign is based on cut­ting edge tech­nolo­gies de­vel­oped for par­ti­cle col­lid­ers and adapted to the needs of hadron ther­apy beams. A pro­to­type of LIGHT is presently under com­mis­sion­ing at CERN. This paper de­scribes the de­sign as­pects and the dif­fer­ent stages of in­stal­la­tion and com­mis­sion­ing of the LIGHT pro­to­type with em­pha­sis on beam tests re­sults ob­tained dur­ing the past year at dif­fer­ent en­er­gies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML015 Simulations and Measurements of the CCL Modules of the LIGHT Accelerator coupling, proton, GUI, cavity 429
 
  • V. F. Khan, G. De Michele, S. Fanella, S. H. Gibson, Ye. Ivanisenko, C. Mellace, J.L. Navarro Quirante, C. Zannini
    AVO-ADAM, Meyrin, Switzerland
  • M. Esposito, P. Gradassi
    CERN, Geneva, Switzerland
 
  A 230 MeV pro­ton LINAC sys­tem for med­ical ap­pli­ca­tions is being de­vel­oped and com­mis­sioned for the LIGHT (Linac Image Guided Hadron Ther­apy) pro­ject by AVO-ADAM. The LINAC sys­tem con­sists of a 750 MHz RFQ (Radio fre­quency quadru­pole) for the low en­ergy pro­ton ac­cel­er­a­tion, 2998 MHz SCDTL (Side Cou­pled Drift Tube Linacs) for the medium en­ergy and 2998 MHz CCL (Cou­pled Cav­ity Linacs) for the high en­ergy. In par­tic­u­lar, the CCL ac­cel­er­at­ing mod­ules are used in the en­ergy range from 37.5 - 230 MeV. In this paper we dis­cuss the 3D EM (elec­tro-mag­netic) sim­u­la­tion re­sults and mea­sure­ments of the CCL mod­ules.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML017 Status and Development of the MYRRHA Injector cavity, diagnostics, MMI, rfq 432
 
  • D. Mäder, H. Höltermann, D. Koser, B. Koubek, K. Kümpel, P. Müller, U. Ratzinger, M. Schwarz, W. Schweizer
    BEVATECH, Frankfurt, Germany
  • C. Angulo, J. Belmans, D. Davin, W. De Cock, P. Della Faille, F. Doucet, A. Gatera, Pompon, F.F. Pompon, D. Vandeplassche
    Studiecentrum voor Kernenergie - Centre d'Étude de l'énergie Nucléaire (SCK•CEN), Mol, Belgium
  • M. Busch, H. Hähnel, H. Podlech
    IAP, Frankfurt am Main, Germany
 
  The MYRRHA pro­ject aims at cou­pling a cw 600 MeV, 4 mA pro­ton linac with a sub-crit­i­cal re­ac­tor as the very first pro­to­type nu­clear re­ac­tor to be dri­ven by a par­ti­cle ac­cel­er­a­tor (ADS). Among sev­eral ap­pli­ca­tions, MYRRHA main ob­jec­tive is to demon­strate the prin­ci­ple of par­ti­tion­ing and trans­mu­ta­tion (P&T) as a vi­able so­lu­tion to dras­ti­cally re­duce the ra­diotox­i­c­ity of long-life nu­clear waste. For this pur­pose, the linac needs an un­prece­dented level of re­li­a­bil­ity in terms of al­low­able beam trips. The nor­mal con­duct­ing in­jec­tor de­liv­ers 16.6 MeV pro­tons to the su­per­con­duct­ing main linac. The first sec­tion of the in­jec­tor (up to 5.9 MeV) con­sists of an ECR source, a 4-Rod-RFQ and a re­bunch­ing line fol­lowed by 7 in­di­vid­ual CH-type cav­i­ties. This en­tire sec­tion will be set up and op­er­ated by SCK·CEN in Lou­vain-la-Neuve, Bel­gium, for ample per­for­mance and re­li­a­bil­ity test­ing. The first CH cav­ity has been sent for power tests to IAP Frank­furt, Ger­many. The most re­cent sta­tus of all cav­i­ties, cou­plers and the beam di­ag­nos­tics of the MYRRHA in­jec­tor is pre­sented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML022 Development of Travelling Wave Accelerating Structure for a 10 MeV E-Linac electron, bunching, radiation, simulation 443
 
  • J.H. Yang, Y. Yang
    CIAE, Beijing, People's Republic of China
  • G. Han
    China Institute of Atomic Energy, Beijing, People's Republic of China
 
  Elec­tron ir­ra­di­a­tion pro­cess­ing is a vital ap­pli­ca­tion field of nu­clear tech­nol­ogy ap­pli­ca­tion. China In­sti­tute of Atomic En­ergy (CIAE) de­vel­oped sev­eral 10 MeV high power elec­tron ir­ra­di­at­ing ac­cel­er­a­tor suc­cess­fully, pro­mot­ing the de­vel­op­ment of high en­ergy high power ir­ra­di­at­ing ac­cel­er­a­tor tech­nol­ogy and elec­tron ir­ra­di­a­tion pro­cess­ing in China. The paper in­tro­duced the de­vel­op­ment of a 10 MeV trav­el­ling wave ac­cel­er­at­ing tube. The tube op­er­ates at 2856 MHz in 2π/3 mode. The SU­PER­FISH and PARMELA are used for the phys­i­cal de­sign. Sev­eral meth­ods are used for mi­crowave pa­ra­me­ter mea­sure­ment and tun­ing. The high power test shows the beam en­ergy is 10.3 MeV and av­er­age beam power is 24.3 kW.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML027 Status of Carbon Commissioning of the MedAustron Therapy Accelerator MMI, synchrotron, ion-source, rfq 457
 
  • C. Schmitzer, L. Adler, A. De Franco, F. Farinon, N. Gambino, G. Guidoboni, M. Kronberger, C. Kurfürst, S. Myalski, S. Nowak, M.T.F. Pivi, I. Strašík, A. Wastl
    EBG MedAustron, Wr. Neustadt, Austria
  • L.C. Penescu
    Abstract Landscapes, Montpellier, France
 
  The MedAus­tron ther­apy ac­cel­er­a­tor is in­tended to treat can­cer pa­tients with pro­ton and car­bon beams of 62-252 MeV and 120-400 MeV re­spec­tively. The ac­cel­er­a­tor fea­tures three Su­per­nanogan ECR ion sources, a 400 keV/u RFQ and a 7 MeV/u in­ter­dig­i­tal H-mode Linac. A mid­dle en­ergy beam trans­fer line also serves as in­jec­tor into a 77m syn­chro­tron from which the beam may be trans­ferred to 4 dif­fer­ent ir­ra­di­a­tion rooms, 3 of which are ded­i­cated to med­ical treat­ment. The ther­apy ac­cel­er­a­tor is in clin­i­cal op­er­a­tion since end 2016 and is cur­rently solely con­fig­ured for the use of pro­tons. The next clin­i­cal ob­jec­tive is to en­able treat­ments using C6+ ions which trig­gered the car­bon com­mis­sion­ing of the ac­cel­er­a­tor in 2017. This paper will dis­cuss the lat­est re­sults from car­bon com­mis­sion­ing in the dif­fer­ent sec­tions of the ac­cel­er­a­tor, achieved ef­fi­cien­cies and out­look on fu­ture car­bon ac­tiv­i­ties.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML028 Accelerator Machines and Experimental Activities in the ENEA Frascati Particle Accelerators and Medical Application Laboratory radiation, experiment, proton, electron 460
 
  • M. Vadrucci, A. Ampollini, G. Bazzano, F. Borgognoni, P. Nenzi, L. Picardi, C. Ronsivalle, V. Surrenti, E. Trinca
    ENEA C.R. Frascati, Frascati (Roma), Italy
 
  Funding: Regione Lazio - TOP IMPLART Project
In the ENEA Fras­cati re­search cen­ter the APAM (Par­ti­cle Ac­cel­er­a­tors and Med­ical Ap­pli­ca­tion) lab­o­ra­tory is de­voted to the de­vel­op­ment of par­ti­cle ac­cel­er­a­tors for med­ical ap­pli­ca­tions. Two main fa­cil­i­ties are op­er­a­tional. The TOP-IM­PLART pro­ton ac­cel­er­a­tor is a pulsed fully lin­ear ma­chine aimed at ac­tive in­ten­sity mod­u­lated pro­ton ther­apy with a final en­ergy of 150 MeV. The ma­chine of­fers two beam ex­trac­tion points: one at 3-7 MeV, on a ver­ti­cal line, and the other one at 35 MeV, the max­i­mum en­ergy cur­rently avail­able, with a pulse cur­rent up to 35 μA, on the hor­i­zon­tal line. The REX (Re­mov­able tar­get Elec­tron X-ray) source con­sists of an elec­tron stand­ing wave LINAC gen­er­at­ing a beam in the en­ergy range of 3 to 5 MeV with a pulsed cur­rent of 0.2 A. This source can gen­er­ate Bremsstrahlung X-ray beams using suit­able con­vert­ers (Pb, W, Ta). This paper de­scribes the ex­per­i­men­tal re­sults of satel­lite ac­tiv­i­ties per­formed in these fa­cil­i­ties in the fields of bi­ol­ogy, dosime­try, elec­tron­ics, PIXE spec­troscopy and preser­va­tion of cul­tural her­itage man­u­facts.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML031 Highlights of Accelerator Activities in France on Behalf of the Accelerator Division of the French Physics Society laser, proton, operation, electron 470
 
  • J.-L. Revol
    ESRF, Grenoble, France
  • S. Chel
    CEA/IRFU, Gif-sur-Yvette, France
  • B. Cros
    CNRS LPGP Univ Paris Sud, Orsay, France
  • N. Delerue
    LAL, Orsay, France
  • E. Giguet
    ALSYOM, Versailles, France
  • V. Le Flanchec
    CEA/DAM, Bruyères-le-Châtel, France
  • L.S. Nadolski
    SOLEIL, Gif-sur-Yvette, France
  • L. Perrot
    IPN, Orsay, France
  • A. Savalle
    GANIL, Caen, France
  • T. Thuillier
    LPSC, Grenoble Cedex, France
 
  The French Phys­i­cal So­ci­ety is a non-profit or­ga­ni­za­tion work­ing to ad­vance and dif­fuse the knowl­edge of physics. Its Ac­cel­er­a­tors di­vi­sion con­tributes to the pro­mo­tion of ac­cel­er­a­tor ac­tiv­i­ties in France. This paper pre­sents the mis­sions and ac­tions of the di­vi­sion, high-light­ing those con­cern­ing young sci­en­tists. A brief pre­sen­ta­tion of the lab­o­ra­to­ries, in­sti­tutes, and fa­cil­i­ties that are the main ac­tors in the field is given. Sig­nif­i­cant on­go­ing and planned pro­jects in France are de­scribed, in­clud­ing med­ical ap­pli­ca­tions. Main French con­tri­bu­tions in in­ter-na­tional pro­jects are then listed. Fi­nally, cul­tural and tech­ni­cal re­la­tion­ships be­tween in­dus­try and lab­o­ra­to­ries are dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML032 Prospects for a Muon Spin Resonace Facility in the Fermilab MuCool Test Area target, experiment, timing, resonance 474
 
  • J.A. Johnstone, C. Johnstone
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Reserach Alliance, LLC under Contract no. DE-AC02-07CH11359 with the United States Department of Energy.
This paper in­ves­ti­gates the fea­si­bil­ity of re-pur­pos­ing the Mu­Cool Test Area beam­line and ex­per­i­men­tal hall to sup­port a Muon Spin Res­o­nance Fa­cil­ity which would make it the only such fa­cil­ity in the US. This re­port re­views the basic muon pro­duc­tion con­cepts as stud­ied and op­er­a­tionally im­ple­mented at TRI­UMF, PSI, and RAL and their ap­pli­ca­tion in the con­text of the MTA fa­cil­ity. Two sce­nar­ios were de­ter­mined fea­si­ble. One, an ini­tial min­i­mal-shield­ing and cap­i­tal-cost in­vest­ment stage with a sin­gle sec­ondary muon beam­line that uti­lizes an ex­ist­ing pri­mary beam ab­sorber and, an­other, an up­graded stage, that im­ple­ments an op­ti­mized pro­duc­tion tar­get, a prox­i­mate high-in­ten­sity ab­sorber, and op­ti­mized sec­ondary muon lines. A unique ap­proach is pro­posed which chops or strips a macropulse of H beam into a mi­cropulse sub­struc­ture - a muon cre­ation tim­ing scheme - which al­lows Muon Spin Res­o­nance ex­per­i­ments in a linac en­vi­ron­ment. With this tim­ing scheme, and at­ten­tion to tar­get de­sign and sec­ondary beam col­lec­tion, the MTA can host en­abling and com­pet­i­tive Muon Spin Res­o­nance ex­per­i­ments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML033 Data Supply of Accelerator Devices - Data Management of Device Process Data at a Medical Accelerator controls, database, operation, MMI 477
 
  • M. Galonska, R. Cee, Th. Haberer, K. Höppner, J.M. Mosthaf, A. Peters, S. Scheloske, C. Schömers
    HIT, Heidelberg, Germany
 
  HIT is the first ded­i­cated pro­ton and car­bon can­cer ther­apy fa­cil­ity in Eu­rope. It uses the full 3D in­ten­sity con­trolled raster scan­ning dose de­liv­ery method of pen­cil beams with ion beams of 48 - 430 MeV/u pro­vided by a linac-syn­chro­tron-sys­tem. Ion beams in this wide range of en­er­gies, dif­fer­ent beam sizes, and in­ten­si­ties have to be pro­vided by the con­trol sys­tem to all treat­ment rooms at any time with high ac­cu­racy, sta­bil­ity, and re­pro­ducibil­ity. This paper briefly re­flects some as­pects of the data sup­ply, i. e. the set­tings of ac­cel­er­a­tor de­vices at a med­ical ac­cel­er­a­tor. This in­cludes the gen­er­a­tion of con­trol data, stor­age, and data re­cov­ery rou­tines, which have been de­vel­oped at HIT in the re­cent years. That is in par­tic­u­lar the man­age­ment of ver­i­fied ther­apy data and set­tings, which are stored in a non-volatile mem­ory of the de­vice con­trollers, and – as a backup – in a data­base and which are pro­tected against un­in­tended changes for safety rea­sons.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML043 High Gradient Performance of an S-Band Backward Traveling Wave Accelerating Structure for Medical Hadron Therapy Accelerators proton, cavity, radiation, accelerating-gradient 491
 
  • A. Vnuchenko, C. Blanch Gutiérrez, D. Esperante Pereira
    IFIC, Valencia, Spain
  • S. Benedetti, N. Catalán Lasheras, A. Grudiev, B. Koubek, G. McMonagle, I. Syratchev, B.J. Woolley, W. Wuensch
    CERN, Geneva, Switzerland
  • A. Faus-Golfe
    LAL, Orsay, France
  • T.G. Lucas, M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
  • S. Pitman
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  The high-gra­di­ent per­for­mance of an ac­cel­er­at­ing struc­ture pro­to­type for a med­ical pro­ton linac is pre­sented. The struc­ture was de­signed and built using tech­nol­ogy de­vel­oped by the CLIC col­lab­o­ra­tion and the tar­get ap­pli­ca­tion is the TULIP (Turn­ing Linac for Pro­ton ther­apy) pro­posal de­vel­oped by the TERA foun­da­tion. The spe­cial fea­ture of this de­sign is to pro­duce gra­di­ent of more than 50 MV /m in low-β ac­cel­er­at­ing struc­tures (v/c=0.38). The struc­ture was tested in an S-band test stand at CERN. Dur­ing the tests, the struc­ture reached over above 60 MV/m at 1.2 μs pulse length and break­down rate of about 5x10-6 bpp. The re­sults pre­sented in­clude ul­ti­mate per­for­mance, long term be­hav­iour and mea­sure­ments that can guide fu­ture op­ti­miza­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML044 Start-to-End Beam Dynamic Simulations for PRAE gun, emittance, laser, solenoid 495
 
  • A. Vnuchenko
    IFIC, Valencia, Spain
  • C. Bruni, M. El Khaldi, A. Faus-Golfe, P. Lepercq, C. Vallerand
    LAL, Orsay, France
  • A. Latina
    CERN, Geneva, Switzerland
 
  The PRAE pro­ject (Plat­form for Re­search and Ap­pli­ca­tions with Elec­trons) aims at cre­at­ing a mul­ti­dis­ci­pli­nary R&D fa­cil­ity in the Orsay cam­pus gath­er­ing var­i­ous sci­en­tific com­mu­ni­ties in­volved in ra­dio­bi­ol­ogy, sub­atomic physics, in­stru­men­ta­tion and par­ti­cle ac­cel­er­a­tors around an elec­tron ac­cel­er­a­tor de­liv­er­ing a high-per­for­mance beam with en­ergy up to 70 MeV and later 140 MeV, in order to per­form a se­ries of unique mea­sure­ments and fu­ture chal­leng­ing R&D. In this paper we re­port the first start-to-end sim­u­la­tions from the RF gun, going through the linac and fi­nally to the dif­fer­ent ex­per­i­men­tal plat­forms. The beam dy­nam­ics sim­u­la­tions have been per­formed using a con­cate­na­tion of codes. In par­tic­u­lar for the linac the RF-Track code re­cently de­vel­oped at CERN will be used and bench­marked. The dif­fer­ent work­ing points have been analysed in order to min­imise the trans­verse emit­tance and the beam en­ergy spread in­clud­ing space charge ef­fects at low elec­tron en­er­gies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML052 The Path to Compact, Efficient Solid-State Transistor-Driven Accelerators cavity, electron, impedance, simulation 520
 
  • D.C. Nguyen, C.E. Buechler, G.E. Dale, R.L. Fleming, M.A. Holloway, J.W. Lewellen, D. Patrick
    LANL, Los Alamos, New Mexico, USA
  • V.A. Dolgashev, E.N. Jongewaard, E.A. Nanni, J. Neilson, A.V. Sy, S.G. Tantawi
    SLAC, Menlo Park, California, USA
 
  Funding: Research presented in this work is supported by (LANL) Laboratory Directed Research and Development 20170521ER and by (SLAC) Department of Energy contract DE-AC02-76SF00515.
Small, light­weight, few-MeV elec­tron ac­cel­er­a­tors that can op­er­ate with low-volt­age power sources, e.g., solid-state tran­sis­tors run­ning on 50 VDC, in­stead of high-volt­age kly­strons, will pro­vide a new tool to en­hance ex­ist­ing ap­pli­ca­tions of ac­cel­er­a­tors as well as to ini­ti­ate new ones. Re­cent ad­vances in gal­lium ni­tride (GaN) semi­con­duc­tor tech­nolo­gies * have re­sulted in a new class of high-power RF solid-state de­vices called high-elec­tron mo­bil­ity tran­sis­tors (HEMTs). These HEMTs are ca­pa­ble of gen­er­at­ing a few hun­dred watts at S-, C- and X-bands at 10% duty fac­tor. We have char­ac­ter­ized a num­ber of GaN HEMTs and ver­i­fied they have suit­able RF char­ac­ter­is­tics to power ac­cel­er­a­tor cav­i­ties **. We have mea­sured en­ergy gain as a func­tion of RF power in a sin­gle low-beta C-band cav­ity. The HEMT pow­ered RF ac­cel­er­a­tors will be com­pact and ef­fi­cient, and they can op­er­ate off the low-volt­age DC power buses or bat­ter­ies. These all-solid-state ac­cel­er­a­tors are also more ro­bust, less likely to fail, and are eas­ier to main­tain and op­er­ate. In this poster, we pre­sent the de­sign of a low-beta, 5.1-GHz cav­ity and beam dy­nam­ics sim­u­la­tions show­ing con­tin­u­ous en­ergy gain in a ten-cav­ity C-band pro­to­type.
* See for example, http://www.wolfspeed.com/downloads/dl/file/id/463/product/174/cghv59350.pdf
** J.W. Lewellen et al., Proceedings of LINAC2016, Paper MO3A03
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML055 Preliminary Physics Design of a Linac with the Variable Energy for Industrial Applications electron, gun, beam-loading, simulation 530
 
  • Zh. X. Tang
    USTC, Hefei, Anhui, People's Republic of China
  • L. Wang, D.R. Xu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  This paper de­scribes the physics de­sign of a S-band (2856 MHz) lin­ear ac­cel­er­a­tor (linac) with vari­able en­ergy tun­ing. The sys­tem con­sists of a DC gun for gen­er­at­ing elec­tron, pre­buncher for ve­loc­ity mod­u­la­tion and two trav­el­ling wave (TW) ac­cel­er­at­ing sec­tions for ac­cel­er­a­tion. The ac­cel­er­at­ing struc­ture is a 2'Ð/3 mode con­stant gra­di­ent TW struc­ture, which com­prises TW buncher cells, fol­lowed by uni­form cells. The struc­ture is de­signed to ac­cel­er­ate 45 keV elec­tron beam from the elec­tron gun to 3.2 MeV, and then 10 MeV. An im­por­tant fea­ture of the TW linac is that the RF out­put power of the first linac is as the RF input power of the sec­ond linac. Three di­men­sional tran­sient sim­u­la­tions of the ac­cel­er­at­ing struc­ture along with the input and out­put cou­plers have been per­formed to ex­plic­itly demon­strate this fea­ture. Beam dy­nam­ics is per­formed to cal­cu­late the beam pa­ra­me­ter.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML058 Comparison of Water Absorbed Dose for Photons of Linac and Traceability System for Radiotherapy in China photon, controls, radiation, electron 537
 
  • K. Wang, S. Jin, Z. Wang, J. Zhang
    National Institute of Metrology, Beijing, People's Republic of China
 
  Na­tional In­sti­tute of Metrol­ogy (NIM) de­vel­oped the stan­dards of the ab­sorbed dose to water for high-en­ergy pho­ton and elec­tron beams, to sup­port the PSDL and SSDL cal­i­bra­tion ca­pa­bil­ity in China. After the mea­sure­ment of ab­sorbed dose to water for 6, 10, and 25 MV pho­tons of linac, NIM took part the BIPM. RI(I).K6 com­par­i­son with the Bu­reau In­ter­na­tional des Poids et Mesures (BIPM). The tis­sue phan­tom ratio (TPR20,10) of 6MV and 10MV pho­tons were mea­sured by IBA CC13 cham­ber and Keith­ley 6517B with dif­fer­ent out­put dose of the Linac, and also cal­cu­lated by the dose ratio (D20⁄D10) with the for­mula in IAEA TRS-398 re­port. TPR20,10 mea­sured di­rectly is 0.3% larger than cal­cu­lated by the dose ratio D20⁄D10 . The ab­sorbed dose to water is mea­sured by water calorime­ter with the com­bined stan­dard un­cer­tainty of 0.35%. The dis­crep­ancy of ab­sorbed dose to water mea­sured sep­a­rately by open and sealed ves­sel is 0.2% at 10MV. The K6 com­par­i­son was done, the re­sults re­ported as ra­tios of the NIM and the BIPM eval­u­a­tions (and with the com­bined stan­dard un­cer­tain­ties given in paren­the­ses), are 0.9917(60) at 6 MV, and 0.9941(59) at 10 MV. The qual­ity cor­rec­tion fac­tor KQ of usual used cham­ber was mea­sure di­rectly, and it is 0.3%~0.7% smaller than the data in the IAEA TRS-398 re­port. The typ­i­cal cham­ber-to-cham­ber vari­a­tions of the dose ob­tained with the IAEA TRS-277, TRS-398 and AAPM TG-51 were be­tween 0.2% and 1.0% for the dif­fer­ent pho­ton beams. The vari­a­tions of the dose ob­tained with IAEA TRS-398 and cham­bers cal­i­brated di­rectly by mega­volt­age pho­tons were be­tween 0.1% to 0.8%. The new stan­dard can achieve the trace­abil­ity of water ab­sorbed dose for MV pho­tons and will sig­nif­i­cantly re­duce the un­cer­tainty of ion cham­ber cal­i­bra­tions for Chi­nese ra­dio­ther­apy cen­ters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML067 9/6 MeV European S-band Linac Structure for Container Inspection System at RTX and KAERI electron, coupling, bunching, gun 560
 
  • P. Buaphad, H.D. Park, S. Song
    RTX, Daejeon, Republic of Korea
  • P. Buaphad, Y. Joo
    University of Science and Technology of Korea (UST), Daejeon, Republic of Korea
  • P. Buaphad, S.C. Cha, Y. Joo, Y. Kim, H.R. Lee
    KAERI, Jeongeup-si, Republic of Korea
 
  Re­cently, de­mands on low en­ergy elec­tron lin­ear ac­cel­er­a­tors (linacs) for in­dus­trial ap­pli­ca­tions are rapidly grow­ing. Their beam en­er­gies are lower than 20 MeV, and they re­quire a com­pact, cheap, and sta­ble ac­cel­er­a­tor sys­tem. For the Con­tainer In­spec­tion Sys­tem (CIS), KAERI suc­cess­fully de­vel­oped a 9/6 MeV Amer­i­can S-band (= 2856 MHz) linac with a 5 MW kly­stron in 2013. To re­duce the cost of the RF source, re­cently, KAERI and RTX also have been de­vel­op­ing an­other 9/6 MeV Eu­ro­pean S-band (= 2998 MHz) linac by using a mag­netron with a lower RF power of about 3.1 MW. Its ac­cel­er­at­ing struc­ture is de­signed to be op­er­ated in π/2 mode by cou­pling 13 ac­cel­er­at­ing cells to­gether through 12 side-cou­pling cells. The CST Mi­crowave Stu­dio is used for elec­tro­mag­netic sim­u­la­tions and op­ti­miza­tion of the ac­cel­er­at­ing struc­ture. After var­i­ous op­ti­miza­tions, a shunt im­ped­ance of 84 MΩ/m is ob­tained at π/2 mode fre­quency of 2998.31 MHz. In this paper, we de­scribe de­sign con­cept, op­ti­miza­tion, and RF mea­sure­ment of the new 9/6 MeV Eu­ro­pean S-band linac struc­ture. Then, we com­pare it with our old Amer­i­can S-band linac struc­ture.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYGBE2 CBETA, the 4-Turn ERL with SRF and Single Return Loop electron, gun, SRF, cryomodule 635
 
  • G.H. Hoffstaetter, N. Banerjee, J. Barley, A.C. Bartnik, I.V. Bazarov, D.C. Burke, J.A. Crittenden, L. Cultrera, J. Dobbins, S.J. Full, F. Furuta, R.E. Gallagher, M. Ge, C.M. Gulliford, B.K. Heltsley, R.P.K. Kaplan, V.O. Kostroun, Y. Li, M. Liepe, W. Lou, C.E. Mayes, J.R. Patterson, P. Quigley, D.M. Sabol, D. Sagan, J. Sears, C.H. Shore, E.N. Smith, K.W. Smolenski, V. Veshcherevich, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg, S.J. Brooks, C. Liu, G.J. Mahler, F. Méot, R.J. Michnoff, M.G. Minty, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, D. Trbojevic, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, H. Witte
    BNL, Upton, Long Island, New York, USA
  • D. Douglas
    JLab, Newport News, Virginia, USA
  • J.K. Jones
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • D. Jusic
    Cornell University, Ithaca, New York, USA
  • D.J. Kelliher
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • B.C. Kuske, M. McAteer, J. Völker
    HZB, Berlin, Germany
 
  Funding: Supported by NSF award DMR-0807731, DOE grant DE-AC02-76SF00515, and NYSERDA.
A col­lab­o­ra­tion be­tween Cor­nell Uni­ver­sity and Brookhaven Na­tional Lab­o­ra­tory has de­signed and is con­struct­ing CBETA, the Cor­nell-BNL ERL Test Ac­cel­er­a­tor on the Cor­nell cam­pus. The ERL tech­nol­ogy that has been pro­to­typed at Cor­nell for many years is being used for this new ac­cel­er­a­tor, in­clud­ing a DC elec­tron source and an SRF in­jec­tor Linac with world-record cur­rent and nor­mal­ized bright­ness in a bunch train, a high-cur­rent linac cry­omod­ule op­ti­mized for ERLs, a high-power beam stop, and sev­eral di­ag­nos­tics tools for high-cur­rent and high-bright­ness beams. BNL has de­signed multi-turn ERLs for sev­eral pur­pose, dom­i­nantly for the elec­tron beam of eRHIC, its Elec­tron Ion Col­lider (EIC) pro­ject and for the as­so­ci­ated fast elec­tron cool­ing sys­tem. Also in JLEIC, the EIC de­signed at JLAB, an ERL is en­vi­sioned to be used for elec­tron cool­ing. The num­ber of trans­port lines in an ERL is min­i­mized by using re­turn arcs that are com­prised of a Fixed Field Al­ter­nat­ing-gra­di­ent (FFA) de­sign. This tech­nique will be tested in CBETA, which has a sin­gle re­turn for the 4-beam en­er­gies with strongly-fo­cus­ing per­ma­nent mag­nets of Hal­bach type. The high-bright­ness beam with 150~MeV and up to 40~mA will have ap­pli­ca­tions be­yond ac­cel­er­a­tor re­search, in in­dus­try, in nu­clear physics, and in X-ray sci­ence. Low cur­rent elec­tron beam has al­ready been sent through the most rel­e­vant parts of CBETA, from the DC gun through both cry­omod­ules, through one of the 8 sim­i­lar sep­a­ra­tor lines, and through one of the 27 sim­i­lar FFA struc­tures. Fur­ther con­struc­tion is en­vi­sioned to lead to a com­mis­sion­ing start for the full sys­tem early in 2019.
 
slides icon Slides TUYGBE2 [17.343 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBE2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF001 Requirements for the Cryogenic Refrigerator and the He Distribution System for the MYRRHA 100 Mev Accelerator cryogenics, cavity, cryomodule, operation 655
 
  • T. Junquera
    Accelerators and Cryogenic Systems, Orsay, France
  • C. Angulo
    Studiecentrum voor Kernenergie - Centre d'Étude de l'énergie Nucléaire (SCK•CEN), Mol, Belgium
  • D. Vandeplassche
    SCK•CEN, Mol, Belgium
 
  MYRRHA is an ADS demon­stra­tor for the long-lived ra­dioac­tive waste trans­mu­ta­tion. It is com­posed of a High En­ergy CW Linac Ac­cel­er­a­tor (600 MeV - 4mA) cou­pled to a Sub­crit­i­cal Re­ac­tor of 100 MW ther­mal power. The main chal­lenge of the Linac is a very high re­li­a­bil­ity per­for­mance to limit stress and long restart pro­ce­dures of the re­ac­tor. Within the MYRRHA pro­ject phased ap­proach for the con­struc­tion, a 100 MeV-4 mA Linac (In­jec­tor up to 17 MeV and SC Linac be­tween 17 MeV and 100 MeV) will be con­structed in the Phase 1, cov­er­ing 2016-2024. The SC Linac is com­posed of 58 Sin­gle-Spoke SC cav­i­ties, housed in 29 cry­omod­ules. The cav­i­ties op­er­ates at 352 MHz, in a su­per­fluid He­lium bath at 2K. In this paper, the re­quire­ments for the Linac Cryo­genic Sys­tem are pre­sented. The analy­sis of high ther­mal loads in­duced by the CW mode op­er­a­tion of cav­i­ties, leads to a Cryo­genic Re­frig­er­a­tor with a power of 2700 W (equiv. power ca­pac­ity at 4.5 K). Each cry­omod­ule is con­nected through a ded­i­cated Valve Box to the He­lium trans­fer line run­ning along the Linac tun­nel. A de­scrip­tion of the cryo­genic sys­tem fea­tures and ini­tial mod­els of the tun­nel and as­so­ci­ated build­ings are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF002 Beam Commissioning of the 750 MHz Proton RFQ for the LIGHT Prototype rfq, MMI, emittance, diagnostics 658
 
  • V.A. Dimov, M. Caldara, A. Degiovanni, L.S. Esposito, D.A. Fink, M. Giunta, A. Jeff, A. Valloni
    AVO-ADAM, Meyrin, Switzerland
  • A.M. Lombardi, S.J. Mathot, M. Vretenar
    CERN, Geneva, Switzerland
 
  ADAM (Ap­pli­ca­tion of De­tec­tors and Ac­cel­er­a­tors to Med­i­cine), a CERN spin-off com­pany, is de­vel­op­ing the Linac for Image Guided Hadron Ther­apy, LIGHT, which will ac­cel­er­ate pro­ton beams up to 230 MeV. The de­sign of the linac will allow fast in­ten­sity and en­ergy mod­u­la­tion for pen­cil-beam scan­ning dur­ing can­cer treat­ment. The linac con­sists of a 40 keV Pro­ton In­jec­tor; a 750 MHz Radio Fre­quency Quadru­pole (RFQ) ac­cel­er­at­ing the pro­ton beam up to 5 MeV; a 3 GHz Side Cou­pled Drift Tube Linac (SCDTL) up to 37.5 MeV; and a 3 GHz Cell Cou­pled Linac (CCL) sec­tion up to 230 MeV. A pro­to­type of LIGHT is being com­mis­sioned pro­gres­sively with the in­stal­la­tion of the ac­cel­er­at­ing struc­tures at a CERN site. The beam com­mis­sion­ing of the RFQ, which was de­signed and built by CERN, was com­pleted in 2017 using a mov­able beam di­ag­nos­tic test bench with var­i­ous in­stru­ments. This paper re­ports on the RFQ com­mis­sion­ing strat­egy and the re­sults of the beam mea­sure­ments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF003 Integrated Prototyping in View of the 100 MeV Linac for Myrrha Phase 1 cryomodule, cavity, controls, target 661
 
  • D. Vandeplassche, J. Belmans
    SCK•CEN, Mol, Belgium
  • C. Angulo, D. Davin, W. De Cock, P. Della Faille, F. Doucet, A. Gatera, Pompon, F.F. Pompon
    Studiecentrum voor Kernenergie - Centre d'Étude de l'énergie Nucléaire (SCK•CEN), Mol, Belgium
  • D. Bondoux, F. Bouly
    LPSC, Grenoble Cedex, France
  • H. Höltermann, D. Mäder
    BEVATECH, Frankfurt, Germany
  • C. Joly, G. Olry, H. Saugnac
    IPN, Orsay, France
  • M. Loiselet, N. Postiau, L. Standaert
    UCL, Louvain-la-Neuve, Belgium
  • H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Funding: Work partially supported by the European Commission H2020 programme MYRTE #662186
The MYRRHA pro­ject borne by SCK•CEN, the Bel­gian Nu­clear Re­search Cen­tre, aims at re­al­iz­ing a pre-in­dus­trial Ac­cel­er­a­tor Dri­ven Sys­tem (ADS) for ex­plor­ing the trans­mu­ta­tion of long lived nu­clear waste. The linac for this ADS will be a High Power Pro­ton Ac­cel­er­a­tor de­liv­er­ing 2.4 MW CW beam at 600 MeV. It has to sat­isfy strin­gent re­quire­ments for re­li­a­bil­ity and avail­abil­ity: a beam-MTBF of 250h is tar­geted. The re­li­a­bil­ity goal is pur­sued through a phased ap­proach. Dur­ing Phase 1, ex­pected till 2024, the MYRRHA linac up to 100 MeV will be con­structed. It will allow to eval­u­ate the re­li­a­bil­ity po­ten­tial of the 600 MeV linac. It will also feed a Pro­ton Tar­get Fa­cil­ity in which ra­dioiso­topes of in­ter­est will be col­lected through an ISOL sys­tem. This con­tri­bu­tion will focus on the tran­si­tion to in­te­grated pro­to­typ­ing, which will em­pha­size (i) a test plat­form con­sist­ing of the ini­tial sec­tion of the nor­mal con­duct­ing in­jec­tor (5.9 MeV), (ii) the re­al­iza­tion of a com­plete cry­omod­ule for the su­per­con­duct­ing linac and of its cryo­genic valve box. The cry­omod­ule will house two 352 MHz sin­gle spoke cav­i­ties op­er­ated at 2K.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF014 Beam Dynamics Studies For the IFMIF-DONES SRF-Linac SRF, cryomodule, cavity, solenoid 687
 
  • L. Du, N. Bazin, N. Chauvin, S. Chel, J. Plouin
    CEA/IRFU, Gif-sur-Yvette, France
 
  The DONES (DEMO ori­ented neu­tron source) pro­ject is aimed at con­struct­ing a DEMO of IFMIF to pro­vide suf­fi­cient ma­te­r­ial dam­age [1]. In the SRF-Linac of this pro­ject, losses can cause harm­ful ma­te­r­ial ac­ti­va­tion and must be main­tained much less than 1W/m. It's a chal­lenge to keep losses at such a low level with high beam power and high space charge. This paper pre­sents two de­signs of the DONES SRF-Linac, one with 4 cry­omod­ules and an­other with 5 cry­omod­ules. The de­sign de­tails to re­duce the losses and the multi-par­ti­cle sim­u­la­tion re­sults will be shown. The er­rors stud­ies for these re­sults will also be dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF017 Stability Analysis of the TOP-IMPLART 35 MeV Proton Beam DTL, proton, klystron, booster 697
 
  • P. Nenzi, A. Ampollini, G. Bazzano, L. Picardi, C. Ronsivalle, V. Surrenti, E. Trinca, M. Vadrucci
    ENEA C.R. Frascati, Frascati (Roma), Italy
 
  Funding: The TOP-IMPLART program is funded by Regione Lazio.
The TOP-IM­PLART (In­ten­sity Mod­u­lated Pro­ton Lin­ear Ac­cel­er­a­tor for Ra­dio­Ther­apy) is the demon­stra­tor of a 150 MeV pro­ton lin­ear ac­cel­er­a­tor de­voted to can­cer treat­ment ap­pli­ca­tion under de­vel­op­ment at ENEA-Fras­cati. It is a full lin­ear ma­chine com­posed by a 425 MHz 7 MeV in­jec­tor and a high fre­quency linac op­er­at­ing at 2997.92 MHz. The first ac­cel­er­at­ing sec­tion, in­stalled and in op­er­a­tion, con­sists of 4 SCDTL struc­tures and de­liv­ers a 35 MeV beam in 3 mi­crosec­onds pulses at a max­i­mum rep­e­ti­tion fre­quency of 50 Hz. The prin­ci­pal ad­van­tage of a lin­ear ac­cel­er­a­tor, in a ther­a­peu­tic ap­pli­ca­tion, is the quick set­ting pos­si­bil­ity (up to pulse-to-pulse, in prin­ci­ple) of the phys­i­cal prop­er­ties of the pro­ton beam, of­fer­ing larger flex­i­bil­ity (com­pared to tra­di­tional cir­cu­lar de­signs) and im­proved pre­ci­sion on dose de­liv­ery to the pa­tient., The short and long range sta­bil­ity of the ma­chine have been an­a­lyzed mea­sur­ing on a pulse by pulse basis both the out­put beam char­ac­ter­is­tics and other ma­chine pa­ra­me­ters in order to iden­tify those that mainly af­fect the beam sta­bil­ity. This work de­scribes the method­ol­ogy used in this study, the main re­sults achieved and the fu­ture de­vel­op­ments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF018 Characterization of Automatic Frequency Control systems for S-band Proton LINAC "TOP-IMPLART" DTL, controls, proton, detector 701
 
  • G. Bazzano, P. Nenzi, L. Picardi, C. Ronsivalle, M. Vadrucci
    ENEA C.R. Frascati, Frascati (Roma), Italy
 
  The TOP-IM­PLART (In­ten­sity Mod­u­lated Pro­ton Lin­ear Ac­cel­er­a­tor for Ra­dio­Ther­apy) pro­ton lin­ear ac­cel­er­a­tor is under de­vel­op­ment at ENEA-Fras­cati. It is com­posed by a 7 MeV, 425 MHz in­jec­tor fol­lowed by a se­quence of 2997.92 MHz ac­cel­er­at­ing mod­ules. Four 10 MW kly­strons will be used to power all high fre­quency struc­tures up to a beam en­ergy of 150 MeV. The first sec­tion, con­sist­ing of 4 SCDTL mod­ules (7 to 35 MeV), is op­er­a­tional at low rep­e­ti­tion rate (up to 50 Hz). Whereas beam ac­cel­er­a­tion is ef­fec­tive even with­out closed loop con­trol, to en­sure high beam cur­rent sta­bil­ity the res­o­nance fre­quency vari­a­tion must be kept for each SDCTL mod­ule within few kHz. This is achieved im­ple­ment­ing an au­to­matic fre­quency con­trol (AFC) loop that de­tects struc­ture de­tun­ing caused by ther­mal drifts and pro­duce an error sig­nal fed to a tun­ing motor. A pro­to­type of an AFC cus­tom so­lu­tion, de­rived from a med­ical elec­tron linac, has been tested on TOP-IM­PLART ac­cel­er­a­tor. This was orig­i­nally de­signed for mag­netron fre­quency tun­ing with much larger fre­quency span. Other AFC sys­tems with dif­fer­ent com­po­nents have been eval­u­ated in order to reach the high re­quired res­o­lu­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF020 Performance of the CERN Low Energy Ion Ring (LEIR) with Xenon beams injection, MMI, controls, extraction 705
 
