Paper | Title | Other Keywords | Page |
---|---|---|---|
MOZGBF1 | FRIB Front End Construction and Commissioning | rfq, MMI, ECR, operation | 58 |
|
|||
The Facility for Rare Isotope Beams (FRIB) is based upon the CW, SC driver linac to accelerate all the stable isotopes up to more than 200 MeV/u with a beam power of 400 kW. The front end (FE) commissioning shall start in 2017. This invited talk presents the FRIB front end design, and current status of FRIB front end commissioning, including beam properties and energy, and their relationship to FRIB operational requirements. | |||
![]() |
Slides MOZGBF1 [2.965 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBF1 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMF021 | Ground Motion Measurement and Analysis for HEPS | ground-motion, site, emittance, lattice | 125 |
|
|||
HEPS have very challenging beam stability require-ments. Special cares are mandatory in developing site vibration specifications, stable building design concepts, and passive and active ways to minimize effects on the stability of the photon beam and critical accelerator and beamline components caused by ambient ground motion sources. However, among all these work, reasonable as-sessment of the vibration induced beam instability has to be the first step. This paper will focuses on the measure-ment results of the ground motion on HEPS site, the es-tablishment of reasonable beam dynamic models, the influences of ground motion to the beam of main ring. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPML027 | Status of Carbon Commissioning of the MedAustron Therapy Accelerator | MMI, synchrotron, linac, rfq | 457 |
|
|||
The MedAustron therapy accelerator is intended to treat cancer patients with proton and carbon beams of 62-252 MeV and 120-400 MeV respectively. The accelerator features three Supernanogan ECR ion sources, a 400 keV/u RFQ and a 7 MeV/u interdigital H-mode Linac. A middle energy beam transfer line also serves as injector into a 77m synchrotron from which the beam may be transferred to 4 different irradiation rooms, 3 of which are dedicated to medical treatment. The therapy accelerator is in clinical operation since end 2016 and is currently solely configured for the use of protons. The next clinical objective is to enable treatments using C6+ ions which triggered the carbon commissioning of the accelerator in 2017. This paper will discuss the latest results from carbon commissioning in the different sections of the accelerator, achieved efficiencies and outlook on future carbon activities. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML027 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUYGBE4 | Optically-pumped Polarized H− and 3 He++ Ion Sources Development at RHIC | injection, polarization, electron, solenoid | 644 |
|
|||
The RHIC Optically-pumped Polarized H− Ion Source (OPPIS) upgrade with the atomic beam hydrogen injector and the He-ionizer cell was commissioned for operation in the Run-2013. The use of the high brightness primary proton source resulted in higher polarized beam intensity and polarization delivered for injection to Linac-Booster-AGS-RHIC accelerator complex. The proposed polarized 3He++ acceleration in RHIC and future electron- ion col-lider (eRHIC) will require about 2·1011 ions in the source pulse. A new technique had been proposed for production of high intensity polarized 3He++ ion beam. It is based on ionization and accumulation of the 3He gas (polarized by optical-pumping and metastability-exchange technique in the high magnetic field of a 5.0 T) in the Electron Beam Ion Source (EBIS). We present a status of the 3He++ ion source development. | |||
![]() |
Slides TUYGBE4 [4.596 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBE4 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUYGBF3 | An EBIS-Based Low-Energy Accelerator for Fine-Focussed Ion Beams | electron, target, acceleration, emittance | 647 |
|
|||
Technologies based on focused ion beams have become indispensable for research institutions as well as commercial laboratories and high-tech production facilities (micro- and nanotechnology, semiconductor technology). We report on a compact setup combining an Electron Beam Ion Source (EBIS), a Wien filter for ion species separation, and a fine focusing ion acceleration column capable of producing ion beams with beam diameters in the micrometer range at ion beam energies up to the MeV range. Almost all elements of the periodic system can be injected into the EBIS to produce a broad spectrum of ion charge states with only one ion source. The beam energy of a selected ion species can easily be varied by changing the electric potential of the EBIS drift tube in which the ions are generated, resulting in different implantation depths in various solids. We present studies on beam diameter and emittance, available charge states, and SEM imaging as application. | |||
