Keyword: target
Paper Title Other Keywords Page
MOXGB2 ARIEL at TRIUMF: Science and Technology TRIUMF, ISAC, linac, cyclotron 6
 
  • J.A. Bagger, F. Ames, Y. Bylinskii, A. Gottberg, O.K. Kester, S.R. Koscielniak, R.E. Laxdal, M. Marchetto, P. Schaffer
    TRIUMF, Vancouver, Canada
  • M. Hayashi
    TRIUMF Innovations Inc., Vancouver, Canada
 
  The Advanced Rare Isotope Laboratory (ARIEL) is TRIUMF's flagship project to create isotopes for science, medicine and business. ARIEL will triple TRIUMF's rare isotope beam capability, enabling more and new experiments in materials science, nuclear physics, nuclear astrophysics, and fundamental symmetries, as well as the development of new isotopes for the life sciences. Beams from ARIEL's new 35 MeV, 100kW electron linear accelerator and from TRIUMF's original 500 MeV cyclotron will enable breakthrough experiments with the laboratory's suite of world-class experiments at the Isotope Separator and Accelerator (ISAC) facility. This invited talk will present an overview of TRIUMF, the ARIEL project, and the exciting science they enable.  
slides icon Slides MOXGB2 [65.004 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOXGB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZGBE1 Development of Gas Stripper at RIBF acceleration, plasma, electron, heavy-ion 41
 
  • H. Imao
    RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama, Japan
 
  Charge strippers are almost inevitable for accelerations in heavy-ion accelerator complex. The fixed solid strip-pers including carbon-foil strippers are difficult to be used in on-going or upcoming new-generation in-flight RI beam facilities, e.g., RIBF (RIKEN, Japan), FAIR (GSI, Germany), FRIB (NSCL/MSU, US), HIAF (IMP, China) and RAON (RISP, Korea). The He gas stripper developed at RIBF is the first successful stripper significantly be-yond the applicable limit of the fixed carbon-foil strip-pers. We discuss the development of the gas strippers at RIBF and overview the related new-generation strippers being developed in the world.  
slides icon Slides MOZGBE1 [11.797 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBE1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZGBE3 Primary Study of High-Power Graphene Beam Window vacuum, Windows, proton, scattering 47
 
  • H. Wang, C. Meng, H. Qu, D.H. Zhu
    IHEP, Beijing, People's Republic of China
  • X. Sun, P.C. Wang
    DNSC, Dongguan, People's Republic of China
 
  Beam windows are usually used to isolate vacuum or other special environments, which is a key device for high-power accelerators. Graphene has extremely high thermal conductivity, high strength and high transparency to high energy ions. It is highly suitable for beam windows if the technology is allowable. This paper will discuss the primary tests of graphene films, including vacuum per-formance and thermal conductivity performance, as well as the simulated performance of an assumed graphene window.  
slides icon Slides MOZGBE3 [1.751 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBE3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZGBE4 Overview of Fabrication Techniques and Lessons Learned with Accelerator Vacuum Windows vacuum, Windows, operation, site 51
 
  • C.R. Ader, M.W. McGee, L.E. Nobrega, E.A. Voirin
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract No. DE-AC02- 07CH11359 with the U.S. Department of Energy.
Vacuum thin windows have been used in Fermilab's accelerators for decades and typically have been overlooked in terms of their criticality and fragility. Vacuum windows allow beam to pass through while creating a boundary between vacuum and air or high vacuum and low vacuum areas. The design of vacuum windows, including titanium and beryllium windows, will be discussed as well as fabrication, testing, and operational concerns. Failure of windows will be reviewed as well as safety approaches to mitigating failures and extending the lifetimes of vacuum windows. Various methods of calculating the strengths of vacuum windows will be explored, including FEA.
 
slides icon Slides MOZGBE4 [2.155 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBE4  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZGBF2 Status of the FAIR Project proton, antiproton, cavity, dipole 63
 