  • R. Alemany-Fernández, S.C.P. Albright, O. Andujar, M.E. Angoletta, J. Axensalva, H. Bartosik, G. Baud, N. Biancacci, M. Bozzolan, S. Cettour Cave, K. Cornelis, J. Dalla-Costa, M. Delrieux, A. Dworak, A. Findlay, F. Follin, A. Frassier, M. Gabriel, A. Guerrero, M. Haase, S. Hirlaender, S. Jensen, V. Kain, L.V. Kolbeck, Y. Le Borgne, D. Manglunki, O. Marqversen, S. Massot, D. Moreno Garcia, D.J.P. Nicosia, S. Pasinelli, L. Pereira, D. Perez, A. Rey, J.P. Ridewood, F. Roncarolo, A. Saá Hernández, R. Scrivens, O.G. Sveen, G. Tranquille, E. Veyrunes
    CERN, Geneva, Switzerland
 
  In 2017 the CERN Low En­ergy Ion Ring demon­strated once more the fea­si­bil­ity of in­ject­ing, ac­cu­mu­lat­ing, cool­ing and ac­cel­er­at­ing a new nu­clei, 129X­e39 . The op­er­a­tion of this new ion species started at the be­gin­ning of March with the start up of the xenon ion source and the Linac3. Ten weeks later the beam ar­rived to the Low En­ergy Ion Ring (LEIR) trig­ger­ing the start of sev­eral weeks of beam com­mis­sion­ing in view of pro­vid­ing the in­jec­tor com­plex with Xenon beams for dif­fer­ent ex­per­i­ments and a se­ries of ma­chine de­vel­op­ment ex­per­i­ments in LEIR. Two types of beams were setup, the so called EARLY beam, with a sin­gle in­jec­tion into LEIR from Linac3, and the NOM­I­NAL beam with up to seven in­jec­tions. 2017 was as well an in­ter­est­ing year for LEIR be­cause sev­eral im­prove­ments in the con­trol sys­tem of the ac­cel­er­a­tor and in the beam in­stru­men­ta­tion were done in view of in­creas­ing the ma­chine re­li­a­bil­ity. This paper sum­marises the beam com­mis­sion­ing phase and all the im­prove­ments car­ried out dur­ing 2017.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF034 LEIR Injection Efficiency Studies as a Function of the Beam Energy Distribution from Linac3 injection, cavity, bunching, optics 758
 
  • S. Hirlaender, R. Alemany-Fernández, H. Bartosik, G. Bellodi, N. Biancacci, V. Kain, R. Scrivens
    CERN, Geneva, Switzerland
 
  High in­ten­si­ties in the CERN Low En­ergy Ion Ring (LEIR) are achieved using multi-turn in­jec­tions from the pre-ac­cel­er­a­tor Linac3 com­bined with si­mul­ta­ne­ous stack­ing in mo­men­tum and trans­verse phase spaces. Up to seven con­sec­u­tive 200 μs long, 200 ms spaced pulses are in­jected from Linac3 into LEIR by stack­ing each of them into the six-di­men­sional phase-space over 70 turns. An in­clined sep­tum mag­net al­lows proper fill­ing of the trans­verse phase-space plane, while lon­gi­tu­di­nal stack­ing re­quires mo­men­tum vari­a­tion achieved by a shift of mean mo­men­tum over time pro­vided by phase shift­ing a com­bi­na­tion of 2 RF cav­i­ties at the exit of Linac3. The achiev­able max­i­mum ac­cu­mu­lated in­ten­sity de­pends strongly on the lon­gi­tu­di­nal beam qual­ity of the in­jected beam. The lon­gi­tu­di­nal Schot­tky sig­nal is used to mea­sure the re­ceived en­ergy dis­tri­b­u­tion of the cir­cu­lat­ing beam which is then cor­re­lated with the ob­tained in­jec­tion ef­fi­ciency. This paper pre­sents the ex­per­i­men­tal stud­ies to un­der­stand and fur­ther im­prove the in­jec­tion re­li­a­bil­ity and the lon­gi­tu­di­nal stack­ing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF036 Studies of the Injection and Cooling Efficiency in LEIR Using the Longitudinal Schottky Spectrum injection, diagnostics, electron, pick-up 765
 
  • S. Hirlaender, R. Alemany-Fernández, H. Bartosik, N. Biancacci, V. Kain
    CERN, Geneva, Switzerland
 
  The CERN Low En­ergy Ion Ring (LEIR) has two main op­er­a­tional beams with their as­so­ci­ated cy­cles, the so-called EARLY and the NOM­I­NAL beam. The EARLY beam con­sists of a sin­gle in­jected pulse from the LINAC3 ac­cel­er­a­tor, whereas seven con­sec­u­tive in­jec­tions are ac­cu­mu­lated, and elec­tron cooled for the NOM­I­NAL beam. In both cases, the lon­gi­tu­di­nal Schot­tky mon­i­tor al­lows as­sess­ing the lon­gi­tu­di­nal par­ti­cle dis­tri­b­u­tion dur­ing the cool­ing process on the in­jec­tion plateau. A method has been es­tab­lished to an­a­lyze the Schot­tky sig­nal, re­con­struct the ini­tial par­ti­cle mo­men­tum dis­tri­b­u­tion and de­rive rel­e­vant pa­ra­me­ters such as the cool­ing time, en­ergy off-set of in­jected and stacked beam or the mo­men­tum dis­tri­b­u­tion of the lost beam. The vari­a­tions of the ob­tained pa­ra­me­ters and the im­pact on the LEIR per­for­mance will be ad­dressed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF042 Characterization of the Beam Energy Spread at the REX/HIE-ISOLDE Linac cavity, ISOL, experiment, detector 787
 
  • M.L. Lozano, N. Bidault, E. Fadakis, M.A. Fraser, E. Matli, J.A. Rodriguez
    CERN, Geneva, Switzerland
 
  ISOLDE is an on-line ra­dioac­tive iso­tope sep­a­ra­tor lo­cated at CERN that works by col­lid­ing pro­tons ac­cel­er­ated in the PS Booster into a fixed tar­get and by sep­a­rat­ing the re­sul­tant ion­ized iso­topes using a mag­netic sep­a­ra­tor. The com­ple­tion of the HIE-ISOLDE su­per­con­duct­ing linac al­lows the ac­cel­er­a­tion of these ions to en­ergy lev­els that were not reach­able be­fore, open­ing the door to new ex­per­i­ments in dif­fer­ent fields. These ex­per­i­ments often have spe­cial re­quire­ments in terms of beam in­ten­sity and pu­rity, trans­verse emit­tance or en­ergy spread. A pos­si­ble way to re­duce the en­ergy spread of the beam de­liv­ered to the ex­per­i­men­tal sta­tions is to use one or more of the su­per­con­duct­ing cav­i­ties as bunch­ers. The main re­sults of sev­eral tests con­ducted dur­ing the last beam com­mis­sion­ing cam­paign prove that this mode of op­er­a­tion is fea­si­ble and will be pre­sented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF044 Schedule Evolution of the Linac4 Installation During the Lifetime of the Linac4 Project and Connection Forecast civil-engineering, MMI, status, site 794
 
  • J. Coupard, A. Berjillos, J.-P. Corso, K. Foraz, B. Nicquevert, E. Paulat, M. Vretenar
    CERN, Geneva, Switzerland
 
  The new CERN lin­ear ac­cel­er­a­tor Linac4 started the in­stal­la­tion phase in 2010 after the de­liv­ery of the new build­ing and tun­nel by the civil en­gi­neer­ing and was in­au­gu­rated six years later. It will be con­nected to the CERN ac­cel­er­a­tors chain and re­place the cur­rent pro­ton lin­ear ac­cel­er­a­tor, Linac2, dur­ing the sec­ond long shut-down (LS2) of the Large Hadron Col­lider (LHC) in 2019. This paper aims to sum­ma­rize the sched­ule evo­lu­tion through the dif­fer­ent phases of in­stal­la­tion, from gen­eral ser­vices to ma­chine in­stal­la­tion, high­light the key fac­tors that con­tributed to drive the sched­ule (safety, lo­gis­tics and in­te­gra­tion) and de­scribe the co­or­di­na­tion study of the fu­ture con­nec­tion (in­te­gra­tion, sched­ule, lo­gis­tics, con­straints and pri­or­i­ties).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF062 Parametric Study of the Beam Footprint Characteristics on the ESS Target target, HOM, ion-source, operation 866
 
  • R. Miyamoto
    ESS, Lund, Sweden
  • H.D. Thomsen
    ISA, Aarhus, Denmark
 
  The beam de­liv­ery sys­tem of the ESS linac uti­lizes fast os­cil­lat­ing tri­an­gu­lar wave di­pole mag­nets of two trans­verse planes (raster mag­nets) to spray each long beam pulse (2.86 ms) over a rec­tan­gu­lar cross-check pat­tern on the tar­get. The char­ac­ter­is­tics of this beam foot­print on the tar­get are de­ter­mined by the am­pli­tudes of the raster mag­nets, RMS sizes of the beam and, in some case, the tail of the beam pro­file and have to sat­isfy the re­quire­ments from the tar­get for the peak den­sity as well as the frac­tion out­side of a given rec­tan­gu­lar bound­ary. This paper pre­sents ap­prox­i­mate closed-form ex­pres­sions for the char­ac­ter­is­tics of the beam foot­print and, based on the pre­sented ex­pres­sions, ex­plores the pa­ra­me­ter space of the raster mag­nets and beam pa­ra­me­ters for achiev­ing the op­ti­mal char­ac­ter­is­tics of the beam foot­print.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF063 Beam Dynamics Studies of the ESS LINAC Using a New Multicell Cavity Model cavity, emittance, DTL, distributed 870
 
  • R. De Prisco, D.C. Plostinar
    ESS, Lund, Sweden
 
  The Eu­ro­pean Spal­la­tion Source is de­signed to de­liver 5 MW pro­ton beam power on the tar­get while keep­ing the beam in­duced losses below 1 W/m through­out the LINAC. This im­plies the need of ac­cu­rate mod­els to cor­rectly de­scribe the lon­gi­tu­di­nal beam dy­nam­ics within the multi-cell cav­i­ties. In all the pre­vi­ous error stud­ies the cells of a multi-cell cav­ity were mod­elled as a se­quence of in­de­pen­dent gaps and the er­rors were ap­plied di­rectly on the am­pli­tude of each cell ac­cel­er­at­ing field, con­sid­ered as ran­dom vari­able. In this paper, in­stead, we pre­sent a new de­tailed analy­sis of the ef­fect of the error tol­er­ances on the beam dy­nam­ics in­clud­ing a new model to cal­cu­late the am­pli­tude er­rors of the ac­cel­er­at­ing field in the multi-cell cav­i­ties: er­rors are ap­plied on the geo­met­ri­cal pa­ra­me­ters of each cav­ity; then the ac­cel­er­at­ing field is cal­cu­lated solv­ing the Maxwell equa­tions over all the cav­ity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF064 Preparation Towards the Ess Linac Ion Source and Lebt Beam Commissioning on Ess Site MMI, rfq, solenoid, site 874
 
  • R. Miyamoto, M. Eshraqi, A. Jansson, E. Laface, Y. Levinsen, O. Midttun, N. Milas, M. Muñoz, D.C. Plostinar, A. Ponton, E. Sargsyan, L. Tchelidze
    ESS, Lund, Sweden
  • L. Celona, L. Neri
    INFN/LNS, Catania, Italy
  • W. Ledda
    Vitrociset s.p.a, Roma, Italy
 
  Beam com­mis­sion­ing of the pro­ton linac of the Eu­ro­pean Spal­la­tion Source begin in sum­mer, 2018, from the ion source (IS) and low en­ergy beam trans­port (LEBT), and con­tin­ues in stages until 2022, when the first beam is sent to its spal­la­tion tar­get. This paper pre­sents the plan, sta­tus, and high­lights of prepa­ra­tion works for the up­com­ing IS and LEBT beam com­mis­sion­ing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF065 Opportunities and Challenges in Planning the Installation, Testing and Commissioning of Large Accelerator Facilities MMI, DTL, target, neutron 878
 
  • D.C. Plostinar, D. Bergenholtz, H. Danared, L. Gunnarsson, M.I. Israelsson, A. Jansson, M. Lindroos, A. Sunesson, L. Tchelidze, J.G. Weisend
    ESS, Lund, Sweden
 
  De­liv­er­ing major ac­cel­er­a­tor fa­cil­i­ties re­quires com­plex pro­ject prepa­ra­tion, or­gan­i­sa­tion and sched­ul­ing. Often, mul­ti­ple fac­tors have to be taken into ac­count in­clud­ing tech­ni­cal, fi­nan­cial and po­lit­i­cal. This makes plan­ning par­tic­u­larly dif­fi­cult, but at the same time opens op­por­tu­ni­ties for im­prov­ing and op­ti­mis­ing the pro­ject prospects. In this paper, we dis­cuss the major dri­vers gov­ern­ing the in­stal­la­tion, test­ing and com­mis­sion­ing of major ac­cel­er­a­tors in gen­eral, with par­tic­u­lar em­pha­sis on the Eu­ro­pean Spal­la­tion Source (ESS) ac­cel­er­a­tor, cur­rently under con­struc­tion in Lund, Swe­den.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF074 Preliminary Modelling of Radiation Levels at the Fermilab PIP-II Linac proton, GUI, booster, radiation 898
 
  • L. Lari, C.M. Baffes, S.J. Dixon, N.V. Mokhov, I.L. Rakhno, I.S. Tropin
    Fermilab, Batavia, Illinois, USA
  • F. Cerutti, L.S. Esposito, L. Lari
    CERN, Geneva, Switzerland
 
  PIP-II is the Fer­mi­lab's flag­ship pro­ject for pro­vid­ing pow­er­ful, high-in­ten­sity pro­ton beams to the lab­o­ra­tory's ex­per­i­ments. The heart of PIP-II is an 800-MeV su­per­con­duct­ing linac ac­cel­er­a­tor. It will be lo­cated in a new tun­nel with new ser­vice build­ings and con­nected to the pre­sent Booster through a new trans­fer line. To sup­port the de­sign of civil en­gi­neer­ing and me­chan­i­cal in­te­gra­tion, this paper pro­vides pre­lim­i­nary es­ti­ma­tion of ra­di­a­tion level in the gallery at an op­er­a­tional beam loss limit of 0.1 W/m, by means of Monte Carlo cal­cu­la­tions with FLUKA and MARS15 codes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF076 Design of PIP-II Medium Energy Beam Transport vacuum, SRF, kicker, cryomodule 905
 
  • A. Saini, C.M. Baffes, A.Z. Chen, V.A. Lebedev, L.R. Prost, A.V. Shemyakin
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics
The Pro­ton Im­prove­ment Plan-II (PIP-II) is a pro­posed up­grade for the ac­cel­er­a­tor com­plex at Fer­mi­lab. The cen­tral piece of PIP-II is a su­per­con­duct­ing radio fre­quency (SRF) 800 MeV linac ca­pa­ble of op­er­at­ing in both CW and pulse regimes. The PIP-II linac com­prises a warm front-end that in­cludes a H ion source ca­pa­ble of de­liv­er­ing 15-mA, 30-keV DC or pulsed beam, a Low En­ergy Beam Trans­port (LEBT), a 162.5 MHz, CW Ra­dio-Fre­quency Quadru­pole (RFQ) ac­cel­er­at­ing the ions to 2.1 MeV and, a 14-m Medium En­ergy Beam Trans­port (MEBT) be­fore beam is in­jected into SRF part of the linac. This paper pre­sents the PIP-II MEBT de­sign and, dis­cusses op­er­a­tional fea­tures and con­sid­er­a­tions that lead to ex­ist­ing op­tics de­sign such as bunch by bunch chop­ping sys­tem, min­i­miza­tion of ra­di­a­tion com­ing to the warm front-end from the SRF linac using a con­crete wall, a ro­bust vac­uum pro­tec­tion sys­tem etc.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF085 Status of Link Existing Facility Project for FAIR shielding, operation, radiation, synchrotron 934
 
  • J. Stadlmann, C. Omet, A. Schuhmann, P.J. Spiller
    GSI, Darmstadt, Germany
 
  The pro­ject "Link ex­ist­ing Fa­cil­ity", or GaF (GSI An­bindung an FAIR), is an im­por­tant sub­pro­ject of the over­all FAIR fa­cil­ity. In order to serve as in­jec­tor for SIS100, the main ac­cel­er­a­tor of FAIR, the ex­ist­ing GSI syn­chro­tron SIS18 is un­der­go­ing an up­grade pro­gram lead­ing to about 100 times higher beam in­ten­si­ties. Es­pe­cially the fore­seen op­er­a­tion with 4 GeV Pro­tons with up to 5·1012 pro­tons per sec­ond in­creases the ra­di­a­tion pro­tec­tion re­quire­ments to such an ex­tent that the ex­ist­ing ra­di­a­tion pro­tec­tion mea­sures are no longer suf­fi­cient. The pro­ject con­sists of 78 in­di­vid­ual mea­sures. The four most sub­stan­tial ac­tiv­i­ties are the con­struc­tion of a table-like struc­ture to carry ad­di­tional shield­ing. The cre­ation of an open­ing and a first part of trans­fer tun­nel for the beam­lines to­wards the fu­ture FAIR cam­pus. The prepa­ra­tion for the build­ing, beam dump and con­nec­tion of the FAIR pro­ton in­jec­tor. The in­cor­po­ra­tion of state-of-the-art ra­di­a­tion- and fire-pro­tec­tion mea­sures into the pre­sent fa­cil­i­ties in­clud­ing the a new tech­ni­cal build­ing to house tech­ni­cal in­fra­struc­ture. We re­port on the pro­ject sta­tus which is fore­seen to fin­ish mid-2018.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF086 Adaption of the HSI -RFQ Rf-Properties to an Improved Beam Dynamics Layout simulation, rfq, operation, resonance 938
 
  • M. Vossberg, L. Groening, S. Mickat, H. Vormann, C. Xiao
    GSI, Darmstadt, Germany
  • V. Bencini, J.M. Garland, J.-B. Lallement, A.M. Lombardi
    CERN, Geneva, Switzerland
 
  The GSI ac­cel­er­a­tor fa­cil­ity com­pris­ing the lin­ear ac­cel­er­a­tor UNI­LAC and the syn­chro­tron SIS18 will be used in fu­ture mainly as the in­jec­tor for the Fa­cil­ity for Anti-Pro­ton and Ion Re­search (FAIR) being under con­struc­tion. FAIR re­quires high beam bril­liance and the UNI­LAC's RFQ elec­trodes must be up­graded with re­spect to their beam dy­nam­ics de­sign. The new lay­out is cur­rently being con­ducted at CERN with the aim of ad­just­ing the elec­trode volt­age ac­cord­ing to the de­sign volt­age of 123 kV. CST sim­u­la­tions per­formed at GSI as­sure that the res­o­nance fre­quency with the new elec­trode geom­e­try is re­cu­per­ated through cor­rec­tions of the car­rier rings. Sim­u­la­tions on the fre­quency de­pen­dence of the rings shapes and their im­pact on the volt­age dis­tri­b­u­tion along the RFQ are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF088 Final factory-side Measurements of the Next SC CH-Cavities for the HELIAC-Project cavity, resonance, heavy-ion, factory 943
 
  • M. Basten, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher, W.A. Barth, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, F.D. Dziuba, M. Heilmann, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  Funding: Work supported by the EU Framework Programme H2020 662186 (MYRTE); Work supported by BMBF Contr. No. 05P15RFBA;
The up­com­ing FAIR pro­ject (Fa­cil­ity for An­tipro­ton and Ion Re­search) at GSI will use the ex­ist­ing UNI­LAC (UNI­ver­sal Lin­ear Ac­cel­er­a­tor) as an in­jec­tor to pro­vide high in­ten­sity heavy ion beams at low rep­e­ti­tion rates. As a con­se­quence a new su­per­con­duct­ing (sc) con­ti­nous wave (cw) high in­ten­sity heavy ion Linac is re­quired to pro­vide ion beams above the coulomb bar­rier to keep the Super Heavy El­e­ment (SHE) physics pro­gram at GSI com­pet­i­tive on an in­ter­na­tional level. The fun­da­men­tal Linac de­sign com­prises a high per­for­mance ion source, the High Charge State In­jec­tor (HLI) up­graded for cw-op­er­a­tion and a match­ing line (1.4 MeV/u) fol­lowed by a sc Drift Tube Linac (DTL). Four cryo mod­ules each equipped with three Cross­bar-H-mode (CH) struc­tures pro­vide for ac­cel­er­a­tion up to 7.3 MeV/u. The first sec­tion of this am­bi­tious ac­cel­er­a­tor pro­ject has been suc­cess­fully com­mis­sioned and tested with heavy ion beam from the HLI in 2017. It com­prises two sc 9.3 T so­le­noids and a sc 217 MHz CH-cav­ity with 15 equidis­tant gaps as a demon­stra­tor. The con­struc­tion of the next two sc 217 MHz 8 gap CH-cav­i­ties is nearly fin­ished and final fac­tory-side mea­sure­ments will be pre­sented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF089 Initial Measurements on a New 108 MHz 4-Rod CW RFQ Prototype for the HLI at GSI rfq, simulation, dipole, resonance 946
 
  • D. Koser, K. Kümpel, H. Podlech
    IAP, Frankfurt am Main, Germany
  • P. Gerhard
    GSI, Darmstadt, Germany
  • O.K. Kester
    TRIUMF, Vancouver, Canada
 
  Funding: Work supported by BMBF Contr. No. 05P15RFBA and HIC for FAIR
The High Charge State In­jec­tor (HLI) at the GSI Helmholtz Cen­tre for Heavy Ion Re­search in Darm­stadt, Ger­many, is one of the two in­jec­tor linacs for the Uni­ver­sal Lin­ear Ac­cel­er­a­tor (UNI­LAC) and is also planned to serve as ded­i­cated in­jec­tor for a pro­posed su­per­con­duct­ing CW linac for heavy el­e­ment re­search. Within the scope of an in­tended CW up­grade of the HLI front end, a re­place­ment for the ex­ist­ing 4-rod RFQ is de­sir­able since its sta­ble op­er­a­tion and per­for­mance is se­verely im­peded by me­chan­i­cal vi­bra­tions of the elec­trodes and a high ther­mal sen­si­tiv­ity*. With the aim of sup­press­ing me­chan­i­cal vi­bra­tions and pro­vid­ing ef­fi­cient cool­ing con­sid­er­ing high power CW op­er­a­tion, a com­pletely new and im­proved 4-rod de­sign was de­vel­oped** with a focus on struc­tural me­chan­i­cal sim­u­la­tions using ANSYS. In order to val­i­date the sim­u­lated RF per­for­mance, ther­mal be­hav­ior and struc­tural me­chan­i­cal char­ac­ter­is­tics, a 6-stem pro­to­type was man­u­fac­tured***. Ini­tial low power RF mea­sure­ments and basic piezo ac­tu­ated me­chan­i­cal in­ves­ti­ga­tions were done and the an­tic­i­pated prop­er­ties could be con­firmed prior to planned high power RF tests and fur­ther me­chan­i­cal vi­bra­tion stud­ies.
* D. Koser et al., THPIK021, Proc. of IPAC2017
** D. Koser et al., MOPOY020, Proc. of IPAC2016
*** D. Koser et al., TUPLR057, Proc. of LINAC2016
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF089  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK001 Progress of the Modulated 325 MHz Ladder RFQ rfq, proton, quadrupole, operation 952
 
  • M. Schuett, U. Ratzinger, M. Syha
    IAP, Frankfurt am Main, Germany
 
  Funding: BMBF 05P15RFRBA
Based on the pos­i­tive re­sults of the un­mod­u­lated 325 MHz Lad­der-RFQ pro­to­type from 2013 to 2016, we de­vel­oped and de­signed a mod­u­lated 3.3 m Lad­der-RFQ*. The un­mod­u­lated Lad­der-RFQ fea­tures a very con­stant volt­age along the axis. It ac­cepted 3 times the op­er­at­ing power of which is needed in op­er­a­tion**. That level cor­re­sponds to a Kil­patrick fac­tor of 3.1 with a pulse length of 200 μs. The 325 MHz RFQ is de­signed to ac­cel­er­ate pro­tons from 95 keV to 3.0 MeV ac­cord­ing to the de­sign pa­ra­me­ters of the pro­ton linac within the FAIR pro­ject. This par­tic­u­lar high fre­quency cre­ates dif­fi­cul­ties for a 4-ROD type RFQ, which trig­gered the de­vel­op­ment of a Lad­der RFQ with its high sym­me­try. The re­sults of the un­mod­u­lated pro­to­type have shown, that the Lad­der-RFQ is a suit­able can­di­date for that fre­quency. The duty cycle is suit­able up to 5%. The basic de­sign and ten­der­ing of the RFQ has been suc­cess­fully com­pleted in 2016. Man­u­fac­tur­ing will be com­pleted in May 2018. We will show the lat­est re­sults of man­u­fac­tur­ing, beam dy­nam­ics sim­u­la­tions for the match­ing be­tween LEBT and RFQ.
*Journal of Physics: Conf. Series 874 (2017) 012048
**Proceedings of LINAC2016, East Lansing, TUPLR053
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK002 Advanced Approach for Beam Matching along the Multi-Cavity SC CW Linac at GSI cavity, heavy-ion, emittance, proton 955
 
  • S. Yaramyshev, W.A. Barth, M. Heilmann
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • M. Basten, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  A multi-stage pro­gram for the de­vel­op­ment of a heavy ion su­per­con­duct­ing (sc) con­tin­u­ous wave (cw) linac is in progress at HIM (Mainz, Ger­many) and GSI (Darm­stadt, Ger­many) under sup­port of IAP (Frank­furt, Ger­many). In 2017 the first sec­tion of the CW-Linac has been suc­cess­fully com­mis­sioned at GSI. Beam ac­cel­er­a­tion at the CW-Linac is fore­seen to be per­formed by up to twelve multi-gap CH cav­i­ties. The linac should pro­vide the beam for physics ex­per­i­ments, smoothly vary­ing the out­put par­ti­cle en­ergy from 3.5 to 7.3 MeV/u, si­mul­ta­ne­ously keep­ing high beam qual­ity. Due to a wide vari­a­tion of the in­put- and out­put -beam en­ergy for each cav­ity, a lon­gi­tu­di­nal beam match­ing to every cav­ity is of high im­por­tance. An ad­vanced al­go­rithm for an op­ti­miza­tion of matched beam pa­ra­me­ters under vari­able rf-volt­age and rf-phase of each cav­ity has been de­vel­oped. The de­scrip­tion of the method and the ob­tained re­sults are pre­sented in the paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK003 Beam Dynamics Simulations for the New Superconducting CW Heavy Ion LINAC at GSI cavity, heavy-ion, cryomodule, solenoid 959
 
  • M. Schwarz, M. Basten, M. Busch, H. Podlech
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, M. Heilmann, A. Rubin, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  Funding: Work supported by BMBF Contr. No. 05P15RFBA and EU Framework Programme H2020 662186 (MYRTE)
For fu­ture ex­per­i­ments with heavy ions near the coulomb bar­rier within the su­per-heavy el­e­ment (SHE) re­search pro­ject a multi-stage R&D pro­gram of GSI/HIM and IAP is cur­rently in progress. It aims for de­vel­op­ing a su­per­con-duct­ing (sc) con­tin­u­ous wave (CW) LINAC with mul­ti­ple CH cav­i­ties as key com­po­nents down­stream the High Charge State In­jec­tor (HLI) at GSI. The LINAC de­sign is chal­leng­ing due to the re­quire­ment of in­tense beams in CW mode up to a mass-to-charge ratio of 6, while cov­er­ing a broad out­put en­ergy range from 3.5 to 7.3 MeV/u with un­changed min­i­mum en­ergy spread. Test­ing of the first CH-cav­ity in 2016 demon­strated a promis­ing max­i­mum ac­cel­er­at­ing gra­di­ent of Ea = 9.6 MV/m; the world­wide first beam test with this sc multi-gap CH-cav­ity in 2017 was a mile­stone in the R&D work of GSI/HIM and IAP. In the light of ex­pe­ri­ence gained in this re­search so far, the beam dy­nam­ics lay­out for the en­tire LINAC has re­cently been up­dated and op­ti­mized.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK004 Superconducting CH-Cavity Heavy Ion Beam Testing at GSI cavity, heavy-ion, acceleration, emittance 962
 
  • W.A. Barth, M. Heilmann, A. Rubin, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, F.D. Dziuba, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • M. Basten, M. Busch, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
 
  Re­cently the first sec­tion of a stand­alone su­per­con­duct­ing (sc) con­tin­u­ous wave (cw) heavy ion Linac as a demon­stra­tion of the ca­pa­bil­ity of 217 MHz multi gap Cross­bar H-mode struc­tures (CH) has been com­mis­sioned and ex­ten­sively tested with beam from the GSI- High Charge State In­jec­tor. The demon­stra­tor set up reached ac­cel­er­a­tion of heavy ions up to the de­sign beam en­ergy and be­yond. The re­quired ac­cel­er­a­tion gain was achieved with heavy ion beams even above the de­sign mass to charge ratio at high beam in­ten­sity and full beam trans­mis­sion. This con­tri­bu­tion pre­sents sys­tem­atic beam mea­sure­ments with vary­ing RF-am­pli­tudes and phases of the CH-cav­ity, as well as ver­sa­tile phase space mea­sure­ments for heavy ion beams with dif­fer­ent mass to charge ratio. The world­wide first and suc­cess­ful beam test with a su­per­con­duct­ing multi gap CH-cav­ity is a mile­stone of the R&D work of Helmholtz In­sti­tute Mainz (HIM) and GSI in col­lab­o­ra­tion with Goethe Uni­ver­sity Frank­furt (GUF) in prepa­ra­tion of the sc cw heavy ion Linac pro­ject and other cw-ion beam ap­pli­ca­tions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK008 Longitudinal Bunch Size Measurements with an RF Deflector at J-PARC LINAC simulation, radio-frequency, rfq, DTL 974
 
  • M. Otani, K. Futatsukawa
    KEK, Tsukuba, Japan
  • K. Hirano, A. Miura
    JAEA/J-PARC, Tokai-mura, Japan
  • Y. Liu
    KEK/JAEA, Ibaraki-Ken, Japan
  • T. Maruta
    FRIB, East Lansing, USA
 
  Mea­sure­ment of the lon­gi­tu­di­nal bunch size is im­por­tant for the sta­ble beam op­er­a­tion. Es­pe­cially in a medium en­ergy beam trans­port (MEBT) lo­cated after a ra­dio-fre­quency quadru­pole in J-PARC, it is nec­es­sary to mea­sure the bunch size with min­i­mum set of equip­ment to avoid sub­se­quent emit­tance growth due to space charge. We had pro­posed a lon­gi­tu­di­nal size mea­sure­ment with an rf de­flec­tor nor­mally used for de­flect­ing theμbunch; phase spread is mi­grated to spa­tial one if the ref­er­ence par­ti­cle ar­rives at the de­flec­tor when the volt­age is ris­ing in time and is zero. Then a buncher cav­ity lo­cated up­stream of the de­flec­tor is uti­lized to scan the phase spread to mea­sure the lon­gi­tu­di­nal beam pa­ra­me­ters. In this poster, re­cent mea­sure­ment re­sults are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK009 Muon Profile Measurement After Acceleration With a Radio-Frequency Quadrupole Linac experiment, simulation, rfq, positron 977
 
  • M. Otani, Y. Fukao, K. Futatsukawa, N. Kawamura, T. Mibe, Y. Miyake, T. Yamazaki
    KEK, Tsukuba, Japan
  • S. Bae, H. Choi, S. Choi, B. Kim, H.S. Ko
    SNU, Seoul, Republic of Korea
  • K. Hasegawa, Y. Kondo, T. Morishita
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Iijima, Y. Sue
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
  • H. Iinuma, Y. Nakazawa
    Ibaraki University, Ibaraki, Japan
  • K. Ishida
    RIKEN Nishina Center, Wako, Japan
  • R. Kitamura
    University of Tokyo, Tokyo, Japan
  • S. Li
    The University of Tokyo, Graduate School of Science, Tokyo, Japan
  • G.P. Razuvaev
    Budker INP & NSU, Novosibirsk, Russia
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • E. Won
    Korea University, Seoul, Republic of Korea
 
  Funding: This work is supported by JSPS KAKENHI Grant Numbers JP15H03666, JP16H03987, and JP16J07784.
The E34 ex­per­i­ment aims to mea­sure muon anom­alous mag­netic mo­ment with a pre­ci­sion of 0.1ppm. The ex­per­i­ment uti­lizes low emit­tance muon beam with a muon linac to sweep out beam re­lated un­cer­tain­ties, which limit the g-2 pre­ci­sion in past ex­per­i­ments. A beam match­ing with pre­cise beam mea­sure­ments is re­quired to avoid sub­stan­tial emit­tance growth and sat­isfy the ex­per­i­men­tal re­quire­ment on the beam emit­tance of around 1.5 pi mm mrad. We con­duct pro­file mea­sure­ment of muon after ac­cel­er­a­tion with a ra­dio-fre­quency quadru­pole (RFQ) on De­cem­ber 2017 fol­low­ing a first muon ac­cel­er­a­tion ex­per­i­ment on Oc­to­ber. In the ex­per­i­ment of pro­file mea­sure­ment, epi-ther­mal neg­a­tive muo­nium ions are gen­er­ated by in­ject­ing sur­face muons to a thin metal foil. The muo­nium ions are ac­cel­er­ated to 5 keV. by an elec­tro-sta­tic lens and ac­cel­er­ated to 90 keV by the RFQ. Then the muo­nium ions are trans­ported to a pro­file de­tec­tor con­sist­ing of a mi­cro-chan­nel plate and a ccd cam­era via a quadru­pole pair and a bend­ing mag­net. In this poster, the ex­per­i­men­tal re­sult and com­par­i­son to the sim­u­la­tion are re­ported.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK015 The SARAF-LINAC Project 2018 Status cryomodule, cavity, status, controls 994
 
  • N. Pichoff, D. Chirpaz-Cerbat, R. Cubizolles, J. Dumas, R.D. Duperrier, G. Ferrand, B. Gastineau, P. Gastinel, F. Gougnaud, M. Jacquemet, C. Madec, Th. Plaisant, F. Senée, A. Sutra-Fourcade, D. Uriot
    IRFU, CEA, University Paris-Saclay, Gif-sur-Yvette, France
  • D. Berkovits, J. Luner, A. Perry, E. Reinfeld, J. Rodnizki
    Soreq NRC, Yavne, Israel
  • M. Di Giacomo
    GANIL, Caen, France
 
  SNRC and CEA col­lab­o­rate to the up­grade of the SARAF ac­cel­er­a­tor to 5 mA CW 40 MeV deuteron and pro­ton beams (Phase 2). CEA is in charge of the de­sign, con­struc­tion and com­mis­sion­ing of the MEBT line and the su­per­con­duct­ing linac (SARAF-LINAC Pro­ject). The pro­to­types of the 176 MHz NC re­buncher, SC cav­i­ties, RF cou­pler and SC So­le­noid-Pack­age are under con­struc­tion and their test stands con­struc­tion or adap­ta­tion is in progress at Saclay. Mean­while, the cry­omod­ules and the global sys­tem just passed their Crit­i­cal De­sign Re­views. This paper pre­sents the sta­tus of the SARAF-LINAC Pro­ject at April 2018.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL003 Measurement of the Injection Beam Parameters by the Multi-Wire Scanner for CSNS injection, proton, MMI, neutron 1014
 
  • M.Y. Huang, H.C. Liu, S. Wang, Zh.H. Xu, P. Zhu
    IHEP, Beijing, People's Republic of China
  • X.H. Lu
    CSNS, Guangdong Province, People's Republic of China
 
  In order to in­ject the H beam to the Rapid Cy­cling Syn­chro­tron (RCS) with high pre­ci­sion and high trans­port ef­fi­ciency, the in­jec­tion beam pa­ra­me­ters need to be mea­sured and then cor­rected while its ec­cen­tric po­si­tion or di­rec­tion angle is too large. In this paper, firstly, a method to mea­sure the in­jec­tion beam pa­ra­me­ters by using two of the four multi-wire scan­ners (MWSs) is pre­sented. The in­jec­tion com­mis­sion­ing re­sults con­firmed that this method works well. Sec­ondly, a method to mea­sure the sig­nals of in­jec­tion beam and cir­cu­lar beam by the IN­MWS02 is pre­sented and the method work well dur­ing the beam com­mis­sion­ing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL012 Design and Fabrication of Hybrid RFQ Prototype DTL, rfq, cavity, site 1032
 
  • P.Y. Yu, Y. He, C.X. Li, G.Z. Sun, F.F. Wang, Z.J. Wang, B. Zhang, T.M. Zhu
    IMP/CAS, Lanzhou, People's Republic of China
 
  Hy­brid RFQ is pro­posed as a po­ten­tial good choice at the low-en­ergy range of lin­ear ac­cel­er­a­tor. The com­plexi-ty of me­chan­i­cal de­sign and dif­fi­culty of fab­ri­ca­tion are part of rea­sons im­ped­ing ap­pli­ca­tion of it and sim­i­lar struc­tures. In order to ex­plore the prac­ti­ca­ble struc­ture and re­search on RF pa­ra­me­ters of this ac­cel­er­at­ing struc-ture, an alu­minium pro­to­type is de­vel­oped.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL017 Performance and Status of the J-PARC Accelerators operation, target, ion-source, status 1038
 
  • K. Hasegawa, N. Hayashi, M. Kinsho, H. Oguri, K. Yamamoto, Y. Yamazaki
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Koseki, F. Naito, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
  • N. Yamamoto
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  The J-PARC is a high in­ten­sity pro­ton fa­cil­ity and the ac­cel­er­a­tor con­sists of a 400 MeV linac, a 3 GeV Rapid Cy­cling Syn­chro­tron (RCS) and a 30 GeV Main Ring Syn­chro­tron (MR). Re­gard­ing 3 GeV beam from the RCS, we de­liv­ered it at 150 kW to the ma­te­ri­als and life sci­ence ex­per­i­men­tal fa­cil­ity (MLF), for the neu­tron and muon users. The beam pow­ers for the neu­trino ex­per­i­ment at 30 GeV was 420 kW in May 2016, but in­creased to 470 kW in Feb­ru­ary 2017 thanks to the change and op­ti­miza­tion of op­er­a­tion pa­ra­me­ters. For the hadron ex­per­i­men­tal fa­cil­ity which uses a slow beam ex­trac­tion mode at 30 GeV, we de­liv­ered beam at a power of 37 kW, after the re­cov­ery from a trou­ble at an elec­tro sta­tic sep­tum. We have ex­pe­ri­enced many fail­ures and trou­bles to im­pede full po­ten­tial and high avail­abil­ity. In this re­port, op­er­a­tional per­for­mance and sta­tus of the J-PARC ac­cel­er­a­tors are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL022 Low-Reflection RF Window for ACS Cavity in J-PARC Linac cavity, Windows, proton, impedance 1051
 
  • J. Tamura, Y. Kondo, T. Morishita
    JAEA/J-PARC, Tokai-mura, Japan
  • H. Ao
    FRIB, East Lansing, USA
  • F. Naito, M. Otani
    KEK, Tokai, Ibaraki, Japan
  • Y. Nemoto
    Nippon Advanced Technology Co., Ltd., Tokai, Japan
 
  In the Japan Pro­ton Ac­cel­er­a­tor Re­search Com­plex (J-PARC) linac, the An­nu­lar-ring Cou­pled Struc­ture (ACS) cav­i­ties have been sta­bly op­er­at­ing. To main­tain this op­er­a­tion avail­abil­ity, we man­u­fac­tured three back­ups of the pill­box-type RF win­dows for the ACS cav­i­ties in fis­cal year 2015 and 2017. It is de­sir­able to min­i­mize the RF re­flec­tion of the RF win­dow to pre­vent stand­ing waves from ex­cit­ing be­tween the cav­ity and the RF win­dow, and not to sig­nif­i­cantly change the op­ti­mized cou­pling fac­tor be­tween the cav­ity and the wave­guide. To re­al­ize the min­i­miza­tion, the rel­a­tive per­mit­tiv­i­ties of the ce­ramic disks of the RF win­dows were eval­u­ated by mea­sur­ing the res­o­nant fre­quen­cies of the pill­box cav­ity con­tain­ing the ce­ramic disk. On the basis of the eval­u­ated rel­a­tive per­mit­tiv­i­ties, the pill­box-part lengths of the RF win­dows were de­ter­mined. The mea­sured Volt­age Stand­ing Wave Ra­tios (VSWRs) of the man­u­fac­tured RF win­dows are just about 1.08 and these are ap­plic­a­ble for the prac­ti­cal use.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL031 Errors Study of a Double-Pass Recirculating Superconducting Proton Linac proton, cavity, emittance, quadrupole 1069
 