![]() |
Slides TUYGBF3 [3.972 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBF3 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAF006 | Operation of RHIC Injectors with Isobaric Ruthenium and Zirconium Ions | laser, target, booster, injection | 672 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The FY18 RHIC physics program calls for Ru-Ru and Zr-Zr collisions at 100GeV using isobaric Ruthenium and Zirconium ions, each having 96 nucleons. In the injector chain, these two ions have to come from tandem and EBIS source, respectively. To reduce systematic errors in the detector, the luminosity between the two species combinations is matched as closely as possible, and the species are switched frequently. Several bunch merges are needed in the Booster and AGS to reach the desired bunch intensity for RHIC. The setup and performance of Booster and AGS with these ions are reviewed. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF006 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAF062 | Parametric Study of the Beam Footprint Characteristics on the ESS Target | target, linac, HOM, operation | 866 |
|
|||
The beam delivery system of the ESS linac utilizes fast oscillating triangular wave dipole magnets of two transverse planes (raster magnets) to spray each long beam pulse (2.86 ms) over a rectangular cross-check pattern on the target. The characteristics of this beam footprint on the target are determined by the amplitudes of the raster magnets, RMS sizes of the beam and, in some case, the tail of the beam profile and have to satisfy the requirements from the target for the peak density as well as the fraction outside of a given rectangular boundary. This paper presents approximate closed-form expressions for the characteristics of the beam footprint and, based on the presented expressions, explores the parameter space of the raster magnets and beam parameters for achieving the optimal characteristics of the beam footprint. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF062 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAF066 | Transverse Dynamics and Software Integration of the ESS Low Energy Beam Transport | solenoid, simulation, MMI, proton | 882 |
|
|||
The first part of the ESS linac, also called front-end, comprising the Ion Source and the Low Energy Beam Transport (LEBT) section, will be installed and commissioned in 2018. The LEBT is used to focus and correct the proton beam trajectory and clean the head and tail of the proton pulse from the flat top before entering the RFQ. During the ion source and LEBT commissioning a full beam characterization at the RFQ entrance interface is planned. It is thus important to have an application in the control room able to display quantities measured by the diagnostic devices and also to quickly run a simulation including not only centre of mass dynamics but also envelope. This paper presents the efforts in modelling the LEBT elements, as accurately as possible, and implementing the dynamics calculation and integration with diagnostics tools. The final result is a Java FX GUI based on the OpenXAL library. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF066 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAF067 | Beam Physics Analysis of the ESS RFQ Non-Conformities | rfq, alignment, emittance, radio-frequency-quadrupole | 886 |
|
|||
During the fabrication of an RFQ, deviation from the perfect geometry will occur during assembling, brazing and machining the different parts. These geometrical defects will also impact the theoretical inter-vane voltage, given by the beam dynamics, even if tuners can correct partially the effect of the manufacturing. The combination of geometrical and voltage errors will alter the electro-magnetic field in the axis region leading to a degradation of the beam quality. The study proposes to expand the method to treat the voltage errors presented in * , in which the deviation from the theoretical parameters is represented by a sum of periodic functions of z, to the machining errors and to include positioning and alignment errors. The results of the error study will be presented. Then, using the results of the fabrication control by metrology, we will analyze the impact of the real RFQ geometry on the beam transport and compare the results will the prediction from the error study.