  • P.J. Spiller, M. Bai, O. Boine-Frankenheim, A. Dolinskyy, F. Hagenbuck, C.M. Kleffner, K. Knie, S. Menke, C. Omet, A. Schuhmann, H. Simon, M. Winkler
    GSI, Darmstadt, Germany
  • J. Blaurock, M. Ossendorf
    FAIR, Darmstadt, Germany
  • I. Koop
    BINP SB RAS, Novosibirsk, Russia
  • D. Prasuhn, R. Tölle
    FZJ, Jülich, Germany
 
  The realization of the new Facility for Antiproton and Ion Research, FAIR at GSI, Germany, has advanced significantly. The civil construction process of the Northern part of the building complex, including the excavation of the SIS100 synchrotron tunnel has been launched end of 2017. On site of the GSI campus, major preparations and upgrade measures for the injector operation of the existing accelerator facilities are ongoing and will be completed mid of 2018. The shielding of the SIS18 accelerator tunnel has been enhanced for the booster operation at high repetition rates and high intensity Proton beams. Two new transformer stations were set-up and commissioned which will provide the required pulse and common power for FAIR. All major contracts for series production of SIS100 components have been signed and a large number of the superconducting SIS100 magnets has been produced and accepted. Major testing infrastructures for superconducting magnets of SIS100 and Super-FRS have been set-up at JINR, CERN and GSI. Also for all other FAIR accelerator systems, the procurement of the components is progressing well  
slides icon Slides MOZGBF2 [4.266 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBF2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZGBF5 Analysis of Polarization Decay at RHIC Store polarization, resonance, emittance, lattice 76
 
  • H. Huang, P. Adams, E.C. Aschenauer, A. Poblaguev, W.B. Schmidke
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
There are polarization losses in RHIC store due to various sources, such as emittance growth and higher order spin resonances. The beam polarization was measured several times over a store by the p-carbon polarimeters situated in both rings. These provide information on the polarization decay over time and also polarization profile development over time. A polarized jet was also used to monitor the polarization continuously through store, though with limited statistical accuracy. These polarization measurements and emittance measurements from the IPM are analyzed and the polarization loss from different sources are reviewed.
 
slides icon Slides MOZGBF5 [4.526 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBF5  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF046 Simulation of Hydrodynamic Tunneling Caused by High Energy Proton Beam in Copper through Coupling of FLUKA and Autodyn simulation, proton, collider, coupling 204
 
  • Y.C. Nie, A. Bertarelli, F. Carra, C. Fichera, L.K. Mettler, R. Schmidt, D. Wollmann
    CERN, Geneva, Switzerland
 
  For machine protection of high-energy colliders, it is important to assess potential damages caused to accelerator components in case large number of bunches are lost at the same place. The numerical assessment requires an iterative execution of an energy-deposition code and a hydrodynamic code, since the hydrodynamic tunneling effect will likely play an important role in the beam-matter interactions. For proton accelerators at CERN and for the Future Circular Collider (FCC), case studies were performed, coupling FLUKA and BIG2. To compare different hydrocodes and not to rely only on BIG2, FLUKA and a commercial tool, Autodyn, have been used to perform these simulations. This paper reports a benchmarking study against a beam test performed at the HiRadMat (High-Radiation to Materials) facility using beams at 440 GeV from the Super Proton Synchrotron. Good agreement has been found between the simulation results and the test as well as previous simulations with FLUKA and BIG2, particularly in terms of penetration depth of the beam in copper. This makes the coupling of FLUKA and Autodyn an alternative solution to simulating the hydrodynamic tunneling. More case studies are planned for FCC and other high-beam-power accelerators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF055 Update of the CLIC Positron Source positron, linac, electron, simulation 236
 
  • Y. Han, L. Ma
    SDU, Shandong, People's Republic of China
  • C. Bayar
    Ankara University, Faculty of Sciences, Ankara, Turkey
  • S. Döbert, A. Latina, D. Schulte
    CERN, Geneva, Switzerland
 