  • Y. Tao, K. Hwang, J. Qiang
    LBNL, Berkeley, California, USA
 
  The con­cept of re­cir­cu­lat­ing su­per­con­duct­ing pro­ton linac was re­cently pro­posed. Beam dy­nam­ics sim­u­la­tions were car­ried out in a dou­ble-pass re­cir­cu­lat­ing pro­ton linac using a sin­gle bunch. Al­though all the beam line el­e­ments should be in­stalled fol­low­ing the de­signed val­ues, in re­al­ity, there exist ma­chine im­per­fec­tions that will cause beam off-cen­ter­ing and even par­ti­cle losses. In this paper, we re­port on the study of the sta­tic and dy­namic er­rors from RF cav­i­ties and mag­netic fo­cus­ing el­e­ments in the dou­ble-pass re­cir­cu­lat­ing pro­ton linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL032 A Variable Field Phase-Shifter for Recirculating Proton Linacs cavity, dipole, proton, superconducting-cavity 1072
 
  • Y. Tao, J. Qiang
    LBNL, Berkeley, California, USA
 
  The re­cir­cu­lat­ing su­per­con­duct­ing pro­ton linac that has a po­ten­tial to sub­stan­tially save ac­cel­er­a­tor cost was re-cently pro­posed. It con­sists of three sec­tions to ac­cel­er­ate the con­tin­ues-wave (CW) beam to mul­ti­ple GeVs. In the first sec­tion, the beam passes the linac two times. In the sec­ond and third sec­tions, the beam goes through the linac four and six times. A phase-shifter is needed to meet the syn­chro­nous ac­cel­er­a­tion con­di­tion for multi-pass ac­cel-er­a­tion using the same RF cav­ity due to the phase slip-page of the pro­ton beam. Here we pre­sent the de­sign of a vari­able field rec­tan­gu­lar bend phase-shifter in which the beam goes to a dif­fer­ent path in each pass in­side the mag-net to meet the syn­chro­nous con­di­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL033 Time-of-Flight, Beam-Energy Measurement of the LANSCE 805-MHz Linac proton, pick-up, controls, DTL 1075
 
  • Y.K. Batygin, F.E. Shelley, H.A. Watkins
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396.
Con­trol of the beam-en­ergy ramp along the length of a pro­ton lin­ear ac­cel­er­a­tor is re­quired to keep the ac­cel­er­a­tor tuned ac­cord­ing to de­sign. His­tor­i­cally, the val­ues of the field am­pli­tudes and phases of the side-cou­pled, 805-MHz LAN­SCE linac mod­ules are main­tained using a well-known delta-t tun­ing pro­ce­dure*. Time-of-flight mea­sure­ments of the pro­ton beam en­ergy are now also being used to con­firm and im­prove the over­all con­trol of the en­ergy ramp along the linac. The time-of-flight method uses mea­sure­ments of the dif­fer­ence in RF phases mea­sured as the beam passes in­stalled delta-t pickup loops. A newly de­vel­oped chas­sis to con­trol the 3D po­si­tion of the beam cen­troid is used. De­tails of the pro­ce­dure and re­sults of mea­sure­ments are pre­sented.
* K.R.Crandall, "The Delta-T Tuneup Procedure for the LAMPF 805-MHz Linac", LANL Report LA-6374-MS, June 1976.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL034 Effect of 805-MHz Linac RF Stability on Beam Losses in LANSCE High-Energy Beamlines beam-losses, neutron, proton, operation 1078
 
  • Y.K. Batygin
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396.
Op­er­a­tion of an ac­cel­er­a­tor fa­cil­ity crit­i­cally de­pends on sta­bil­ity of the field am­pli­tudes and phases of the ac­cel­er­at­ing cav­i­ties. The LAN­SCE lin­ear ac­cel­er­a­tor con­sists of a 201.25-MHz, drift-tube linac and an 805-MHz, side-cou­pled-cav­ity linac (SCL). Beam losses in the high-en­ergy beam­lines of the 800-MeV fa­cil­ity were mea­sured ver­sus vari­a­tion of the am­pli­tudes and phases of the 805-MHz, SCL, RF cav­i­ties. A re­cent study* con­firms that to achieve low losses, the sta­bil­ity of the am­pli­tudes and phases should be kept within 0.1% and 0.1o, re­spec­tively. This agrees with a pre­vi­ous study of beam losses in the 201.25-MHz linac. De­tails of the mea­sure­ments and re­sults are pre­sented.
*L.J.Rybarcyk, R.C.McCrady, Proceeding of LINAC2016, East Lansing, MI, USA, MOPLR072, p.301.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL037 Installation Progress on FRIB β=0.041 Cryomodules Toward Beam Commissioning MMI, cryomodule, diagnostics, cryogenics 1087
 
  • H. Ao, B. Bird, N.K. Bultman, F. Casagrande, C. Compton, K.D. Davidson, K. Elliott, V. Ganni, A. Ganshyn, P.E. Gibson, I. Grender, W. Hartung, L. Hodges, K. Holland, A. Hussain, M. Ikegami, S. Jones, P. Knudsen, S.M. Lidia, I.M. Malloch, E.S. Metzgar, S.J. Miller, D.G. Morris, P.N. Ostroumov, J.T. Popielarski, L. Popielarski, M.A. Reaume, T. Russo, K. Saito, M. Shuptar, S. Stanley, S. Stark, D.R. Victory, J. Wei, J.D. Wenstrom, M. Xu, T. Xu, Y. Xu, Y. Yamazaki, Q. Zhao, S. Zhao
    FRIB, East Lansing, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
  • M. Wiseman
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Fa­cil­ity for Rare Iso­tope Beams (FRIB) dri­ver linac is to ac­cel­er­ate all the sta­ble ion beams from pro­ton to ura­nium be­yond 200 MeV/u with beam pow­ers up to 400 kW, which will be the first large-scale, CW SRF ion linac. The beam com­mis­sion­ing of the front end (from the ion source to the RFQ) al­ready began and is in progress. The Ac­cel­er­a­tor Readi­ness Re­view (ARR) for beam through the first three β=0.041 cry­omod­ules is sched­uled for May 2018. The next step is the beam com­mis­sion­ing through the 12 SRF cav­i­ties housed in these 3 cry­omod­ules with 6 su­per­con­duct­ing so­le­noid mag­nets. The cry­omod­ules and the ad­ja­cent warm di­ag­nos­tics boxes in be­tween have been al­ready in­stalled and aligned in the tun­nel. This paper de­scribes the in­stal­la­tion progress of the β=0.041 cry­omod­ules and plans for ARR02.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL046 Construction, Test, and Operation of a new RFQ at the Spallation Neutron Source (SNS) rfq, operation, ion-source, vacuum 1113
 
  • Y.W. Kang, A.V. Aleksandrov, W.E. Barnett, M.S. Champion, M.T. Crofford, B. Han, S.W. Lee, J. Moss, R.T. Roseberry, J.P. Schubert, A.P. Shishlo, M.P. Stockli, C.M. Stone, R.F. Welton, D.C. Williams, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • C.C. Peters, J. Price
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: * This work was supported by SNS through UT-Battelle, LLC, under contract DEAC0500OR22725 for the U.S. DOE.
A new RFQ was suc­cess­fully in­stalled re­cently in the SNS linac to re­place the old RFQ that was used for more than a decade with cer­tain op­er­a­tional lim­i­ta­tions. The new RFQ was com­pletely tested with H ion source in the Beam Test Fa­cil­ity (BTF) at SNS. For ro­bust op­er­a­tion of SNS at 1.4 MW, the full de­sign beam power and to sat­isfy the beam cur­rent re­quire­ment of the forth­com­ing SNS pro­ton power up­grade (PPU) pro­ject, an RFQ with en­hanced per­for­mance and re­li­a­bil­ity was needed. The new RFQ was built to have the beam pa­ra­me­ters iden­ti­cal to those of the first RFQ but with im­proved RF and me­chan­i­cal sta­bil­ity and re­li­a­bil­ity for con­tin­u­ous op­er­a­tion of neu­tron pro­duc­tion. The tests con­firmed that the new RFQ can run with high beam trans­mis­sion ef­fi­ciency at around 90 % and no­tably im­proved op­er­a­tional sta­bil­ity. In this paper, con­struc­tion, test, in­stal­la­tion, and op­er­a­tion of the new RFQ in SNS are dis­cussed with the per­for­mance im­prove­ments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL049 SNS Proton Power Upgrade Status scattering, proton, cavity, injection 1120
 
  • M.A. Plum, G. A. Bloom, M.S. Champion, J. Galambos, M.P. Howell, S.-H. Kim, J. Moss, B.W. Riemer, K.S. White
    ORNL, Oak Ridge, Tennessee, USA
  • R.B. Saethre, R. W. Steffey
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE. This research was supported by the DOE Office of Science, Basic Energy Science, Scientific User Facilities.
The Spal­la­tion Neu­tron Source (SNS) Pro­ton Power Up­grade (PPU) pro­ject aims to dou­ble the pro­ton ac­cel­er­a­tor beam power from 1.4 to 2.8 MW. Over the past year PPU has com­pleted the re­views nec­es­sary for Crit­i­cal De­ci­sion-1 ap­proval. The base­line de­sign choices are being re­fined, and a cost-ef­fec­tive ap­proach has been iden­ti­fied. The beam en­ergy will be in­creased by 30% and the beam cur­rent ca­pa­bil­ity im­proved by ~50%. The sub-sys­tem im­prove­ments and an­tic­i­pated sched­ule will be dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL051 Program for High-Intensity RFQ Design With Matched and Equipartitioned Design Strategy rfq, emittance, ISOL, resonance 1126
 
  • H.P. Li, M.J. Easton, Q. Fu, P.P. Gan, Y.R. Lu, Q.Y. Tan, Z. Wang, K. Zhu
    PKU, Beijing, People's Republic of China
 
  The deuteron dri­ver ac­cel­er­a­tor of the Bei­jing Iso-tope Sep­a­ra­tion On-Line (BISOL) fa­cil­ity will ac­celer-ate and de­liver a 20 mA deuteron beam to the tar­gets with an en­ergy of 40 MeV. As the in­jec­tor of the dri­ver linac, an RFQ is re­quired to bunch and ac­cel­er­ate the 20 mA deuteron beam to 3 MeV with very high beam qual­ity. In order to ful­fil these re­quire­ments and re-duce time spent on op­ti­miza­tion, an RFQ de­sign pro-gram named RFQEP has been de­vel­oped to gen­er­ate the input file for the PARMTEQM code. In this pro­gram, the ‘matched and equipar­ti­tioned' de­sign strat­egy is adopted to pre­vent halo for­ma­tion and to avoid struc-ture res­o­nances in high in­ten­sity RFQs. The de­tailed de­sign as­pects are stud­ied in this paper and sim­u­la­tion re­sults are given for an RFQ de­signed by this code, which shows the ac­cu­racy and the mer­its of the new pro­gram.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL052 Multi-Physics Analysis of a CW IH-DTL for CIFNEF DTL, cavity, neutron, operation 1129
 
  • Q.Y. Tan, M.J. Easton, Q. Fu, P.P. Gan, H.P. Li, Y.R. Lu, Z. Wang
    PKU, Beijing, People's Republic of China
 
  The Com­pact In­tense Fast NEu­tron Fa­cil­ity (CIFNEF) pro­ject aims to pro­duce high in­tense neu­trons via the 7Li (d, n) 8Be re­ac­tion using a 5 MeV, 10 mA deuteron linac. The main com­po­nents of the linac are an ion source, a short radio fre­quency quadru­pole (RFQ) and an in­ter­digi-tal H-mode drift tube linac (IH-DTL). The IH-DTL will ac­cel­er­ate the con­tin­u­ous wave (CW) deuteron beam from 1 MeV to 5 MeV with a total cav­ity length of 1.25 m using Kom­binierte Null Grad Struk­tur (KONUS) de­sign, achiev­ing an ac­cel­er­at­ing gra­di­ent of 3.2 MV/m. The RF power loss for the whole cav­ity is es­ti­mated to be 85 kW. This high power loss is a sig­nif­i­cant chal­lenge to the cool­ing de­sign, as it could cause large rises in tem­pera-ture, ther­mal de­for­ma­tion and fre­quency drift. A de­tailed multi-physics analy­sis of the CW IH-DTL is pre­sented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL073 Conceptual Design of a Drift Tube LINAC for Proton Therapy DTL, emittance, proton, rfq 1182
 
  • P.F. Ma, X. Guan, R. Tang, X.W. Wang, Q.Z. Xing, X.D. Yu, S.X. Zheng
    TUB, Beijing, People's Republic of China
  • Y.H. Pu, J. Qiao, C.P. Wang, X.C. Xie, F. Yang
    Shanghai APACTRON Particle Equipment Company Limited, Shanghai, People's Republic of China
 
  Funding: National Key Research and Development Program of China (grant number 2016YFC0105408)
The con­cep­tual de­sign of an Al­varez-type Drift Tube Linac for one pro­ton ther­apy fa­cil­ity is de­scribed in this paper. The de­sign op­ti­miza­tion of the Drift Tube Linac is car­ried out in the prin­ci­ple of adopt­ing do­mes­tic ma­ture tech­nolo­gies and cost con­trol. The error study of the Drift Tube Linac is also given in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL075 Mechanical Design and Error Analysis of a 325 MHz IH-DTL Test Cavity DTL, alignment, cavity, simulation 1186
 
  • R. Tang, C.T. Du, X. Guan, K.D. Man, C.-X. Tang, X.W. Wang, Q.Z. Xing, S.X. Zheng
    TUB, Beijing, People's Republic of China
  • J. Li
    NUCTECH, Beijing, People's Republic of China
 
  A 325 MHz in­ter­dig­i­tal H-mode drift tube linac (IH-DTL) test cav­ity with a mod­i­fied KONUS beam dy­nam­ics is under fab­ri­ca­tion at Ts­inghua Uni­ver­sity. The inner di­am­e­ter of the tank in­creases from 196.8 to 232.6 mm. The me­chan­i­cal de­sign is con­sid­ered care­fully be­cause of its small geom­e­try. A three-piece de­sign has been adopted in the me­chan­i­cal de­sign. The error analy­sis is car­ried out to de­ter­mine the error re­quire­ment of ma­chin­ing and align­ment. The de­tails of me­chan­i­cal de­sign and error analy­sis is pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL077 2D-3D PIC Code Benchmarking/Anchoring Comparisons For a Novel RFQ/RFI LINAC Design rfq, space-charge, simulation, experiment 1194
 
  • S.J. Smith, S. Biedron, A. M. N. Elfrgani, E. Schamiloglu
    University of New Mexico, Albuquerque, USA
  • M.S. Curtin, B. Hartman, T. Pressnall, D.A. Swenson
    Ion Linac Systems, Inc., Albuquerque, USA
  • K. Kaneta
    CICS, Tokyo, Japan
 
  Funding: *The study at the University of New Mexico was supported in part by DARPA Grant N66001-16-1-4042 and gift to the University of New Mexico Foundation by ILS.
In this study, com­par­isons are made be­tween sev­eral par­ti­cle dy­nam­ics codes (namely CST Par­ti­cle Stu­dio, GPT, and up­graded PARMILA codes) in order to bench­mark them. The struc­ture used for the sim­u­la­tions is a novel 200 MHz, 2.5 MeV, CW RFQ/RFI LINAC de­signed by Ion Linac Sys­tems (ILS). The struc­ture de­sign and pa­ra­me­ters are pro­vided, sim­u­la­tion tech­niques are ex­plained, and re­sults from all three code fam­i­lies are pre­sented. These re­sults are then com­pared with each other, iden­ti­fy­ing sim­i­lar­i­ties and dif­fer­ences. Nu­mer­ous pa­ra­me­ters for com­par­i­son are used, in­clud­ing the trans­mis­sion ef­fi­ciency, Q-fac­tor, E-field on axis, and beam prop­er­ties. Pre­lim­i­nary an­chor­ing be­tween mod­el­ing and sim­u­la­tion per­for­mance pre­dic­tions and ex­per­i­men­tal mea­sure­ments will be pro­vided.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZGBF5 KlyLac Prototyping for Borehole Logging klystron, cavity, feedback, simulation 1244
 
  • A.V. Smirnov, R.B. Agustsson, M.A. Harrison, A.Y. Murokh, A.Yu. Smirnov
    RadiaBeam Systems, Santa Monica, California, USA
  • S. Boucher, T.J. Campese, K.J. Hoyt
    RadiaBeam, Los Angeles, California, USA
  • E.A. Savin
    MEPhI, Moscow, Russia
  • A.A. Zavadtsev
    Nano, Moscow, Russia
 
  Funding: Work supported by the U.S. Department of Energy (award No. DE-SC0015721)
Linac-based sys­tem for bore­hole log­ging ex­ploits Kly­Lac ap­proach comb­ing kly­stron and linac shar­ing the same elec­tron beam, vac­uum vol­ume, and RF net­work en­abling self-os­cil­la­tion due to a pos­i­tive feed­back. The Kly­Lac pro­to­type de­sign tai­lors de­liv­er­ing ~1 MeV elec­trons in a linac sec­tion using part of the beam in­jected from a sheet beam kly­stron (SBK). The linac part is based on a very ro­bust, high group ve­loc­ity, cm-wave, and a stand­ing wave ac­cel­er­at­ing struc­ture of a 'cross-pin' type sup­plied by a sam­pler. The SBK part fea­tures a per­ma­nent mag­net so­le­noid fo­cus­ing, rel­a­tively low volt­age, and high as­pect ratio beam. The main SBK char­ac­ter­is­tics (per­veance, power, and ef­fi­ciency) are ex­pected to be sim­i­lar to that for a mag­netron.
 
slides icon Slides TUZGBF5 [3.280 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUZGBF5  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF024 Validation of the Halbach FFAG Cell of Cornell-BNL Energy Recovery Linac permanent-magnet, quadrupole, collider, focusing 1304
 
  • F. Méot, S.J. Brooks, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The op­ti­cal prop­er­ties of the Hal­bach tech­nol­ogy based CBETA ERL re­turn FFAG arc cell are in­ves­ti­gated, using its 3-D OPERA field map model. This in­cludes parax­ial and large am­pli­tude mo­tion, tune path, study of res­o­nances, dy­namic ac­cep­tance, ef­fects of var­i­ous de­fects, 300-cell 10k-par­ti­cle bunches 6D trans­mis­sion tri­als. These in­ves­ti­ga­tions, a 2~3 year in­vest­ment, have val­i­dated the Hal­bach tech­nol­ogy in the lin­ear FFAG cell ap­pli­ca­tion, from the point of view of the beam dy­nam­ics, so sup­port­ing its ap­proval as the re­quired tech­nol­ogy for CBETA, in De­cem­ber 2016.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF024  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF036 Top Off of NSLS-II with Inefficient Injector booster, injection, storage-ring, operation 1327
 
  • R.P. Fliller, A.A. Derbenev, V.V. Smaluk, X. Yang
    BNL, Upton, Long Island, New York, USA
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
The NSLS-II is a 3 GeV stor­age with a full en­ergy in­jec­tor ca­pa­ble of top off in­jec­tion. The in­jec­tor con­sists of a 200 MeV linac in­ject­ing a 3 GeV booster. Re­cent op­er­a­tional events have caused us to in­ves­ti­gate 100 MeV in­jec­tion into the booster. As the booster was not de­signed for in­jec­tion at this low en­ergy, beam loss is ob­served with this low en­ergy booster in­jec­tion. This beam loss not only re­sults of over­all charge loss from the train, but a change in the over­all charge dis­tri­b­u­tion in the bunch train. In this paper we dis­cuss the per­for­mance of in­ject­ing into the stor­age ring with the in­ef­fi­cient charge trans­fer through the in­jec­tor. The changes to the top off method are dis­cussed, as well as the achieved stor­age ring cur­rent sta­bil­ity and fill pat­tern.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF037 Development of New Operational Mode for NSLS-II Injector: Low Energy 100MeV Linac-to-Booster Injection booster, injection, operation, klystron 1330
 
  • X. Yang, A.A. Derbenev, R.P. Fliller, T.V. Shaftan, V.V. Smaluk
    BNL, Upton, Long Island, New York, USA
 
  The NSLS-II in­jec­tor con­sists of a 200 MeV linac and a 3 GeV full-en­ergy booster syn­chro­tron. The linac con­tains five trav­el­ing-wave S-band ac­cel­er­at­ing struc­tures dri­ven by two high-power kly­strons, with a third kly­stron as spare. In the event that the spare kly­stron is not avail­able, the fail­ure of one kly­stron will pro­hibit the linac from in­ject­ing into the booster as the en­ergy is too low. There­fore, we wish to de­velop a new op­er­a­tional mode that the NSLS-II in­jec­tor can op­er­ate with a sin­gle kly­stron pro­vid­ing 100 MeV beam from the linac. A decre­mented ap­proach with in­ter­me­di­ate en­er­gies 170 MeV, 150 MeV, etc., takes ad­van­tages of pre-cal­cu­lated booster ramps and beam based on­line op­ti­miza­tion. By low­er­ing the booster in­jec­tion en­ergy in a small step and on­line op­ti­miz­ing at each step, we were able to achieve 100 MeV booster in­jec­tion. 170 MeV op­er­a­tion mode of the NSLS-II in­jec­tor has been im­ple­mented since May 31, 2017, with a sim­i­lar over­all per­for­mance com­pared to the stan­dard 200 MeV op­er­a­tion but fewer kly­stron trips. 100 MeV sin­gle-kly­stron op­er­a­tion has been suc­cess­fully demon­strated with 20-30% over­all ef­fi­ciency, which is lim­ited by booster ac­cep­tance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF058 Conceptual Design of HEPS Injector booster, storage-ring, injection, dipole 1394
 
  • J.L. Li, H. Dong, Z. Duan, Y.Y. Guo, D.Y. He, Y. Jiao, W. Kang, C. Meng, S. Pei, Y.M. Peng, J.R. Zhang, P. Zhang, Z.S. Zhou
    IHEP, Beijing, People's Republic of China
 
  Ab­stract The High En­ergy Pho­ton Source (HEPS) will be con­structed in the fol­low­ing few years. The light source is com­prised of an ul­tra-low emit­tance stor­age ring and a full en­ergy in­jec­tor. The en­ergy of the stor­age ring is 6 GeV. The in­jec­tor is com­prised of a 500 MeV linac, a 500 MeV to 6 GeV booster syn­chro­tron and trans­port lines con­nect­ing the ma­chines. In the pre­sent de­sign, the linac uses nor­mal con­duct­ing S-band bunch­ing and ac­cel­er­at­ing struc­tures. The booster adopts FODO cells, has a cir­cum­fer­ence of about 454 m and an emit­tance lower than 40 nmrad. The in­jec­tor can pro­vide a sin­gle-bunch charge up to 2 nC at 6 GeV for the stor­age ring. This paper briefly in­tro­duces the con­cep­tual de­sign of the in­jec­tor of the HEPS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF060 Design of Bunch Lengthening System in Electron Linac booster, photon, lattice, bunching 1401
 
  • C. Meng, Y. Jiao, J.L. Li, S. Pei, Y.M. Peng, H.S. Xu
    IHEP, Beijing, People's Republic of China
 
  The High En­ergy Pho­ton Source (HEPS) is a 6-GeV, ul­tralow-emit­tance light source to be built in China. The in­jec­tor is com­posed of a linac and a full en­ergy booster. To in­crease the thresh­old of TMCI in the booster, the HEPS linac de­sign has been evolved with sev­eral it­er­a­tions. The im­por­tant mid­dle-ver­sion de­sign is a 300 MeV linac with rms bunch length larger than 20 ps. One bunch length­en­ing sys­tem is pro­posed and dis­cussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF061 Physical Design of the 500 MeV Electron Linac for the High Energy Photon Source electron, gun, bunching, emittance 1404
 
  • S. Pei, D.Y. He, X. He, J.L. Li, J. Liu, X. Ma, C. Meng, X. Wang, O. Xiao, J.R. Zhang, Z.S. Zhou
    IHEP, Beijing, People's Republic of China
  • S. Shu
    Institute of High Energy Physics (IHEP), Chinese Academy of Sciences, Beijing, People's Republic of China
 
  Funding: Work supported by the HEPS project and the National Natural Science Foundation of China (11475201). peisl@ihep.ac.cn
The High En­ergy Pho­ton Source (HEPS) is a 6 GeV light source with ul­tra-low emit­tance, it is pro­posed to be built at Huairou dis­trict, north­east sub­urb of Bei­jing, China. A 500 MeV elec­tron linac will be used to gen­er­ate the elec­tron beam for in­jec­tion into the booster. Here the pre­lim­i­nary phys­i­cal de­sign of the elec­tron linac is pre­sented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF063 The Considerations of Improving TMCI Threshhold on HEPS Booster booster, lattice, storage-ring, injection 1411
 
  • Y.M. Peng, J.L. Li, C. Meng, S. Pei, H.S. Xu
    IHEP, Beijing, People's Republic of China
 
  The High En­ergy Pho­ton Source (HEPS) is pro­posed in Bei­jing, China. The on-axis swap-out in­jec­tion scheme will be used in the stor­age ring mainly be­cause of the small dy­namic aper­ture. There­fore, the booster needs to store more than 2.5 nC bunch charge. Under this re­quire­ment, the trans­verse mode cou­pling in­sta­bil­ity (TMCI) at the in­jec­tion en­ergy be­comes the bunch charge re­stric­tion in the booster. Sev­eral changes in booster and linac for im­prov­ing bunch charge thresh­old lim­ited by TMCI are con­sid­ered. The de­tails will be ex­pressed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF081 Microphonic Detuning Induced Coupler Kick Variation at LCLS-II cavity, laser, free-electron-laser, beam-loading 1456
 
  • T. Hellert
    DESY, Hamburg, Germany
  • W. Ackermann, H. De Gersem
    TEMF, TU Darmstadt, Darmstadt, Germany
  • C. Adolphsen, Z. Li, C.E. Mayes
    SLAC, Menlo Park, California, USA
 
  The LCLS-II free-elec­tron laser will be an up­grade of the ex­ist­ing Linac Co­her­ent Light Source (LCLS), in­clud­ing a 4 GeV CW su­per­con­duct­ing linac based on the TESLA tech­nol­ogy. The high qual­ity fac­tor of the cav­ity makes it very sen­si­tive to vi­bra­tions. The shift of its eigen­fre­quency (i.e., de­tun­ing) will be com­pen­sated by the power source in order to as­sure a con­stant ac­cel­er­at­ing volt­age. Sig­nif­i­cant vari­a­tions of the for­ward power are ex­pected which re­sult in cou­pler kick vari­a­tions in­duced by the fun­da­men­tal power cou­pler. In this work we es­ti­mate the mag­ni­tude of tra­jec­tory jit­ter caused by these vari­a­tions. High pre­ci­sion 3D field maps in­clud­ing stand­ing and trav­el­ing-wave com­po­nents for a cav­ity with the LCLS-II cou­pler de­sign are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF086 Status of the ARES RF Gun at SINBAD: From its Characterization and Installation towards Commissioning gun, cavity, status, electron 1474
 
  • B. Marchetti, R.W. Aßmann, S. Baark, F. Burkart, U. Dorda, K. Flöttmann, I. Hartl, J. Hauser, J. Herrmann, M. Hüning, K. Knebel, O. Krebs, G. Kube, W. Kuropka, S. Lederer, F. Lemery, F. Ludwig, D. Marx, F. Mayet, M. Pelzer, I. Peperkorn, F. Poblotzki, S. Pumpe, J. Rothenburg, H. Schlarb, M. Titberidze, G. Vashchenko, T. Vinatier, P.A. Walker, L. Winkelmann, K. Wittenburg, S. Yamin, J. Zhu
    DESY, Hamburg, Germany
 
  The SIN­BAD fa­cil­ity (Short and IN­no­v­a­tive Bunches and Ac­cel­er­a­tors at DESY) is fore­seen to host mul­ti­ple ex­per­i­ments re­lat­ing to the pro­duc­tion of ul­tra-short elec­tron bunches and novel high gra­di­ent ac­cel­er­a­tion tech­niques. The SIN­BAD-ARES linac will be a con­ven­tional S-band lin­ear RF ac­cel­er­a­tor al­low­ing the pro­duc­tion of low charge (0.5 pC - tens pC) ul­tra-short elec­tron bunches (FWHM length =< 1 fs - few fs) with 100 MeV en­ergy. The in­stal­la­tion of the linac will pro­ceed in stages. In this paper we re­port on the sta­tus of the char­ac­ter­i­za­tion of the ARES RF gun and the in­stal­la­tions of the re­lated in­fra­struc­ture.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMK008 Highly-stable, High-power Picosecond Laser Optically Synchronized to a UV Photocathode Laser for an ICS Hard X-ray Generation laser, timing, cathode, electron 1504
 
  • K.-H. Hong
    MIT, Cambridge, Massachusetts, USA
  • D. Gadonas, L.M. Hand, K. Neimontas, A. Senin, V. Sinkevicius
    Light Conversion, Vilnius, Lithuania
  • W.S. Graves, M.R. Holl, L.E. Malin, C. Zhang
    Arizona State University, Tempe, USA
  • S. Klingebiel, T. Metzger, K. Michel
    TRUMPF Scientific Lasers GmbH + Co. KG, Munchen-Unterfoehring, Germany
 
  Under the CXLS pro­ject at Ari­zona State Uni­ver­sity we are de­vel­op­ing an in­verse Comp­ton scat­ter­ing (ICS) hard X-ray source* to­wards a com­pact XFEL with elec­tron nano-bunch­ing. The ICS in­ter­ac­tion is crit­i­cally de­pen­dent on the qual­ity of dri­ver pulses such as: 1) avail­able peak in­ten­sity, 2) en­ergy/point­ing sta­bil­ity, and 3) rel­a­tive tim­ing sta­bil­ity to UV pulses ini­tially trig­ger­ing elec­tron beams. Here, we re­port on a highly sta­ble, 1 kHz, 200 mJ, 1.1 ps, 1030 nm laser with good beam qual­ity as an ICS dri­ver, op­ti­cally syn­chro­nized to a UV pho­to­cath­ode laser. The ICS dri­ver is based on a Yb:YAG thin-disk re­gen­er­a­tive am­pli­fier (RGA), en­sur­ing an ex­cel­lent en­ergy sta­bil­ity (shot-to-shot 0.52% rms; 0.14% rms over 24 hours). The point­ing sta­bil­ity bet­ter than 4 urad is ob­tained. The M2 fac­tor is as good as ~1.5 at the full en­ergy, lead­ing to the achiev­able laser in­ten­sity of >1017 W/cm2 with f/10 fo­cus­ing. The pho­to­cath­ode laser, a fre­quency-quadru­pled Yb:KGW RGA, share a com­mon seed os­cil­la­tor with the ICS dri­ver for op­ti­cal syn­chro­niza­tion. The resid­ual sub-ps tim­ing drift is fur­ther re­duced to 33 fs rms using an op­ti­cal lock­ing scheme based on a para­met­ric am­pli­fier.
* W.S. Graves et al., "Compact X-ray source based on burst mode inverse compton scattering at 100 kHz," Phys. Rev. ST Accel. Beams, Vol. 17, p. 120701 (Dec. 2014).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMK008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML003 Design of an L-band Accelerating Structure for the Argonne Wakefield Accelerator Facility Witness Beam Line Energy Upgrade impedance, coupling, acceleration, quadrupole 1533
 
  • J.H. Shao, M.E. Conde, D.S. Doran, J.F. Power
    ANL, Argonne, Illinois, USA
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
 
  The Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) fa­cil­ity has been de­vot­ing much ef­fort to the fun­da­men­tal R&D of two-beam ac­cel­er­a­tion (TBA) tech­nol­ogy with two par­al­lel L-band beam lines. Be­gin­ning from the 70 MeV drive beam line, the high fre­quency (C-band and above) rf power is ex­tracted from the beam by a de­cel­er­at­ing struc­ture (a.k.a. power ex­trac­tor), trans­ferred to an ac­cel­er­at­ing struc­ture in the wit­ness beam line, and used to ac­cel­er­ate the 15 MeV main beam. These high fre­quency ac­cel­er­at­ing struc­tures usu­ally have a small aper­ture to ob­tain high gra­di­ent and high ef­fi­ciency, mak­ing it dif­fi­cult for the low en­ergy main beam to pass. To ad­dress this issue, one pro­posal is to in­crease the main beam en­ergy to above 30 MeV by re­plac­ing the cur­rent wit­ness linac. A 9-cell 𝜋-mode L-band stand­ing-wave ac­cel­er­at­ing struc­ture has there­fore been de­signed to meet the high shunt im­ped­ance and low cost re­quire­ments. In ad­di­tion, the sin­gle-feed cou­pling cell has been op­ti­mized with ad­di­tional sym­met­ri­cal ports to elim­i­nate field dis­tor­tion. The de­tailed de­sign of the new ac­cel­er­at­ing struc­ture will be pre­sented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML004 Correction of Emittance Growth Due to Quad Components in Solenoids With Quad Correctors at AWA emittance, solenoid, simulation, electron 1536
 
  • L.M. Zheng, C.-X. Tang
    TUB, Beijing, People's Republic of China
  • M.E. Conde, D.S. Doran, W. Gai, W. Liu, J.G. Power, J.H. Shao, C. Whiteford, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
 
  An asym­met­ri­cal elec­tron beam is ob­served on the drive beam­line at Ar­gonne Wake­field Ac­cel­er­a­tor (AWA) due to the quad com­po­nents in the so­le­noids. An ASTRA sim­u­la­tion shows that the emit­tance will in­crease when the elec­tron beam passes through so­le­noids with quad er­rors. We use two quad cor­rec­tors to cor­rect this emit­tance growth. A pre­lim­i­nary emit­tance cor­rec­tion re­sult is pre­sented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML016 High-Intensity Magnetron H Ion Sources and Injector Development at BNL Linac operation, rfq, ion-source, injection 1564
 
  • A. Zelenski, G. Atoian, T. Lehn, D. Raparia, J. Ritter
    BNL, Upton, Long Island, New York, USA
 
  The BNL mag­netron-type H ion source and the in­jec-tor are being up­graded to higher duty-fac­tor as a part of Linac in­ten­sity in­crease pro­ject [1]. The BNL mag­netron source presently de­liv­ers 110 -120 mA H ion cur­rent with 650 us pulse du­ra­tion and 7 Hz rep­e­ti­tion rate. The pulse du­ra­tion was in­creased to 1000 μs by mod­i­fi­ca­tions of the gas in­jec­tor pulsed valve and the use of the new arc-dis­charge power sup­ply (with the arc-cur­rent sta­bi­liza­tion cir­cuit) which im­proved cur­rent sta­bil­ity and re­duced cur­rent noise. The Low En­ergy Beam Trans­port (LEBT) lines com­bine two beams. The first line is the po­lar­ized OPPIS (Op­ti­cally Pumped Po­lar­ized H Ion Source) beam-line and the sec­ond is the high-in­ten­sity un-po­lar­ized beam-line from the mag­netron source, which trans­ports beam to the RFQ after the pas­sage of 45 de­gree bend­ing mag­net. The sec­ond mag­netron source was in­stalled in the straight LEBT sec­tion in 2017, in which the po­lar­ized OPPIS beam was not planned. In this, op­ti­mal for H beam trans­port con­fig­u­ra­tion, the beam in­ten­sity was in­creased to 80 mA after the RFQ. The ex­pe­ri­ence of the two sources lay­out op­er­a­tion (one source in op­er­a­tion the sec­ond source in standby) might be use­ful for fa­cil­i­ties with the high down­time cost (like high-en­ergy col­lider LHC or multi-user fa­cil­i­ties like SNS).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML045 Segmented Terahertz Driven Device for Electron Acceleration electron, acceleration, laser, controls 1642
 
  • D. Zhang
    DESY, Hamburg, Germany
  • A-L. Calendron, H. Cankaya, M. Fakhari, A. Fallahi, Y. Hua, N.H. Matlis, X. Wu, L.E. Zapata
    CFEL, Hamburg, Germany
  • M. Hemmer, F.X. Kärtner
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • F.X. Kärtner
    MIT, Cambridge, Massachusetts, USA
 
  Funding: ERC Synergy Grant AXSIS (609920), Deutsche Forschungsgemeinschaft (SPP1840 SOLSTICE and CUI EXC1074), and Gordon and Betty Moore foundation (ACHIP GBMF4744)
We pre­sent a seg­mented THz based de­vice (STEAM) ca­pa­ble of per­form­ing mul­ti­ple high-field op­er­a­tions on the 6D-phase-space of ul­tra­short elec­tron bunches. Using only a few mi­cro­joules of sin­gle-cy­cle THz ra­di­a­tion, we have shown record THz-based ac­cel­er­a­tion of >30 keV of an in­com­ing 55keV elec­tron beam, with a peak ac­cel­er­a­tion field gra­di­ent of around 70 MV/m that is com­pa­ra­ble with that from a con­ven­tional RF ac­cel­er­a­tor. It can be scaled up to GV/m gra­di­ents that can ac­cel­er­ate elec­trons into the MeV regime. At the same time, the STEAM de­vice can also ma­nip­u­late the elec­trons that show high fo­cus­ing gra­di­ent (2 kT/m), com­pres­sion of elec­tron bunches down to 100 fs and streak­ing gra­di­ent of 140 μrad/fs, which of­fers tem­po­ral pro­file char­ac­ter­i­za­tions with res­o­lu­tion below 10 fs. The STEAM de­vice can be fab­ri­cated with reg­u­lar me­chan­i­cal ma­chin­ing tools and sup­ports real-time switch­ing be­tween dif­fer­ent modes of op­er­a­tion. It paves the way for the de­vel­op­ment of THz-based com­pact elec­tron guns, ac­cel­er­a­tors, ul­tra­fast elec­tron dif­frac­tome­ters and Free-Elec­tron Lasers.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML068 The European Spallation Source Neutrino Super Beam Design Study proton, detector, target, neutron 1702
 
  • M. Dracos
    IPHC, Strasbourg Cedex 2, France
 
  Funding: This project is now supported by the COST Action CA15139/EuroNuNet and EU/H2020 innovation programme ESSnuSB under grant agreement No 777419.
ESS­nuSB pro­poses to use the pro­ton linac of the Eu­ro­pean Spal­la­tion Source (ESS) cur­rently in con­struc­tion in Lund (Swe­den) to pro­duce a very in­tense neu­trino super beam, in par­al­lel with the spal­la­tion neu­tron pro­duc­tion. The ESS linac is ex­pected to be op­er­a­tional by 2023 de­liv­er­ing 5 MW av­er­age power, 2 GeV pro­ton beam, with 2.86 ms long pulses at a rate of 14 Hz. The pri­mary pro­ton beam-line com­plet­ing the linac will con­sist of an ac­cu­mu­la­tor ring to com­press the beam pulses to 1.3 μs and a switch­yard to dis­trib­ute the pro­tons onto the tar­get sta­tion. The sec­ondary beam-line pro­duc­ing neu­tri­nos will con­sist of a four-horn/tar­get sta­tion, a decay tun­nel and a beam dump. A mega­ton scale water Cherenkov de­tec­tor will be lo­cated at a base­line of about 500 km in one of the ex­ist­ing mines in Swe­den and it will mea­sure the neu­trino os­cil­la­tions. ESS­nuSB was re­cently granted by the Eu­ro­pean H2020-IN­FRADEV pro­gram to start be­gin­ning of 2018 a 4-year de­sign study on the fea­si­bil­ity of such fa­cil­ity. This paper pre­sents the ob­jec­tives, the steps and the or­ga­ni­za­tion of the ESS­nuSB DS.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML071 Experimental Performance of the Chopper for the ESS Linac electron, high-voltage, experiment, proton 1709
 
  • G. Torrisi, L. Allegra, A.C. Caruso, G. Castro, L. Celona, G. Gallo, S. Gammino, O. Leonardi, A. Longhitano, D. Mascali, L. Neri, S. Passarello, G. Sorbello
    INFN/LNS, Catania, Italy
 