* A. Ponton et al., "Voltage errors studies in the ESS RFQ", presented at the 7th Int. Particle Accelerator Conf. (IPAC'16), Busan, Korea, May 2016, paper THPMB039. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF067 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAL017 | Performance and Status of the J-PARC Accelerators | operation, target, linac, status | 1038 |
|
|||
The J-PARC is a high intensity proton facility and the accelerator consists of a 400 MeV linac, a 3 GeV Rapid Cycling Synchrotron (RCS) and a 30 GeV Main Ring Synchrotron (MR). Regarding 3 GeV beam from the RCS, we delivered it at 150 kW to the materials and life science experimental facility (MLF), for the neutron and muon users. The beam powers for the neutrino experiment at 30 GeV was 420 kW in May 2016, but increased to 470 kW in February 2017 thanks to the change and optimization of operation parameters. For the hadron experimental facility which uses a slow beam extraction mode at 30 GeV, we delivered beam at a power of 37 kW, after the recovery from a trouble at an electro static septum. We have experienced many failures and troubles to impede full potential and high availability. In this report, operational performance and status of the J-PARC accelerators are presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL017 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAL025 | Preliminary Test of the Beam Transport System for Li-8 Production Target Ion Source | target, beam-transport, proton, neutron | 1054 |
|
|||
Funding: This work has been supported by through KOMAC (Korea Multi-purpose Accelerator Complex) operation fund of KAERI by MSIT (Ministry of Science and ICT) A prototype target ion source was developed in order to produce a radioactive beam such as Li-8 as a part of the goals to establish a platform for secondary particle production at KOMAC (Korea Multi-purpose Accelerator Complex). A beam transport system from the 100-MeV linac to prototype target ion source was designed and constructed. It consists of 8 quadrupole magnets, 2 bending magnets and beam diagnostic devices such as AC current transformers, beam position monitors, beam profile monitors and beam loss monitors. Details on the beam transport system and test results are presented. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL025 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAL040 | Ion Beam Studies in the FRIB Front End | space-charge, ECR, coupling, optics | 1094 |
|
|||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Cooperative Agreement PHY-1102511. The commissioning of the FRIB Front End with 12 keV/u argon beam started in the spring of 2017*. Beam profile monitors were used to evaluate RMS Twiss parameters in various locations along the beam line. Beam dynamics in the LEBT was simulated using full 3D model of beam optics elements in the tracking codes. We found a good consistency between measured and simulated data. A beam image viewer was used to measure the beam density distribution in the real space. A hollow beam structure was observed in the Ar9+ beam with the current of ~20 eμA. Extensive beam dynamics study with 3D tracking code suggests that the hollow density distribution can be generated by space charge effects of the multi-component, multi-charge state ion beam just after the ECR ion source. This paper reports studies of a mechanism that can produce a hollow beam structure. *E. Pozdeyev, invited talk at this conference |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL040 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAL046 | Construction, Test, and Operation of a new RFQ at the Spallation Neutron Source (SNS) | rfq, operation, linac, vacuum | 1113 |
|
|||
Funding: * This work was supported by SNS through UT-Battelle, LLC, under contract DEAC0500OR22725 for the U.S. DOE. A new RFQ was successfully installed recently in the SNS linac to replace the old RFQ that was used for more than a decade with certain operational limitations. The new RFQ was completely tested with H− ion source in the Beam Test Facility (BTF) at SNS. For robust operation of SNS at 1.4 MW, the full design beam power and to satisfy the beam current requirement of the forthcoming SNS proton power upgrade (PPU) project, an RFQ with enhanced performance and reliability was needed. The new RFQ was built to have the beam parameters identical to those of the first RFQ but with improved RF and mechanical stability and reliability for continuous operation of neutron production. The tests confirmed that the new RFQ can run with high beam transmission efficiency at around 90 % and notably improved operational stability. In this paper, construction, test, installation, and operation of the new RFQ in SNS are discussed with the performance improvements. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL046 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAL057 | Preliminary Experiments in Caesium Delivery and Gettering on the ISIS Vespa Source | experiment, plasma, operation, site | 1144 |
|
|||
Caesium capture by graphite at various temperatures 20- 300°C in the VESPA ion source test stand was explored in a preliminary experiment. An accompanying experiment was set up to evaluate the control of caesium boiler delivery in the various ISIS penning sources. Results indicate Cs flux fluctuates at constant settings, which must be accounted for to interpret graphite gettering results. Future studies to identify the cause of fluctuations are considered, and a more rigorous experiment to study the use of graphite is introduced. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL057 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAL061 | Target and Ion Source Development for Better Beams in the ARIEL Era | target, TRIUMF, ISOL, optics | 1155 |