  The baseline positron source of CLIC has been optimised for the 3 TeV c.o.m. energy. Now the first stage of the CLIC is proposed to be at 380 GeV. Recently, the positron transmission efficiency from the tungsten target to the damping rings injection has been improved by 2.5 times. This opened the possibility for an optimisation of the whole positron source, comprising the injector linacs, aimed at improving its performance and its overall power efficiency. In this paper the key parameters of the positron source, which include the current and the energy of the primary electron beam, the thickness of the crystal and amorphous tungsten targets, the distance between the two targets, the adiabatic matching device (AMD) and pre-injector linacs, are optimized to improve the overall power efficiency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF065 LHC- and FCC-Based Muon Colliders positron, collider, emittance, factory 273
 
  • F. Zimmermann
    CERN, Geneva, Switzerland
 
  Funding: Work supported by the European Commission under the HORIZON 2020 project ARIES, grant agreement no. 730871.
In recent years, three schemes for producing low-emittance muon beams have been proposed: (1) e+e annihilation above threshold using a positron storage ring with a thin target [M. Boscolo, P. Raimondi et al.], (2) laser/FEL-Compton back-scattering off high-energy proton beams circulating in the LHC or FCC-hh [L. Serafini et al.], (3) the Gamma factory concept, where partially stripped heavy ions collide with a laser pulse to directly generating muons [W. Krasny]. The Gamma factory would also generate copious amounts of positrons which could in turn be used as source for option (1). On the other hand the top-up booster of the FCC-ee design would be an outstanding e+ storage ring, at the right beam energy, around 45 GeV. After rapid acceleration the muons, produced in one of the three ways, could be collided in machines like the SPS, LHC or FCC-hh. Possible collider layouts are suggested.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF074 Beam Phase Space Jitter and Effective Emittance for SuperKEKB Injector Linac emittance, linac, electron, positron 304
 
  • Y. Seimiya, N. Iida, T. Kamitani, M. Satoh
    KEK, Ibaraki, Japan
 
  In SuperKEKB linac, stable high charged low emittance beam is necessary. Transported beam to SuperKEKB Main Ring (MR) must be stable to the extent that the beam can be injected inside MR acceptance. SuperKEKB requirement must be satisfied for emittance including beam phase space jitter, called as effective emittance. Large amplitude beam position jitter has been measured at linac end. We evaluated that the effect of the beam position jitter on effective emittance and investigated the source of the beam phase space jitter.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF084 The Progress of CEPC Positron Source Design positron, linac, electron, collider 319
 
  • C. Meng, X.P. Li, G. Pei, J.R. Zhang
    IHEP, Beijing, People's Republic of China
 
  Circular Electron-Positron Collider (CEPC) is a 100 km ring e+ e collider for a Higgs factory. The injector is composed of 10 GeV linac and 120 GeV booster. The linac of CEPC is a normal conducting S-band linac with frequency in 2856.75 MHz and provide electron and positron beam at an energy up to 10 GeV and repetition frequency in 100 Hz. The positron source of CEPC is composed of target, flux concentrator, pre-accelerating section and beam separation system. The detailed design of each section of positron source will be presented and discussed, meanwhile the start-to-end dynamic simulation results will be presented also in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF086 Proposal of an Experimental Test at DAΦNE for the Low Emittance Muon Beam Production From Positrons on Target positron, emittance, experiment, optics 326
 
  • M. Boscolo, M. Antonelli, O.R. Blanco-García, S. Guiducci, A. Stella
    INFN/LNF, Frascati (Roma), Italy
  • F. Collamati
    INFN-Roma1, Rome, Italy
  • R. Li Voti
    Sapienza University of Rome, Rome, Italy
  • S.M. Liuzzo, P. Raimondi
    ESRF, Grenoble, France
 