  At the Is­ti­tuto Nazionale di Fisica Nu­cleare - Lab­o­ra­tori Nazion­ali del Sud (INFN-LNS) the beam com­mis­sion­ing of the high in­ten­sity Pro­ton Source for the Eu­ro­pean Spal­la­tion Source (PS-ESS) was com­pleted in No­vem­ber 2017. The ESS re­quires a high in­ten­sity pro­ton beam (74 mA pulsed at 14 Hz of rep­e­ti­tion rate), with fast Beam pulse rise/fall time (< 20 μs). In order to meet the pro­ject re­quire­ment, an elec­tro­sta­tic chop­ping sys­tem has been used in the Low En­ergy Beam Trans­port (LEBT). The de­sign of the con­trol sys­tem was done also to be the main el­e­ment of the fast beam abort sys­tem and tak­ing into ac­count the ra­di­a­tion issue in the ac­cel­er­a­tor tun­nel. This paper de­scribes the per­for­mances of the chop­per. The ex­per­i­men­tally-achieved rise/fall times of the beam pulses mea­sured by using an AC Cur­rent Trans­former (ACCT) at the end of the LEBT col­li­ma­tor, are pre­sented. An ex­per­i­men­tal in­ves­ti­ga­tion of the ef­fects of dif­fer­ent amounts and types of gas in­jected into the LEBT (for the sake of space charge com­pen­sa­tion) has been car­ried out with re­spect to the beam and chop­per pa­ra­me­ters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXGBF1 Testing of the ESS MB-IOT Prototypes klystron, cavity, operation, electron 1759
 
  • M. Jensen
    ESS, Lund, Sweden
  • C. Bel, A. Beunas, D. Bussiere, P. Cacheux, V. Hermann, J.C. Racamier, C. Robert
    TED, Thonon, France
  • M. Boyle, H. Schult
    L-3, Williamsport, Pennsylvania, USA
  • G. Cipolla, E. Montesinos, M.S.B. Sanchez Barrueta
    CERN, Geneva 23, Switzerland
  • T. Kimura, P.E. Kolda, P. Krzeminski, L. Kurek, S. Lenci, O.S. Sablic, L. Turek, C. Yates
    CPI, Palo Alto, California, USA
  • M.F. Kirshner
    LANL, Los Alamos, New Mexico, USA
  • R.D. Kowalczyk, A.V. Sy, B.R. Weatherford
    SLAC, Menlo Park, California, USA
  • A. Zubyk
    L3 EDD, Williamsport, USA
 
  ESS is con­sid­er­ing the use of MB-IOTs for parts of the high-beta linac. Two pro­to­types have been built by in­dus-try, namely L3 and CPI/Thales and have passed the fac­tory ac­cep­tance test with ex­cel­lent re­sults. Both tubes will go through fur­ther ex­ten­sive test­ing at CERN for ESS fol­low-ing de­liv­ery and a final de­ci­sion on tube tech­nol­ogy will be taken in April 2018. This in­vited talk pre­sents the back-ground for the tech­ni­cal de­ci­sion of IOTs vs kly­strons, as­so­ci­ated im­pact for ESS, and lat­est plans for in­dus­trial pro­duc­tion of these IOTs for ESS.  
slides icon Slides WEXGBF1 [9.836 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEXGBF1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEXGBF3 RF System for FRIB Accelerator controls, cavity, LLRF, rfq 1765
 
  • D.G. Morris, J. Brandon, N.K. Bultman, K.D. Davidson, A. Facco, P.E. Gibson, L. Hodges, M.G. Konrad, T.L. Larter, H. Maniar, P. Morrison, P.N. Ostroumov, J.T. Popielarski, G. Pozdeyev, H.T. Ren, T. Russo, K. Schrock, R. Walker, J. Wei, T. Xu, Y. Xu, S. Zhao
    FRIB, East Lansing, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
 
  The RF sys­tem of the FRIB dri­ver ac­cel­er­a­tor in­cludes solid state am­pli­fiers up to 18 kW op­er­at­ing at fre­quen­cies from 80.5 MHz to 322 MHz. Much higher power is re­quired for the nor­mal con­duct­ing RFQ, ~100 kW, and it is based on vac­uum tubes. This in­vited talk pre­sents the per­for­mance of solid state am­pli­fiers and LLRF in off-line test­ing and on-line test­ing of the RFQ am­pli­fier.  
slides icon Slides WEXGBF3 [14.107 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEXGBF3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYGBE2 Applications of Caustic Methods to Longitudinal Phase Space Manipulation FEL, electron, optics, gun 1790
 
  • T.K. Charles
    The University of Melbourne, Melbourne, Victoria, Australia
  • T.K. Charles
    CERN, Geneva, Switzerland
  • D. Douglas
    JLab, Newport News, Virginia, USA
  • P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Lon­gi­tu­di­nal phase space man­age­ment is a key fea­ture of re­cir­cu­lat­ing ma­chines. Care­ful con­sid­er­a­tion of the lon­gi­tu­di­nal match­ing is re­quired not only in order to en­sure a high peak cur­rent, low en­ergy spread bunch is de­liv­ered to the FEL but also to sup­port the de­cel­er­a­tion and en­ergy re­cov­ery of the spent beam. In a sim­i­lar man­ner, lon­gi­tu­di­nal phase space ma­nip­u­la­tion can be utilised for pulse shap­ing in bunch com­pres­sion, to min­imise the in­flu­ence of CSR-in­duced emit­tance growth. In this paper, we pre­sent a method for lon­gi­tu­di­nal phase space match­ing based upon the avoid­ance of elec­tron tra­jec­tory caus­tics. Through con­sid­er­ing the con­di­tions under which caus­tics will form, we gen­er­ate ex­clu­sion plots iden­ti­fy­ing the vi­able pa­ra­me­ter space at nu­mer­ous po­si­tions through beam ac­cel­er­a­tion and en­ergy re­cov­ery. The re­sult is a method for se­lect­ing the lin­ear mo­men­tum com­paction and the higher-or­der mo­men­tum com­paction to sat­isfy the non-caus­tic con­di­tion whilst achiev­ing the bunch com­pres­sion or length­en­ing as re­quired.  
slides icon Slides WEYGBE2 [6.292 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEYGBE2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF006 Fast Photodetector Bunch Duration Monitor for the Advanced Photon Source Particle Accumulator Ring detector, laser, synchrotron, photon 1819
 
  • J.C. Dooling, J.R. Calvey, K.C. Harkay, B.X. Yang, C. Yao
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
A fast pho­tode­tec­tor is used to mon­i­tor the bunch du­ra­tion in the Ad­vanced Pho­ton Source (APS) Par­ti­cle Ac­cu­mu­la­tor Ring (PAR). The Bunch Du­ra­tion Mon­i­tor (BDM) di­ag­nos­tic pro­vides an ac­cu­rate mea­sure of the PAR bunch length. PAR BDM data show good agree­ment with streak cam­era mea­sure­ments. The BDM is based on the metal-semi­con­duc­tor-metal (MSM) pho­tode­tec­tor Hama­matsu G4176-03 MSM with spec­i­fied rise and fall times of 30 ps. The BDM has suf­fi­cient fre­quency re­sponse to re­solve the PAR bunch near ex­trac­tion where, under low-charge con­di­tions, min­i­mum rms pulse du­ra­tions of 200-300 ps are ob­served. Beam from the PAR is in­jected into the Booster; for ef­fi­cient cap­ture, in­jected rms bunch du­ra­tion from the PAR must be less than 600 ps. The MSM de­tec­tor ex­hibits a ring­ing re­sponse to fast input sig­nals. To over­come this, the BDM out­put is de-con­volved with the im­pulse re­sponse func­tion of the de­tec­tor-am­pli­fier cir­cuit. Turn-by-turn bunch du­ra­tion data is pre­sented ver­sus charge and time in the PAR cycle. Charge cal­i­bra­tion is used to de­ter­mine fit pa­ra­me­ters for bunch du­ra­tion mea­sure­ments in peak-de­tec­tion mode. Ob­ser­va­tions rel­e­vant to APS Up­grade high-charge stud­ies are pre­sented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF022 Application of Machine Learning to Minimize Long Term Drifts in the NSLS-II Linac klystron, network, operation, booster 1867
 
  • R.P. Fliller, C. Gardner, P. Marino, R.S. Rainer, M. Santana, G.J. Weiner, X. Yang, E. Zeitler
    BNL, Upton, Long Island, New York, USA
 
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
Ma­chine Learn­ing has proven it­self as a use­ful tech­nique in a va­ri­ety of ap­pli­ca­tions from image recog­ni­tion to play­ing Go. Ar­ti­fi­cial Neural Net­works have cer­tain ad­van­tages when used as a feed­for­ward sys­tem, such as the pre­dicted cor­rec­tion re­lies on a model built from data. This al­lows for the Ar­ti­fi­cial Neural Net­work to com­pen­sate for ef­fects that are dif­fi­cult to model such as low level RF ad­just­ments to com­pen­sate for long term drifts. The NSLS-II linac suf­fers from long terms drifts from a num­ber of sources in­clud­ing ther­mal drifts and kly­stron gain vari­a­tions. These drifts have an ef­fect on the in­jec­tion ef­fi­ciency into the booster, and if left unchecked, por­tions of the bunch train may not be in­jected into the booster, and the stor­age ring bunch pat­tern will ul­ti­mately suf­fer. In this paper, we dis­cuss the ap­pli­ca­tion of Ar­ti­fi­cial Neural Net­works to com­pen­sate for long term drifts in the NSLS-II lin­ear ac­cel­er­a­tor. The Ar­ti­fi­cial Neural Net­work is im­ple­mented in python al­low­ing for rapid de­vel­op­ment of the net­work. We dis­cuss the de­sign and train­ing of the net­work, along with re­sults of using the net­work in op­er­a­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF066 The New CLIC Main Linac Installation and Alignment Strategy alignment, target, quadrupole, collider 1979
 
  • H. Mainaud Durand, J. Gayde, J. Jaros, M. Sosin, A. P. Zemanek
    CERN, Geneva, Switzerland
  • V. Rude
    ESGT-CNAM, Le Mans, France
 
  A com­plete so­lu­tion has been pro­posed for the pre-align­ment of the CLIC main linac in 2012 for the Con­cep­tual De­sign Re­port. Two re­cent stud­ies pro­vide new per­spec­tives for such a pre-align­ment. First in a study on Par­ti­cle Ac­cel­er­a­tor Com­po­nents' Metrol­ogy and Align­ment to the Nanome­tre scale (PAC­MAN), new so­lu­tions to fidu­cialise and align dif­fer­ent types of com­po­nents within a mi­cro­met­ric ac­cu­racy on the same sup­port were pro­posed and val­i­dated, using a stretched wire. Sec­ondly, a 5 de­gree of free­dom ad­just­ment plat­form with plug-in mo­tors showed a very ac­cu­rate and ef­fi­cient way to ad­just re­motely com­po­nents. By com­bin­ing the re­sults of both stud­ies, two sce­nar­ios of in­stal­la­tion and align­ment for the CLIC main linac are pro­posed, pro­vid­ing mi­cro­met­ric and au­tom­a­tized so­lu­tions of mi­cro­met­ric as­sem­bly, fidu­cial­i­sa­tion and align­ment in metro­log­i­cal labs or in the tun­nel. In this paper, the out­come of the two stud­ies are pre­sented; the two sce­nar­ios of in­stal­la­tion and align­ment are then de­tailed and dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF076 Availability Studies Comparing Drive Beam and Klystron Options for the Compact Linear Collider klystron, operation, simulation, software 2013
 
  • O. Rey Orozko, S. Döbert, M. Jonker
    CERN, Geneva, Switzerland
 
  The ini­tial pro­posal for the Com­pact Lin­ear Col­lider (CLIC) is based on a two beam-scheme to ac­cel­er­ate the main col­lid­ing beams. For low col­li­sion en­er­gies, the main beam could also be ac­cel­er­ated by pow­er­ing the ac­cel­er­at­ing struc­tures with kly­strons in­stead of the two-beam scheme. This paper stud­ies the fea­si­bil­ity of this new al­ter­na­tive in terms of ma­chine avail­abil­ity. An im­ple­mented bot­tom-up avail­abil­ity model con­sid­ers the com­po­nents fail­ure modes to es­ti­mate the over­all avail­abil­ity of the sys­tem. The model is de­fined within a Com­mon Input For­mat scheme and the Avail­Sim3 soft­ware pack­age is used for avail­abil­ity sim­u­la­tions. This paper gives an overview of the sys­tems af­fect­ing the beam pow­er­ing avail­abil­ity and makes rec­om­men­da­tions for avail­abil­ity im­prove­ments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF077 Performance Evaluation of Linac4 During the Reliability Run operation, MMI, proton, controls 2016
 
  • O. Rey Orozko, A. Apollonio, S.S. Erhard, G. Guidoboni, B. Mikulec, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  Linac4 will re­place Linac2 as the first el­e­ment in the CERN pro­ton in­jec­tor chain from 2020 on­wards, fol­low­ing the sec­ond LHC long shut­down (LS2). With more than three times higher en­ergy and num­ber of compo-nents than Linac2, beam avail­abil­ity is one of the main chal­lenges of Linac4. In­tended as a smooth tran­si­tion from com­mis­sion­ing to op­er­a­tion, a Linac4 Re­li­a­bil­ity Run was started in July 2017 and is fore­seen to last until mid-May 2018. The goal is to achieve the tar­get avail­abil­ity of 95 %. This im­plies con­sol­i­dated rou­tine op­er­a­tion and iden­ti­fi­ca­tion of re­cur­ring prob­lems. This paper in­tro­duces the sched­ule and op­er­a­tional as­pects of the Linac4 Re­li­a­bil­ity Run, in­clud­ing the de­vel­oped tools and meth­ods for avail­abil­ity track­ing. The paper also sum­ma­rizes the lessons learned dur­ing the first pe­riod of the Linac4 Re­li­a­bil­ity Run with re­spect to fault track­ing and pro­vides an in-depth analy­sis of the fail­ure modes and ob­served avail­abil­ity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF086 Latest Developments and Updates of the ESS Linac Simulator DTL, cavity, solenoid, space-charge 2051
 
  • J.F. Esteban Müller, E. Laface
    ESS, Lund, Sweden
 
  A fast and ac­cu­rate on­line model is re­quired for op­ti­mal com­mis­sion­ing and re­li­able op­er­a­tion of the high-power pro­ton linac at the Eu­ro­pean Spal­la­tion Source. The Open XAL frame­work, ini­tially de­vel­oped at SNS, is used at ESS for the de­vel­op­ment of high-level physics ap­pli­ca­tions. The on­line model we use, known as ESS Linac Sim­u­la­tor (JELS), ex­tends the Open XAL model with sev­eral fea­tures. This paper de­scribes the lat­est up­dates car­ried out to JELS. Two new el­e­ments have been im­ple­mented: a so­le­noid field map for the LEBT and a DTL Tank el­e­ment that au­to­mat­i­cally cal­cu­lates each gap phase. All cal­cu­la­tions are now done in the lab­o­ra­tory frame, in agree­ment with Open XAL con­ven­tion. A thor­ough bench­mark of the model against TraceWin, which is the tool used for the lat­tice de­sign, is also pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK006 Bunch Shape Measurements at the GSI CW-Linac Prototype cavity, heavy-ion, bunching, emittance 2091
 
  • T. Sieber, W.A. Barth, P. Forck, V. Gettmann, M. Heilmann, H. Reeg, A. Reiter, S. Yaramyshev
    GSI, Darmstadt, Germany
  • F.D. Dziuba, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • A. Feschenko, S.A. Gavrilov
    RAS/INR, Moscow, Russia
 
  The ex­ist­ing GSI ac­cel­er­a­tor will be­come the in­jec­tor for FAIR. To pre­serve and en­hance the cur­rent ex­per­i­men­tal pro­gram at UNI­LAC, a new Linac is under de­vel­op­ment, which shall run in par­al­lel to the FAIR in­jec­tor, pro­vid­ing cw-beams of ions at en­er­gies from 3.5 - 7.3 MeV/u. For this cw-Linac a su­per­con­duct­ing pro­to­type cav­ity has been de­vel­oped and was first op­er­ated with beam in sum­mer 2017. The res­onator is a cross-bar H-struc­ture (CH) of 0.7 m length, with a res­o­nant fre­quency of 216.8 MHz. It has been in­stalled be­hind the GSI High Charge State In­jec­tor (HLI), which pro­vided 108 MHz bunches of 1.4 MeV/u Ar6+/9+/11+ ions at a duty cycle of 25 %. Due to the fre­quency jump and small lon­gi­tu­di­nal ac­cep­tance of the CH, proper match­ing of the HLI beam to the pro­to­type was re­quired. The bunch prop­er­ties of the in­jected beam as well as the ef­fect of dif­fer­ent phase- and am­pli­tude-set­tings of the cav­ity were mea­sured in de­tail with a bunch shape mon­i­tor (BSM) fab­ri­cated at INR, Moscow, while the mean en­ergy was an­a­lyzed by time of flight method. In this con­tri­bu­tion, the bunch shape mea­sure­ments are de­scribed and the ca­pa­bil­i­ties of the used BSM mea­sure­ment prin­ci­ple are dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK016 RF Monitor System for SuperKEKB Injector Linac FPGA, controls, data-acquisition, EPICS 2128
 
  • H. Katagiri, M. Akemoto, D.A. Arakawa, T. Matsumoto, T. Miura, F. Qiu, Y. Yano
    KEK, Ibaraki, Japan
 
  A new radio fre­quency (RF) mon­i­tor sys­tem for the Su­perKEKB pro­ject has been de­vel­oped at the KEK in-jec­tor linac. The RF mon­i­tor unit, which con­sists of an ana­log I/Q de­mod­u­la­tor, ADC/DAC board, and FPGA board achieved 50-Hz data ac­qui­si­tion and beam mode iden­ti­fi­ca­tion. On the RF mon­i­tor, the am­pli­tude and phase mea­sure­ment pre­ci­sion has achieved 0.1% rms and 0.1° rms, re­spec­tively. Sixty RF mon­i­tor units have been in­stalled in the linac. The pre­sent sta­tus of the RF mon­i­tor sys­tem will be re-ported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK017 Low-level RF System for the SuperKEKB Injector LINAC injection, booster, controls, positron 2131
 
  • T. Matsumoto, M. Akemoto, D.A. Arakawa, H. Katagiri, T. Miura, F. Qiu, Y. Yano
    KEK, Ibaraki, Japan
  • M. Akemoto, T. Miura, F. Qiu
    Sokendai, Ibaraki, Japan
 
  The low-level RF (LLRF) sys­tem of the KEK in­jec­tor linac has been up­graded for the Su­perKEKB. As a major change, a low-emit­tance and high-cur­rent RF gun was in­stalled to sat­isfy 40-times higher lu­mi­nos­ity at the Su­perKEKB. In order to bal­ance the sta­ble RF gun op­er­a­tion and the elec­tron/positron beam ac­cel­er­a­tion, the phase shifter is de­vel­oped and the con­fig­u­ra­tion of main drive sys­tem in the LLRF sys­tem is mod­i­fied. The pre­sent sta­tus and fu­ture plan of the LLRF sys­tem up­graded for the Su­perKEKB will be re­ported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK018 LLRF Control Unit for SuperKEKB Injector Linac controls, LLRF, klystron, timing 2134
 
  • T. Miura, M. Akemoto, D.A. Arakawa, H. Katagiri, T. Matsumoto, F. Qiu, Y. Yano
    KEK, Ibaraki, Japan
  • N. Liu
    Sokendai, Ibaraki, Japan
 
  The low-level RF (LLRF) con­trol unit based on the dig­i­tal sys­tem has been de­vel­oped for a sta­ble and high pre­ci­sion pulse mod­u­la­tion for the Su­perKEKB. The RF pulse is changed at a 50-Hz rep­e­ti­tion rate for the top-up in­jec­tion to four dif­fer­ent rings by the event sys­tem. The LLRF con­trol unit has not only the pulse mod­u­la­tor, but also other func­tions: VSWR meter, RF mon­i­tor, event re­ceiver (EVR), and pulse-short­en­ing de­tec­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL001 LLRF Control and Master Oscillator System for Damping Ring at SuperKEKB controls, cavity, LLRF, injection 2137
 
  • T. Kobayashi, K. Akai, A. Kabe, K. Nakanishi, M. Nishiwaki, J.-I. Odagiri
    KEK, Ibaraki, Japan
  • H. Deguchi, K. Hayashi, J. Mizuno
    Mitsubishi Electric TOKKI Systems, Amagasaki, Hyogo, Japan
  • K. Hirosawa
    Sokendai, Ibaraki, Japan
 
  For Su­perKEKB, new low level RF (LLRF) con­trol sys­tems has ben de­vel­oped and they worked suc­cess­fully in the first beam com­mis­sion­ing (Phase-1) of Su­perKEKB, which was ac­com­plished in 2016. Damp­ing ring (DR) was newly con­structed for positron beam in­jec­tion, in order to make sig­nif­i­cantly emit­tance smaller for Su­perKEKB. The beam com­mis­sion­ing of DR will be con­ducted in JFY2017 for the Phase-2 com­mis­sion­ing. Phase-2 is sched­uled in the last quater of JFY2017. DR has an RF sta­tion, and two cav­i­ties (or three cav­i­ties in fu­ture) are dri­ven by a kly­stron. New LLRF con­trol sys­tem for DR (DR-LLRF) was also de­vel­oped and in­stalled. RF fre­quency of DR op­er­a­tion is com­mon with the main stor­age rings (MR) of Su­perKEKB. The good per­for­mance of DR-LLRF was demon­strated in test op­er­a­tion, and RF con­di­tion­ing of the pair of two cav­i­ties was suc­cess­fully com­pleted in June 2017. This paper re­ports the de­tail of the per­for­mance re­sults of DR-LLRF con­trols, and also the other some rel­e­vant is­sues in LLRF con­trols for DR, in­clud­ing the mas­ter os­cil­la­tor sys­tem (syn­chro­niza­tion with the in­jec­tion linac), are in­tro­duced.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL002 Improvement of Personnel and Machine Protection System in Superkekb Injector Linac operation, PLC, controls, gun 2140
 
  • I. Satake, H. Honma, A. Shirakawa, N. Toge
    KEK, Ibaraki, Japan
 
  Since sum­mer of 2010, the ra­di­a­tion con­trol area for the KEK elec­tron positron in­jec­tor linac had been split at the around 3 GeV point by a con­crete wall into up­stream and down­stream parts with in­de­pen­dent beam sources. This was so as to allow op­er­a­tion of the down­stream part for beam in­jec­tion into pho­ton fac­tory rings while con­struc­tion and de­vel­op­ment of new elec­tron guns pro­ceed in the up­stream part. In sum­mer of 2017, this arrange­ment was re­vised and the en­tire in­jec­tor linac was re­con­sol­i­dated into a sin­gle ra­di­a­tion con­trol area. This was in con­junc­tion with the in­tro­duc­tion of the 1.1 GeV positron damp­ing ring for Phase-II op­er­a­tion of Su­perKEKB and suc­cess­ful de­vel­op­ment of new elec­tron RF guns in the far up­stream part of the linac. Along with this re­con­sol­i­da­tion, the per­son­nel and ma­chine pro­tec­tion sys­tem was mod­i­fied and im­proved. In­ter­lock sig­nal lines for the damp­ing ring and RF guns were added. The op­er­a­tion panel of the main con­sole was mod­i­fied ac­cord­ingly. In ad­di­tion, the screen dis­plays of the in­ter­lock sta­tus were up­dated. In this paper we re­port on the re­newed sys­tem of KEK in­jec­tor linac in de­tail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL006 Experimental Study of a Differential Beam Intensity Monitoring for the CIADS LINAC experiment, pick-up, monitoring, machine-protect 2155
 
  • Z.P. Xie, Y.K. Ding, J. Liang
    Hohai University, Nanjing, People's Republic of China
  • Y. He, Z.J. Wang, J.X. Wu, Y. Zhang
    IMP/CAS, Lanzhou, People's Republic of China
 
  Funding: Work supported by the National Natural Science Foundation of China (Grant No. 91026001) and the Fundamental Research Funds for the Chinese Central Universities
A BPM based beam loss mon­i­tor­ing scheme for the China ini­tia­tive ac­cel­er­a­tor dri­ven sub­crit­i­cal (CIADS) fa­cil­ity has been pro­posed for the MEBT sec­tion of its high power Linac. In this scheme, a dif­fer­en­tial beam mon­i­tor­ing al­go­rithm is uti­lized that re­lies on beam in­ten­sity mea­sure­ments using BPM elec­trodes. Dis­cus­sions of the ex­per­i­men­tal re­sults for the scheme are pre­sented. Fur­ther ex­per­i­ments have been per­formed with some promis­ing re­sults. This paper de­scribes the ex­per­i­men­tal re­sults with some analy­ses on mea­sure­ment er­rors of the sys­tem. The pro­posed phys­i­cal de­sign of this sys­tem is de­scribed and fur­ther de­vel­op­ment is pre­sented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL008 Low-level RF System for The Chinese ADS Front-end Demo Linac controls, LLRF, cavity, interface 2159
 
  • J.Y. Ma, Z. Gao, G. Huang, L.P. Sun
    IMP/CAS, Lanzhou, People's Republic of China
 
  The Chi­nese ADS Front-end Demo Linac (FDL) is con­structed to demon­strate the tech­nol­ogy of su­per­con­duct­ing linac with high pro­ton beam load­ing of CW 10mA. The low-level RF (LLRF) con­trol sys­tem for the ADS FDL is de­vel­oped by IMP, and the co­op­er­a­tion with TRI­UMF. In the nor­mal con­duct­ing (NC) sec­tion, the nor­mal RF feed­back con­trol loop is used. In order to sta­ble the su­per­con­duct­ing (SC) cav­ity with loaded high RF power, the self ex­cited loop with phase locked mode was used on the SC linac. This paper in­tro­duces the LLRF con­trol sys­tem for buncher, SC linac, and the struc­tures of hard­ware and the func­tions of soft­ware of these LLRF sys­tems. The op­er­at­ing sta­tus of the LLRF sys­tems is also re­ported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL010 Review of the ELI-NP-GBS Low Level RF and Synchronization Systems LLRF, laser, electron, timing 2162
 
  • L. Piersanti, D. Alesini, M. Bellaveglia, F. Cardelli, M. Diomede, A. Gallo, V. Martinelli
    INFN/LNF, Frascati (Roma), Italy
  • B.B. Baricevic, R. Cerne, G. Jug
    I-Tech, Solkan, Slovenia
  • M. Diomede
    Sapienza University of Rome, Rome, Italy
  • P.N. Dominguez
    Menlo Systems GmbH, Martinsried, Germany
 
  ELI-NP is a linac based gamma-source in con­struc­tion at Magurele (RO) by the Eu­ro­pean con­sor­tium Eu­roGam­maS led by INFN. Pho­tons with tun­able en­ergy and with in­ten­sity and bril­liance well be­yond the state of the art, will be pro­duced by Comp­ton back-scat­ter­ing be­tween a high qual­ity elec­tron beam (up to 740 MeV) and a 515 nm in­tense laser pulse. Pro­duc­tion of very in­tense pho­ton flux with nar­row band­width re­quires multi-bunch op­er­a­tion at 100 Hz rep­e­ti­tion rate. A total of 13 kly­strons, 3 S-band (2856 MHz) and 10 C-band (5712 MHz) will power a total of 14 Trav­el­ling Wave ac­cel­er­at­ing sec­tions (2 S-band and 12 C-band) plus 3 S-band Stand­ing Wave cav­i­ties (a 1.6 cell RF gun and 2 RF de­flec­tors). Each kly­stron is in­di­vid­u­ally dri­ven by a tem­per­a­ture sta­bi­lized LLRF mod­ule for a max­i­mum flex­i­bil­ity in terms of ac­cel­er­at­ing gra­di­ent, ar­bi­trary pulse shap­ing (e.g. to com­pen­sate beam load­ing ef­fects in multi-bunch regime) and com­pen­sa­tion of long-term ther­mal drifts. In this paper, the whole LLRF sys­tem ar­chi­tec­ture and bench test re­sults, the RF ref­er­ence gen­er­a­tion and dis­tri­b­u­tion to­gether with an overview of the syn­chro­niza­tion sys­tem will be de­scribed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL013 Design of the Diagnostic Stations for the ELI-NP Compton Gamma Source radiation, electron, optics, simulation 2173
 
  • M. Marongiu
    INFN-Roma, Roma, Italy
  • M. Castellano, E. Chiadroni, G. Di Pirro, G. Franzini, A. Giribono, V. Shpakov, A. Stella, A. Variola
    INFN/LNF, Frascati (Roma), Italy
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
 
  A high bright­ness elec­tron Linac is being built in the Comp­ton Gamma Source at the ELI Nu­clear Physics fa­cil­ity in Ro­ma­nia. To achieve the de­sign lu­mi­nos­ity, a train of 32 bunches, 16 ns spaced, with a nom­i­nal charge of 250 pC will col­lide with the laser beam in the in­ter­ac­tion point. Elec­tron beam spot size is mea­sured with op­ti­cal tran­si­tion ra­di­a­tion (OTR) pro­file mon­i­tors. Fur­ther­more, OTR an­gu­lar dis­tri­b­u­tion strongly de­pends on beam en­ergy. Since OTR screens are typ­i­cally placed in sev­eral po­si­tions along the Linac to mon­i­tor beam en­ve­lope, one may per­form a dis­trib­uted en­ergy mea­sure­ment along the ma­chine. This will be use­ful, for in­stance, dur­ing the com­mis­sion­ing phase of the GBS in order to ver­ify the cor­rect func­tion­al­ity of the C-Band ac­cel­er­at­ing struc­tures, due to the fact that there are OTR screens after each ac­cel­er­at­ing mod­ule. This paper deals with the stud­ies of dif­fer­ent optic con­fig­u­ra­tions to achieve the field of view, res­o­lu­tion and ac­cu­racy in order to mea­sure the en­ergy of the beam. Sev­eral con­fig­u­ra­tions of the op­ti­cal de­tec­tion line will be stud­ied with sim­u­la­tion tools (e.g. Zemax).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL014 Non-Distructive 2-D Beam Profile Monitor Using Gas Sheet in J-PARC LINAC injection, electron, vacuum, cavity 2177
 
  • J. Kamiya, Y. Hikichi, M. Kinsho, A. Miura, N. Ogiwara
    JAEA/J-PARC, Tokai-mura, Japan
 
  We have been de­vel­oped a beam pro­file mon­i­tor using in­ter­ac­tion be­tween the beam and the gas mol­e­cules dis­trib­uted in sheet shape*. Gen­er­ated lu­mi­nes­cence or ions by pass­ing the beam through the gas sheet has the in­for­ma­tion of cross-sec­tion shape of the beam. The gas sheet beam mon­i­tor will be­come a use­ful tool to mea­sure the pro­file of high power beams be­cause it has no break­able el­e­ment such as wires and a 2-D beam pro­file at a cer­tain po­si­tion of beam line can be im­me­di­ately ob­tained by just in­ject­ing the gas. Pre­vi­ously, the de­vel­op­ment of the gas sheet gen­er­a­tor and suc­cess­ful demon­stra­tion of the beam pro­file mea­sure­ment were re­ported. This time, we ap­plied a gas sheet mon­i­tor to J-PARC LINAC, where the neg­a­tive hy­dro­gen atoms (H) are ac­cel­er­ated to the en­ergy of 400 MeV in the nor­mal op­er­a­tion. Most chal­leng­ing fac­tor was the de­vel­op­ment of the gas sheet mon­i­tor sys­tem, which gen­er­ates the enough dense gas sheet to de­tect the clear image of the beam pro­file with­out harm­ful ef­fect on the ul­tra-high vac­uum in the beam line. We will re­port the gas sheet beam mon­i­tor sys­tem for J-PARC LINAC and the re­sults of the first mea­sure­ment of the beam pro­file.
* N. Ogiwara, et al., Proceedings of IPAC2016, p.2102.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL016 Tensile Fracture Test of Metallic Wire of Beam Profile Monitors electron, cavity, beam-loading, controls 2183
 
  • A. Miura, Y. Kawane, K. Moriya
    JAEA/J-PARC, Tokai-mura, Japan
  • S. Fukuoka
    Nihon Koshuha Co. Ltd, Yokohama, Japan
  • K. Futatsukawa, T. Miyao
    KEK, Ibaraki, Japan
 
  In order to mit­i­gate the beam loss dur­ing a beam trans­porta­tion in a high-bril­liant ac­cel­er­a­tor fa­cil­i­ties, wire-based pro­file mon­i­tors are used to mea­sure by both trans­verse and lon­gi­tu­di­nal beam pro­files using wire-scan­ner mon­i­tors (WSMs) and bunch-shape mon­i­tors (BSMs) for the tun­ing of quadru­pole mag­nets and bunch­ing cav­i­ties. Sig­nals are come from the di­rect in­ter­ac­tion be­tween a metal­lic wire and beam. We have used the tung­sten wire as a high melt­ing-point ma­te­r­ial by es­ti­ma­tion of heat load­ing dur­ing the im­pact of beam par­ti­cles. In ad­di­tion, a spring is ap­plied for the re­lax­ing a sag under wire's own weight. A ten­sile frac­ture test is con­ducted by sup­ply­ing an elec­tri­cal cur­rent as a sim­u­lated beam-heat load­ing. As the re­sults, we ob­tained the re­la­tion be­tween the ther­mal limit to break down and ten­sion load­ing of tung­sten wire.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL017 Adaptive Feedforward Control Design Based on Simulink for the J-PARC LINAC LLRF System controls, LLRF, cavity, simulation 2187
 
  • S. Li
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Z. Fang, Y. Fukui, K. Futatsukawa, F. Qiu
    KEK, Ibaraki, Japan
  • S. Mizobata, Y. Sato, S. Shinozaki
    JAEA/J-PARC, Tokai-mura, Japan
 
  In j-parc linac, for deal­ing with high beam load­ing ef­fect, an adap­tive feed­for­ward con­trol method which based on it­er­a­tive learn­ing con­trol was put for­ward. At the same time, in order to ver­ify its ef­fec­tive­ness be­fore it is of­fi­cially put into use, an llrf sys­tem sim­u­la­tion model was built in simulink, mat­lab. In this paper, the ar­chi­tec­ture of llrf sys­tem sim­u­la­tion model will be in­tro­duced. The re­sult of it­er­a­tive learn­ing con­trol (ILC) is sum­ma­rized.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL018 A Non-destructive 2D Profile Monitor Using a Gas Sheet experiment, electron, proton, target 2190
 
  • N. Ogiwara, Y. Namekawa
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • M. Fukuda, K. Hatanaka, T. Shima, K. Takahisa
    RCNP, Osaka, Japan
  • Y. Hikichi, J. Kamiya, M. Kinsho
    JAEA/J-PARC, Tokai-mura, Japan
  • Y. Hori
    KEK, Tokai, Ibaraki, Japan
 
  We are de­vel­op­ing a non-de­struc­tive and fast-re­sponse beam pro­file mon­i­tor using a dense gas sheet tar­get. To make a gas sheet, we use the beam­ing ef­fect, which is well known in vac­uum sci­ence and tech­nol­ogy. The emit­ted mol­e­cules through a long rec­tan­gu­lar chan­nel, which has a very small ratio of the gap to the width, are forced to con­cen­trate on a plane. The gas sheet with a thick­ness of 1.5 mm and the den­sity of 2×10-4 Pa was eas­ily gen­er­ated by the com­bi­na­tion of the deep slit and the thin slit. Here, the gas sheet was pro­duced by the deep slit, and the shape of the sheet was im­proved by the thin slit. The use­ful­ness of this mon­i­tor was shown by the fol­low­ing ex­per­i­ments: 1) For the elec­tron beam of 30 keV with a di­am­e­ter greater than 0.35 mm, the po­si­tion and the two-di­men­sional pro­files were well mea­sured using the gas sheet. 2) Then the pro­files of the 10 and 400 MeV pro­ton beam with a cur­rent of sev­eral mi­croam­peres were well mea­sured, too. 3) Re­cently, the pro­files of the 400 MeV H ion beams in J-PARC linac were mea­sured.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL021 Study of a Tuner for a High-Accuracy Bunch Shape Monitor insertion, resonance, cavity, electron 2200
 
  • K. Moriya, Y. Kawane, A. Miura
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • K. Futatsukawa, T. Miyao
    KEK, Ibaraki, Japan
 
  In the J-PARC Linac, de­vel­op­ment and higher pre­ci­sion of Bunch Shape Mon­i­tor (BSM) have been pro­gressed for mea­sur­ing the lon­gi­tu­di­nal beam dis­tri­b­u­tion. To trans­form a lon­gi­tu­di­nal beam-pro­file into trans­verse one with an rf field, we need the field hav­ing an ac­cel­er­a­tion syn­chro­niz­ing fre­quency. An rf de­flec­tor of BSM con­sists of a half λ cylin­dri­cal cav­ity and two elec­trodes for de­flec­tion. In gen­eral, the res­o­nance fre­quency can be tuned by ad­just­ing the elec­trode length. We de­signed the new tuner with CST Stu­dio. We can con­trol the res­o­nance fre­quency by Ad­just­ing not only the elec­trode length but the cav­ity vol­ume. We found the op­ti­mum lengths of elec­trode and vol­ume for tun­ing. We in­tro­duce de­vel­op­ment of the new rf tuner for BSM in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL022 Operating Experience of Water Cooling System in the J-PARC LINAC and RCS acceleration, diagnostics, klystron, DTL 2203
 
  • K. Suganuma, K. Fujirai, M. Kinsho, P.K. Saha, Y. Yamazaki
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  The cool­ing sys­tem for the J-PARC LINAC and RCS uses a total of 25 cir­cu­la­tion pumps to cool the ac­cel­er­a­tor de­vices. In Feb­ru­ary 2017, we ex­pe­ri­enced dam­age of cir­cu­la­tion pumps due to low flow rate, and started the de­vel­op­ment of an ab­nor­mal­ity de­tec­tion sys­tem con­cen­trat­ing on the vi­bra­tion mea­sure­ments of the cir­cu­la­tion pumps. In this re­port, the vi­bra­tion mea­sure­ment re­sults of the coolant cir­cu­la­tion pumps and the de­vel­op­ment sta­tus of ab­nor­mal­ity de­tec­tion through mul­ti­vari­ate analy­sis using vi­bra­tion val­ues are dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL029 FLUTE Diagnostics Integration controls, diagnostics, cavity, interface 2227
 
  • M. Yan, A. Bernhard, E. Bründermann, S. Funkner, A. Malygin, S. Marsching, W. Mexner, A. Mochihashi, A.-S. Müller, M.J. Nasse, G. Niehues, R. Ruprecht, T. Schmelzer, M. Schuh, N.J. Smale, P. Wesolowski, S. Wüstling
    KIT, Karlsruhe, Germany
  • I. Križnar
    Cosylab, Ljubljana, Slovenia
 
  FLUTE (Fer­n­in­frarot Linac- Und Test-Ex­per­i­ment) will be a new com­pact ver­sa­tile lin­ear ac­cel­er­a­tor at KIT. Its pri­mary goal is to serve as a plat­form for a va­ri­ety of ac­cel­er­a­tor stud­ies as well as to gen­er­ate strong ul­tra-short THz pulses for pho­ton sci­ence. The ma­chine con­sists of an RF gun, a trav­el­ing wave linac and a D-shaped bunch com­pres­sor chi­cane with cor­re­spond­ing di­ag­nos­tics sec­tions. In this con­tri­bu­tion, we re­port on the lat­est de­vel­op­ments of the di­ag­nos­tics com­po­nents. An overview of the read­out and con­trol sys­tem in­te­gra­tion will be given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL035 The Synchronization System of the Thomx Accelerator HOM, electron, laser, distributed 2243
 
  • N. Delerue, V. Chaumat, R. Chiche, N. ElKamchi, H. Monard, F. Wicek
    LAL, Orsay, France
  • B. Lucas
    CNRS LPGP Univ Paris Sud, Orsay, France
 
  Funding: CNRS and ANR
The ThomX com­pact light source uses a 50 MeV ring to pro­duce X-rays by Comp­ton scat­ter­ing. For his­tor­i­cal rea­sons the linac and the ring could not op­er­ate at har­monic fre­quen­cies of each other. A het­ero­dyne syn­chro­niza­tion sys­tem has been de­signed for this ac­cel­er­a­tor. This syn­chro­niza­tion is based on mix­ing the two RF fre­quen­cies to pro­duce an het­ero­dyne trig­ger sig­nal and that is then dis­trib­uted to the users. Bench tests of the sys­tem has demon­strated a jit­ter of less than 2 ps. We de­scribe here this syn­chro­niza­tion sys­tem.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL036 Implementation of CSNS RCS Beam Injection and Extraction Modes in Timing System extraction, injection, timing, kicker 2247
 
  • P. Zhu, M.Y. Huang, D.P. Jin, G. Lei, G.L. Xu, Y.L. Zhang
    IHEP, Beijing, People's Republic of China
  • L. Wang
    CSNS, Guangdong Province, People's Republic of China
 