|
|||
Any ISOL facility pushing the boundaries of nuclear physics must be able to provide cutting-edge ion beams to its users - beams of isotopes far from stability, with few contaminants, that may be difficult to extract from an ISOL target. The development of these pure, exotic beams must be supported by continuing research and development on targets and ion sources. In the ARIEL era, new target/ion source geometries and operational modes will provide new opportunities which can only be exploited with time for development. To prioritize this, TRIUMF proposes to build a dedicated test stand for target and ion source research which will model the critical features of the new ARIEL target stations. This stand will provide a testing ground for methods of increasing efficiency and selectivity, such as investigations of new surface ion source [1,2] and FEBIAD ion source [3] designs. In addition, this will provide a development environment for new beams, either from new target materials, or through techniques such as extracting molecular beams. In order to maximize the gain from these investigations in on-line operation, the ion optical properties of the final beam will be investigated concurrently. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL061 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPML016 | High-Intensity Magnetron H− Ion Sources and Injector Development at BNL Linac | operation, rfq, injection, linac | 1564 |
|
|||
The BNL magnetron-type H− ion source and the injec-tor are being upgraded to higher duty-factor as a part of Linac intensity increase project [1]. The BNL magnetron source presently delivers 110 -120 mA H− ion current with 650 us pulse duration and 7 Hz repetition rate. The pulse duration was increased to 1000 μs by modifications of the gas injector pulsed valve and the use of the new arc-discharge power supply (with the arc-current stabilization circuit) which improved current stability and reduced current noise. The Low Energy Beam Transport (LEBT) lines combine two beams. The first line is the polarized OPPIS (Optically Pumped Polarized H− Ion Source) beam-line and the second is the high-intensity un-polarized beam-line from the magnetron source, which transports beam to the RFQ after the passage of 45 degree bending magnet. The second magnetron source was installed in the straight LEBT section in 2017, in which the polarized OPPIS beam was not planned. In this, optimal for H− beam transport configuration, the beam intensity was increased to 80 mA after the RFQ. The experience of the two sources layout operation (one source in operation the second source in standby) might be useful for facilities with the high downtime cost (like high-energy collider LHC or multi-user facilities like SNS). | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPML030 | Optimisation of D- Ion Production in a Multicusp Ion Source | plasma, electron, extraction, dipole | 1609 |
|
|||
D-Pace's multicusp ion source achieves high beam cur-rents for negative hydrogen ions in both the TRIUMF-licensed filament-powered ion source (~18 mA) and the University of Jyväskylä-licensed RF-powered ion source (~8 mA) [1]. It is well known that ion sources producing negative deuterium ions achieve lower beam currents compared to similar negative hydrogen ion sources and indeed we have found that negative deuterium ion beam currents in our sources are typically 1/3 that of negative hydrogen beam currents. The reasons behind this are not completely understood, but factors such as the magnetic field strength and the electron temperature are believed to play a major role and offer the potential for significant optimisation. In this paper, we look into the issues surrounding swapping of deuterium for hydrogen in our ion source by studying the properties of plasmas and extracted currents with different magnetic field strengths and gas flows. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML030 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPML051 | Studies of Collision and Compression of Pulsed Plasmas Generated by Coaxial Accelerators | plasma, electron, experiment, simulation | 1653 |
|
|||
This contribution is about our recent studies of collision and compression of plasma sheaths, generated by coaxial plasma accelerators. One application is the development of a pulsed ion source producing high ion currents, coming along with high electron densities. The experiment is built up of an energy storage with up to 1,35kJ with a 2% Hydrogen in Helium gas mixture as working gas. The small fraction of Hydrogen is necessary to use the linear Stark-broadening of the H-line to determine the electron density, which is in the range up to 1015cm-3. By the collision of two plasma sheaths in an angle of 180°, the electron density has been increased by a factor of 2.5 compared to the single plasma sheath. As an alternative, the compression of the plasma by funnel geometries has been studied. As has been found, the achieved electron densities are more than a magnitude higher, compared to the values of the plasma collision. Thus, the H-line is broadened too high to be used. Alternatively, the broadening of a copper line by the quadratic Stark-effect has been calibrated and used to determine those high electron densities of about 1018cm-3. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML051 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPML070 | Laser Ablation Plasma with Solenoid Field Confinement | laser, solenoid, plasma, target | 1706 |
|
|||
