Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPML039 | Comparison of Two Types of Steerers Applied in Proton Therapy Gantry | quadrupole, proton, simulation, radiation | 488 |
|
|||
A proton therapy project HUST-PTF (HUST Proton Therapy Facility) based on a 250MeV isochronous superconducting cyclotron is under development in Huazhong University of Science and Technology (HUST). Based on the optics design of the gantry, the steering magnets need to be placed in a compact structure, as well as meet the magnetic field requirement with a maximum deflection angle of ±5mrad@250MeV. In the paper, two types of steerers (O-shape and H-shape) were introduced and discussed in detail. The magnetic fringe field interference effects between quadrupoles and steerers were studied by using OPERA/TOSCA code. The result based on the contrastive analysis will give us a valuable reference to choose suitable steerers for proton therapy beamline. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML039 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEYGBF3 | Nb3Sn Multicell Cavity Coating at JLab | cavity, niobium, factory, SRF | 1798 |
|
|||
Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics. Following encouraging results with Nb3Sn-coated R&D cavities, the existing coating system was upgraded to allow for Nb3Sn coating of CEBAF accelerator cavities. The upgrade was designed to allow Nb3Sn coating of original CEBAF 5-cell cavities with the vapor diffusion technique. Several CEBAF cavities were coated in the upgraded system to investigate vapor diffusion coatings on extended structures. Witness samples coated along with the cavities were characterized with material science techniques, while coated cavities were measured at 4 and 2 K. The progress, lessons learned, and the pathforward are discussed. |
|||
![]() |
Slides WEYGBF3 [2.381 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEYGBF3 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMF041 | Insights into the Role of C, N, and O Introduced by Low Temperature Baking on Niobium Cavity Performance | cavity, niobium, experiment, ECR | 2455 |
|
|||
Previous experiments have shown that introducing nitrogen gas during low temperature bakes (120-160 C) of niobium cavities introduces C, N, and O impurities to the first 10-100 nm of the surface. This new treatment results in higher quality factors and even 'anti-Q-slope' in some cases. However, it is not entirely clear the role that each of these impurities plays in the performance enhancement of the cavities. It has been suggested that interstitial N within the first few nm of the surface is solely responsible for the observed enhancement, but little work has been done on the role of C and O. Because both C and O are abundant in much higher quantities than N near the surface, it is important to understand whether they are beneficial or detrimental to cavity performance. We provide further insight into the effects of C and O on cavity performance by baking in an ambient atmosphere rich in CO2 as opposed to N2. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMK015 | Optimization of Vertical Electro-Polishing Process: Experiments with Updated Cathode on Single-Cell Cavity and Performance Achieved in Vertical Test | cavity, cathode, SRF, linac | 2662 |
|
|||
Marui Galvanizing Co.Ltd., and CEA have been studying Vertical Electro-Polishing (VEP) on Nb single-cell accelerating superconducting accelerator cavity with the goal of mass-production and cost-reduction, in collaboration with KEK within TYL-FJPPL Particle Physics Laboratory. Marui has invented and patented a rotative cathode called ‘i-Ninja'. The version 5 has been tested for the first time in Europe at CEA Saclay. The four wings of the cathode remove efficiently, bubbles of hydrogen, and the chosen parameters make it possible to achieve better surface and uniform material removal compared to VEP with a fixed cathode. The effect of the temperature of the cavity walls on current oscillations has been precisely studied. Two single-cell cavities have been electro-polished and tested at 2 K in vertical cryostat and the results will be presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMK015 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPML016 | Development of Nb3Sn Coatings for Superconducting RF Cavities at Fermilab | cavity, SRF, factory, network | 2718 |
|
|||
Nb3Sn films are a promising alternative material for su-perconducting RF cavities, with proven high quality factors at medium fields and predictions for increased superheating field as well. In this contribution, we de-scribe the latest results from the Fermilab Nb3Sn SRF program. Early experiments have been focused on single cell 1.3 GHz cavities. We briefly review efforts to bring the parameters used in the coating process into a range where they produce uniform surfaces without regions showing signs of excess tin or thin/uncoated areas. We then present the latest cavity results, after modifications to the coating recipe based on feedback from film appear-ance and RF performance. These results show high Q0 at medium fields and a maximum field of ~18 MV/m. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAL036 | Nb3Sn Thin Films for the Production of Higher Gradient SRF Cavities at Reduced Cost | cavity, niobium, SRF, site | 3716 |
|
|||
High gradient superconducting cavities (SRF) will be needed for future accelerators. The higher gradient can achieve the high energy with fewer cavities. However the accelerating field of niobium cavities is limited by the peak magnetic field on the cavity surface. Cavities coated with Nb3Sn have a significantly larger Hc2 allowing the cavity to achieve a larger gradient. Measurements of Nb3Sn coated cavities have achieved about half the theoretical predicted gradient. It is possible to improve Nb3Sn plated cavity performance. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL036 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAL118 | Critical Fields of SRF Materials | niobium, cavity, FEL, interface | 3921 |
|
|||
Nb3Sn and NbTiN are two potential alternative materials to niobium for superconducting RF cavities. In this study direct measurements of the magnetic penetration depth using the low energy muon spin rotation technique are presented, from which the lower critical field and the superheating field are derived. Comparison with RF data confirms that the lower critical field is not a fundamental limitation and predict a potential performance clearly exceeding current state of the art of niobium technology if the superheating field can be achieved. As a potential pathway to avoid premature vortex penetration and reaching the superheating field it is suggested to use a bilayer structure with the outer layer having a larger magnetic penetration depth. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL118 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAL130 | Effect of Deposition Temperature and Duration on Nb3Sn Diffusion Coating | SRF, cavity, niobium, experiment | 3950 |
|
|||
Funding: Partially authored by Jefferson Science Associates under contract no. DE¬AC05¬06OR23177. Work at College of William & Mary supported by Office of High Energy Physics under grant SC0014475. Nb3Sn is a potential candidate to replace Nb in SRF accelerator cavities to reduce cost and advance perfor-mance. Tin vapor diffusion is the preferred technique to realize such cavities by growing a few microns thick Nb3Sn coating on the interior surface of the niobium cavity. The coating process typically uses temperatures of 1100-1200 °C for 3-6 hours. It is important to better understand the coating process, and optimize the coating parameters to overcome the current limitation on the performance of Nb3Sn coated SRF cavities. We investi-gate Nb3Sn coatings prepared in the temperature range of 900-1200 °C and duration of 3 - 12 hours using various material characterization tools. Variation of these pa-rameters appears to have notable effect on microstructure and topography of the obtained surface. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL130 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAL131 | Studies of Electropolishing and Oxypolishing Treated Diffusion Coated Nb3Sn Surfaces | cavity, niobium, SRF, experiment | 3954 |
|
|||
The Nb3Sn-coated cavities aim to enhance perfor-mance and significantly reduce cost. Their fabrication involves tin vapor diffusion coating of Nb3Sn on the interior surface of a Nb cavity. Controlled removal of first few layers to obtain a smoother and cleaner surface could be desirable to improve the high field RF perfor-mance. Our first results from the application of elec-tropolishing and oxypolishing techniques on Nb3Sn-coated surfaces indicated reduced surface roughness, and the surface composition appeared nominally unchanged. Systematic studies explore the effect of different polish-ing parameters into the roughness and composition. We present the latest results from SEM/EDS and AFM studies of Nb3Sn-coated samples treated with electropolishing and oxypolishing. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL131 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||