  Funding: Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; Dong guan Neutron Science Center, Dong guan 523803, China
Based on the phys­i­cal de­sign of the ac­cel­er­a­tor and the de­mand of the beam re­search, we de­signed four RCS beam in­jec­tion modes and two RCS beam ex­trac­tion modes, each of which cor­re­sponds to a se­ries of spe­cific tim­ing for the ac­cel­er­a­tor. RCS beam in­jec­tion and ex­trac­tion modes are im­ple­mented on "VME + cus­tomized boards" hard­ware plat­form. In this paper, we will in­tro­duce the de­sign and im­ple­men­ta­tion of RCS beam in­jec­tion and ex­trac­tion modes as well as the RCS tim­ing re­quire­ments and im­ple­men­ta­tion in de­tail.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL070 HLS System to Measure the Location Changes in Real Time of PAL-XFEL Devices FEL, alignment, real-time, survey 2345
 
  • H. J. Choi, J.H. Han, H.-S. Kang, S.H. Kim, H.-G. Lee, S.B. Lee
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  All com­po­nents of PAL-XFEL (Po­hang Ac­cel­er­a­tor Lab­o­ra­tory's X-ray free-elec­tron laser) were com­pletely in­stalled in De­cem­ber 2015, and Hard X-ray 0.1nm las­ing achieved through its beam com­mis­sion­ing test and ma­chine study on March 16, 2017. The beam line users has been per­form­ing var­i­ous tests in­clud­ing pump-probe X-ray scat­ter­ing, time-re­solved x-ray liq­uidog­ra­phy, etc in the hard x-ray beam line since March 22. The en­ergy and flux of x-ray pho­ton beam gen­er­ated from XFEL and syn­chro­niza­tion tim­ing should be sta­ble to en­sure suc­cess­ful time-re­solved tests. Sev­eral parts that com­prise the large sci­en­tific equip­ment should be in­stalled and op­er­ated at pre­cise three-di­men­sional lo­ca­tion co­or­di­nates X, Y, and Z through sur­vey and align­ment to en­sure their op­ti­mal per­for­mance. As time goes by, how­ever, the ground goes through up­lift and sub­si­dence, which con­se­quently changes the co­or­di­nates of in­stalled com­po­nents and leads to align­ment er­rors ΔX, ΔY, and ΔZ. As a re­sult, the sys­tem pa­ra­me­ters change, and the per­for­mance of the large sci­en­tific equip­ment de­te­ri­o­rates ac­cord­ingly. Mea­sur­ing the change in lo­ca­tions of sys­tems com­pris­ing the large sci­en­tific equip­ment in real time would make it pos­si­ble to pre­dict align­ment er­rors, lo­cate any re­gion with greater changes, re­align com­po­nents in the re­gion fast, and shorten the time of sur­vey and align­ment. For this pur­pose, a HLS's (hy­dro­sta­tic lev­el­ing sen­sor) with 0.2um of res­o­lu­tion are in­stalled and op­er­ated in a wa­ter­pipe of total length 1km in the PAL-XFEL build­ing. This paper is de­signed to in­tro­duce the op­er­at­ing prin­ci­ple of the HLS, the in­stal­la­tion and op­er­a­tion of the HLS sys­tem, and how to uti­lize the HLS sys­tem in order to en­sure beam sta­bi­liza­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL072 A Novel Longitudinal Laserwire to Non-Invasively Measure 6-Dimensional Bunch Parameters at High Current Hydrogen Ion Accelerators laser, emittance, detector, simulation 2349
 
  • S.M. Gibson, A. Bosco
    Royal Holloway, University of London, Surrey, United Kingdom
  • S.E. Alden, A. Bosco, S.M. Gibson
    JAI, Egham, Surrey, United Kingdom
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: We acknowledge funding by the STFC Grant ST/P003028/1 and the John Adams Institute at Royal Holloway, University of London.
Op­ti­cal meth­ods for non-in­va­sive beam di­ag­nos­tics of high cur­rent H ion ac­cel­er­a­tors have been de­vel­oped in re­cent years*, **. Such laser­wires typ­i­cally mea­sure a 1D beam pro­file and/or 2D trans­verse emit­tance from the prod­ucts of photo-de­tached ions as a laser beam is scanned across the H beam. For laser pulse du­ra­tions (~80ns) longer than the RF pe­riod (~3ns), the de­tec­tor in­te­grates many com­plete bunches, en­abling only trans­verse beam mon­i­tor­ing. This paper pre­sents a new tech­nique to cap­ture a se­ries of time re­solved trans­verse emit­tance mea­sure­ments along the bunch train. A fast (~10ps) pulsed laser photo-de­taches ions within each bunch and is syn­chro­nized to sam­ple con­sec­u­tive bunches at cer­tain lon­gi­tu­di­nal po­si­tions along each bunch. A fast de­tec­tor records the spa­tial dis­tri­b­u­tion and time-of-flight of the neu­tral­ized H0, thus both the trans­verse and lon­gi­tu­di­nal emit­tance are re­con­structed. We pre­sent sim­u­la­tions of a time vary­ing pulsed laser field in­ter­act­ing within an H bunch, and es­ti­mate the yield, spa­tial and time dis­tri­b­u­tions of H0 ar­riv­ing at the de­tec­tor. We sum­marise the de­sign of a re­cently funded lon­gi­tu­di­nal laser­wire being in­stalled in FETS at RAL, UK.
* NIM-A, 830, p526-531, T. Hofmann et al
** T. Hofmann et al, 'Commissioning of the Operational Laser Emittance Monitors for LINAC4 at CERN' IPAC18.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL074 Commissioning of the Operational Laser Emittance Monitors for LINAC4 at CERN laser, electron, detector, emittance 2357
 
  • T. Hofmann, G.E. Boorman, A. Bosco, S.M. Gibson
    Royal Holloway, University of London, Surrey, United Kingdom
  • F. Roncarolo
    CERN, Geneva, Switzerland
 
  A laser-based emit­tance mon­i­tor has been de­vel­oped to non-in­va­sively mea­sure the trans­verse emit­tance of the LINAC4 H beam at its top en­ergy of 160MeV. After test­ing sev­eral sub-sys­tems of the in­stru­ment dur­ing linac com­mis­sion­ing at in­ter­me­di­ate en­er­gies, two in­stru­ments are now per­ma­nently in­stalled. These in­stru­ments use a pulsed laser beam de­liv­ered to the ac­cel­er­a­tor tun­nel by op­ti­cal fi­bres be­fore final fo­cus­ing onto the H beam. The pho­tons in the laser pulse de­tach elec­trons from the H ions, which can then be de­flected into an elec­tron mul­ti­plier. In ad­di­tion, the re­sult­ing neu­tral H0 atoms can be sep­a­rated from the main beam by a di­pole mag­net be­fore being recorded by down­stream di­a­mond strip-de­tec­tors. By scan­ning the laser in the hor­i­zon­tal and ver­ti­cal plane the beam pro­files are ob­tained from the elec­tron sig­nals and the emit­tance can be re­con­structed by the H0 pro­files at the di­a­mond de­tec­tors. This paper de­scribes the final sys­tem lay­out that con­sists of two in­de­pen­dent in­stru­ments, each mea­sur­ing pro­file and emit­tance of the H beam in the hor­i­zon­tal and ver­ti­cal plane and dis­cusses the pre­lim­i­nary com­mis­sion­ing re­sults.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF004 The Saclay Test Stand for Conditioning the ESS RFQ Power Couplers at High RF Power cavity, rfq, vacuum, interface 2375
 
  • N. Misiara, A.C. Chauveau, D. Chirpaz-Cerbat, P. Daniel-Thomas, M. Lacroix, L. Maurice
    CEA/IRFU, Gif-sur-Yvette, France
  • M. Desmons, A. Dubois, A. Gaget, L. Napoly, M. Oublaid, G. Perreu, O. Piquet, B. Pottin, Y. Sauce
    CEA/DRF/IRFU, Gif-sur-Yvette, France
 
  The RF power cou­pler sys­tem for the RFQ of the ESS LINAC will feed 1.6 MW peak power through two coax­ial loop cou­plers for a 352.21 MHz op­er­a­tion at the ex­pected duty cycle. A spe­cific test stand has been de­signed to con­di­tion the power cou­plers, and test the dif­fer­ent aux­il­iary com­po­nents in the nom­i­nal con­di­tions of the RFQ. The power cou­plers were suc­cess­fully as­sem­bled, in­stalled and in­stru­mented on the test cav­ity. This paper pre­sents the gen­eral lay­out of the test stand, the in­stal­la­tion and prepa­ra­tion of the power cou­plers for their con­di­tion­ing at high RF power up to the ESS nom­i­nal con­di­tions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF038 Microphonics Suppression in the CBETA Linac Cryomodules cavity, cryomodule, SRF, controls 2447
 
  • N. Banerjee, J. Dobbins, F. Furuta, G.H. Hoffstaetter, R.P.K. Kaplan, M. Liepe, P. Quigley, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was performed through the support of New York State Energy Research and Development Agency. The linac cryomodules were constructed with funding from the National Science Foundation.
The Cor­nell-BNL ERL Test Ac­cel­er­a­tor (CBETA) is a new multi-turn en­ergy re­cov­ery linac cur­rently under con­struc­tion at Cor­nell Uni­ver­sity. It uses two su­per­con­duct­ing linacs, both of which are sus­cep­ti­ble to mi­cro­phon­ics de­tun­ing. The high-cur­rent in­jec­tor ac­cel­er­ates elec­trons to 6 MeV and the main linac ac­cel­er­ates and de­cel­er­ates elec­trons by 36 MeV. In this paper, we dis­cuss var­i­ous mea­sures taken to re­duce vi­bra­tions caused by in­sta­bil­i­ties and flow tran­sients in the cryo­genic sys­tem of the main linac cry­omod­ule. We fur­ther de­scribe the use of a Least Mean Square al­go­rithm in es­tab­lish­ing a sta­ble Ac­tive Mi­cro­phon­ics Com­pen­sa­tion sys­tem for op­er­a­tion of the main linac cav­i­ties.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF053 XFEL Modulators with Pulse Cables FEL, operation, klystron, radiation 2487
 
  • H.-J. Eckoldt, S. Choroba, T. Grevsmühl, A. Hauberg, J. Havlicek, N. Heidbrook, K. Machau, N. Ngada
    DESY, Hamburg, Germany
  • M. Frei, S.G. Keens, T.H. Strittmatter
    Ampegon AG, Turgi, Switzerland
  • H. Leich
    DESY Zeuthen, Zeuthen, Germany
 
  The mod­u­la­tors of the Eu­ro­pean XFEL pro­duce high volt­age, at the 10kV level, hav­ing a power of up to 16.8 MW for 1.54 ms. The op­er­a­tion fre­quency of the su­per-con­duct­ing inac is 10 Hz. The se­ries pro­duc­tion of the 29 mod­u­la­tors started in 2012. The first mod­u­la­tor began op­er­a­tion in 2014 and the start of linac was be­gin­ning 2017. The R&D phase for the mod­u­la­tors started di­rectly with the de­vel­op­ment of su­per­con­duct­ing cav­i­ties. Be­sides the pulse gen­er­a­tion, the mod­u­la­tor had to sup­press the 10 Hz rep­e­ti­tion rate in order not to dis­turb the grid. An­other unique de­mand was the de­vel­op­ment of pulse ca­bles. Since the power RF had to be gen­er­ated in the tun­nel, the kly­strons were in­stalled near the cav­i­ties. How­ever, the mod­u­la­tors had to be in­stalled out­side of the tun­nel for space, main­te­nance rea­sons and ra­di­a­tion con­cerns. This trans­mis­sion of high power pulses via long ca­bles is unique in the world and the sup­pres­sion of EMI ef­fects was manda­tory. Dur­ing the first year op­er­a­tion no EMI dis­tur­bances of other sys­tems were de­tected and the mod­u­la­tor sys­tem works as ex­pected.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF067 A High Gradient Solution for Increasing the Energy of the FERMI Linac FEL, electron, wakefield, laser 2525
 
  • C. Serpico, I. Cudin, S. Di Mitri, N. Shafqat, M. Svandrlik
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • M. Bopp, R. Zennaro
    PSI, Villigen PSI, Switzerland
 
  FERMI is the seeded Free Elec­tron Laser (FEL) user fa­cil­ity at Elet­tra lab­o­ra­tory in Tri­este, op­er­at­ing in the VUV to soft X-rays spec­tral range. In order to ex­tend the FEL spec­tral range to shorter wave­lengths, a fea­si­bil­ity study for in­creas­ing the Linac en­ergy from 1.5 GeV to 1.8 GeV is ac­tu­ally going on. The de­sign of new S-band ac­cel­er­at­ing struc­tures, in­tended to re­place the pre­sent Back­ward Trav­el­ling Wave sec­tions, is pre­sented. Such de­sign is tai­lored for high gra­di­ent op­er­a­tion, low break­down rates and low wake­field con­tri­bu­tion. In this paper, we will also pre­sent the first, short pro­to­type that has been built in col­lab­o­ra­tion with Paul Scher­rer In­sti­tute (PSI).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF082 Design and Construction of the CERN PS Booster Charge Exchange Injection Chicane Bumpers injection, vacuum, septum, simulation 2575
 
  • B. Balhan, C. Baud, J.C.C.M. Borburgh, M. Hourican
    CERN, Geneva, Switzerland
 
  In the frame­work of the LIU pro­ject and the con­nec­tion from LINAC4 to PS Booster, the 160 MeV H beam will be in­jected hor­i­zon­tally into the PSB by means of one charge-ex­change in­jec­tion sys­tem for each PSB ring. A set of four out­side vac­uum pulsed di­pole mag­nets (BSW) cre­at­ing the re­quired in­jec­tion bump has been de­signed and built. The dy­namic re­quire­ments for the bump ramp down de­ter­mine, to a large ex­tent, the field ho­mo­gene­ity due to the eddy cur­rents in­duced in the cor­ru­gated In­conel vac­uum cham­ber. Mag­netic sim­u­la­tions were per­formed to de­ter­mine the field har­mon­ics dur­ing bump ramp down, and the re­sults sub­se­quently used for the dy­namic track­ing of the beam dur­ing in­jec­tion. The me­chan­i­cal de­sign and con­struc­tion of the mag­nets will be briefly out­lined, and the ar­ti­cle will con­clude with the mag­netic mea­sure­ments of the mag­nets. The mag­netic per­for­mance of the as built mag­nets will be com­pared with the sim­u­la­tions and the in­flu­ence of the vac­uum cham­bers on the mag­netic field will be quan­ti­fied.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMK007 INFN-LASA Design and Prototyping Activity for PIP-II cavity, HOM, coupling, operation 2640
 
  • A. Bignami, M. Bertucci, A. Bosotti, J.F. Chen, P. Michelato, L. Monaco, R. Paparella, D. Sertore
    INFN/LASA, Segrate (MI), Italy
  • C. Pagani
    Università degli Studi di Milano & INFN, Segrate, Italy
  • S. Pirani
    ESS, Lund, Sweden
 
  The de­sign of the PIP-II medium-β, 5-cell, 650 MHz SRF el­lip­ti­cal cav­ity and the first steps of its pro­to­typ­ing ac­tiv­ity are here pre­sented. A de­sign based on a three dies fab­ri­ca­tion model has been cho­sen and fully char­ac­ter­ized in terms of elec­tro­mag­netic and me­chan­i­cal pa­ra­me­ters. Goal of the op­ti­miza­tion has been to re­al­ize a highly per­for­mant cav­ity for CW op­er­a­tion with rea­son­ably good per­for­mances when pulsed. A pro­to­typ­ing phase started with the pro­duc­tion of three sin­gle-cell cav­i­ties used to val­i­date the LASA model and to de­velop an op­ti­mal recipe for RF sur­face treat­ment ac­cord­ing to the state-of-the-art of the high-Q fron­tier.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMK007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMK015 Optimization of Vertical Electro-Polishing Process: Experiments with Updated Cathode on Single-Cell Cavity and Performance Achieved in Vertical Test cavity, cathode, SRF, superconductivity 2662
 
  • F. Éozénou, L. Maurice
    CEA/DSM/IRFU, France
  • P. Carbonnier, C. Madec, Th. Proslier, C. Servouin
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • V. Chouhan, Y.I. Ida, K.N. Nii, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • H. Hayano, S. Kato, H. Monjushiro, T. Saeki, M. Sawabe
    KEK, Ibaraki, Japan
 
  Marui Gal­va­niz­ing Co.​Ltd., and CEA have been study­ing Ver­ti­cal Elec­tro-Pol­ish­ing (VEP) on Nb sin­gle-cell ac­cel­er­at­ing su­per­con­duct­ing ac­cel­er­a­tor cav­ity with the goal of mass-pro­duc­tion and cost-re­duc­tion, in col­lab­o­ra­tion with KEK within TYL-FJPPL Par­ti­cle Physics Lab­o­ra­tory. Marui has in­vented and patented a ro­ta­tive cath­ode called ‘i-Ninja'. The ver­sion 5 has been tested for the first time in Eu­rope at CEA Saclay. The four wings of the cath­ode re­move ef­fi­ciently, bub­bles of hy­dro­gen, and the cho­sen pa­ra­me­ters make it pos­si­ble to achieve bet­ter sur­face and uni­form ma­te­r­ial re­moval com­pared to VEP with a fixed cath­ode. The ef­fect of the tem­per­a­ture of the cav­ity walls on cur­rent os­cil­la­tions has been pre­cisely stud­ied. Two sin­gle-cell cav­i­ties have been elec­tro-pol­ished and tested at 2 K in ver­ti­cal cryo­stat and the re­sults will be pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMK015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML002 Design of 650 MHz Tuner for PIP-II Project cavity, interface, simulation, experiment 2671
 
  • Y.M. Pischalnikov, S. Cheban, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The Pro­ton Im­prove­ment Plan (PIP) II pro­ject at Fer­mi­lab is a pro­ton dri­ver linac which will use of five dif­fer­ent cav­ity geome­tries in­clud­ing a 650 MHz 5-cell el­lip­ti­cal cav­i­ties that will op­er­ate in RF-pulse mode. De­tun­ing of these cav­i­ties by Lorentz Forces will be large and strongly de­pend of the stiff­ness of the cav­ity's tuner. First pro­to­type tuner built and tested warm [1,2]. Mea­sured stiff­ness of the pro­to­type tuner was below 30kN/mm in­stead of ex­pected from sim­u­la­tion 70kN/mm [2]. Sig­nif­i­cant ef­fort has been in­vested into un­der­stand­ing dis­crep­ancy be­tween sim­u­la­tion and ex­per­i­men­tal data that led to newest tuner de­sign. Up­dated 'dressed cav­ity-he­lium ves­sel-tuner' model pro­vided con­sis­tent re­sults be­tween ANSYS sim­u­la­tions and ex­per­i­ment re­sults. Mod­i­fied tuner de­sign and analy­sis in lim­i­ta­tions for over­all 'cav­ity/tuner sys­tem' stiff­ness will be pre­sented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML005 Testing of SSR1 Production Tuner for PIP-II cavity, SRF, niobium, cryomodule 2681
 
  • J.P. Holzbauer, D. Passarelli, Y.M. Pischalnikov
    Fermilab, Batavia, Illinois, USA
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The PIP-II pro­ject at Fer­mi­lab is a pro­ton dri­ver linac call­ing for the use of five dif­fer­ent, novel cav­ity geome­tries. Pro­to­typ­ing at Fer­mi­lab is in the ad­vanced stages for the low-beta sin­gle-spoke res­onator (SSR1) and as­so­ci­ated tech­nolo­gies. A pro­duc­tion tuner de­sign has been fab­ri­cated and tested, both warm and cold in the Spoke Test Cryo­stat (STC). This paper will pre­sent the de­tailed stud­ies on this tuner, in­clud­ing slow motor/piezo­elec­tric tuner range and hys­tere­sis as well as dy­namic me­chan­i­cal sys­tem char­ac­ter­i­za­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML039 Design of the Two-Gap Superconducting Re-Buncher cavity, heavy-ion, simulation, proton 2779
 
  • M. Gusarova, W.A. Barth, S. Yaramyshev
    MEPhI, Moscow, Russia
  • W.A. Barth, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, M. Miski-Oglu
    HIM, Mainz, Germany
  • M. Basten, M. Busch
    IAP, Frankfurt am Main, Germany
  • M. Gusarova
    JINR, Dubna, Moscow Region, Russia
 
  A new de­sign of a spoke cav­ity for low rel­a­tive ve­loc­i­ties of heavy ions has been elab­o­rated. Sim­u­la­tion re­sults for a 2-gap spoke cav­ity with a res­o­nance fre­quency of 216.816 MHz and a rel­a­tive ve­loc­ity of 0.07с are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML040 Further Tests on the Final State of the SC 325 MHz CH-Cavity and Coupler Test Bench Update cavity, heavy-ion, framework, SRF 2783
 
  • M. Busch, M. Basten, J. List, P. Müller, H. Podlech, M. Schwarz
    IAP, Frankfurt am Main, Germany
  • W.A. Barth, J. List
    GSI, Darmstadt, Germany
  • W.A. Barth
    HIM, Mainz, Germany
  • W.A. Barth
    MEPhI, Moscow, Russia
 
  Funding: Work supported by BMBF Contr. No. 05P15RFBA
At the In­sti­tute for Ap­plied Physics, Goethe-Uni­ver­sity Frank­furt, a sc 325 MHz CH-cav­ity has been de­vel­oped and suc­cess­fully tested up to 14.1 mV/m and has now reached the final pro­duc­tion stage with the he­lium ves­sel welded to the frontal joints of the cav­ity and final pro­cess­ing steps have been per­formed. Fur­ther tests in a ver­ti­cal and hor­i­zon­tal en­vi­ron­ment are being pre­pared for in­ten­sive stud­ies. This cav­ity is a pro­to­type for en­vis­aged beam tests with a pulsed ion beam at 11.4 AMeV. In this con­tri­bu­tion the re­sults of the per­formed RF tests are being pre­sented. Fur­ther­more, first mea­sure­ments of the re­cently in­stalled 217 MHz cou­pler test bench are shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML041 Comparative Study of Low Beta Multi-Gap Superconducting Bunchers cavity, heavy-ion, proton, accelerating-gradient 2786
 
  • K.V. Taletskiy, W.A. Barth, M. Gusarova, S. Yaramyshev
    MEPhI, Moscow, Russia
  • W.A. Barth, S. Yaramyshev
    GSI, Darmstadt, Germany
  • W.A. Barth, M. Miski-Oglu
    HIM, Mainz, Germany
  • M. Basten, M. Busch
    IAP, Frankfurt am Main, Germany
  • M. Gusarova
    JINR, Dubna, Moscow Region, Russia
 
  The re­sults of a com­par­a­tive study of low beta multi-gap su­per­con­duct­ing bunch­ers for 216.816 MHz and a rel­a­tive ve­loc­ity of 0.07с with ded­i­cated lim­i­ta­tions of the over­all geo­met­ri­cal di­men­sions are pre­sented. A com­par­i­son of elec­tro­dy­namic, me­chan­i­cal and ther­mal prop­er­ties of 3-gap and 2-gap cav­i­ties is shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML045 Infrastructure for Superconducting CH-Cavity Preparation at HIM cavity, vacuum, SRF, heavy-ion 2796
 
  • T. Kürzeder, K. Aulenbacher, W.A. Barth, F.D. Dziuba, V. Gettmann, M. Miski-Oglu, E. Riehn
    HIM, Mainz, Germany
  • K. Aulenbacher, R.G. Heine, T. Stengler
    IKP, Mainz, Germany
  • W.A. Barth, S. Yaramyshev
    GSI, Darmstadt, Germany
  • F. Hug
    KPH, Mainz, Germany
 
  A su­per­con­duct­ing cw LINAC for heavy ions is cur­rently under de­vel­op­ment at GSI in Darm­stadt and HIM in Mainz. This Linac is based on 217 MHz multi­gap bulk nio­bium Cross­bar H-mode RF-cav­i­ties. In order to treat and pre­pare RF-cav­i­ties with such a com­plex geom­e­try a new clean­room fa­cil­ity has been al­ready built at the Helmholtz-In­sti­tut in Mainz. All tools and ma­chines in­side the clean­room can han­dle cav­i­ties with up to 800 mm in di­am­e­ter and with up to 1300 mm in length. In its ISO-class 6 and 4 zones, re­spec­tively it fea­tures a large ul­tra­sonic and con­duc­tance rins­ing bath, a high pres­sure rins­ing (HPR) cab­i­net and a vac­uum oven. The HPR cab­i­net has an in­side clear­ance of 1.4 m. The large cav­i­ties sit on a ro­tat­ing table, while the ris­ing wand moves ver­ti­cally up and down. Due to the cross­bar struc­ture of the RF-cav­i­ties the HPR de­vice al­lows for off axis-rins­ing in their quad­rants. For RF test­ing a 52 m² (4 m x 13 m) con­crete shielded area with suf­fi­cient liq­uid he­lium and ni­tro­gen sup­ply is lo­cated next to the clean­room and the cryo-mod­ule as­sem­bly area. We will re­port on the new SRF in­fra­struc­ture in Mainz and the com­mis­sion­ing of the new high pres­sure rins­ing cab­i­net.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML046 Multipactor Discharge in Superconducting Accelerating CH Cavities multipactoring, electron, cavity, heavy-ion 2800
 
  • M. Gusarova, D. I. Kiselev
    MEPhI, Moscow, Russia
  • F.D. Dziuba, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • M. Gusarova
    JINR, Dubna, Moscow Region, Russia
 
  The re­sults of nu­mer­i­cal sim­u­la­tions of mul­ti­pact­ing dis­charge in a su­per­con­duct­ing ac­cel­er­at­ing CH cav­ity are pre­sented in this paper. The lo­cal­iza­tion of mul­ti­pactor tra­jec­to­ries in the 15-gap 217 MHz su­per­con­duct­ing (sc) CH cav­ity at var­i­ous lev­els of ac­cel­er­at­ing volt­age is con­sid­ered.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML051 Improvement of the Chopper System for rf Deflector at the J-PARC Linac controls, timing, cavity, operation 2816
 
  • K. Futatsukawa, Z. Fang, Y. Fukui
    KEK, Ibaraki, Japan
  • Y. Sato
    Nippon Advanced Technology Co., Ltd., Tokai, Japan
  • S. Shinozaki
    JAEA/J-PARC, Tokai-mura, Japan
 
  In the J-PARC linac, the RF de­flec­tor has been op­er­ated to kick the wasted beam and to shape the in­ter­me­di­ate-pulse like the comb struc­ture. Then about 50% of the beam cur­rent is re­moved by lead­ing the scraper and the rest beam cur­rent is in­jected to the down­stream syn­chro­tron ring RCS. The fast ris­ing time and falling time, the cav­ity with low load­ing Q value in the chop­per sys­tem are re­quired to de­crease the in­com­plete kicked beam. How­ever, there was the ring­ing of the RF field on the chop­per cav­ity, and it in­flu­enced the beam ris­ing time. The chop­per con­trollers, which has the fast RF -switch to make the par­tic­u­lar RF ac­cord­ing to the in­ter­me­di­ate-pulses, were im­proved for the RF falling time by out­putting short pulses with in­vert­ing phase. The beam study for the new sys­tem was suc­cess­fully done. In this paper, I would like to in­tro­duce this sys­tem and to show the re­sults of the beam study.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXGBE1 6D Beam Measurement, Challenges and Possibilities simulation, rfq, experiment, quadrupole 2890
 
  • A.V. Aleksandrov, S.M. Cousineau, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • B.L. Cathey
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  A sys­tem to mea­sure the full 6D beam pa­ra­me­ters (not 3x2D) has been built at the SNS RFQ test stand. Such a mea­sure­ment will allow de­tailed analy­sis of the beam physics from a prop­erly mea­sured input term. This in­vited pro­vides an overview of the prin­ci­ples and de­sign of this sys­tem, and re­ports on sta­tus and re­sults.  
slides icon Slides THXGBE1 [4.471 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THXGBE1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THYGBF4 Accelerator Physics Advances in FRIB (Facility for Rare Isotope Beams) cavity, MMI, ECR, ECRIS 2950
 
  • P.N. Ostroumov, N.K. Bultman, M. Ikegami, S.M. Lidia, S.M. Lund, G. Machicoane, T. Maruta, A.S. Plastun, G. Pozdeyev, X. Rao, J. Wei, T. Xu, T. Yoshimoto, Q. Zhao
    FRIB, East Lansing, USA
  • C.Y. Wong
    NSCL, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. DOE Office of Science under Cooperative Agreement DE-SC0000661 and the NSF under Cooperative Agreement PHY-1102511, the State of Michigan and Michigan State University.
This paper pre­sents re­cent de­vel­op­ments of ac­cel­er­a­tor physics re­lated top­ics for the Fa­cil­ity for Rare Iso­tope Beams (FRIB) being built at Michi­gan State Uni­ver­sity. While ex­ten­sive beam dy­nam­ics sim­u­la­tions in­clud­ing all known er­rors do not show un­con­trolled beam losses in the linac, ion beam con­t­a­m­i­nants ex­tracted from the ECR ion source to­gether with main ion beam can pro­duce sig­nif­i­cant losses after the charge strip­per. These stud­ies re­sulted in de­vel­op­ment of beam col­li­ma­tion sys­tem at rel­a­tively low en­ergy of 16 MeV/u and room tem­per­a­ture bunch­ers in­stead of orig­i­nally planned su­per­con­duct­ing ones. Com­mis­sion­ing of the Front End en­abled de­tailed beam physics stud­ies ac­com­pa­nied with the sim­u­la­tions using sev­eral beam dy­nam­ics codes. Set­tings of beam op­tics de­vices from the ECR to MEBT has been de­vel­oped and ap­plied to meet im­por­tant pro­ject mile­stones. Sim­i­lar work is planned for the beam com­mis­sion­ing of the first 3 cry­omod­ules in the su­per­con­duct­ing linac.
 
slides icon Slides THYGBF4 [11.092 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THYGBF4  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF011 Design of 4 Ampere S-Band LINAC Using Slotted Iris Structure for HOM Damping HOM, damping, target, dipole 2965
 
  • J. Pang, S. Chen, X. He, L.W. Zhang
    CAEP/IFP, Mainyang, Sichuan, People's Republic of China
  • S. Pei, H. Shi, J.R. Zhang
    IHEP, Beijing, People's Republic of China
 
  Funding: Key Laboratory of Pulsed Power, CAEP (Contract NO. PPLF2014PZ05) Key Laboratory of Particle Acceleration Physics &Technology,IHEP, CAS (Contract Y5294109TD)
An S-band LINAC with the op­er­at­ing fre­quency of 2856 MHz and beam cur­rent of 4 A was de­signed for flash X-ray ra­di­og­ra­phy for hy­dro­dy­namic test. The op­ti­miza­tion of the pa­ra­me­ters of the LINAC was processed to ob­tain the min­i­mum beam ra­dius and the max­i­mum en­ergy ef­fi­ciency. For the pur­pose of re­duc­ing the beam or­bits off­set at the exit of LINAC, a slot­ted iris ac­cel­er­at­ing struc­ture would be em­ployed to sup­press the trans­verse Higher Order Modes (HOMs) by cut­ting four ra­dial slots in the iris to cou­ple the HOMs to SiC loads. In this paper, we pre­sent the de­sign of the LINAC and the re­sults of beam dy­namic analy­sis.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF017 Improvement of RF Field Phase and Amplitude Errors Simulations in TraceWin Code cavity, simulation, diagnostics, beam-losses 2983
 
  • D. Uriot
    IRFU, CEA, University Paris-Saclay, Gif-sur-Yvette, France
 
  Funding: This work is supported by the European Atomic Energy Community's (EURATOM) H2020 Programme under grant agreement n°662186 (MYRTE project)
RF field phase and am­pli­tude er­rors are usu­ally not cor­rectly sim­u­lated and it is a se­ri­ous prob­lem es­pe­cially when in high in­ten­sity lin­ear ac­cel­er­a­tors, the main losses are due to par­ti­cle leav­ing the beam ac­cep­tance. This new de­vel­op­ment im­ple­mented in TraceWin fixes this issue. The ob­jec­tive is to im­prove the lon­gi­tu­di­nal beam dy­nam­ics sim­u­la­tion meth­ods, by in­clud­ing more close-to-real mod­els for the cav­i­ties tun­ing pro­ce­dure. By this way, clear dis­tinc­tion should be done be­tween sta­tic and dy­namic er­rors and lon­gi­tu­di­nal di­ag­nos­tics ac­cu­racy can be clearly de­fined ac­cord­ing to beam dy­nam­ics re­sults.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF019 Initial Performance of the Magnet System in the Splitter/Combiner Section of the Cornell-Brookhaven Energy-Recovery Linac Test Accelerator quadrupole, dipole, cavity, optics 2986
 
  • J.A. Crittenden, A.C. Bartnik, R.M. Bass, D.C. Burke, J. Dobbins, C.M. Gulliford, Y. Li, D. Sagan, K.W. Smolenski, Turco, J. Turco
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg
    BNL, Upton, Long Island, New York, USA
  • D. Jusic
    Cornell University, Ithaca, New York, USA
 
  Funding: This work is supported by NSF award DMR-0807731, DOE grant DE-AC02- 76SF00515, and New York State Energy Research and Development Authority.
The Cor­nell-Brookhaven En­ergy-re­cov­ery Linac Test Ac­cel­er­a­tor is a four-pass, 150-MeV elec­tron ac­cel­er­a­tor with a six-cell 1.3 GHz su­per­con­duct­ing-RF lin­ear ac­cel­er­a­tor and a fixed-field al­ter­nat­ing-gra­di­ent (FFAG) re­turn loop made up of Hal­bach-style quadru­pole mag­nets. The op­tics match­ing be­tween the lin­ear ac­cel­er­a­tor and the re­turn loop is achieved with a con­ven­tional mag­net sys­tem com­prised of 50 di­pole mag­nets and 64 quadru­pole mag­nets in four beam­lines at each end of the linac. The 42-, 78-, 114- and 150-MeV elec­tron beams are sep­a­rated into in­de­pen­dent vac­uum cham­bers in order to allow for the path-length ad­just­ment re­quired by en­ergy re­cov­ery. We re­port on the first beam tests of the ini­tial in­stal­la­tion of the split­ter/com­biner sec­tion at the exit of the linac. The vac­uum sys­tem of the 42-MeV S1 line was in­stalled dur­ing the first week of April. Nine di­pole and four quadru­pole mag­nets were in­stalled and sur­veyed into po­si­tion the fol­low­ing week, and the water cool­ing sys­tem was com­mis­sioned. A 6-MeV beam passed through the line on April~11 with no need for ad­just­ing pre-set mag­net ex­ci­ta­tion cur­rents. One week later, time-of-flight mea­sure­ments were used to cal­i­brate and phase the in­di­vid­ual su­per­con­duct­ing RF cav­i­ties. The S1 mag­net set­tings were then scaled up to achieve 5-cav­ity, 42-MeV op­er­a­tion through the first nine FFAG per­ma­nent-mag­net quadrupoles. This ini­tial Frac­tional Arc Test will con­clude on May 18, when the in­stal­la­tion of the re­main­ing seven split­ter/com­biner lines and the re­turn loop will begin. CBETA op­er­a­tions are sched­uled to begin in early 2019.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF021 Start to End Simulation of the CBETA Energy Recovery Linac lattice, simulation, optics, space-charge 2993
 
  • W. Lou, A.C. Bartnik, J.A. Crittenden, C.M. Gulliford, G.H. Hoffstaetter, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg, S.J. Brooks, F. Méot, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • C.E. Mayes
    SLAC, Menlo Park, California, USA
 
  Funding: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
CBETA is an en­ergy re­cov­ery linac ac­cel­er­at­ing from 6 MeV to 150 MeV in four linac passes, using a sin­gle re­turn line ac­cept­ing all en­er­gies from 42 MeV to 150 MeV. We sim­u­late a 6-di­men­sional par­ti­cle dis­tri­b­u­tion from the in­jec­tor through the end of the dump line. Space charge forces are taken into ac­count at the low en­ergy stages. We com­pare re­sults using field maps to those using sim­pler mag­net mod­els. We in­tro­duce ran­dom and sys­tem­atic mag­net er­rors to the lat­tice, apply an orbit cor­rec­tion al­go­rithm, and study the im­pact on the beam dis­tri­b­u­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF023 The Beam Optics of the FFAG Cell of the CBETA ERL Accelerator optics, quadrupole, focusing, electron 3000
 
  • W. Lou, A.C. Bartnik, J.A. Crittenden, C.M. Gulliford, G.H. Hoffstaetter, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • J.S. Berg, S.J. Brooks, F. Méot, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • C.E. Mayes
    SLAC, Menlo Park, California, USA
 
  Funding: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Cor­nell-Brookhaven En­ergy Re­cov­ery Linac Test Ac­cel­er­a­tor now under con­struc­tion will ac­cel­er­ate elec­trons from 6 MeV to 150 MeV in four linac passes, using a sin­gle re­turn line ac­cept­ing all en­er­gies from 42 to 150 MeV. We de­scribe the op­ti­cal de­sign of the ma­chine, with em­pha­sis on re­cent up­dates. We ex­plain how we choose pa­ra­me­ters for the wide en­ergy ac­cep­tance re­turn arc, tak­ing into ac­count 3D field maps gen­er­ated from mag­net de­signs. We give the final ma­chine pa­ra­me­ters re­sult­ing from it­er­a­tions be­tween de­sired lat­tice prop­er­ties and mag­net de­sign. We mod­i­fied the op­tics to im­prove the pe­ri­od­ic­ity of the re­turn arc near its ends and to cre­ate ad­e­quate space for vac­uum hard­ware. The re­turn arc is con­nected to the linac with split­ter lines that serve to match the op­tics for each beam en­ergy. We de­scribe how match­ing con­di­tions were cho­sen for the split­ter lines and how we use them to con­trol lon­gi­tu­di­nal mo­tion. We sim­u­late the in­jec­tion and low en­ergy ex­trac­tion sys­tems in­clud­ing space charge ef­fects, match­ing the beam prop­er­ties to the op­ti­cal pa­ra­me­ters of the rest of the ma­chine.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF032 Simulation Study of an RF Injector for the LWFA Configuration at EuPRAXIA injection, plasma, emittance, simulation 3025
 
  • J. Zhu, R.W. Aßmann, A. Ferran Pousa, B. Marchetti, P.A. Walker
    DESY, Hamburg, Germany
 
  The Hori­zon 2020 Pro­ject Eu­PRAXIA (Eu­ro­pean­Plasma Re­search Ac­cel­er­a­tor with eX­cel­lence In Ap­pli­ca­tions) aims at pro­duc­ing a de­sign re­port of a highly com­pact and cost-ef­fec­tive Eu­ro­pean fa­cil­ity with multi-GeV elec­tron beams using a plasma ac­cel­er­a­tor. LWFA with ex­ter­nal in­jec­tion from an RF ac­cel­er­a­tor is one of the most promis­ing con­fig­u­ra­tions. In order to achieve the goal pa­ra­me­ters for the 5 GeV, 30 pC elec­tron beam at the en­trance of the un­du­la­tor, a high-qual­ity elec­tron beam with bunch length of less than 10 fs (FWHM) and matched beta func­tions (~1 mm) at the plasma en­trance is re­quired. In ad­di­tion, from the com­pact­ness point of view, the in­jec­tion en­ergy is de­sired to be as low as pos­si­ble. A hy­brid com­pres­sion scheme is con­sid­ered in this paper and a de­tailed start-to-end sim­u­la­tion is pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF037 Bunch Compression and Turnaround Loops Design in the FCC-ee Injector Complex emittance, dipole, sextupole, damping 3044
 
  • T.K. Charles, F. Zimmermann
    CERN, Geneva, Switzerland
  • M.J. Boland
    CLS, Saskatoon, Saskatchewan, Canada
  • K. Oide
    KEK, Ibaraki, Japan
 
  The Fu­ture Cir­cu­lar e+e Col­lider (FCC-ee) re­quires two 180-de­gree turn­around loops to trans­port the positron beam from the damp­ing ring to the lower en­ergy sec­tion of the linac. In ad­di­tion bunch com­pres­sion is re­quired to re­duce the RMS bunch length from 5 mm to 0.5 mm, prior to in­jec­tion into the linac. A dog­leg bunch com­pres­sor com­prised of two triple bend achro­mat (TBAs) can achieve this com­pres­sion. Sex­tu­pole mag­nets are in­cor­po­rated into the bunch com­pres­sor de­sign for chro­matic­ity cor­rec­tion as well as op­ti­mi­sa­tion of the sec­ond-or­der lon­gi­tu­di­nal dis­per­sion, T566, and to lin­earize the lon­gi­tu­di­nal phase space dis­tri­b­u­tion. In this paper we pre­sent the de­sign of the trans­port line and the bunch com­pres­sor. Mea­sures to limit emit­tance growth due to co­her­ent syn­chro­tron ra­di­a­tion (CSR) are also dis­cussed, be­cause de­spite the rel­a­tively long bunch length, the large de­gree of bend­ing re­quired in­tro­duces cause for con­sid­er­a­tion of CSR.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF065 Semi-Empirical Hamiltonian Model for Elliptical Cavities cavity, simulation, linear-dynamics, proton 3127
 