Funding: This work is supported by National Natural Science Foundation of China (Grant Nos. 11722547, 11605263 and 11505257) and West Light Foundation of The Chi-nese Academy of Sciences (Grant Nos. 29Y637020) A Laser Ion Source (LIS) can produce high charge state and high intensity ion beams (~emA), especially refracto-ry metallic ion beams, which makes it a promising candi-date as an ion source for heavy ion cancer therapy facili-ties and future accelerator complexes, where pulsed high intensity and high charged heavy ion beams are required. However, it is difficult for LIS to obtain a long pulse width while ensuring high current intensity, thus limiting the application of LIS. To solve the conflict, magnetic fields are proposed to confine the expansion of the laser produced plasma. With a solenoid along the normal direc-tion to the target surface, the lateral adiabatic expansion of the laser ablation plasma is suppressed which extends the pulse width of the ion beam effectively. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML070 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPML073 | Ion Source and Low Energy Beam Transport Line Final Commissioning Step and Transfer from INFN to ESS | MMI, proton, vacuum, controls | 1712 |
|
|||
At the Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud (INFN-LNS), the beam commissioning of the high intensity Proton Source for the European Spallation Source (PS-ESS) was completed in November 2017. All requirements have been satisfied and certified by the European Spallation Source (ESS). In the last step of the commissioning a complete characterization of the source has been carried out and some results are hereinafter reported. The shipment of the source was done in December 2017, followed by the installation in January while the beam commissioning is foreseen during summer 2018. The paper describes the final commissioning steps at INFN-LNS, the procedure adopted for a safe transfer of the equipment, the transfer of knowledge needed for the operation and the maintenance. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML073 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPML075 | Development of Target/ion Source for Li-8 Beam at KOMAC* | target, proton, operation, vacuum | 1718 |
|
|||
Funding: This work has been supported through KOMAC operation fund of KAERI by MSIT and the NRF of Korea grant funded by the Korea government (MSIT) (No. NRF-2017M2A2A6A02071070). A target/ion source (TIS) for Li-8 isotope beam has been developed at Korea Multi-purpose Accelerator Complex (KOMAC). The TIS was designed based on various numerical studies such as Monte Carlo simulation for Li-8 yield estimation, an ionization efficiency calculation of a surface ionization ion source and thermal analysis by a power balance model. Then, it was fabricated that a prototype of the TIS which consists of a beryllium oxide (BeO) target, a graphite target container, a tantalum target heater and a rhenium surface ion source. Also, the target heater and the surface ion source were heated to designed operation temperatures. In addition, it has been designed and constructed that an online test facility including Li-8 beam optics and diagnostics. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML075 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPML077 | Development of Physical Processes in Geant4 for Simulation of ISOL Target-Ion-Source System | target, simulation, proton, ISOL | 1724 |
|
|||
Funding: This work has been supported through KOMAC operation fund of KAERI and the NRF of Korea grant funded by the Korea government (MSIT) (No. NRF-2017M2A2A6A02071070). Geant4 physical processes for simulating diffusion and effusion of radioactive ions in matter have been developed for optimizing ISOL target-ion-source (TIS) system. The developed processes simulate motions of radioactive ions with sub-eV kinetic energy in the TIS geometry. The processes consist of diffusion, effusion, and radioactive decay modules, and they are designed to work seamlessly with other implemented physics lists, extending capability of the Geant4 toolkit to more complicated applications in the field of nuclear physics. The diffusion probability is analytically calculated by using the well-known Fick's formula. The effusive flow of neutral atoms is interpreted in terms of kinetic molecular theory of gases, where the interaction between atoms and the wall of a target container is described by employing Lorentz-Lambert model. By the help of newly implemented processes, it is able to simulate the release of radioactive ions from the irradiation of a proton beam on the TIS system with different geometrical parameters in a single environment. Here, we present the status of the development and plans for further improvements. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML077 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAF087 | The First Experience and Results of Beam Diagnostics Deployment at the ESS Accelerator | MMI, electron, diagnostics, emittance | 2054 |
|
|||
The European Spallation Source (ESS) will produce neutrons for science by subjecting a tungsten target to the high-intensity proton beam from a superconducting linear accelerator. A complete suite of beam diagnostics will enable tuning, monitoring and protection of the accelerator during commissioning, studies and operation. As an initial step toward neutron production, the Ion Source and the 75 keV Low Energy Transport Line is installed on the ESS site in Lund, Sweden. To support the commissioning and characterization of this first beam-producing system, a subset of the full diagnostics suite is deployed. This includes the following equipment: a faraday cup, current transformers, an emittance measurement unit, beam-induced fluorescence monitors, and a doppler-shift spectroscopy system. All aspects of the deployment experience, from acceptance testing through installation, verification, and commissioning will be presented.