  We present in this paper the proposal of an experimental test at DAΦNE of the positron-ring-plus-target scheme foreseen in the Low EMittance Muon Accelerator. This test would be a validation of the on-going studies for LEMMA and it would be synergic with other proposals at DAΦNE after the SIDDHARTA run. We discuss the beam dynamics studies for different targets inserted in a proper location through the ring, i.e. where the beam is focused and dispersion-free. Optimization of beam parameters, thickness and material of target and optics of the target insertion are shown as well. The development of the existent diagnostic needed to test the behavior of the circulating beam is described together with the turn-by-turn measurement systems of charge, lifetime and transverse size. Measurements on the temperature and thermo-mechanical stress on the target are also under study.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF087 Muon Accumulator Ring Requirements for a Low Emittance Muon Collider from Positrons on Target positron, emittance, collider, interaction-region 330
 
  • M. Boscolo, M. Antonelli, O.R. Blanco-García, S. Guiducci
    INFN/LNF, Frascati (Roma), Italy
  • F. Collamati
    INFN-Roma1, Rome, Italy
  • L. Keller
    SLAC, Menlo Park, California, USA
  • S.M. Liuzzo, P. Raimondi
    ESRF, Grenoble, France
  • D. Schulte
    CERN, Geneva, Switzerland
 
  Very low emittance muon beams can be produced by direct annihilation of about 45~GeV positrons on atomic electrons in a thin target. With such a muon beam source, a mu+mu- collider can be designed in the multi-TeV range at very high luminosities. In this scheme two muon accumulator rings are foreseen to recollect the muon bunches that will be injected in the collider. We present in this paper the first consideration of the muon accumulator rings. Realistic muon beam emittance and energy spread coming from the muon target are described. Constraints on the accumulator ring requirements are derived.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMK002 Integrated Full HE-LHC Optics and Its Performance lattice, dipole, injection, insertion 348
 
  • M. Hofer
    TU Vienna, Wien, Austria
  • M.P. Crouch, J. Keintzel, T. Risselada, R. Tomás, F. Zimmermann
    CERN, Geneva, Switzerland
  • Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • D. Zhou
    KEK, Ibaraki, Japan
  • L. van Riesen-Haupt
    JAI, Oxford, United Kingdom
 
  One possible future hadron collider design investigated in the framework of the Future Circular Collider (FCC) study is the High-Energy LHC (HE-LHC). Using the 16 T dipoles developed for the FCC-hh the center of mass energy of the LHC is set to increase to 27 TeV. To achieve this set energy goal, a new optics design is required, taking into account the constraint from the LHC tunnel geometry. In this paper, two different lattices for the HE-LHC are presented. Initial considerations take into account the physical aperture at the proposed injection energy as well as the energy reach of these lattices. The dynamic aperture at the injection energies is determined using latest evaluations of the field quality of the main dipoles.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMK002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML011 Liquid Cluster Ion Beam Processing of Transition Metal Films vacuum, acceleration, radiation, experiment 415
 
  • D. Shimizu, H. Ryuto, M. Takeuchi, D. Yamamoto
    Kyoto University, Photonics and Electronics Science and Engineering Center, Kyoto, Japan
 
  The irradiation effects of cluster ion beams are characterized by the high-density collision of molecules that comprise the clusters against a target. According to molecular dynamics calculations, the local temperature of the colliding cluster and the surface of the target are expected to increase to several thousand K. The enhancement of the chemical interactions between the molecules in the colliding clusters and the atoms on the target surface is expected, if polyatomic molecules, such as ethanol and acetone, are used for the source material of the cluster. So, the irradiation effects of the polyatomic liquid cluster ion beams on transition metal films have been studied to examine the possibility of utilizing the liquid cluster ion beam technique for the processing of transition metal films. The transition metal films were formed by magnetron sputtering. The liquid clusters were produced by the adiabatic expansion method and ionized by electron ionization. The sputtering yields of transition metal films induced by liquid cluster ions are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML029 A Portable X-ray Source Based on Dielectric Accelerators electron, vacuum, shielding, solenoid 464
 
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • S.P. Antipov, A. Kanareykin, R.A. Kostin
    Euclid Beamlabs LLC, Bolingbrook, USA
 