  • E. Laface, J. F. Esteban Müller
    ESS, Lund, Sweden
 
  We pro­pose to use the sum of TM0m0 modes to treat a ra­dio-fre­quency su­per­con­duct­ing el­lip­ti­cal cav­ity as a pill-box cav­ity with vari­able ra­dius. The am­pli­tudes of the dif­fer­ent modes are ob­tained in­ter­po­lat­ing the field-map of the cav­ity with the model. Once the field is cal­cu­lated, the Hamil­ton­ian of the cav­ity is con­structed and used to eval­u­ate the trans­fer ma­tri­ces as­so­ci­ated to each step of the field-map. The multi-par­ti­cle non-lin­ear dy­nam­ics can also be eval­u­ated using the Lie Trans­form of the Hamil­ton­ian. The re­sults are bench­marked against the ESS Linac Sim­u­la­tor con­tained in the OpenXAL suite.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF073 Beam Phase Space Tomography at Fast Electron Linac at Fermilab experiment, lattice, coupling, MMI 3146
 
  • A.L. Romanov
    Fermilab, Batavia, Illinois, USA
 
  FAST lin­ear ac­cel­er­a­tor has been com­mis­sioned in 2017. Ex­per­i­men­tal pro­gram of the fa­cil­ity re­quires high qual­ity beams with well-de­fined prop­er­ties. So­le­noidal fields at pho­toin­jec­tor, laser spot shape, space charge forces and other ef­fects can dis­tort beam dis­tri­b­u­tion and in­tro­duce cou­pling. This work pre­sents re­sults of a beam phase space to­mog­ra­phy for a cou­pled 4D case. Beam was ro­tated in two planes with seven quads by 180 de­grees and im­ages from YaG screen were used to per­form SVD based re­con­struc­tion of the beam dis­tri­b­u­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF082 Frequency Jump at Low Energies rfq, emittance, bunching, simulation 3176
 
  • C. Zhang
    GSI, Darmstadt, Germany
  • H. Podlech
    IAP, Frankfurt am Main, Germany
 
  One or more ra­dio-fre­quency jumps are usu­ally nec­es­sary for re­al­iz­ing a ≥100 AMeV/u pro­ton or ion dri­ver linac. Typ­i­cally, such jumps hap­pen in the range of β = 0.2-0.6 be­tween the res­onator struc­tures fit­ting to this β-range, e.g. DTL, HWR, CCL or el­lip­ti­cal cav­i­ties. We pro­pose to per­form the first fre­quency jump al­ready at low en­er­gies (β ≤ 0.1) be­tween two RFQ ac­cel­er­a­tors, which can bring some unique ad­van­tages. First stud­ies have been per­formed and the re­sults proved that this idea is fea­si­ble and promis­ing. Many ef­forts have been and are being made to ad­dress the most crit­i­cal issue for the jumps i.e. the beam match­ing at the tran­si­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF083 LINAC-Multitool - an Open Source Java-Toolkit cavity, GUI, MMI, simulation 3179
 
  • M. Schwarz, D. Bade, J. Corbet, H. Podlech
    IAP, Frankfurt am Main, Germany
 
  Funding: Work supported by BMBF contr. No. 05P15RFRBA and HIC for FAIR.
Ded­i­cat­ing more pre­cious time to ad­vanced re­search in­stead of spend­ing it to­wards time-con­sum­ing rou­tine tasks is a de­sir­able goal in par­ti­cle ac­cel­er­a­tor sim­u­la­tion and de­vel­op­ment. Re­quire­ments en­gi­neer­ing was started at IAP in order to iden­tify rou­tine processes at our in­sti­tute's R&D that can be au­to­mated or sim­pli­fied. Re­sults in­di­cated that there were sev­eral areas to con­sider: Bead pull mea­sure­ments, data pro­cess­ing and vi­su­al­iza­tion for the beam dy­nam­ics code LO­RASR, CST field map pro­cess­ing for the use with TraceWin, con­ver­sion be­tween dif­fer­ent par­ti­cle dis­tri­b­u­tion data for­mats and more. Sub­se­quently de­vel­op­ment of the LINAC-Mul­ti­tool started to ra­tio­nal­ize these processes and re­place pre­ex­ist­ing scripts also to en­sure con­sis­tency of re­sults and in­crease trans­parency and re­li­a­bil­ity of com­pu­ta­tion. In order to guar­an­tee main­tain­abil­ity, ex­pand­abil­ity and plat­form in­de­pen­dence, LINAC-Mul­ti­tool is pro­grammed using Java and will be open source. This con­tri­bu­tion pre­sents the cur­rent state of de­vel­op­ment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK006 Design Status of the Beam Switchyard for ESSnuSB proton, target, emittance, quadrupole 3215
 
  • E. Bouquerel
    IPHC, Strasbourg Cedex 2, France
 
  Funding: This project is now supported by the COST Action CA15139/EuroNuNet and EU/H2020 innovation programme ESSnuSB under grant agreement No 777419.
The ESS­nuSB pro­ject, re­cently granted by the EU H2020 frame­work pro­gramme for a 4-year de­sign study, pro­poses to use the pro­ton linac (2 GeV, 5 MW) of the Eu­ro­pean Spal­la­tion Source (ESS) cur­rently in con­struc­tion in Lund (Swe­den) to de­liver a neu­trino super beam. One of the work pack­ages of this de­sign study is ded­i­cated to the pri­mary pro­ton beam-line com­plet­ing the linac. It will mainly con­sist of an ac­cu­mu­la­tor ring to com­press the 2.86 ms long beam pulse to 1.32 μs and of a switch­yard to dis­trib­ute the pro­tons onto a 4-tar­get sta­tion. Dipoles, steer­ers, quadrupoles, col­li­ma­tors and sev­eral di­ag­nos­tics will com­pose the switch­yard to en­sure the pro­tons to hit the tar­get with de­sired char­ac­ter­is­tics. This paper pre­sents the ob­jec­tives of this work pack­age and the de­sign sta­tus of this switch­yard sys­tem.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK017 Higher Order Modes in China-ADS Demo Linac dipole, HOM, cavity, higher-order-mode 3240
 
  • C. Zhang, Y. He, T.C. Jiang, R.X. Wang, S.H. Zhang
    IMP/CAS, Lanzhou, People's Republic of China
 
  Funding: Work supported by Natural Science Foundation of China,No.11505253
The study of higher order modes ex­cited in the China-ADS Linac has been pre­sented in this paper. The ef­fects of the cryo­genic losses and the in­flu­ence on beam of the higher order modes have been in­ves­ti­gated.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK022 Beam Dynamic Simulation for the Beam Line from Charge Breeder to ALPI for SPES Project rfq, simulation, experiment, quadrupole 3255
 
  • M. Comunian, L. Bellan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • A.V. Ziiatdinova
    ITEP, Moscow, Russia
  • A.V. Ziiatdinova
    MEPhI, Moscow, Russia
 
  The SPES pro­ject (Se­lec­tive Pro­duc­tion of Ex­otic Species) is under de­vel­op­ment at INFN-LNL. This fa­cil­ity is in­tended for pro­duc­tion of neu­tron-rich Ra­dioac­tive Ion Beams (RIBs) by ISOL method. The +1 charged beam will be trans­formed to n+ charge by Charge Breeder (Elec­tron Cy­clotron res­o­nance ion source) and reac­cel­er­ated by the ALPI (Ac­cel­er­a­tore Lin­eare Per Ioni) su­per­con­duct­ing Linac . This paper in­cludes re­sults of beam dy­namic sim­u­la­tion at the beam line from Charge Breeder to ALPI.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK022  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK023 Proposal for Using DAΦNE as Pulse Stretcher for the Linac Positron Beam extraction, septum, positron, pulse-stretcher 3258
 
  • S. Guiducci, D. Alesini, M.E. Biagini, S. Bilanishvili, O.R. Blanco-García, M. Boscolo, B. Buonomo, S. Cantarella, D.G.C. Di Giulio, L.G. Foggetta, A. Gallo, A. Ghigo, L. Kankadze, C. Milardi, R. Ricci, U. Rotundo, L. Sabbatini, M. Serio, A. Stella
    INFN/LNF, Frascati (Roma), Italy
  • P. Valente
    INFN-Roma, Roma, Italy
 
  The PADME ex­per­i­ment* pro­poses a search for the dark pho­ton (A') in the e+e -> gamma A' process in a positron-on-tar­get ex­per­i­ment, ex­ploit­ing the positron beam of the DAΦNE linac at the Fras­cati Na­tional Lab­o­ra­tory. The linac could pro­vide a num­ber of positrons as high as 109/pulse in a 200 ns pulse but the num­ber of positrons for PADME is lim­ited below 105/pulse in order to keep the pile-up prob­a­bil­ity in the calorime­ter low enough. The PADME ex­per­i­ment is in­deed lim­ited by the low duty fac­tor (10e-5=200ns/20ms). An al­ter­na­tive pro­posal to use the DAΦNE positron ring as a linac pulse stretcher, by in­ject­ing each pulse into the ring and ex­tract­ing it by a slow res­o­nant ex­trac­tion using the m/3 res­o­nance, is de­scribed in this paper. This al­lows to dis­trib­ute the positrons of a linac pulse in a much longer pulse (0.2 - 0.5 ms) in­creas­ing the duty fac­tor up to ~ 2%. The re­quired mod­i­fi­ca­tions of the DAΦNE positron trans­fer line and main ring are pre­sented. A ded­i­cate lat­tice for the ring has been de­signed and track­ing of the positrons in the ring has been per­formed to op­ti­mize ex­trac­tion pa­ra­me­ters and give a pre­lim­i­nary es­ti­mate of the ex­tracted beam char­ac­ter­is­tics.
* M. Raggi et al., EPJ Web Conf. 96 (2015) 01025
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK047 Comparison of Profile Measurements and TRANSPORT Beam Envelope Predictions Along the 80-m LANSCE pRad Beamline emittance, proton, diagnostics, simulation 3323
 
  • P.K. Roy, C. Pillai, C.E. Taylor
    LANL, Los Alamos, New Mexico, USA
 
  Funding: *Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396.
The Pro­ton Ra­di­og­ra­phy (pRad) ex­per­i­men­tal fa­cil­ity beam trans­port line is over 80 me­ters in length start­ing from the end of the LAN­SCE lin­ear ac­cel­er­a­tor. The 800-MeV beam is trans­ported through a beam line con­tain­ing many bend­ing and fo­cus­ing el­e­ments be­fore it reaches the pRad beam op­tics sys­tem where the beam spot size re­quire­ment is nom­i­nally 2 mm (RMS). Here we dis­cuss the ef­forts to rec­on­cile the beam trans­port in­con­sis­ten­cies (sizes) seen be­tween com­par­isons of the beam sizes ob­tained using the LANL ver­sion of the beam en­ve­lope code TRANS­PORT with those mea­sured along the beam line. The trans­verse input beam pa­ra­me­ters for the code were ex­tracted from a fit to sev­eral wire-scan­ner mea­sure­ments lo­cated in the down­stream por­tion of the LINAC. The lon­gi­tu­di­nal input beam pa­ra­me­ters were ex­trap­o­lated from lower-en­ergy in­for­ma­tion. Re­cently, new mea­sure­ments were made of the beam line el­e­ment lo­ca­tions and com­pared with legacy draw­ings. Beam en­ve­lope mea­sure­ments made at var­i­ous lo­ca­tions through­out the beam line using wire scan­ners and gated imag­ing sys­tems were com­pared to the cal­cu­lated re­sults. The pre­dicted beam en­velopes and mea­sured data agree within ex­pected er­rors.
*Los Alamos National Laboratory (LA-UR-17-30876)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK049 Simulation Code Design for the Interpreted Language Using the Compiled Module simulation, interface, EPICS, lattice 3327
 
  • K. Fukushima, M.A. Davidsaver, Z.Q. He, M. Ikegami, G. Shen, T. Yoshimoto, T. Zhang
    FRIB, East Lansing, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DESC0000661.
We are plan­ning to use two types of the ac­cel­er­a­tor sim­u­la­tion codes for FRIB (Fa­cil­ity for Rare Iso­tope Beams). One is the lin­ear en­ve­lope track­ing code "FLAME" for fast sim­u­la­tions. FLAME can cal­cu­late the FRIB-linac beam en­ve­lope within an order of ms. This is use­ful in sys­tem­atic sur­veys, wide range op­ti­miza­tions and so forth. This code, writ­ten in C++, was de­signed with Python in­ter­face from the be­gin­ning. On the other hand, "Ad­vanced-IM­PACT" is the par­ti­cle track­ing code ded­i­cated for pre­cise and re­al­is­tic cal­cu­la­tions, which can sim­u­late the par­ti­cle losses, non­lin­ear and space-charge ef­fects. This code is refac­tored from the For­tran code IM­PACT-Z de­vel­oped in LBNL. Both codes pro­vide the com­piled mod­ules for Python to sup­port flex­i­ble in­puts and di­rect out­puts man­age­ment in mem­ory. In other words, they can be di­rectly con­nected to the mod­ern sci­en­tific tools through the Python in­ter­face with­out delay in the data trans­port. In ad­di­tion, these mod­ules can ac­com­plish the in­ter­ac­tive sim­u­la­tion processes with­out los­ing com­pu­ta­tional ef­fi­ciency. We re­port the knowl­edges ap­plic­a­ble for other ac­cel­er­a­tor sim­u­la­tion codes among those ob­tained through these de­vel­op­ments and de­signs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK069 Open XAL Status Report 2018 cavity, MMI, diagnostics, GUI 3388
 
  • A.P. Zhukov, C.K. Allen, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  • C.P. Chu, Y. Li
    IHEP, Beijing, People's Republic of China
  • J.F. Esteban Müller, E. Laface, Y. Levinsen, N. Milas, C. Rosati
    ESS, Lund, Sweden
  • P. Gillette, G. Normand, A. Savalle
    GANIL, Caen, France
  • X.H. Lu
    CSNS, Guangdong Province, People's Republic of China
 
  The Open XAL ac­cel­er­a­tor physics soft­ware plat­form is being de­vel­oped through an in­ter­na­tional col­lab­o­ra­tion among sev­eral fa­cil­i­ties since 2010. The goal of the col­lab­o­ra­tion is to es­tab­lish Open XAL as a multi-pur­pose soft­ware plat­form sup­port­ing a broad range of tool and ap­pli­ca­tion de­vel­op­ment in ac­cel­er­a­tor physics and high-level con­trol (Open XAL also ships with a suite of gen­eral pur­pose ac­cel­er­a­tor ap­pli­ca­tions). This paper dis­cusses progress in beam dy­nam­ics sim­u­la­tion, new RF mod­els, and up­dated ap­pli­ca­tion frame­work along with new generic ac­cel­er­a­tor physics ap­pli­ca­tions. We pre­sent the cur­rent sta­tus of the pro­ject, a roadmap for con­tin­ued de­vel­op­ment and an overview of the pro­ject sta­tus at each par­tic­i­pat­ing fa­cil­ity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK076 Development and Benchmarking of the IMPACT-T Code rfq, SRF, simulation, space-charge 3408
 
  • H.P. Li, M.J. Easton, Y.R. Lu, Z. Wang
    PKU, Beijing, People's Republic of China
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  The multi-par­ti­cle track­ing code IM­PACT-T is widely used to cal­cu­late the par­ti­cle mo­tion in high in­ten­sity linacs. The code is a self-con­sis­tent three-di­men­sional beam dy­nam­ics sim­u­la­tion tool­box that uti­lizes the par­ti­cle-in-cell method in the time do­main. In the col­lab­o­ra­tion be­tween PKU and LBNL, an RFQ mod­ule was im­ple­mented to the IM­PACT-T code, which en­ables sim­u­la­tions of the ac­cel­er­a­tor front-end. In order to bench­mark the newly de­vel­oped mod­ule in the IM­PACT-T code, we have sim­u­lated the beam trans­port in Bei­jing Iso­tope Sep­a­ra­tion On-Line (BISOL) high in­ten­sity deuteron dri­ver linac. It con­sists of a 3 MeV RFQ and 40 MeV su­per­con­duct­ing HWR linac with five cry­omod­ules. After com­par­ing the sim­u­la­tion re­sults with PARMTEQM, TraceWin and Tou­tatis, we ob­tained a very good agree­ment, which rep­re­sents the val­i­da­tion of the new code.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK078 GPT-CSR: a New Simulation Code for CSR Effects radiation, simulation, emittance, electromagnetic-fields 3414
 
  • S.B. van der Geer, M.J. de Loos
    Pulsar Physics, Eindhoven, The Netherlands
  • A.D. Brynes, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • I.D. Setija, P.W. Smorenburg
    ASML Netherlands B.V., Veldhoven, The Netherlands
 
  For fu­ture ap­pli­ca­tions of high-bright­ness elec­tron beams, in­clud­ing the de­sign of next gen­er­a­tion FEL's, cor­rect sim­u­la­tion of Co­her­ent Syn­chro­tron Ra­di­a­tion (CSR) is es­sen­tial as it po­ten­tially de­grades beam qual­ity to un­ac­cept­able lev­els. How­ever, the long in­ter­ac­tion lengths com­pared to the bunch length, nu­mer­i­cal can­cel­la­tion, and dif­fi­cult 3D re­tar­da­tion con­di­tions make ac­cu­rate sim­u­la­tion of CSR ef­fects no­to­ri­ously dif­fi­cult. To ease the com­pu­ta­tional bur­den, CSR codes often make se­vere sim­pli­fi­ca­tions such as an ul­tra-rel­a­tivis­tic bunch trav­el­ling on a pre­scribed ref­er­ence tra­jec­tory. Here we re­port on a new CSR model im­ple­mented in the Gen­eral Par­ti­cle Tracer (GPT) code that avoids most of the usual as­sump­tions: It di­rectly eval­u­ates the Liénard'Wiechert po­ten­tials based on the stored his­tory of the beam. It makes no as­sump­tions about ref­er­ence tra­jec­to­ries, and also takes into ac­count the trans­verse size of the beam. Ex­am­ple re­sults demon­strat­ing nor­malised emit­tance growth in the first bunch com­pres­sor of FERMI@​Elettra are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK112 Toward an End-to-End Model for ISAC-I Accelerators ISAC, rfq, simulation, TRIUMF 3500
 
  • O. Shelbaya, O.K. Kester
    TRIUMF, Vancouver, Canada
 
  Di­ur­nal-like trans­mis­sion vari­a­tions in the ISAC-I warm ac­cel­er­a­tor sys­tem ne­ces­si­tates pe­ri­odic re­tun­ing by op­er­a­tors. While beam loss points are well known, re-tun­ing nev­er­the­less re­sults in ad­di­tional down­time and re­duced count rates at ex­per­i­ments. This has mo­ti­vated the de­vel­op­ment of an end-to-end sim­u­la­tion of the ISAC-I lin­ear ac­cel­er­a­tor (linac) sys­tem to un­der­stand and char­ac­ter­ize the na­ture of trans­mis­sion in­sta­bil­i­ties span­ning sev­eral hours to days.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK153 Linac Optics Correction With Trajectory Scan Data quadrupole, optics, lattice, storage-ring 3606
 
  • X. Huang, Y.-C. Chao, T.J. Maxwell
    SLAC, Menlo Park, California, USA
  • T. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  We pro­posed and tested a scheme to mea­sure and cor­rect linac op­tics by scan­ning the beam tra­jec­tory in the hor­i­zon­tal and ver­ti­cal phase spaces. The tra­jec­tory data are com­pared to track­ing data in a fit­ting scheme, from which we can de­rive the quadru­pole strength er­rors. Sim­u­la­tion is car­ried out to eval­u­ate the re­quire­ments and the per­for­mance of the method. The method is ex­per­i­men­tally ap­plied to FEL linacs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK153  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL005 Construction and Commissioning of the S-Band High-Gradient RF Laboratory at IFIC klystron, network, GUI, cathode 3619
 
  • D. Esperante Pereira, C. Blanch Gutiérrez, M. Boronat, J. Fuster, D. Gonzalez Iglesias, A. Vnuchenko
    IFIC, Valencia, Spain
  • N. Catalán Lasheras, G. McMonagle, I. Syratchev, W. Wuensch
    CERN, Geneva, Switzerland
  • A. Faus-Golfe
    LAL, Orsay, France
  • B. Gimeno
    UVEG, Burjasot (Valencia), Spain
 
  An S-Band High-Gra­di­ent (HG) Radio Fre­quency (RF) lab­o­ra­tory is under con­struc­tion and com­mis­sion­ing at IFIC. The pur­pose of the lab­o­ra­tory is to per­form in­ves­ti­ga­tions of high-gra­di­ent phe­nom­ena and to de­velop nor­mal-con­duct­ing RF tech­nol­ogy, with spe­cial focus on RF sys­tems for hadron-ther­apy. The lay­out of the fa­cil­ity is de­rived from the scheme of the Xbox-3 test fa­cil­ity at CERN* and uses medium peak-power (7.5 MW) and high rep­e­ti­tion rate (400 Hz) kly­strons, whose RF out­put is com­bined to drive two test­ing slots to the re­quired power. The de­sign and con­struc­tion of the var­i­ous com­po­nents of the sys­tem started in 2016 and has been com­pleted. The in­stal­la­tion and com­mis­sion­ing of the lab­o­ra­tory is pro­gress­ing, with first re­sults ex­pected be­fore mid 2018. The tech­ni­cal char­ac­ter­is­tics of the dif­fer­ent el­e­ments of the sys­tem and the com­mis­sion­ing sta­tus to­gether with pre­lim­i­nary re­sults are de­scribed.
* N. Catalan Lasheras, et al., 'Commissioning of Xbox3: a very high capacity X-band RF test stand', Proc. LINAC2016, East Lansing, USA, September 2016.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL010 Sector DC Dipoles Design for the Beam Test Facility Upgrade dipole, quadrupole, electron, experiment 3634
 
  • A. Vannozzi, S. Lauciani, L. Pellegrino, L. Sabbatini, C. Sanelli, G. Sensolini
    INFN/LNF, Frascati (Roma), Italy
  • P. Valente
    INFN-Roma, Roma, Italy
 
  The Beam Test Fa­cil­ity is part of the DAΦNE ac­cel­er­a­tors sys­tem of INFN Fras­cati Na­tional Lab­o­ra­tory. It is a trans­fer-line op­ti­mized for elec­trons and positrons ex­tracted from the DAΦNE LINAC. An up­grade of the line is sched­uled for two pur­poses: reach a beam en­ergy of 920 MeV (with re­spect to the ac­tual 750 MeV) and add a new branch to the pre­sent trans­fer line. This new lay­out fore­sees six new quadrupoles one fast ramped di­pole, two H-shape and one C-shape sec­tor dipoles. The de­sign of the mag­nets has been com­pletely per­formed at INFN in­volv­ing Electro­mechan­i­cal En­ter­prise part­ner in the de­sign phase in order to op­ti­mise the man­u­fac­tur­ing process. This ef­fort lead to a com­plete set of de­tailed CAD draw­ings that can be di­rectly used by man­u­fac­turer to build the mag­nets. The goal is to boost the man­u­fac­tur­ing of pro­to­types and small se­ries from Small and Medium En­ter­prises. Mag­netic mea­sure­ments will be per­formed at INFN. This poster is fo­cused on the re­al­iza­tion of the two full iron yoke H-shape and C-shape dipoles, re­spec­tively with 45 and 15 bend­ing angle. They are char­ac­ter­ized by a high flux den­sity of 1.7 T in a gap of 35 mm. They have a bend­ing ra­dius of 1.8 m  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL011 Fast Ramped Dipole and DC Quadrupoles Design for the Beam Test Facility Upgrade dipole, quadrupole, electron, positron 3638
 
  • L. Sabbatini, E. Di Pasquale, L. Pellegrino, C. Sanelli, G. Sensolini
    INFN/LNF, Frascati (Roma), Italy
  • P. Valente
    INFN-Roma, Roma, Italy
  • A. Vannozzi
    Sapienza University of Rome, Rome, Italy
 
  The Beam Test Fa­cil­ity (BTF) is part of the DAΦNE ac­cel­er­a­tors sys­tem of INFN Fras­cati Na­tional Lab­o­ra­tory. It is a trans­fer-line op­ti­mized for elec­trons and positrons ex­tracted from the DAΦNE LINAC. An up­grade of the line is planned in order to reach a beam en­ergy of 920 MeV (with re­spect to the pre­sent 750 MeV), adding a new branch to the pre­sent trans­fer line. The de­sign of the mag­nets for this new lay­out has been com­pletely per­formed at INFN, in­clud­ing elec­tro­mag­netic, me­chan­i­cal, ther­mal and hy­draulic as­pects. This ef­fort lead to a com­plete set of de­tailed CAD draw­ings that can be used by In­dus­trial part­ners to build the mag­nets. The man­u­fac­tur­ing processes have been stud­ied in de­tail: the goal is to boost the man­u­fac­tur­ing of pro­to­types and small se­ries from Small and Medium En­ter­prises. Mag­netic mea­sure­ments will be per­formed at our In­sti­tute. In this re­port we de­scribe two types of mag­nets for this pro­ject. The first mag­net is a C-shape fast ramped di­pole, de­signed for a beam de­flec­tion of 15 de­grees; the rise time is 100ms, the gap is 25mm with a mag­netic field of 1.11 T. The sec­ond is a fam­ily of seven quadrupoles with a gra­di­ent of 20 T/m and a bore of 45mm.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL012 Soft Chemical Polishing and Surface Analysis of Niobium Samples cavity, niobium, SRF, operation 3641
 
  • J. Conrad, L. Alff, M. Arnold, S. Flege, R. Grewe, M. Major, N. Pietralla
    TU Darmstadt, Darmstadt, Germany
  • F. Hug
    IKP, Mainz, Germany
 
  Funding: Work supported by the German Federal Ministry for Education and Research (BMBF) under Grant No. 05H15RDRBA
The Su­per­con­duct­ing Darm­stadt Lin­ear Ac­cel­er­a­tor S-DALINAC uses twelve Nio­bium Cav­i­ties with a RRR of 280 which are op­er­ated at 2 K. The op­er­at­ing fre­quency is 3 GHz; the de­sign value of the ac­cel­er­at­ing gra­di­ent is 5 MV/m. To achieve the tar­get value of 3 x 10˄9 for Q0, dif­fer­ent sur­face prepa­ra­tion meth­ods were ap­plied and sys­tem­at­i­cally tested using a ver­ti­cal 2 K cryo­stat. A well-es­tab­lished tech­nique is the so called Darm­stadt Soft Chem­i­cal Pol­ish­ing, which con­sists of an ul­tra­sonic clean­ing of the cav­ity with ul­tra­pure water fol­lowed by ox­i­diz­ing the inner sur­face with ni­tric acid. After rins­ing with water the nio­bium oxide layer is re­moved with hy­dro­flu­o­ric acid in a sep­a­rate sec­ond step. Fi­nally the struc­ture is rinsed and then dried by a ni­tro­gen flow. Until now each cav­ity in op­er­a­tion was chem­i­cally treated with a proven record of suc­cess. In order to un­der­stand and to op­ti­mize the process on the nio­bium sur­face, sys­tem­atic tests with sam­ples were per­formed and an­a­lyzed using ma­te­r­ial sci­ence tech­niques like SEM, SIMS and EDX. We will re­port on the re­sults of our re­search and we will give a re­view on our ex­pe­ri­ences with var­ied chem­i­cal pro­ce­dures.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL027 Transverse RF Deflecting Structures for the MAX IV LINAC GUI, polarization, klystron, emittance 3684
 
  • D. Olsson, F. Curbis, E. Mansten, S. Thorin, S. Werin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV LINAC op­er­ates both as a full-en­ergy in­jec­tor for two elec­tron stor­age rings, and as a dri­ver for a Short Pulse Fa­cil­ity (SPF). A soft X-ray Laser (SXL) beam­line will also be in­stalled in the end of the ex­ist­ing LINAC. For SPF and SXL op­er­a­tion, it is im­por­tant to char­ac­ter­ize beam pa­ra­me­ters such as bunch pro­file, slice en­ergy spread and slice emit­tance. For these mea­sure­ments, two 3 m long trans­verse de­flect­ing RF struc­tures with a match­ing sec­tion are being de­vel­oped. The struc­tures are op­er­at­ing at S-band and have vari­able po­lar­iza­tions. When fed via a SLED pulse com­pres­sor, the two struc­tures can gen­er­ate a total in­te­grated de­flect­ing volt­age higher than 100 MV which is suf­fi­cient for mea­sure­ments with tem­po­ral res­o­lu­tions down to 1 fs. This paper de­scribes the ini­tial RF de­sign of the de­flect­ing struc­tures.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL030 Vertical Electropolishing of 1.3 GHz Niobium 9-Cell Cavity: Parameter Study and Cavity Performance cavity, cathode, accumulation, niobium 3695
 
  • V. Chouhan, Y.I. Ida, K.N. Nii, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • H. Hayano, S. Kato, H. Monjushiro, T. Saeki, M. Sawabe
    KEK, Ibaraki, Japan
  • H. Ito
    Sokendai, Ibaraki, Japan
  • H. Oikawa
    Utsunomiya University, Utsunomiya, Japan
 
  VEP pa­ra­me­ters and process have been al­ready op­ti­mized with sin­gle-cell 1.3 GHz nio­bium cav­ity at Marui Galva-niz­ing Com­pany work­ing in col­lab­o­ra­tion with KEK. A unique cath­ode called 'Ninja cath­ode' with an op­ti­mized shape was ap­plied to sin­gle-cell cav­i­ties. The cath­ode was ef­fec­tive to stop the bub­ble ac­cu­mu­la­tion in the upper half-cell of the cav­ity and yielded smooth sur­face and uni­form re­moval in the cell. This work shows pa­ra­me­ter study with the Ninja cath­ode and a 9-cell coupon cav­ity which con­tains to­tally 9 coupons and view­ports in the first, fifth, and ninth cells. Ef­fects of tem­per­a­ture and acid flow in the cath­ode hous­ing were stud­ied using coupon cur­rents and by ob­serv­ing bub­bles through the view­ports. The ad­e­quate pa­ra­me­ters found with 9-cell coupon cav­ity were ap­plied on a 9-cell cav­ity to be tested in ver­ti­cal cryo­stat. The VEP and ver­ti­cal test re­sults are re­ported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL034 Dynamic Tuner Development for Medium β Superconducting Elliptical Cavities cavity, operation, SRF, superconducting-RF 3709
 
  • C. Contreras-Martinez, P.N. Ostroumov
    FRIB, East Lansing, USA
  • E. Borissov, S. Cheban, Y.M. Pischalnikov, V.P. Yakovlev, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by U.S. DOE SCGSR program under contract number DE-SC0014664, Michigan State University, and Fermi Research Alliance under contract N. DEAC02-07CH11959 with the U.S. DOE
The Fa­cil­ity for Rare Iso­tope Beams (FRIB) is de­vel­op­ing a 5-cell 644 MHz βopt=0.65 el­lip­ti­cal cav­ity for a fu­ture linac en­ergy up­grade to 400 MeV/u for the heav­i­est ura­nium ions. Su­per­con­duct­ing el­lip­ti­cal cav­i­ties op­er­ated in con­tin­u­ous wave, such as the ones for FRIB, are prone to mi­cro­phon­ics which can ex­cite me­chan­i­cal modes of the cav­i­ties. It has been shown that the de­tun­ing due to mi­cro­phon­ics can be mit­i­gated with the use of piezo ac­tu­a­tors (fast tuner) as op­posed to the costly op­tion of in­creas­ing the input RF power. The FRIB slow/fast dy­namic tuner will be based on the Fer­mi­lab ex­pe­ri­ence with sim­i­lar tuners like those de­vel­oped for the linac co­her­ent light source (LCLS) II and pro­ton im­prove­ment plan (PIP) II. This paper will pre­sent the re­sults of tuner prop­er­ties on the bench.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL035 Design of β=0.65, 5 Cells, 644 MHz Elliptical Cavity for FRIB Upgrade cavity, cryomodule, niobium, operation 3712
 
  • M. Xu, C. Compton, C. Contreras-Martinez, W. Hartung, S.H. Kim, S.J. Miller, P.N. Ostroumov, A.S. Plastun, J.T. Popielarski, L. Popielarski, M.A. Reaume, K. Saito, A. Taylor, J. Wei, T. Xu, Q. Zhao
    FRIB, East Lansing, USA
  • I.V. Gonin, T.N. Khabiboulline, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by the U.S. DOE Office of Science under Cooperative Agreement DE-SC0000661 and the NSF under Cooperative Agreement PHY-1102511, the State of Michigan and Michigan State University.
The su­per­con­duct­ing (SC) linac of the Fa­cil­ity for Rare Iso­tope Beams (FRIB) under con­struc­tion will de­liver 200 MeV/u, 400 kW beam to the tar­get for pro­duc­ing rare iso­topes at Michi­gan State of Uni­ver­sity (MSU). For fur­ther beam en­ergy up­grade, we have de­signed the β = 0.65, 5 cells, 644 MHz el­lip­ti­cal cav­ity. The beam en­ergy can be up­graded to 400 MeV/u by in­stalling 11 cry­omod­ules to the avail­able space in the FRIB tun­nel.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL041 Power Coupler Design for the LUCRECE Project cavity, simulation, SRF, coupling 3732
 
  • H. Guler, D. Auguste, J. Bonis, O. Bouras, M. El Khaldi, W. Kaabi, P. Lepercq
    LAL, Orsay, France
 
  The LU­CRECE pro­ject aims at de­vel­op­ing an el­e­men­tary RF sys­tem (cav­ity, power source, LLRF and con­trols) suit­able for con­tin­u­ous (CW) op­er­a­tion at 1.3 GHz. This ef­fort is made in the frame­work of the ad­vanced and com­pact FEL pro­ject LUNEX5 (free elec­tron Laser Using a New ac­cel­er­a­tor for the Ex­ploita­tion of X-ray ra­di­a­tion of 5th gen­er­a­tion), using su­per­con­duct­ing linac tech­nol­ogy for high rep­e­ti­tion rate and multi-user op­er­a­tion (www.​lunex5.​com). In this con­text, based on its large ex­pe­ri­ence on cou­pler de­sign and RF con­di­tion­ing, LAL Lab­o­ra­tory is in charge of the de­sign and the fab­ri­ca­tion of RF cou­plers that could op­er­ate at up to 15-20 kW in CW mode. For this pur­pose, geom­e­try based on COR­NELL 65kW CW cou­plers will me mod­i­fied to ful­fil the LCLS2 type cav­ity with the high nec­es­sary cou­pling level. Elec­tro­mag­netic sim­u­la­tions and op­ti­mi­sa­tion and as­so­ci­ated ther­mal heat­ing will be dis­cussed. Meth­ods to de­crease the ther­mal im­pact, and strat­egy for RF con­di­tion­ing will be con­sid­ered.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL053 Perveance Measurement of the TLS-Linac Klystron and the Evaluation of Its Operation Performance klystron, electron, operation, cathode 3763
 
  • H.H. Chen, C.H. Kuo, K.-K. Lin, Y.-H. Liu
    NSRRC, Hsinchu, Taiwan
 
  The high power kly­stron is a radio fre­quency am­pli­fier for TLS linac op­er­a­tion. It is a cru­cial de­vice for elec­tron ac­cel­er­a­tion in linac. How to eval­u­ate its ef­fi­ciency, life­time and per­for­mance of kly­stron in op­er­a­tion is one of the major con­cern in this re­port. The key kly­stron pa­ra­me­ter per­veance is in­tro­duced and used for per­for­mance eval­u­a­tion and op­er­a­tion sta­tus mon­i­tor­ing. It is im­por­tant to ex­e­cute pe­ri­odic mon­i­tor­ing on per­veance for en­sur­ing a sta­ble linac op­er­a­tion. Kly­stron char­ac­ter­is­tics di­ag­nos­tics can be achieved through per­veance mea­sure­ment. A cou­ple of kly­stron di­ag­nos­tic pa­ra­me­ters con­cern­ing per­veance are ex­plored for field ex­am­i­na­tion pur­pose. Per­veance com­par­i­son with fac­tory ac­cep­tance test data is also pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL081 A 3 GHz SRF Reduced-beta Cavity for the S-DALINAC cavity, SRF, operation, electron 3838
 
  • D.B. Bazyl, H. De Gersem, W.F.O. Müller
    TEMF, TU Darmstadt, Darmstadt, Germany
  • J. Enders, S. Weih
    TU Darmstadt, Darmstadt, Germany
 
  Funding: Work supported by DFG through GRK 2128
In order to re­duce the en­ergy spread and to be able to use a 200 keV spin-po­lar­ized elec­tron source, the ini­tial part of the in­jec­tor linac of the su­per­con­duct­ing Darm­stadt elec­tron lin­ear ac­cel­er­a­tor S-DALINAC needs to be up­graded. The de­ci­sions on the cav­ity type, num­ber of cells and value of geo­met­ric beta are mo­ti­vated. The main part of this work is ded­i­cated to the me­chan­i­cal de­sign of the cav­ity. A pre­cise eval­u­a­tion of the me­chan­i­cal char­ac­ter­is­tics of an SRF cav­ity is nec­es­sary dur­ing the de­sign stage. The de­pen­dence of the res­o­nant fre­quency of the fun­da­men­tal mode on ex­ter­nal me­chan­i­cal loads needs to be in­ves­ti­gated for de­vel­op­ing the tun­ing pro­ce­dures. The re­sults of the mul­ti­physics sim­u­la­tions and of the op­ti­miza­tion of the me­chan­i­cal de­sign are pre­sented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL085 High Power RF Conditioning on CLARA cavity, vacuum, solenoid, multipactoring 3852
 
  • L.S. Cowie, D.J. Scott
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Burt, W.L. Millar
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  The CLARA ac­cel­er­a­tor at Dares­bury Lab­o­ra­tory will have 8 nor­mal con­duct­ing RF cav­i­ties. Au­tomat­ing the high power RF con­di­tion­ing of these cav­i­ties will mean a re­peat­able, re­search-lead process is fol­lowed. An auto-mated al­go­rithm has been writ­ten in Python. A pro­to­type al­go­rithm was used to con­di­tion the first CLARA travel-ling wave linac in Oc­to­ber 2017. The linac was suc­cess-fully con­di­tioned over ap­prox­i­mately 12 mil­lion pulses up to 27 MW for a 750 ns pulse. A more com­plex and ro­bust al­go­rithm was used to re-con­di­tion the stand­ing wave 10 Hz pho­toin­jec­tor after a cath­ode change. The pho­toin­jec-tor was con­di­tioned to 10 MW for a 2.5 μs pulse in Feb-ru­ary 2018 over 2.1 mil­lion pulses. Con­di­tion­ing method; dif­fer­ences for trav­el­ling and stand­ing wave struc­tures; dif­fi­cul­ties and in­ter­est­ing phe­nom­ena are all dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL101 Longitudinal Effects of Trapped Homs in Shanghai Coherent Light Facility cavity, HOM, impedance, FEL 3872
 
  • J.J. Guo, Q. Gu, H.T. Hou, J.H. Tan, M. Zhang
    SINAP, Shanghai, People's Republic of China
 
  Funding: Shanghai Institute of Applied Physics, Chinese Academy of Sciences
Shang­hai Co­her­ent Light Fa­cil­ity (SCLF), a su­per­con­duct­ing ac­cel­er­ated struc­ture-baesd FEL de­vice, is now under de­vel­op­ment at Shang­hai In­sti­tute of Ap­plied Physics, Chi­nese Acad­emy of Sci­ences. We in­ves­ti­gate ef­fects of cryo­genic losses caused by trapped lon­gi­tu­di­nal high order modes (HOM). Re­sults of cal­cu­la­tions are pre­sented for losses caused by HOMs ex­ci­ta­tion in the ac­cel­er­a­tion RF sys­tem of the con­tin­ues-wave (CW) linac of SCLF.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL110 High-Power RF Test of Coaxial Couplers for the Injection Linac of XiPAF cavity, vacuum, multipactoring, coupling 3899
 
  • Y. Lei, X. Guan, R. Tang, X.W. Wang, Q.Z. Xing, H.Y. Zhang, S.X. Zheng
    TUB, Beijing, People's Republic of China
  • J. Jiang, H. Li, C. Yu
    Beijing Aerospace Guagntong Technology Co., Beijing, People's Republic of China
 