*Beam Instrumentation |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF087 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAF088 | Machine Protection Features of the ESS Beam Current Monitor System | machine-protect, electronics, electron, interface | 2058 |
|
|||
The BCM system of the European Spallation Source includes several machine protection features to ensure that the actual beam parameters will be consistent with the selected beam and destination modes. Differential current measurements with several ACCT pairs are foreseen to detect beam losses particularly in the low-energy linac where Beam Loss Monitors cannot be used. The ACCTs will also be used to check that no beam will be present in the sections downstream of a temporary beam dump. These measurements will then be used to stop the beam shortly after an abnormal condition has been detected by the BCM system. This will require some customized interfaces with the Timing System and the Machine Protection System as well as an optical interface for differential current measurement over large distances. Automatic setting of the machine protection thresholds and masking/unmasking of the interlocks based on the beam and destination modes are among the technical complexities. This paper gives an overview of the design including the most recent updates and discusses in more details the machine protection features of the BCM system. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF088 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAL033 | Development of Real-Time Mass Analysis System with Permanent Magnet for Ion Beam | extraction, permanent-magnet, ECR, simulation | 2236 |
|
|||
In order to analyze time variation of the ion species in a pulse, we are developing a mass analysis system that has multiple collector electrodes to detect several ion species simultaneously. Strong permanent magnets can generate 1T magnetic field and the size of the analyzing magnet system can be compact. The detected signals are scanned by a fast multiplexer. The scanning rate is 2 MHz, so that all electrode signals of the 16 channels are scanned in 8 μs period. In this paper, details of the design of the analysis system, and preliminary beam extraction test results with prototype of the system are described. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL033 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPML078 | Development of a Superconducting Double-Spoke Cavity at IMP | cavity, accelerating-gradient, SRF, niobium | 2869 |
|
|||
Superconducting multi-spoke cavities are well-known optional choice for acceleration of heavy ions in medium velocity regimes. The paper describes the design, fabrication and test results of the superconducting double-spoke cavity developed at IMP. After Buffered Chemical Polishing and High pressure Rinsing, one cavity has undergone high gradient RF testing at 4 K in the Vertical Test Stand. We present measurements of the quality factor as a function of accelerating field and maximum field on the surface. Accelerating gradient of more than 15 MV/m is reached with peak electric field of 61 MV/m, and peak magnetic field of 118 mT. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML078 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAL008 | A RFQ Cooler Development | rfq, emittance, quadrupole, injection | 3627 |
|
|||
Funding: INFN group 5 (exp. PLASMA4BEAM) The cooling of beams of exotic nuclei (both in energy spread and in transverse oscillations) is critical to downstream mass spectrometry devices and can be provided by collisions with light gases as in the Radio Frequency Quadrupole Cooler (RFQC). As in other traps, several electromagnetic systems can be used for beam deceleration confinement and deceleration, as a radiofrequency (rf) quadrupole, a magnetic solenoid and electrostatic acceleration. Since rf contributes both to beam cooling and heating, operational parameters should be carefully optimized. The LNL RFQC prototype is going to be placed inside the existing Eltrap solenoid, capable of providing a magnetic flux density component Bz up to 0.2 T, where z is the solenoid axis. Setup progress and related rf component development are reported; in particular simple matching boxes are discussed; the differential gas pumping system is also described. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL008 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPAL083 | A Test Facility for Developments in Ion Source Plasma Power Supplies | power-supply, controls, plasma, electronics | 3845 |
|
|||
A new test facility is being designed and constructed at the ISIS spallation neutron source, Rutherford Appleton Laboratory, for the purpose of developing and experimenting with new plasma power supply topologies and modes of operation. The test facility will allow better control of power supply parameters such as discharge pulse current and plasma ignition voltage along with the possibility for closed loop feedback control. The design and technical construction details are presented with an overview of the plasma power supply developments. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL083 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMK009 | Study on Improving Durability of Bialkali Photocathode for an RF-Gun with the CsBr Protective Layer | cathode, gun, electron, laser | 4310 |
|
|||
At Waseda University, we have been studying for high quality electron beam generation and developing variety of application experiments using 1.6 cells photocathode RF-gun. We are using photocathode as the electron source, which can generate high-performance electron beam such as low emittance, short pulse. The performance of photocathodes is evaluated mainly in terms of Quantum Efficiency (Q.E.) and the lifetime. Cs-Te photocathode used in the RF-Gun at Waseda University is known for high Q.E. with UV light and relatively longer lifetime among semiconducting photocathodes. For increasing the charge of electron beam and simplify the laser system, we started introducing CsK2Sb photocathode in the RF-gun which has light sensitivity in UV and visible range, and high Q.E. with green light. However, CsK2Sb photocathode has a difficulty in durability and we observed that it was not enough for long-term operation in the RF-gun. Then we plan to improve lifetime and durability of CsK2Sb photocathode by coating the cathode surface with CsBr thin film. In this conference, we report the result of lifetime measurement of CsK2Sb photocathode with CsBr thin film and future prospects. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK009 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPML009 | Polarized Deuteron Negative Ion Source for Nuclear Physics Applications | plasma, polarization, laser, electron | 4665 |
|
|||
The proposed U.S. Electron-Ion Collider (EIC) provides a unique tool to explore the next frontier in Quantum Chromodynamics, the dependence of hadron structure on the dynamics of gluons and sea quarks. Polarized beams are essential to these studies; understanding of the hadron structure cannot be achieved without knowledge of the spin. The existing EIC concepts utilize both polarized electrons and polarized protons/light ion species to probe the sea quark and gluon distributions. Polarized deuterons provide an especially unique system for study by essentially providing a combination of quark and nuclear physics. We note that there are currently no operational polarized deuteron beam sources in the United States. This polarized deuteron source can serve as a polarized deuteron injector for a future EIC, with additional applications in polarimetry and polarized gas targets for experiments at CEBAF or RHIC and would be very useful for our future facilities. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML009 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPML028 | Genetic Algorithms for Machine Optimization in the Fair Control System Environment | controls, software, framework, dipole | 4712 |
|
|||
Due to the massive parallel operation modes at the GSI accelerators, a lot of accelerator setup and re-adjustment have to be made by the operators during a beam time. With the FAIR project the complexity of the accelerator facility increases furthermore and for efficiency reasons it is recommended to establish a high level of automation for future operation. The PEP (parameter evolution project) has been launched at GSI operations group in 2017 to investigate the potential of a settings optimization using evolutionary Algorithms. The working proof of principle has already been tested at the Cryring injector. The latest improvements and the further Development of the Parameter Evolution Project will be shown. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML028 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPML041 | FEBIAD Ion Source Development at TRIUMF-ISAC | target, emittance, ISAC, TRIUMF | 4730 |
|
|||
The ISOL facility TRIUMF-ISAC utilizes a number of different ion sources to produce radioactive ion beams. Most isotopes are ionized using surface or resonant laser ionization, but these techniques are prohibitively inefficient for species with high ionization energies, such as noble gases and molecules. For these cases, the Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source can be used. The FEBIAD uses a hot cathode to produce electrons, which are accelerated through a potential (< 200 V) into the anode volume. Isotopes entering the resulting plasma undergo impact ionization and are extracted. Efforts are under way to better understand the physics and operation of the FEBIAD, using both theory and experiment. Recent measurements and simulations on the ISAC FEBIAD will be reported here. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPML059 | Re-Commissioning the Front End Test Stand Negative Hydrogen Ion Source, Beam Transport and Interlocks | rfq, vacuum, MMI, high-voltage | 4769 |