  For the high-power RF test of the coax­ial cou­plers which will be em­ployed on the linac in­jec­tor of the XiPAF (Xi'an Pro­ton Ap­pli­ca­tion Fa­cil­ity) pro­ject, a high-power con­di­tion­ing cav­ity was de­signed and man­u­fac­tured [1]. There are some op­ti­mized as­pects on the cav­ity and cou­plers to ob­tain bet­ter RF per­for­mance dur­ing the high-power test­ing process. The trav­el­ing-wave test and full-power-re­flec­tion test were ex­e­cuted to check whether the cou­pler can af­ford the enough power level for the linac op­er­a­tion, and whether only one cou­pler can af­ford the total power for the RFQ. The con­struc­tion of the test­ing stand, op­ti­miza­tion of RF pa­ra­me­ters and re­sults of high-power RF test are pre­sented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL113 The Design of 1 MeV Proton LINAC Operating in CW cavity, proton, simulation, resonance 3905
 
  • N.V. Avreline
    TRIUMF, Vancouver, Canada
 
  Ex­per­i­men­tal re­sults and com­puter sim­u­la­tions of elec­tro­dy­namic and ther­mo­dy­namic char­ac­ter­is­tics are pre­sented for an ac­cel­er­at­ing struc­ture that is ex­cited in the TM010 mode and that has the ac­cel­er­at­ing chan­nel of URAN-1M lo­cated in the di­a­met­ric plane. The idea of using this struc­ture in the par­ti­cle ac­cel­er­a­tor URAN-1M, lo­cated at the Baikov In­sti­tute of Met­al­lurgy and Ma­te­ri­als Sci­ence, with the goal of in­creas­ing the av­er­age beam cur­rent is ex­plored.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL121 The Operational Experience of E-Linac Cryogenic System at TRIUMF cryogenics, cryomodule, MMI, operation 3928
 
  • R.R. Nagimov, Y. Bylinskii, D. Kishi, S.R. Koscielniak, A.N. Koveshnikov, R.E. Laxdal, D. Yosifov
    TRIUMF, Vancouver, Canada
 
  Funding: ARIEL is funded by CFI, the Provinces of AB, BC, MA, ON, QC, and TRIUMF. TRIUMF receives federal funding via a contribution agreement with the National Research Council of Canada.
The new Ad­vanced Rare Iso­topE Lab­o­ra­tory (ARIEL) is a major ex­pan­sion of the Rare Iso­tope Beams (RIB) fa­cil­ity at TRI­UMF. Su­per­con­duct­ing ra­dio-fre­quency (SRF) cav­i­ties cooled down to 2 K are the key part of ARIEL elec­tron lin­ear ac­cel­er­a­tor (e-linac). De­sign of the cryo­genic sys­tem was bound to fol­low both phased pro­ject sched­ule and ex­ist­ing build­ing in­fra­struc­ture. Due to the sched­ul­ing of com­mis­sion­ing and R&D ac­tiv­i­ties of ARIEL pro­ject, high avail­abil­ity re­quire­ments were set for e-linac cryo­genic sys­tem dur­ing its com­mis­sion­ing stage. Var­i­ous up­grades were in­tro­duced dur­ing sys­tem com­mis­sion­ing in order to im­prove over­all avail­abil­ity and re­li­a­bil­ity of the sys­tem. This paper pre­sents the de­tails of op­er­a­tional ex­pe­ri­ence, com­mis­sion­ing ac­tiv­i­ties and con­tin­u­ous im­prove­ment of var­i­ous op­er­a­tional as­pects of e-linac cryo­genic sys­tem.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL121  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL123 Fabrication and Test of β=0.3 325MHz Balloon Single Spoke Resonator cavity, multipactoring, niobium, TRIUMF 3934
 
  • Z.Y. Yao, J.J. Keir, D. Kishi, D. Lang, R.E. Laxdal, H.L. Liu, Y. Ma, B. Matheson, B.S. Waraich, Q. Zheng, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  A novel bal­loon vari­ant of the sin­gle spoke res­onator (SSR) has been de­signed, fab­ri­cated and tested at TRI­UMF. The cav­ity is the β=0.3 325 MHz SSR1 pro­to­type for the Rare Iso­tope Sci­ence Pro­ject (RISP) in Korea. The bal­loon vari­ant is specif­i­cally de­signed to re­duce the like­li­hood of mul­ti­pact­ing bar­ri­ers near the op­er­at­ing point. A sys­tem­atic mul­ti­pact­ing study led to a novel geom­e­try, a spher­i­cal cav­ity with re-en­trant irises plus a spoke. The bal­loon cav­ity pro­vides com­pet­i­tive RF pa­ra­me­ters and a ro­bust me­chan­i­cal struc­ture. Cold tests demon­strated the prin­ci­ple of the bal­loon con­cept. The fab­ri­ca­tion ex­pe­ri­ence and the pre­lim­i­nary test re­sults will be re­ported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL126 Nitrogen Bake-out Procedures at the Vertical High-Temperature UHV-Furnace of the S-DALINAC cavity, SRF, vacuum, niobium 3937
 
  • R. Grewe, L. Alff, M. Arnold, J. Conrad, S. Flege, M. Major, N. Pietralla
    TU Darmstadt, Darmstadt, Germany
  • F. Hug
    IKP, Mainz, Germany
 
  Funding: Work supported by the Federal Ministry of Education and Research through grant No. 05H15RDRBA.
As the per­for­mance lim­its of bulk Nb srf cav­i­ties are reached, our re­search is fo­cused on ma­te­ri­als with su­pe­rior srf prop­er­ties like Nb3Sn and NbN. Re­search on NbN re­sulted in the "ni­tro­gen-dop­ing" process used for in­creas­ing the qual­ity fac­tors of srf cav­i­ties for the LCLS-II pro­ject. This process leads to delta-phase Nb-N, a phase with higher crit­i­cal sc pa­ra­me­ters than bulk Nb. This phase is formed at tem­per­a­tures of 800°C in ni­tro­gen at­mos­pheres of 10-2 mbar. Other crys­talline phases of NbN have even bet­ter sc pa­ra­me­ters. We con­cen­trate our re­search on ap­plic­a­bil­ity of delta-phase NbN for cav­i­ties. The delta-phase forms at tem­per­a­tures of above 1300°C, which is more than most of the fur­naces at ac­cel­er­a­tor fa­cilites are ca­pa­ble of. Since 2005 the In­sti­tute for Nu­clear Physics at the Tech­nis­che Uni­ver­sität Darm­stadt op­er­ates a high tem­per­a­ture vac­uum fur­nace which has been up­graded to allow tem­per­a­tures of up to 1750°C and bake­outs of nio­bium sam­ples and cav­i­ties in ni­tro­gen at­mos­pheres. We will re­port on the cur­rent sta­tus of our re­search on ni­tro­gen bake-out pro­ce­dures on Nb sam­ples. The sam­ples have been an­a­lyzed at the Ma­te­r­ial Sci­ence De­parte­ment with SIMS, REM and XRD.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL140 Rework Recipe Development, Analysis and Results of Select 9-Cell Cavities for LCLS-II cavity, embedded, niobium, site 3968
 
  • A.D. Palczewski, K. Macha, H. Park, C.E. Reece, K.M. Wilson
    JLab, Newport News, Virginia, USA
  • A. Burrill, D. Gonnella
    SLAC, Menlo Park, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The SLAC Na­tional Ac­cel­er­a­tor Lab­o­ra­tory is cur­rently con­struct­ing a major up­grade to its ac­cel­er­a­tor, the Linac Co­her­ent Light Source II (LCLS-II). Sev­eral De­part­ment of En­ergy lab­o­ra­to­ries, in­clud­ing the Thomas Jef­fer­son Na­tional Ac­cel­er­a­tor Fa­cil­ity (JLab) and Fermi Na­tional Ac­cel­er­a­tor Lab­o­ra­tory (FNAL), are col­lab­o­rat­ing in this pro­ject. The cry­omod­ules for this pro­ject each con­sist of eight 1.3-GHz cav­i­ties pro­duced by two ven­dors, Re­search In­stru­ments GmbH in Ger­many (RI*) and Et­tore Zanon S.p.a. in Italy (EZ*), using nio­bium cell ma­te­r­ial from Tokyo Denkai Co., Ltd. (TD) and Ningxia Ori­ent Tan­ta­lum In­dus­try Co., Ltd. (OTIC/NX)). Dur­ing the ini­tial pro­duc­tion run, cav­ity per­for­mance from one of the ven­dors (Ven­dor A) was far below ex­pec­ta­tion. All the cav­i­ties had low Q0, later at­trib­uted to min­i­mal EP as well as high-flux-trap­ping NX ma­te­r­ial, early quench be­hav­iour below 18 MV/m, with many hav­ing Q0 roll-off at 12-16 MV/m. Pro­duc­tion was stopped mul­ti­ple times over the fol­low­ing 6 months, with test batches of cav­i­ties being made to as­cer­tain the root cause of the prob­lem. The final root cause of the prob­lem was found to be in­ap­pro­pri­ate grind­ing of the RF sur­face prior to weld­ing which left nor­mal con­duct­ing in­clu­sions in the sur­face. In ad­di­tion, most cav­i­ties showed in­ter­nal and ex­ter­nal weld spat­ter which re­quired post weld grind­ing and a very rough sur­face from op­er­at­ing the elec­trop­o­l­ish­ing ma­chine in an etch­ing rather than pol­ish­ing regime. All is­sues have been cor­rected on new cav­i­ties and re­work is un­der­way on the orig­i­nally ef­fected cav­i­ties.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL140  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL149 RF System Based on Two Klystrons and Phase Modulation for Photo-Cathode Injector gun, klystron, experiment, cathode 3996
 
  • P. Wang, D.Z. Cao, H.B. Chen, J. Shi, Z.H. Wang, H. Zha
    TUB, Beijing, People's Republic of China
 
  We pro­posed an RF sys­tem with two kly­strons, of which the pow­ers are com­bined by a 3dB-hy­brid. By man­ag­ing the phases of the two kly­strons re­spec­tively, the two pulses from the two out­put ports of the 3dB-hy­brid can be of dif­fer­ent pow­ers, phases, and shapes. One of the two pulses can be set to an RF gun, while the other one can feed trav­el­ing ac­cel­er­at­ing struc­tures. Two meth­ods of phase mod­u­la­tion were pro­posed based on this scheme. Com­par­ing with the state-of-art RF sys­tem, the new one can be of high ef­fi­ciency or can gen­er­ate elec­tron beams with higher en­ergy. The de­tailed analy­sis of the two meth­ods and some ex­per­i­ments are de­scribed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL149  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL156 High-Power Test of a Compact X-Band RF Rotary Joint GUI, network, cathode, electromagnetic-fields 4017
 
  • J. Liu, H.B. Chen, J.Q. Qiu, J. Shi, Z.H. Wang, X.W. Wu, H. Zha
    TUB, Beijing, People's Republic of China
 
  A com­pact X-band (9.3 GHz) RF ro­tary joint has been de­vel­oped in the ac­cel­er­a­tor lab­o­ra­tory of Ts­inghua Uni­ver­sity. Cold mea­sure­ments on the ro­tary joint using Vec­tor-Net­work showed good re­sults. In re­cent high-power tests, the RF ro­tary joint was op­er­ated under a 1.6 MW X-band mag­netron. The in­ci­dent power, the trans­mit­ted power and the pulse width of this ro­tary joint have been mea­sured. The trans­mit­ted power kept sta­ble in dif­fer­ent ro­ta­tion angle. In this paper, the setup and re­sults of the high-power tests of this RF ro­tary joint are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL156  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL157 Investigation of Transverse Wakefield and Beam Break Up Effect in Irradiation Linacs cavity, wakefield, experiment, simulation 4020
 
  • X.C. Meng, H.B. Chen, J. Shi, Z.H. Wang, H. Zha, S.X. Zheng
    TUB, Beijing, People's Republic of China
  • G.H. Li, J.S. Liu, Y.H. Liu
    NUCTECH, Beijing, People's Republic of China
 
  Study of beam break up ef­fect in linacs has been done in re­cent years. The beam-in­duced high order dipo­lar modes, es­pe­cially the TM11-like mode were in­ves­ti­gated for the linacs both in trav­el­ling wave and back­ward trav-elling wave. Mea­sure­ments of beam-break up in a travel-ling wave linac were car­ried out and re­sults are dis­cussed. More­over, a the­o­ret­i­cal model was de­vel­oped for the ir­ra­di­a­tion linacs to study the de­tailed in­ter­ac­tion be-tween the trans­verse wake­field and the elec­tron beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL157  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF001 Beam Dynamics Studies for Beam Focusing and Solenoid Alignment at SINBAD solenoid, alignment, emittance, gun 4026
 
  • S. Yamin, R.W. Aßmann, B. Marchetti, J. Zhu
    DESY, Hamburg, Germany
 
  SIN­BAD (Short IN­no­v­a­tive Bunches and Ac­cel­er­a­tors at DESY) fa­cil­ity under con­struc­tion at DESY plans to host sev­eral ex­per­i­ments for the pro­duc­tion of ul­tra-short bunches and will be a test fa­cil­ity for high-gra­di­ent com­pact novel ac­cel­er­a­tion tech­niques. The ARES (Ac­cel­er­a­tor Re­search Ex­per­i­ment at SIN­BAD) linac is fore­seen to pro­duce ul­tra-short bunches to be in­jected e.g. into Novel Di­elec­tric Laser Ac­cel­er­a­tion struc­tures or Laser Wake-Field Ac­cel­er­a­tion ex­per­i­ments. The work pre­sented in this paper is based on op­ti­miza­tion of the fo­cus­ing sys­tem con­sist­ing of so­le­noids for the ARES, which have been stud­ied ear­lier in de­tail but is re­vis­ited for up­dated beam­line. More­over tol­er­ances for the pos­si­ble mis­align­ment of so­le­noids are pre­sented in­ves­ti­gat­ing the ef­fect on the beam prop­er­ties dur­ing the gun com­mis­sion­ing.
* J. Zhu, R. Assmann, U. Dorda, B. Marchetti, "Matching sub-fs electron bunches for laser-driven plasma acceleration at SINBAD", Nucl. Instrum. Methods Phys. Res., Sect. A 829, 229 (2016)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF025 Emittance Measurements at FAST Facility emittance, MMI, electron, controls 4100
 
  • J. Ruan, D.R. Broemmelsiek, D.J. Crawford, A.L. Edelen, J.P. Edelen, D.R. Edstrom, A.H. Lumpkin, P. Piot, A.L. Romanov, R.M. Thurman-Keup
    Fermilab, Batavia, Illinois, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: *Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The FAST fa­cil­ity at Fer­mi­lab re­cently been com­mis­sioned has demon­strated the gen­er­a­tion of elec­tron beam within a wide range of pa­ra­me­ter (en­ergy, charge) suit­able for ac­cel­er­a­tor-sci­ence and beam-physics ex­per­i­ments. This ac­cel­er­a­tor con­sists of a photo-elec­tron gun, in­jec­tor, ILC-type cry­omod­ules, and mul­ti­ple down­stream beam-lines. It will mainly serve as in­jec­tor for the up­com­ing In­te­grable Op­ti­cal Test Ac­cel­er­a­tor (IOTA). At the same time we will also carry out a LINAC based in­tense gamma ray ex­per­i­ment based on the In­verse Comp­ton scat­ter­ing. It is es­sen­tial to un­der­stand the beam emit­tance for both ex­per­i­ments. A num­ber of tech­niques are used to chara­ca­ter­iz­ing the beam emit­tance in­clud­ing slit based method and quad scan method. An on-line emit­tance mea­sure­ment based on multi-slit method is de­vel­oped so the emit­tance mea­sured will be im­me­di­ately avail­able to sup­port fur­ther beam op­ti­miza­tion. In this re­port we will pre­sent the re­sults from the emit­tance stud­ies using this tool. We will also pre­sent the emit­tance mea­sure­ment based on quads scan tech­nique for the high en­ergy beam line.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF045 Synchronized Beam Position Measurement for SuperKEKB Injector Linac controls, electron, EPICS, operation 4159
 
  • M. Satoh, F. Miyahara, T. Suwada
    KEK, Ibaraki, Japan
  • T. Kudou, S. Kusano
    Mitsubishi Electric System & Service Co., Ltd, Tsukuba, Japan
  • T. Ohfusa, H.S. Saotome, M. Takagi
    Kanto Information Service (KIS), Accelerator Group, Ibaraki, Japan
 
  To­ward Su­perKEKB pro­ject, the in­jec­tor linac up­grade is on­go­ing for aim­ing at the sta­ble beam op­er­a­tion with low emit­tance and high in­ten­sity bunch charge. One of the key chal­lenges is a low emit­tance preser­va­tion of elec­tron beam be­cause the ver­ti­cal emit­tance of 20 mm.​mrad or less should be trans­ported to the main ring with­out a damp­ing ring. For this pur­pose, the fine align­ment of ac­cel­er­a­tor com­po­nents is a cru­cial issue since the linac align­ment was badly dam­aged by the big earth­quake in 2011. From the sim­u­la­tion re­sults of emit­tance growth, the align­ment of the quadru­pole mag­nets and ac­cel­er­at­ing struc­tures should be con­ducted at the level of 300 um in rms along the 600-m-long linac. In ad­di­tion, we are aim­ing at the level of 100 um align­ment in rms within the short range dis­tance of 100 m long. Even after the fine com­po­nent align­ment can be achieved, the fine beam orbit ma­nip­u­la­tion is nec­es­sary for low emit­tance preser­va­tion. For these rea­sons, we have de­vel­oped the new BPM read­out sys­tem based on VME64x. The new sys­tem has im­proved the pre­ci­sion of beam po­si­tion mea­sure­ment up to 3 um from 25 um. We will de­scribe the soft­ware de­vel­op­ment of the new BPM read­out sys­tem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF063 The MESA 15 kW cw 1.3 GHz Solid State Power Amplifier Prototype operation, experiment, SRF, cavity 4216
 
  • R.G. Heine, F. Fichtner
    IKP, Mainz, Germany
 
  The Mainz En­ergy re­cov­er­ing Su­per­con­duct­ing Ac­cel­er­a­tor MESA is a multi-turn en­ergy re­cov­ery linac with beam en­er­gies in the 100 MeV regime cur­rently de­signed and build at In­sti­tut für Kern­physik (KPH) of Jo­hannes Guten­berg-Uni­ver­sität Mainz. The main ac­cel­er­a­tor con­sists of two su­per­con­duct­ing Rossendorf type mod­ules, while the in­jec­tor MAMBO (Mil­liAMpere BOoster) re­lies on nor­mal con­duct­ing tech­nolgy. The high power RF sys­tem is planned com­pletely in solid state tech­nol­ogy. With the high power de­mands of the nor­mal con­duct­ing RF cav­i­ties up-to-date tran­sis­tor tech­nol­ogy with in­creased power den­sity has to be used. A 15 kW CW power ampi­fier pro­to­type with the new tech­nol­ogy has been de­vel­oped by Sigma Phi Elec­tron­ics and de­liverd to KPH. In this paper we will pre­sent the re­sults of the per­for­mance mea­sure­ments of the am­pli­fier.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF064 Beam Based Alignment of SRF Cavities in an Electron Injector Linac cavity, alignment, emittance, electron 4219
 
  • F. Hug
    KPH, Mainz, Germany
  • M. Arnold, T. Bahlo, J. Pforr, N. Pietralla
    TU Darmstadt, Darmstadt, Germany
 
  Funding: Funded by DFG through Cluster of Excellence EXC 1098/2014 "PRISMA" and RTG 2128 "AccelencE" and by the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 730871
Proper align­ment of ac­cel­er­at­ing cav­i­ties is an im­por­tant issue con­cern­ing beam qual­ity of ac­cel­er­a­tors. In par­tic­u­lar SRF cav­i­ties of in­jec­tor linacs using high ac­cel­er­at­ing gra­di­ents on low beta elec­tron beams can af­fect the beam qual­ity sig­nif­i­cantly when not aligned per­fectly. On the other hand know­ing the exact po­si­tion of every cav­ity after sev­eral cool-down cy­cles of a cry­omod­ule can be dif­fi­cult de­pend­ing on the cry­omod­ule de­sign. We will re­port on op­er­a­tional ex­pe­ri­ence on the SC in­jec­tor of the Darm­stadt su­per­con­duct­ing linac and ERL (S-DALINAC) show­ing un­ex­pected ef­fects on beam dy­nam­ics and beam qual­ity. Op­er­a­tors could ob­serve trans­verse beam de­flec­tions by chang­ing ac­cel­er­at­ing phases of the in­jec­tor SRF-cav­i­ties while a growth of tran­verse emit­tance oc­curred at the same time. As beam cur­rents in the S-DALINAC in­jec­tor do never ex­ceed 100 μA and the ef­fects could even be ob­served at nA beam cur­rents space-charge ef­fects could be elim­i­nated to be the rea­son for these ob­ser­va­tions. In this work we will re­port on the pos­si­bil­ity to align SRF cav­i­ties after cooldown by mea­sur­ing the trans­verse de­flec­tion of the beam and com­pare re­sults with beam dy­nam­ics sim­u­la­tions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF082 Suppression of Microbunching Instability Using a Quadrupole Inserted Chicane in Free-Electron-Laser Linacs bunching, electron, laser, FEL 4267
 
  • B. Li, J. Qiang
    LBNL, Berkeley, California, USA
 
  The mi­crobunch­ing in­sta­bil­ity (MBI) dri­ven by beam col­lec­tive ef­fects in a lin­ear ac­cel­er­a­tor of a free-elec­tron laser (FEL) fa­cil­ity can sig­nif­i­cantly de­grade the elec­tron beam qual­ity and FEL per­for­mance. A method ex­ploited lon­gi­tu­di­nal mix­ing de­rived from the nat­ural trans­verse spread of the beam was pro­posed sev­eral years ago using two dipoles to sup­press the in­sta­bil­ity. In this paper, in­stead of using bend­ing mag­nets to in­tro­duce the trans­verse-to-lon­gi­tu­di­nal cou­pling, which will lead to an in­con­ve­nient de­flec­tion of the down­stream beam line, we pro­pose a scheme using a quadru­pole in­serted chi­cane to in­tro­duce the lon­gi­tu­di­nal mix­ing in­side the ac­cel­er­a­tor trans­port sys­tem to sup­press this in­sta­bil­ity. And we fi­nally elim­i­nate the trans­verse-to-lon­gi­tu­di­nal cou­pling after the dog­leg sec­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF090 Linac Design Elements for Spaceborne Accelerators cavity, operation, electron, dipole 4291
 
  • J.W. Lewellen, C.E. Buechler, G.E. Dale, M.A. Holloway, D.C. Nguyen, D. Patrick
    LANL, Los Alamos, New Mexico, USA
  • V.A. Dolgashev, E.N. Jongewaard, J. Neilson, S.G. Tantawi
    SLAC, Menlo Park, California, USA
  • J-.M. Lauenstein
    NASA Goddard Space Flight Center, Greenbelt, USA
 
  Funding: Los Alamos National Laboratory LDRD and Program Development
Los Alamos Na­tional Lab­o­ra­tory, in col­lab­o­ra­tion with SLAC and God­dard Space Flight Cen­ter, have begun de­vel­op­ing a high-duty-fac­tor, MeV-range lin­ear ac­cel­er­a­tor in­tended for use on satel­lites, specif­i­cally to probe the mag­ne­tos­phere-ionos­phere link­age. The de­sign makes use of low-beta C-band cav­i­ties op­er­at­ing at mod­er­ate gra­di­ents, in­di­vid­u­ally pow­ered by 500-W RF am­pli­fier chips. We pre­sent the cur­rent state of the de­sign, and tech­nol­ogy mat­u­ra­tion ef­forts in­clud­ing RF am­pli­fier per­for­mance stud­ies, cav­ity tuner de­sign and an ini­tial ac­cel­er­a­tion test using a DC beam source and sin­gle RF cav­ity.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK001 Creating Two-Pulse Beams from a Photoinjector for Two Color FEL or Beam Driven PWFA Experiments gun, emittance, simulation, cathode 4294
 
  • J. Andersson, J. Björklund Svensson, M. Kotur, F. Lindau, S. Thorin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  The MAX IV linac is in­ves­ti­gated as a FEL dri­ver in the SXL pro­ject, but there is also an on­go­ing in­ves­ti­ga­tion in using the linac as a dri­ver for beam dri­ven plasma wake­field ac­cel­er­a­tion ex­per­i­ments. From both these ap­pli­ca­tions, dou­ble pulses from the pho­toin­jec­tor within the same RF pe­riod is de­sired. In this paper we dis­cuss the pos­si­bil­i­ties of using the cur­rent pho­toin­jec­tor at MAX IV as dri­ver and show sim­u­la­tions re­sults from the pre-in­jec­tor, both for FEL ap­pli­ca­tions and for PWFA ap­pli­ca­tions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK002 The Pre-Injector Design for the MAX IV SXL gun, cathode, emittance, laser 4297
 
  • J. Andersson, M. Kotur, D. Kumbaro, F. Lindau, E. Mansten, D. Olsson, L.K. Roslund, S. Thorin
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  In this paper we pre­sent the cur­rent sta­tus of the de­sign for the pre-in­jec­tor (photo-cath­ode gun, so­le­noid and first linac) for the SXL pro­ject at MAX IV. The SXL pro­ject re­quires a higher rep­e­ti­tion rate and since im­proved beam qual­ity com­pared to what the cur­rent photo-cath­ode gun can op­er­ate at is needed, a new photo-cath­ode gun will be man­u­fac­tured. We briefly de­scribe the com­po­nents of the pre-in­jec­tor, fol­lowed by the de­sign of the new photo-cath­ode gun. The de­sign is sim­i­lar to the old gun but with a new RF cav­ity using el­lip­ti­cal irises and race­track pro­file main cell. The cur­rent pa­ra­me­ters for the next gun to be man­u­fac­tured are dis­cussed, and some sim­u­la­tions and ex­pected beam qual­ity from the in­jec­tor are shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK016 Simulation Study of the NSRRC High Brightness Linac System and Free Electron Laser FEL, undulator, simulation, electron 4329
 
  • W.K. Lau, C.H. Chen, H.P. Hsueh, N.Y. Huang
    NSRRC, Hsinchu, Taiwan
  • J. Wu
    SLAC, Menlo Park, California, USA
 
  A 263 MeV linac sys­tem has been de­signed to pro­vide a high bright­ness elec­tron beam for the NSRRC VUV FEL test fa­cil­ity. This sys­tem is equipped with a dog­leg with lin­eariza­tion op­tics to com­pen­sate the ef­fects of non­lin­ear en­ergy chirps in­tro­duced into the sys­tem by the chirper linac volt­age dur­ing bunch com­pres­sion. In this study, we per­formed start-to-end sim­u­la­tion to il­lus­trate the ca­pa­bil­ity of this linac sys­tem to gen­er­ate a beam that can be used to drive a SASE FEL to sat­u­ra­tion within rea­son­able un­du­la­tor length. It has been demon­strated that, for a 200 pC beam, such FEL has a sat­u­rated out­put power of ~200 MW at 6-m un­du­la­tor length. Fur­ther op­ti­miza­tion of bunch cur­rent pro­file and mo­men­tum spec­trum is re­quired.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK017 Experimental Study of Coherent THz Sources Driven by the NSRRC High Brightness Photo-injector radiation, electron, undulator, bunching 4332
 
  • M.C. Chou, K.T. Hsu, N.Y. Huang, J.-Y. Hwang, W.K. Lau, A.P. Lee, C.C. Liang, G.-H. Luo
    NSRRC, Hsinchu, Taiwan
 
  Ac­cel­er­a­tor-based co­her­ent THz ra­di­a­tion sources are being stud­ied with the NSRRC high bright­ness pho­toin­jec­tor which has been in­stalled in the Ac­cel­er­a­tor Test Area (ATA) re­cently. This in­jec­tor is equipped with a laser-dri­ven pho­to­cath­ode rf gun and a 5.2-m long S-band trav­el­ing-wave linac for beam ac­cel­er­a­tion. A few tens MeV, ul­tra­short bunches of ~100 fs bunch length can be pro­duced from the in­jec­tor by ve­loc­ity bunch­ing tech­nique. Tun­able nar­row-band THz co­her­ent un­du­la­tor ra­di­a­tion (CUR) can be gen­er­ated from a U100 pla­nar un­du­la­tor when it is dri­ven by such beam. One the other hand, broad­band THz co­her­ent tran­si­tion ra­di­a­tion (CTR) gen­er­ated by pass­ing this beam through a metal­lic foil is used for de­ter­mi­na­tion of bunch length by au­to­cor­re­la­tion tech­nique. The ex­per­i­men­tal setup and re­sults are pre­sented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK019 Generation of Tunable Femtosecond X-Rays from High-Period-Number Resonant Transition Radiation Emitters radiation, electron, photon, bunching 4339
 
  • P. Wang, K.C. Leou
    NTHU, Hsinchu, Taiwan
  • M.C. Chou, J.-Y. Hwang, W.K. Lau, A.P. Lee
    NSRRC, Hsinchu, Taiwan
  • C.T. Lee
    ITRC, Hsinchu, Taiwan
 
  Funding: Work supported by the Ministry of Science and Technology, ROC (Taiwan).
Fem­tosec­ond res­o­nant tran­si­tion ra­di­a­tion (RTR) in x-ray re­gion can be gen­er­ated from al­ter­na­tively stacked mul­ti­layer struc­tures when they are dri­ven by rel­a­tivis­tic ul­tra­short elec­tron beams. These struc­tures can be fab­ri­cated by coat­ing layer pairs of high and low den­sity ma­te­ri­als. By in­creas­ing the num­ber of these layer pairs, nar­row-band x-ray can be gen­er­ated. In this re­port, we pre­sent our ef­forts on the de­vel­op­ment of a 12 keV fem­tosec­ond nar­row-band x-ray source by dri­ving high-pe­riod-num­ber RTR emit­ters with the NSRRC pho­toin­jec­tor linac sys­tem. Ra­di­a­tion wave­length is tun­able by vary­ing the in­ci­dent angle of the beam. A few tens MeV, ul­tra­short beam has been avail­able from the pho­toin­jec­tor sys­tem via ve­loc­ity bunch­ing in the rf linac. A 100-pe­riod (200 lay­ers) Mo/Si multi-layer emit­ters with thin sub­strate have been fab­ri­cated. For a 100 pC drive beam, the ex­pected pho­ton yield from such emit­ter is about 4x104.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK043 Timing Stability at LCLS timing, cavity, laser, FEL 4381
 
  • F.-J. Decker, R.N. Coffee, W.S. Colocho, J.M. Glownia, K. Gumerlock, B.L. Hill, T.J. Maxwell, J. May
    SLAC, Menlo Park, California, USA
 
  The beam sta­bil­ity of the LCLS (Linac Co­her­ent Light Source) has in­creased sub­stan­tially over the years. Trans­versely it is a frac­tion of the beam size. The en­ergy jit­ter was re­duced from five times the en­ergy spread to a frac­tion of it. Only the tim­ing jit­ter is left. It got im­proved dur­ing the en­ergy jit­ter re­duc­tion, but typ­i­cally left alone. So we have five di­men­sions of the six-di­men­sional phase space cov­ered with feed­backs and spe­cial 60-Hz jit­ter se­tups which elim­i­nate the dif­fer­ence be­tween every other pulse, but not for the gen­eral tim­ing setup. We de­scribe a scheme with the RF of the XTCAV, which could be used for other se­tups like lasers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK058 RF Design of the X-band Linac for the EuPRAXIA@SPARC_LAB Project klystron, booster, electron, GUI 4422
 
  • M. Diomede
    Sapienza University of Rome, Rome, Italy
  • D. Alesini, M. Bellaveglia, B. Buonomo, F. Cardelli, E. Chiadroni, G. Di Raddo, R.D. Di Raddo, M. Diomede, M. Ferrario, A. Gallo, A. Ghigo, A. Giribono, V.L. Lollo, L. Piersanti, B. Spataro, C. Vaccarezza
    INFN/LNF, Frascati (Roma), Italy
  • N. Catalán Lasheras, A. Grudiev, W. Wuensch
    CERN, Geneva, Switzerland
 
  We il­lus­trate the RF de­sign of the X-band linac for the up­grade of the SPAR­C_LAB fa­cil­ity at INFN-LNF (EuPRAXIA@​SPARC_​LAB). The struc­tures are trav­el­ling wave (TW) cav­i­ties, work­ing on the 2π/3 mode, fed by kly­strons with pulse com­pres­sor sys­tems. The ta­per­ing of the cells along the struc­ture and the cell pro­files have been op­ti­mized to max­i­mize the ef­fec­tive shunt im­ped­ance keep­ing under con­trol the max­i­mum value of the mod­i­fied Poynt­ing vec­tor, while the cou­plers have been de­signed to have a sym­met­ric feed­ing and a re­duced pulsed heat­ing. In the paper we also pre­sent the RF power dis­tri­b­u­tion lay­out of the ac­cel­er­at­ing mod­ule and a pre­lim­i­nary me­chan­i­cal de­sign.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK064 RF System for SXFEL: C-band, X-band and S-band FEL, klystron, operation, LLRF 4446
 
  • W. Fang, Q. Gu, X.X. Huang, L. Li, Z.B. Li, J.H. Tan, C.C. Xiao, J.Q. Zhang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
 
  Shang­hai Soft X-ray FEL fa­cil­ity is under com­mis­sion­ing now, which linac is com­pased of one S-band in­jec­tor, C-band main linac and X-band lin­earizer. In SXFEL S-band in­jec­tor could pro­vide 200MeV beam en­ergy based on 4 RF power unit, and then 6 C-band RF units boost beam en­ergy to 840MeV based on 33MV/m at least, which will be ramped to 40MV/m in the un­grad­ing. In the mid­dle of S-band and C-band RF sys­tem, a X-band RF unit is used as lin­earizer to make en­ergy spread of elec­tron beam lin­ear dis­tri­b­u­tion, which is im­por­tant for bunch com­pres­sor and FEL ra­di­a­tion. In this paper, de­tails of RF sys­tem de­sign and sta­tus of SXFEL is in­tro­duced, and some op­er­a­tion re­sults are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK069 Design of the Beam Switchyard of a Soft X-ray FEL User Facility in Shanghai FEL, undulator, dipole, kicker 4456
 
  • S. Chen, H.X. Deng, C. Feng, B. Liu, D. Wang, R. Wang
    SINAP, Shanghai, People's Republic of China
 
  A soft X-ray FEL user fa­cil­ity, which is based on the ex­ist­ing test fa­cil­ity lo­cated in the Zhangjiang Cam­pus of SINAP, is under con­struc­tion. Two un­du­la­tor lines will be in­stalled par­al­lelly in the un­du­la­tor hall and their elec­tron beams are served by a 1.5 GeV linac. For si­mul­ta­ne­ous op­er­a­tion of the two un­du­la­tor lines, a beam dis­tri­b­u­tion sys­tem should be used to con­nect the linac and the un­du­la­tor lines. In this paper, the physics de­sign of this beam dis­tri­b­u­tion sys­tem will be pre­sented and also the beam dy­namic is­sues will be dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK076 Longitudinal Shaping for Beam-Driven Plasma Wakefield Accelerators electron, FEL, plasma, simulation 4477
 
  • Z. Wang, K.Q. Zhang, Z.T. Zhao
    SINAP, Shanghai, People's Republic of China
  • S. Huang, W. Lu
    TUB, Beijing, People's Republic of China
 
  The gen­er­a­tion of high qual­ity dri­ven elec­tron beam (high peak cur­rent and small beam size) is quite im­por­tant for the beam-dri­ven plasma ac­cel­er­a­tor. Be­sides, a lin­early ramped, more ex­actly, the tri­an­gu­lar cur­rent dis­tri­b­u­tion is more suit­able. In this paper, by ad­just­ing the phase and the am­pli­tude of the har­monic lin­earizer, the lin­ear ramped cur­rent dis­tri­b­u­tion elec­tron beam is gen­er­ated by the FEL linac. The CSR in­tro­duced emit­tance growth and the jit­ters of the elec­tron are re­searched. The elec­tron beam gen­er­ated by the ramped dri­ven beam in the plasma is re­searched as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK078 Corrugated Structure as a Linearizer in High Repetition Rate X-Ray Free Electron Laser Source electron, FEL, laser, simulation 4485
 
  • Z. Wang, C. Feng, D. Huang, K.Q. Zhang, M. Zhang
    SINAP, Shanghai, People's Republic of China
 
  A fea­si­ble method is pro­posed to com­pen­sate the high order mode (HOM) of the RF field, lin­earize the bunch com­pres­sion process in the high rep­e­ti­tion rate x-ray free elec­tron laser source. In the pro­posed scheme, the cor­ru­gated struc­ture is used in the su­per­con­duct­ing linac to lin­earize the lon­gi­tu­di­nal phase space of the elec­tron beam. The re­sults show that the peak cur­rent of the elec­tron beam will be in­creased from about 1 kA to over 2 kA with the charge of 100 pC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK084 E-field Measurement of 9.3 GHz RF cavity for 6 MeV LINAC cavity, electromagnetic-fields, electron, hardware 4496
 
  • D.H. Ha, J.-S. Chai, M. Ghergherehchi, H.S. Kim, J.C. Lee, H. Namgoong, J.H. Seo, Shin, S.W. Shin
    SKKU, Suwon, Republic of Korea
 
  In order to achieve per­for­mance close to the de­sign value, fab­ri­cated cav­ity was tuned at Sunkyunkwan uni­ver­sity. Tun­ing was done in two step: each cell tun­ing and bead-pull sys­tem. Each cell tun­ing was used to de­ter­mine the sta­tus of each cell and to re­move the stop-band. Bead-pull sys­tem was used to mea­sure the E-field dis­tri­b­u­tion and ob­tain the re­quired field flat­ness. This paper de­scribes each cell mea­sure­ment data and bead-pull mea­sure­ment sys­tem and data.
x-band, linac, measurement
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK087 Conceptual Design of the RF System for the Storage Ring and Linac of the New Light Source in Thailand cavity, storage-ring, acceleration, operation 4505
 
  • N. Juntong, T. Chanwattana, K. Kittimanapun, T. Pulampong, P. Sunwong
    SLRI, Nakhon Ratchasima, Thailand
 
  The new light source fa­cil­ity in Thai­land will be a ring-based light source with the cir­cum­fer­ence of ap­prox­i­mately 300m and an elec­tron en­ergy of 3GeV. The tar­get beam emit­tance is below 1.0 nm·rad with a max­i­mum beam cur­rent of 300mA. The in­jec­tor uti­lizes a full en­ergy C-band linac with a pho­to­cath­ode RF elec­tron gun. The stor­age ring RF sys­tem is based on a 500MHz fre­quency. The EU-HOM damped cav­ity and the new SPring-8 de­sign TM020 cav­ity is the choice of the stor­age ring cav­ity. The RF power unit for stor­age ring can ei­ther be a high-power kly­stron feed­ing all RF cav­i­ties or a com­bi­na­tion of low power IOTs or solid-state am­pli­fiers feed­ing each cav­ity. The high gra­di­ent C-band struc­ture is con­sid­ered as the main ac­cel­er­at­ing struc­ture for linac. The RF power sys­tem for linac will base on kly­stron and a mod­u­lar mod­u­la­tor. De­tails of RF sys­tems op­tions for this new light source pro­ject will be pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK090 First RF Test Results of Two-Cavities Accelerating Cryomodule for ARIEL eLinac at TRIUMF cavity, cryomodule, TRIUMF, pick-up 4512
 
  • Y. Ma, Z.T. Ang, K. Fong, J.J. Keir, D. Kishi, D. Lang, R.E. Laxdal, R.R. Nagimov, B.S. Waraich, Z.Y. Yao, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  The Ad­vanced Rare Iso­tope Lab­o­ra­tory (ARIEL) pro-ject re­quires a 50 MeV, 10 mA con­tin­u­ous-wave (CW) elec­tron lin­ear ac­cel­er­a­tor (e-Linac) as a dri­ver ac­cel­era-tor. Now the stage of the 30MeV por­tion of the e-Linac is under com­mis­sion­ing which in­cludes an in­jec­tor cry-omod­ule(ICM) and the 1st ac­cel­er­a­tor cry­omod­ules (ACM1) with two cav­i­ties con­fig­u­ra­tion. A sin­gle 290kW kly­stron is used to feed the two ACM1 cav­i­ties in vec­tor sum closed-loop con­trol. In this paper the ini­tial com­mis-sion­ing re­sults of the ACM1 RF sys­tem will be pre­sent.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK096 Tuners Alignment on Two 9-Cell Cavities with Single Amplifier under Self-Excited Loop cavity, TRIUMF, detector, cryomodule 4527
 