|
|||
The front end test stand (FETS) is a demonstrator for a future high intensity, high duty factor negative hydrogen (H') ion injector. With the radio-frequency quadrupole (RFQ) nearing installation, the ion source has been re-commissioned in preparation for long-term operation. The 3 MeV beam exceeds the radio-activation energy of common engineering materials, so radiation shielding has been erected. A new interlocking scheme has been signed-off which integrates the existing ion source high voltage area with the new shielding access points, to ensure that the machine can operate safely during beam production. The existing vacuum arrangement has been extended to in-clude the RFQ and medium energy beam transport (MEBT) line. A new programmable logic controller (PLC) has been built to operate the entire vacuum chain. The ion source high voltage equipment has been upgraded to minimise both spark rate and intensity. A collimating aperture and Faraday cup have been installed after the low energy beam transport (LEBT) section to ensure the beam is well aligned for injection into the RFQ. Re-commissioning the ion source has given a rugged shakedown of all these new systems before beam is required for the RFQ.
*scott.lawrie@stfc.ac.uk |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML059 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPML080 | Preliminary Results of a New High Brightness H− Ion Source Developed at TRIUMF | emittance, extraction, TRIUMF, high-voltage | 4839 |
|
|||
This paper describes the preliminary results of a high brightness ion source developed at TRIUMF, which is capable of producing a negative hydrogen ion beam (H−) of up to 5 mA of direct current. A 1.7 mm.mrad and 5 mm.mrad emittance(rms) is achieved for 500 uA and for 1 mA H-, respectively. Characteristics as well as a brief description regarding extraction issues of the source to date are also presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML080 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPML111 | Test of the Tune Measurement System Based on BBQ at HLS-II Storage Ring | betatron, storage-ring, experiment, controls | 4926 |
|
|||
Funding: Supported by the National Science Foundation of China (Grant No. 11705203, 11575181) The HLS-II storage ring is a crucial part of Hefei Light Source. Tune is one of the most important parameters of the electron storage ring, of which the tune measurement system is an integral component. In this paper, the design of a new tune measurement system based on BBQ (base band tune), is presented. Some experiments are performed to test this system. The new system is compared with the original system and the TBT (turn-by-turn) method respectively. The obtained results illustrate higher accuracy and higher stability for the new system. A new approach of calculating the betatron oscillation amplitude is proposed, and the betatron oscillation amplitudes in the normal running stage for the HLS-II storage ring are estimated at 95 nm (horizontal) and 60 nm (vertical). |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML111 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
FRXGBF3 | Perspectives in High Intensity Heavy Ion Sources for Future Heavy Ion Accelerators | heavy-ion, ECR, ECRIS, electron | 5047 |
|
|||
Driven by the development of next generation heavy ion accelerators such as IMP-HIAF, GSI-FAIR, RIKEN-RIBF, SPIRAL 2, JLEIC and so on that need very intense highly charged heavy ion beam injectors working at either pulsed or CW modes, intense research and development work towards more powerful ion sources have been made in different laboratories, which likewise has stimulated obvious advancement of the performances in recent years. However, even the best performing ion sources can't meet all the requirements. While the ion source researchers are tackling the next generation ion sources development, it is worth investigating the possibilities of other solutions, especially when very intense heavy ion beams are needed for the more intense and powerful heavy ion accelerators, for instance the driver accelerator to study inertial confinement fusion with heavy ion. This invited talk presents recent advancements of highly charged heavy ion sources, and discusses the other possible approaches for intense highly charged heavy ion beams for future heavy ion accelerators. | |||
![]() |
Slides FRXGBF3 [10.014 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-FRXGBF3 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||