  • K. Fong, Z.T. Ang, M.P. Laverty, Q. Zheng
    TRIUMF, Vancouver, Canada
 
  The TRI­UMF eLinac ACM con­sists of two 9-cell cav­i­ties which are dri­ven by a sin­gle kly­stron. The out­put power from the kly­stron are split by a vari­able power di­vider and send down 2 in­de­pen­dently phase ad­justable trans­mis­sion lines to their re­spec­tive cry­omod­ules. The vec­tor sum of the fields from both cry­omod­ules is used for phase-locked self-ex­cited loop reg­u­la­tion. A semi-au­to­matic pro­ce­dure to tune the 2 cy­ro­mod­ules to pro­vide the cor­rect am­pli­tudes and phases for self-ex­ci­ta­tion as well as beam ac­cel­er­a­tion is de­scribed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK101 Inverted Geometry Photo-Electron Gun Research and Development at TU Darmstadt cathode, gun, electron, operation 4545
 
  • M. Herbert, J. Enders, Y. Fritzsche, N. Kurichiyanil, V. Wende
    TU Darmstadt, Darmstadt, Germany
 
  Funding: Work supported by the Deutsche Forschungsgemeinschaft through GRK 2128 'AccelencE'
The In­sti­tute for nu­clear physics at TU Darm­stadt houses the Su­per­con­duct­ing Darm­stadt Lin­ear Ac­cel­er­a­tor S-DALINAC. A photo-elec­tron gun using GaAs pho­to­cath­odes to pro­vide pulsed and/or po­lar­ized elec­tron beams, the S-DALINAC Po­lar­ized In­jec­tor SPIn, has been in­stalled * for fu­ture nu­clear-struc­ture in­ves­ti­ga­tions**. In order to con­duct re­search and de­vel­op­ment for this source, a test fa­cil­ity for Photo-Cath­ode Ac­ti­va­tion, Test and Clean­ing using atomic-Hy­dro­gen (Photo-CATCH) has been con­structed***. This setup pro­vides sev­eral cham­bers for pho­to­cath­ode han­dling and a 60 keV beam­line for photo-gun de­sign stud­ies****. Cur­rently, an up­graded in­verted in­su­la­tor geom­e­try is under in­ves­ti­ga­tion for Photo-CATCH that is sup­posed to be im­ple­mented at SPIn. We will pre­sent the cur­rent de­vel­op­ments at Photo-CATCH and fu­ture mea­sure­ments.
* Y. Poltoratska et al., J. Phys.: Conf. Series 298 (2011)
** J. Enders, AIP Conf. Proc. 1563, 223 (2013)
*** M. Espig, Diss., TU Darmstadt (2016)
**** N. Kurichiyanil, Diss., TU Darmstadt (2016)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK101  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK103 Initial Testing of Techniques for Large Scale Rf Conditioning for the Compact Linear Collider operation, linear-collider, ECR, collider 4548
 
  • T.G. Lucas, M.J. Boland, P.J. Giansiracusa, R.P. Rassool, M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
  • N. Catalán Lasheras, A. Grudiev, T. Lefèvre, G. McMonagle, I. Syratchev, B.J. Woolley, W. Wuensch, V. del Pozo Romano
    CERN, Geneva, Switzerland
  • J. Paszkiewicz
    University of Oxford, Oxford, United Kingdom
  • C. Serpico
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • A. Vnuchenko
    IFIC, Valencia, Spain
  • R. Zennaro
    PSI, Villigen PSI, Switzerland
 
  Nom­i­nal op­er­at­ing con­di­tions for the Com­pact Lin­ear Col­lider (CLIC) 380 GeV re­quires 72 MV/m loaded ac­cel­er­at­ing gra­di­ents for a 180 ns flat-top pulse. Achiev­ing this re­quires ex­ten­sive RF con­di­tion­ing which past tests have demon­strated can take sev­eral months per struc­ture, when con­di­tioned at the nom­i­nal rep­e­ti­tion rate of 50 Hz. At CERN there are three in­di­vid­ual X-band test stands cur­rently op­er­a­tional, test­ing up to 6 struc­tures con­cur­rently. For CLIC's 380 GeV de­sign, 28,000 ac­cel­er­at­ing struc­tures will make up the main linac. For a large scale con­di­tion­ing pro­gramme, it is im­por­tant to un­der­stand the RF con­di­tion­ing process and to op­ti­mise the time taken for con­di­tion­ing. In this paper, we re­view re­cent X-band test­ing re­sults from CERN's test stands. With these re­sults we in­ves­ti­gate how to op­ti­mise the con­di­tion­ing process and demon­strate the fea­si­bil­ity of pre-con­di­tion­ing the struc­tures at a higher rep­e­ti­tion rate be­fore in­stal­la­tion into the main linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK105 PERLE - Lattice Design and Beam Dynamics Studies bunching, lattice, injection, electron 4556
 
  • S.A. Bogacz, D. Douglas, F.E. Hannon, A. Hutton, F. Marhauser, R.A. Rimmer, Y. Roblin, C. Tennant
    JLab, Newport News, Virginia, USA
  • D. Angal-Kalinin, J.W. McKenzie, B.L. Militsyn, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • G. Arduini, O.S. Brüning, R. Calaga, K.M. Dr. Schirm, F. Gerigk, B.J. Holzer, E. Jensen, A. Milanese, E. Montesinos, D. Pellegrini, P.A. Thonet, A. Valloni
    CERN, Geneva, Switzerland
  • S. Bousson, D. Longuevergne, G. Olivier, G. Olry
    IPN, Orsay, France
  • I. Chaikovska, W. Kaabi, A. Stocchi, C. Vallerand
    LAL, Orsay, France
  • B. Hounsell, M. Klein, U.K. Klein, P. Kostka, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • E.B. Levichev, Yu.A. Pupkov
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Work has been authored by Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177 with the U.S. Department of Energy.
PERLE (Pow­er­ful ERL for Ex­per­i­ments) is a novel ERL test fa­cil­ity, ini­tially pro­posed to val­i­date choices for a 60 GeV ERL fore­seen in the de­sign of the LHeC and the FCC-eh. Its main thrust is to probe high cur­rent, CW, multi-pass op­er­a­tion with su­per­con­duct­ing cav­i­ties at 802 MHz (and per­haps test­ing other fre­quen­cies of in­ter­est). With very high vir­tual beam power (~ 10 MW), PERLE of­fers an op­por­tu­nity for con­trol­lable study of every beam dy­namic ef­fect of in­ter­est in the next gen­er­a­tion of ERL de­sign; be­com­ing a ‘step­ping stone' be­tween pre­sent state-of-art 1 MW ERLs and fu­ture 100 MW scale ap­pli­ca­tions. PERLE de­sign fea­tures Flex­i­ble Mo­men­tum Com­paction lat­tice ar­chi­tec­ture for six ver­ti­cally stacked re­turn arcs and a high-cur­rent, 6 MeV, photo-in­jec­tor. With only one pair of 4 cav­ity cry­omod­ules, 400 MeV beam en­ergy can be reached in 3 re-cir­cu­la­tion passes, with beam cur­rents in ex­cess of 15 mA. The beam is de­cel­er­ated in 3 con­sec­u­tive passes back to the in­jec­tion en­ergy, trans­fer­ring vir­tu­ally stored en­ergy back to the RF. This unique fa­cil­ity will serve as a test-bed for high cur­rent ERL tech­nolo­gies, as well as a user fa­cil­ity in low en­ergy elec­tron and pho­ton physics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK106 Architectural Considerations for Recirculated and Energy-Recovered Hard XFEL Drivers FEL, recirculation, SRF, operation 4560
 
  • D. Douglas, S.V. Benson, T. Powers, Y. Roblin, T. Satogata, C. Tennant
    JLab, Newport News, Virginia, USA
  • D. Angal-Kalinin, N. Thompson, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • T.K. Charles
    CERN, Geneva, Switzerland
  • R.C. York
    FRIB, East Lansing, Michigan, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
A con­flu­ence of events mo­ti­vates dis­cus­sion of de­sign op­tions for hard XFEL dri­ver ac­cel­er­a­tors. Firstly, mul­ti­ple su­per­con­duct­ing ra­dio-fre­quency (SRF) dri­ven sys­tems are now on­line (Eu­ro­pean XFEL), in con­struc­tion (LCLS-II), or in de­sign (MARIE); these pro­vide in­creas­ing ev­i­dence of the trans­for­ma­tional po­ten­tial they offer for fun­da­men­tal sci­ence with its con­comi­tant ben­e­fits. Sec­ondly, op­er­a­tion of 12 GeV CEBAF* val­i­dates use of re­cir­cu­la­tion in high en­ergy SRF linacs. Thirdly, ad­vances in the analy­sis and con­trol of ef­fects such as co­her­ent syn­chro­tron ra­di­a­tion (CSR) and the mi­crobunch­ing in­sta­bil­ity (uBI) have been re­cently achieved. Col­lec­tively, these de­vel­op­ments offer in­sights pro­vid­ing ex­tended fa­cil­ity sci­ence reach, re­duced costs, mul­ti­plic­ity (i.e., sup­port of nu­mer­ous FELs op­er­at­ing over a range of wave­lengths), and en­hanced scal­a­bil­ity and upgrad­abil­ity (to higher pow­ers and en­er­gies). We will dis­cuss the re­la­tion­ship amongst the var­i­ous threads, and in­di­cate how they in­form de­sign choices for the sys­tem ar­chi­tec­ture of an op­tion for the UK-XFEL** - that of a staged multi-user X-ray FEL and nu­clear physics fa­cil­ity based on a multi-pass re­cir­cu­lat­ing SRF CW linac.
*M. Spata, "12 GeV CEBAF Initial Operations and Challenges", these proceedings.
**P. Williams et al., Proc. FLS2018, Shanghai, China (March 2018).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK139 Design of 9/6 MeV S-band Electron Linac Structure with 1.5 Bunching Cells coupling, bunching, electron, simulation 4635
 
  • Y. Joo, P. Buaphad, H.R. Lee
    University of Science and Technology of Korea (UST), Daejeon, Republic of Korea
  • S.C. Cha, Y. Kim
    KAERI, Daejon, Republic of Korea
 
  Funding: University of Science and Technology of Korea
The Korea Atomic En­ergy Re­search In­sti­tute (KAERI) has been de­vel­op­ing sev­eral 9/6 MeV dual en­ergy S-band RF elec­tron lin­ear ac­cel­er­a­tors (linacs) for non-de­struc­tive test­ing such as con­tainer in­spec­tion sys­tem. Until now the bunch­ing cell of the linac has a full-cell geom­e­try. How­ever, to max­i­mize the ac­cel­er­a­tion of elec­trons after emis­sion from the elec­tron gun, the geom­e­try of the first bunch­ing cell is mod­i­fied from a full-cell to a half-cell. The op­ti­miza­tion of Q-fac­tor and flat­ness of elec­tric field along the linac struc­ture can be ob­tained by ad­just­ing di­am­e­ters of bunch­ing and power cou­pling cells. By ad­just­ing gap of the first side-cou­pling cell, we can op­ti­mize the field ratio be­tween the bunch­ing cells and nor­mal ac­cel­er­at­ing cells. In this paper, we de­scribe de­sign con­cepts of a 9/6 MeV linac with 1.5 bunch­ing cells as well as op­ti­miza­tion of RF pa­ra­me­ters such as the qual­ity fac­tor, res­o­nance fre­quency, and elec­tric field dis­tri­b­u­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK139  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK148 Design Study on Linac-bsed Laser-cmpton Scattering X-Ray Source cavity, laser, electron, photon 4651
 
  • K. Sakaue
    Waseda University, Waseda Institute for Advanced Study, Tokyo, Japan
  • M.K. Fukuda, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • Y. Koshiba
    RISE, Tokyo, Japan
  • M. Washio
    Waseda University, Tokyo, Japan
 
  We have been de­vel­op­ing a laser-Comp­ton scat­ter­ing X-ray source using multi-bunch linac and op­ti­cal en­hance­ment cav­ity. This com­bi­na­tion have a pos­si­bil­ity to re­al­ize a high bright­ness com­pact X-ray source. A key issue of the sys­tem is around in­ter­ac­tion point. Com­pat­i­bil­ity of elec­tron fo­cus­ing, op­ti­cal cav­ity and X-ray path is dif­fi­cult in the cur­rent setup. Thus we pro­pose to use rf trans­verse de­flect­ing cav­ity for crab cross­ing of laser and elec­tron. In this con­fer­ence, de­sign study of the whole laser-Comp­ton X-ray source con­sist of elec­tron linac and op­ti­cal en­hance­ment cav­ity will be re­ported. The sys­tem con­fig­u­ra­tion, re­sult­ing flux and bright­ness, and its ap­pli­ca­tions will be dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK148  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML012 Simulations and Measurements of the Wakefield Loading Effect in Argonne Wakefield Accelerator Beamline wakefield, experiment, acceleration, higher-order-mode 4675
 
  • J. Upadhyay, E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
  • M.E. Conde, Q. Gao, N.R. Neveu, J.G. Power, J.H. Shao, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
  • N.R. Neveu
    IIT, Chicago, Illinois, USA
 
  A beam dri­ven ac­cel­er­a­tion ex­per­i­ment in a pho­tonic band gap (PBG) struc­ture is planned at Ar­gonne wake­fied ac­cel­er­a­tor (AWA) fa­cil­ity at Ar­gonne Na­tional Lab­o­ra­tory. We plan to pass a high charge (drive) beam through a trav­el­ling wave 11.7 GHz PBG struc­ture and gen­er­ate a wake­field. This wake­field will be probed by a low charge (wit­ness) beam to demon­strate wake­field ac­cel­er­a­tion and de­cel­er­a­tion. The drive and wit­ness bunches will be ac­cel­er­ated to above 60 MeV in the main ac­cel­er­a­tor at AWA which has fre­quency of 1.3 GHz. The charges used in this ex­per­i­ment could be as high as 20 nC. To mea­sure the ex­clu­sive ef­fect of PBG the struc­ture on ac­cel­er­a­tion and de­cel­er­a­tion of the wit­ness bunch we have to ex­clude the ef­fect of beam load­ing of the main AWA ac­cel­er­a­tor struc­ture. To un­der­stand the wake­field ef­fect in AWA, we con­ducted an ex­per­i­ment where we passed the high charge (10 nC) beam through the ac­cel­er­a­tor struc­ture which was fol­lowed by a 2 nC wit­ness beam sep­a­rated by 4 wave­length. The en­ergy of wit­ness beam was mea­sured in the pres­ence and ab­sence of the drive beam. The beam load­ing was ob­served and quan­ti­fied. The re­sults of this work will be pre­sented in the con­fer­ence.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML017 Beam Dynamics Calculation of a New Injection System for LINAC II gun, electron, injection, operation 4687
 
  • J.X. Zhang, M. Hüning
    DESY, Hamburg, Germany
 
  The Linac II at DESY (Deutsches Elek­tro­nen Syn­chro­tron) is an elec­tron/positron lin­ear ac­cel­er­a­tor with a 400 MeV pri­mary elec­tron linac, an 800 MW positron con­verter, and a 450 MeV sec­ondary elec­tron/positron linac. For re­li­a­bil­ity two in­jec­tion sys­tems can be switched, a 150 kV bom­barder diode gun dat­ing from 1969 and a 100 kV tri­ode gun com­mis­sioned in 2014. The older bom­barder gun shall be re­placed with a tri­ode gun op­ti­mized for in­jec­tion into the syn­chro­tron ra­di­a­tion fa­cil­ity PETRA III. In this paper, the pa­ra­me­ters of the ex­ist­ing in­jec­tors and the de­sign con­sid­er­a­tions for the new in­jec­tor are pre­sented. The pre­lim­i­nary beam dy­nam­ics cal­cu­la­tion of the new in­jec­tion sys­tem will be per­formed; the fu­ture plan of the re­place­ment will be dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML032 Using Deep Reinforcement Learning for Designing Sub-Relativistic Electron Linac network, electron, cavity, acceleration 4720
 
  • Shin, S.W. Shin, J.-S. Chai, M. Ghergherehchi
    SKKU, Suwon, Republic of Korea
 
  Gen­er­ally, when de­sign­ing an ac­cel­er­a­tor de­vice, the de­sign is based on the ex­pe­ri­ence and knowl­edge of the de­signer. Most of the de­sign process pro­ceeds by chang-ing the pa­ra­me­ters and look­ing at the trends and then de­ter­min­ing the op­ti­mal val­ues. This process is time-con­sum­ing and te­dious. In order to ef­fi­ciently per­form this te­dious de­sign process, a method using an op­ti­miza­tion al­go­rithm is used. Re­cently, many peo­ple started to get in­ter­ested in the al­go­rithm used in Al­phaGo, which be­came fa­mous when it won the pro­fes­sional Go player de­vel­oped by google The al­go­rithm used in Al­phaGo is an al­go­rithm called re­in­force­ment learn­ing that learns how to get op­ti­mal re­ward in var­i­ous states by mov­ing around a so­lu­tion space that the agent has not told be­fore­hand. In this paper, we will dis­cuss about de­sign­ing an par­ti­cle ac­cel­er­a­tor by ap­ply­ing Deep Q-net­work al­go­rithm which is one kind of deep learn­ing re­in­force­ment learn­ing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML067 SXFEL Linac BPM System Development and Performance Evaluation FEL, experiment, status, electron 4794
 
  • F.Z. Chen, T. Wu
    SSRF, Shanghai, People's Republic of China
  • J. Chen, L.W. Lai, Y.B. Leng, L.Y. Yu, R.X. Yuan
    SINAP, Shanghai, People's Republic of China
 
  Shang­hai Soft X-ray Free Elec­tron Laser (SXFEL) is a test fa­cil­ity to study key tech­nolo­gies and new FEL physics. In order to de­liver high qual­ity elec­tron beams to the un­du­la­tor sec­tion, a high res­o­lu­tion (bet­ter than 10 mi­crons with 200pC beam) Linac beam po­si­tion mon­i­tor sys­tem has been de­vel­oped. The sys­tem con­sists of stripline pickup and cus­tom de­signed DBPM proces­sor. The hard­ware and soft­ware ar­chi­tec­ture will be in­tro­duced in this paper. The on­line per­for­mance eval­u­a­tion re­sults will be pre­sented as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML073 Measurement of the RF Reference Phase Stability in the SuperKEKB Injector LINAC klystron, controls, feedback, booster 4815
 
  • N. Liu
    Sokendai, Ibaraki, Japan
  • D.A. Arakawa, H. Katagiri, T. Matsumoto, S. Michizono, T. Miura, F. Qiu, Y. Yano
    KEK, Ibaraki, Japan
 
  The Su­perKEKB in­jec­tor is a more than 600 m J-shaped LINAC. The re­quire­ment of the RF phase re­fer-ence sta­bil­ity is 0.1 de­gree (RMS) at 2856 MHz for Su­perKEKB PHASE-2 com­mis­sion­ing. In order to clari-fy and im­prove the ref­er­ence line per­for­mance, the RF ref­er­ence phase sta­bil­ity is mea­sured. The phase noise of the RF ref­er­ence at each sec­tor is shown in this paper. A new phase mon­i­tor sys­tem is im­ple­mented to mea­sure the short-term sta­bil­ity and long-term drift due to the tem­per­a­ture and hu­mid­ity fluc­tu­a­tions in the kly­stron gallery.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML076 Design of Control System for Dual-Head Radiation Therapy controls, radiation, electron, Ethernet 4826
 
  • H.S. Kim, J.-S. Chai, M. Ghergherehchi, D.H. Ha, J.C. Lee, H. Namgoong, J.H. Seo, Shin, S.W. Shin
    SKKU, Suwon, Republic of Korea
  • D. Lipka
    DESY, Hamburg, Germany
 
  Sungkyunkwan Uni­ver­sity groups have been de­vel­oped ad­vanced ra­di­a­tion ther­apy ma­chine named dual-head ra­di­a­tion ther­apy gantry for re­duc­ing the treat­ment time by up to 30%. The main dif­fer­ence be­tween pre­vi­ous ra­di­a­tion ther­apy ma­chine is using two elec­tron LINAC as X-ray sources at ra­di­a­tion ther­apy. In sup­port of this sys­tem, con­trol sys­tem based on SCADA and hard­ware de­vel­op­ment was im­ple­mented. The con­trol sys­tem con­sists of su­per­vi­sory com­put­ers and local con­trollers and the con­trol net­work was eth­er­net and soft­ware was writ­ten by lab­VIEW. An overview of this con­trol sys­tem is pre­sented in paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML077 Status of the Machine Protection System for ARIEL e-linac MMI, electron, TRIUMF, cryomodule 4829
 
  • M. Alcorta, D. Dale, H. Hui, S.R. Koscielniak, K. Langton, K. LeBlanc, M. Rowe
    TRIUMF, Vancouver, Canada
 
  The Ad­vanced Rare Iso­tope & Elec­tron Linac (ARIEL) fa­cil­ity at TRI­UMF con­sists of an elec­tron lin­ear ac­cel­er­a­tor (e-linac) ca­pa­ble of cur­rents up to 10 mA at an en­ergy of 30 MeV, giv­ing a total avail­able beam power of 300 kW. In ad­di­tion, the e-linac can be run in pulsed op­er­a­tion down to beam pulses of 5 μs, up to CW. A Ma­chine Pro­tec­tion Sys­tem (MPS) is re­quired to pro­tect the ac­cel­er­a­tor from haz­ardous beam spills and must turn off the elec­tron gun within 10 μs of de­tec­tion. The MPS con­sists of two types of beam loss mon­i­tors, a front-end beam loss mon­i­tor board de­vel­oped at TRI­UMF, and EPICS-based con­trols to es­tab­lish op­er­at­ing modes. A trip time of 10 μs has been demon­strated, along with a 106 dy­namic range and sen­si­tiv­ity down to 100 pA. This paper is fo­cused on the cur­rent sta­tus of the beam loss mon­i­tor de­tec­tion sys­tem.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML081 Beam-Based Measurements of the ISAC-II Superconducting Heavy Ion Linac cavity, ISAC, alignment, TRIUMF 4841
 
  • S. Kiy, R.E. Laxdal, M. Marchetto, S.D. Rädel, O. Shelbaya
    TRIUMF, Vancouver, Canada
 
  Prepa­ra­tion for ex­per­i­ments, which typ­i­cally run for one to two weeks in the ISAC-II fa­cil­ity at TRI­UMF, re­quires some amount of over­head, lim­it­ing the ef­fi­ciency of the fa­cil­ity. Ef­forts are un­der­way to im­prove the ISAC-II linac model to re­duce this over­head while also im­prov­ing the qual­ity of the de­liv­ered ion beam. This can be ac­com­plished with beam-based mea­sure­ments and cor­rec­tions of align­ment, cav­ity gra­di­ents, focal strengths, and more. A re­view of the pre­sent state of the linac will be given, in­clud­ing mea­sured mis-align­ments and other fac­tors that af­fect the re­pro­ducibil­ity of tunes. The out­look on ex­pected im­prove­ments will also be sum­ma­rized, in­clud­ing progress on the au­to­matic phas­ing of cav­i­ties with a focus on in­te­gra­tion to the High Level Ap­pli­ca­tion plat­form being de­vel­oped at TRI­UMF. Lastly, a sum­mary will be given on the ex­pected par­a­digm shift in the tun­ing ap­proach taken: mov­ing from re-ac­tive tun­ing by op­er­a­tors or beam de­liv­ery ex­perts to pro-ac­tive mea­sure­ments and in­ves­ti­ga­tions, ver­sion-con­trolled tunes, and con­tin­u­ous feed­back from beam physi­cists.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML087 First ERL Operation of S-DALINAC and Commissioning of a Path Length Adjustment System operation, recirculation, MMI, lattice 4859
 
  • M. Arnold, C. Burandt, R. Grewe, J. Pforr, N. Pietralla, M. Steinhorst
    TU Darmstadt, Darmstadt, Germany
  • C. Eschelbach, M. Lösler
    Frankfurt University of Applied Sciences, Frankfurt am Main, Germany
  • F. Hug
    KPH, Mainz, Germany
 
  Funding: Work supported by DFG through GRK 2128 and INST163/383-1/FUGG
The S-DALINAC is run­ning in re­cir­cu­lat­ing op­er­a­tion since 1991. In 2015/2016 a major up­grade was per­formed by adding a third re­cir­cu­la­tion beam line. The ver­sa­til­ity of this re­cir­cu­la­tion beam line en­ables a phase shift of the beam of up to 360° of the RF phase. The re­quired range of 10 cm for a 3 GHz RF fre­quency is re­al­ized by a path length ad­just­ment sys­tem. A com­ple­men­tary op­er­a­tion in nor­mal scheme (sin­gle-pass, once or thrice re­cir­cu­lat­ing with ac­cel­er­a­tion) or ERL mode (once or twice) is pos­si­ble by ap­pro­pri­ate ad­just­ment of this sys­tem. After in­stal­la­tion this sys­tem was aligned prop­erly and its func­tion­al­ity and stroke was checked with­out beam. The sys­tem was com­mis­sioned by mea­sur­ing the change of the beam phase in de­pen­dency of the set­ting of the path length ad­just­ment sys­tem. The com­ple­men­tary usage of the newly in­stalled re­cir­cu­la­tion for once re­cir­cu­lat­ing with ac­cel­er­a­tion and once re­cir­cu­lat­ing with ERL mode has been shown suc­cess­fully in au­tumn 2017. This con­tri­bu­tion will pro­vide an overview on the path length ad­just­ment sys­tem and the first run of the once re­cir­cu­lat­ing ERL mode of the S-DALINAC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML092 Electromagnetic and Mechanical Design of High Gradient S-Band Accelerator in TTX scattering, HOM, cavity, laser 4876
 
  • D.Z. Cao, H.B. Chen, Y. C. Du, W. Gai, W.-H. Huang, J. Shi, C.-X. Tang, P. Wang, H. Zha
    TUB, Beijing, People's Republic of China
 
  Thom­son scat­ter­ing x-ray source is an es­sen­tial scien-tific re­search tool in x-ray imag­ing tech­nol­ogy for vari-ous fields. Up­grad­ing plan of re­plac­ing the 3-me­ter S-band linac with a shorter struc­ture op­er­at­ing at higher gra­di­ent in Ts­inghua Thom­son scat­ter­ing X-ray source (TTX) is un­der­go­ing so far, aim­ing to en­hance the ac­cel-er­at­ing gra­di­ent from 15 MV/m to 30 MV/m. De­tailed pa­ra­me­ters of cou­plers and me­chan­i­cal de­sign of ac­celer-ation struc­ture are pre­sented in this work.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML102 Field and Cost Optimization of a 5 T/m Normal Conducting Quadrupole for the 10-MeV Beam Line of the eLINAC of the Mexican Particle Accelerator Community quadrupole, power-supply, multipole, operation 4905
 
  • D. Chavez Valenzuela, G.H.I. Maury Cuna, M. Napsuciale Mendivil
    Universidad de Guanajuato, División de Ciencias e Ingenierías, León, Mexico
  • J. C. Basilio Ortiz
    CINVESTAV, Mexico City, Mexico
  • P.M. McIntyre, A. Sattarov
    Texas A&M University, College Station, USA
  • C.A. Valerio
    ECFM-UAS, Culiacan, Sinaloa, Mexico
  • B. Yee-Rendón
    KEK, Ibaraki, Japan
 
  The Mex­i­can Par­ti­cle Ac­cel­er­a­tor Com­mu­nity is cur­rently de­sign­ing the first Mex­i­can RF eLINAC that will have three beam­lines at 10, 60 and 100 MeV. In this work, we pre­sent an op­ti­mized de­sign in terms of field qual­ity and pro­duc­tion cost for the 5 T/m nor­mal con­duct­ing quadrupoles of the 10-MeV beam­line. Sev­eral can­di­date ma­te­ri­als for the yoke were stud­ied based on their avail­abil­ity and machin­abil­ity, with the aim to op­ti­mize in-house pro­duc­tion cost (Mex­ico) while re­strict­ing a low mul­ti­pole con­tent.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML102  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML119 A Time-of-Flight Based Energy Measurement System for the LIGHT Medical Accelerator MMI, rfq, proton, cavity 4951
 
  • F. Galizzi
    University of Bergamo, Bergamo, Italy
  • M. Caldara, F. Galizzi, A. Jeff
    A.D.A.M. SA, Meyrin, Switzerland
 
  The LIGHT pro­ton ther­apy fa­cil­ity is the first com­pact Linac that will de­liver pro­ton beams up to 230 MeV for can­cer treat­ment. The pro­ton beam is pulsed; pulses rep­e­ti­tion rate can reach 200 Hz. LIGHT pro­to­type is cur­rently being com­mis­sioned by AVO/ADAM at CERN, while the first full in­stal­la­tion is fore­seen in 2019. Beam en­ergy trans­lates di­rectly to range pen­e­tra­tion in the body, so it is of the ut­most im­por­tance to mon­i­tor it ac­cu­rately es­pe­cially for Linacs, since each beam pulse is di­rectly trans­ported to the pa­tient. We pre­sent the im­ple­men­ta­tion of a non-in­ter­cep­tive beam en­ergy mea­sure­ment sys­tem based on the Time-of-Flight tech­nique. Un­like state of the art ToF sys­tems this one has been de­signed to mea­sure au­tonomously the mean en­ergy of the beam with med­ical res­o­lu­tion (0.03 %) by pro­cess­ing as lit­tle as 1 us of data pro­vid­ing the re­sult within 1 to 2 ms over an en­ergy range from 5 to 230 MeV. The first re­sults for beams up to 7.5 MeV are shown.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML119  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML122 Beta-SRF - A New Facility to Characterize SRF Materials near Fundamental Limits SRF, cavity, TRIUMF, accelerating-gradient 4961
 
  • E. Thoeng
    UBC & TRIUMF, Vancouver, British Columbia, Canada
  • R.A. Baartman, R.E. Laxdal, B. Matheson, G. Morris, N. Muller, S. Saminathan
    TRIUMF, Vancouver, Canada
  • A. Chen
    UBC, Vancouver, Canada
  • T. Junginger
    Lancaster University, Lancaster, United Kingdom
 
  Funding: Natural Sciences and Engineering Research Council of Canada (NSERC) & UBC (NSERC) IsoSiM Program
De­mands of CW high-power LINAC re­quire SRF cav­i­ties op­er­at­ing at the fron­tier of high ac­cel­er­at­ing gra­di­ent and low RF power dis­si­pa­tion, i.e. high qual­ity fac­tor (Q0). This re­quire­ment poses a chal­lenge for stan­dard sur­face treat­ment recipes of SRF cav­i­ties. In a re­cent break­through, el­lip­ti­cal SRF cav­i­ties doped with Ni­tro­gen have been shown to im­prove Q0 by a fac­tor of 3, close to the fun­da­men­tal SRF limit. The fun­da­men­tal mech­a­nisms at mi­cro­scopic level and op­ti­mum dop­ing recipe, how­ever, have still not fully been un­der­stood. Ma­te­ri­als other than Nb have also been pro­posed for SRF cav­i­ties to over­come the fun­da­men­tal limit al­ready reached with Ni­tro­gen dop­ing, e.g. Nb3Sn, MgB2, and Nb-SIS mul­ti­layer. At TRI­UMF, a unique ex­per­i­men­tal fa­cil­ity is cur­rently being de­vel­oped to ad­dress these is­sues. This fa­cil­ity will be able to probe local sur­face mag­netic field in the order of the Lon­don Pen­e­tra­tion Depth (sev­eral tens of nm) via \beta decay de­tec­tion of a low-en­ergy ra­dioac­tive ion-beam. This al­lows depth-res­o­lu­tion and layer-by-layer mea­sure­ment of mag­netic field shield­ing ef­fec­tive­ness of dif­fer­ent SRF ma­te­ri­als at high-par­al­lel field (up to 200 mT). De­sign and cur­rent de­vel­op­ment of this fa­cil­ity will be pre­sented here, as well as com­mis­sion­ing and fu­ture mea­sure­ments strate­gies for new SRF ma­te­ri­als.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML122  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML125 Efficiency Analysis of High Average Power Linacs for Environmental and Industrial Applications impedance, beam-loading, higher-order-mode, coupling 4970
 
  • M. Shumail, V.A. Dolgashev
    SLAC, Menlo Park, California, USA
 
  Funding: U.S. Department of Energy, HEP under Research Opportunities in Accelerator Stewardship: LAB 16-1438.
We pre­sent com­pre­hen­sive ef­fi­ciency equa­tions and use­ful scal­ing laws to op­ti­mally de­ter­mine de­sign pa­ra­me­ters for high ef­fi­ciency rf linacs. For the first time we have in­cor­po­rated the par­a­sitic losses due to the higher order cav­ity modes into the ef­fi­ciency analy­sis of the stand­ing wave (SW) and trav­el­ling wave (TW) ac­cel­er­a­tors. We have also de­rived the ef­fi­ciency equa­tions for a new kind of at­ten­u­a­tion-in­de­pen­dent-im­ped­ance trav­el­ling wave (ATW) ac­cel­er­a­tors where the shunt im­ped­ance can be op­ti­mized in­de­pen­dent of the group ve­loc­ity. We have ob­tained scal­ing laws which re­late the rf to beam ef­fi­ciency to the linac length, beam aper­ture ra­dius , phase ad­vance per cell, and the type of ac­cel­er­at­ing struc­ture: SW ver­sus TW, disk-loaded (DL) ver­sus nose-cone (NC). We give an ex­am­ple of using these scal­ing laws to de­ter­mine a fea­si­ble set of pa­ra­me­ters for a 10 MeV, 10 MW linac with 97.2% ef­fi­ciency.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML125  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML126 Design of High Efficiency High Power CW Linacs for Environmental and Industrial Applications cavity, simulation, solenoid, focusing 4974
 
  • M. Shumail, V.A. Dolgashev, C.M. Markusen
    SLAC, Menlo Park, California, USA
 
  Funding: US Department of Energy, Office of High Energy Physics, through Accelerator Stewardship Grant
We have used our ac­cel­er­a­tor de­sign tool­box equa­tions to de­sign three high ef­fi­ciency and high power CW ac­cel­er­a­tors for the en­vi­ron­men­tal and med­ical ap­pli­ca­tions. These are: 2MeV-1MW, 10MeV-10MW, and 10MeV-1MW linacs. These are all 10 m long, 1.3 GHz, π-mode stand­ing wave struc­tures with de­sign ef­fi­cien­cies of 96.8, 97.4 and 86.5 %, and op­ti­mal cou­pling co­ef­fi­cients of 32.9, 43.5, and 7.45, re­spec­tively. We pre­sent the de­tailed de­sign pa­ra­me­ters of these linacs. The study of sin­gle-bunch beam breakup for these linacs and the sim­u­la­tions re­sults from ABCI are also in­cluded. The ini­tial cav­i­ties are op­ti­mized ac­cord­ing to the speed of the elec­tron bunch to max­i­mize the shunt im­ped­ance. The plots of peak sur­face fields on these cav­i­ties are also pre­sented. We have also in­cluded a de­tailed ther­mal analy­sis of these linacs. Fi­nally, we pre­sent the re­sults of ASTRA sim­u­la­tions of the three linacs with mag­netic fo­cus­ing. We have also in­cluded the com­plete de­sign of rf-dis­trib­uted-cou­pling man­i­fold for the third linac along with the HFSS® sim­u­la­tion re­sults.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML132 Cryogenic Performance of an SRF Deflecting Cavity Fabricated Using Alternative Techniques for the ARIEL eLinac cavity, SRF, niobium, cryogenics 4992
 
  • D.W. Storey
    Victoria University, Victoria, B.C., Canada
  • R.E. Laxdal, Z.Y. Yao
    TRIUMF, Vancouver, Canada
 
  A 650 MHz SRF de­flect­ing mode cav­ity has been built and tested for use as a three-way beam sep­a­ra­tor in the ARIEL eLinac. The cav­ity op­er­ates in a TE-like mode, and has been op­ti­mized for high shunt im­ped­ance with min­i­mal lon­gi­tu­di­nal foot­print. The de­vice is the first SRF cav­ity to be fully fab­ri­cated in house at TRI­UMF. The re­quire­ments of the cav­ity al­lowed for the de­vel­op­ment of low cost man­u­fac­tur­ing tech­niques, in­clud­ing the use of Re­ac­tor grade nio­bium and at­mos­pheric pres­sure TIG weld­ing. The cav­ity has been fab­ri­cated and tested at 4 K and 2 K, ob­tain­ing a 4 K Qo of 4·108 at the op­er­at­ing volt­age of 0.3 MV, sur­pass­ing the goal volt­age and qual­ity fac­tor re­quired for op­er­a­tion. Re­sults of the cryo­genic tests of the cav­ity will be pre­sented here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML132  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXGBD3 Application of Carbon Nanotube Wire for Beam Profile Measurement of Negative Hydrogen Ion Beam electron, rfq, operation, beam-loading 5022
 
  • A. Miura, K. Moriya
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Miyao
    KEK, Ibaraki, Japan
 
  A wire scan­ner mon­i­tor using metal­lic wire is re­li­ably em­ployed for the beam pro­file mea­sure­ment in the J-PARC linac. Be­cause the load­ing of neg­a­tive hy­dro­gen (H) ion beam on a wire in­creases under high-cur­rent beam op­er­a­tion, we focus on using a high-dura­bil­ity beam pro­file mon­i­tors by at­tach­ing an­other wire ma­te­r­ial. Car­bon nan­otubes (CNT) are made of graphite in a cylin­dri­cal shape and have a ten­sile strength not less than 100 times that of steel. The elec­tric con­duc­tiv­ity has higher than that of met­als, and hard­ness is en­dured ther­mally around 3000°C in a vac­uum cir­cum­stance. We ap­plied the CNT wires to WSM and mea­sured trans­verse pro­files with a 3-MeV and 191-MeV H beam. As a re­sult, we ob­tained the equiv­a­lent sig­nal lev­els taken by car­bon wire made of poly­acry­loni­trile with­out any dam­age. In this paper, the sig­nal re­sponse when the CNT is ir­ra­di­ated with an H beam and the re­sult of beam pro­file mea­sure­ment. In ad­di­tion, the sur­face of CNT after 3-MeV beam op­er­a­tion was ob­served.  
slides icon Slides FRXGBD3 [2.558 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-FRXGBD3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXGBF1 Re-Acceleration of Ultra Cold Muon in J-PARC Muon Facility rfq, experiment, acceleration, emittance 5041
 
  • Y. Kondo, K. Hasegawa, T. Morishita
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • S. Bae, H. Choi, S. Choi, B. Kim, H.S. Ko
    SNU, Seoul, Republic of Korea
  • Y. Fukao, K. Futatsukawa, N. Kawamura, T. Mibe, Y. Miyake, M. Otani, K. Shimomura, T. Yamazaki, M. Yoshida
    KEK, Tsukuba, Japan
  • N. Hayashizaki
    RLNR, Tokyo, Japan
  • T. Iijima, Y. Sue
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
  • H. Iinuma, Y. Nakazawa
    Ibaraki University, Ibaraki, Japan
  • K. Ishida
    RIKEN Nishina Center, Wako, Japan
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto, Japan
  • Y. Iwata
    NIRS, Chiba-shi, Japan
  • R. Kitamura
    University of Tokyo, Tokyo, Japan
  • S. Li
    The University of Tokyo, Graduate School of Science, Tokyo, Japan
  • G.P. Razuvaev
    Budker INP & NSU, Novosibirsk, Russia
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Funding: This work is supported by JSPS KAKENHI Grant Numbers JP15H03666, JP16H03987, and JP16J07784.
J-PARC is de­vel­op­ing the reac­cel­er­a­tion sys­tem of the ultra slow (30 meV) muon (USM) ob­tained by two-pho­ton laser res­o­nant ion­iza­tion of muo­nium atoms. The muon beam thus ob­tained has low emit­tance, meet­ing the re­quire­ment for the g-2/EDM ex­per­i­ment. J-PARC E34 ex­per­i­ment aims to mea­sure the muon anom­alous mag­netic mo­ment (g-2) with a pre­ci­sion of 0.1 ppm and search for EDM with a sen­si­tiv­ity to 10-21 e cm. The USM's are ac­cel­er­ated to 212 MeV by using a muon ded­i­cated linac to be a ultra cold muon beam. The muon LINAC con­sists of an RFQ, a in­ter-dig­i­tal H-mode DTL, disk and washer cou­pled cell struc­tures, and disk loaded struc­tures. The ul­tra-cold muons will have an ex­tremely small trans­verse mo­men­tum spread of 0.1% with a nor­mal­ized trans­verse emit­tance of around 1.5 pi mm-mrad. Proof of the slow muon ac­cel­er­a­tion scheme is an es­sen­tial step to re­al­ize the world first muon linac. In Oc­to­ber 2017, we have suc­ceeded to ac­cel­er­ate slow neg­a­tive muo­ni­ums gen­er­ated using a sim­pler muo­nium source to 89 keV. In this talk, pre­sent de­sign of the muon linac and the re­sult of the world first muon ac­cel­er­a­tion ex­per­i­ment are re­ported.
 
slides icon Slides FRXGBF1 [8.373 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-FRXGBF1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)