  Funding: The work has been supported by the U.S. Department of Homeland Security (DHS), Domestic Nuclear Detection Office (DNDO), under a competitively awarded contract No. HSHQDC-17-C-00007.
The portable low energy accelerator based X-ray sources have attractive applications in the non-destructive examination as a replacement of radiological gamma isotope sources. We are developing an inexpensive ultra-compact dielectric accelerator technology for low energy electron beams. The portability in the realm of this proposal is unprecedented ~ 1 ft3 volume with ~ 50 lbs of weight. The use of ceramics makes the transverse size of the accelerating waveguide comparable to that of a pencil. Because of this size reduction, additional weight reduction of shielding becomes possible. The article will report on the progress of this project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML032 Prospects for a Muon Spin Resonace Facility in the Fermilab MuCool Test Area linac, experiment, timing, resonance 474
 
  • J.A. Johnstone, C. Johnstone
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermi Reserach Alliance, LLC under Contract no. DE-AC02-07CH11359 with the United States Department of Energy.
This paper investigates the feasibility of re-purposing the MuCool Test Area beamline and experimental hall to support a Muon Spin Resonance Facility which would make it the only such facility in the US. This report reviews the basic muon production concepts as studied and operationally implemented at TRIUMF, PSI, and RAL and their application in the context of the MTA facility. Two scenarios were determined feasible. One, an initial minimal-shielding and capital-cost investment stage with a single secondary muon beamline that utilizes an existing primary beam absorber and, another, an upgraded stage, that implements an optimized production target, a proximate high-intensity absorber, and optimized secondary muon lines. A unique approach is proposed which chops or strips a macropulse of H beam into a micropulse substructure - a muon creation timing scheme - which allows Muon Spin Resonance experiments in a linac environment. With this timing scheme, and attention to target design and secondary beam collection, the MTA can host enabling and competitive Muon Spin Resonance experiments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML045 Measurement of Displacement Cross-Section for Structural Materials in High-Power Proton Accelerator Facility experiment, proton, radiation, cryogenics 499
 
  • S.I. Meigo, S.H. Hasegawa, H.I. Hiroki, H. Hiroki, Y. Iwamoto, F.M. Maekawa
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • T. Ishida, S. Makimura, T. Nakamoto
    KEK, Ibaraki, Japan
  • Y. Makoto
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  As the increase of beam power of hadron accelerators, the damage to target material is essential. For estimation of damage such as target material used at the facility, displacement per atom (DPA), calculated by the particle flux multiplied displacement cross-section with cascade mode, is widely employed as an index of the damage. Although the DPA is employed as the standard, the experimental data of displacement cross-section are scarce for a proton in the energy region above 20 MeV. A recent study reports that the displacement cross section of tungsten has 8 times difference among the calculation models. Therefore, experimental data of the displacement cross-section is crucial. The displacement cross-section can be obtained by observing the change of resistivity of the sample cooled by GM cooler to sustain the damage. The sample is placed in the vacuum chamber placed at upstream of the beam dump for 3 GeV and 30 GeV synchrotrons in J-PARC, where the sample will be irradiated by the proton in the energy range between 0.4 and 30 GeV. In the vast energy range, the displacement cross-section can be obtained for the proton, which will help to improve the damage estimation of the target material.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML050 A Massive Open Online Course on Particle Accelerators survey, radiation, neutron, synchrotron 512
 
  • N. Delerue, A. Faus-Golfe
    LAL, Orsay, France
  • M.E. Biagini
    INFN/LNF, Frascati (Roma), Italy
  • E. Bründermann, A.-S. Müller
    KIT, Eggenstein-Leopoldshafen, Germany
  • P. Burrows
    JAI, Oxford, United Kingdom
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • C. Darve, R.A. Yogi
    ESS, Lund, Sweden
  • V.V. Dmitriyeva, S.M. Polozov
    MEPhI, Moscow, Russia
  • J. Kvissberg
    Lund University, Lund, Sweden
  • P. Lebrun
    JUAS, Archamps, France
  • E. Métral, H. Schmickler, J. Toes
    CERN, Geneva, Switzerland
  • S.P. Møller
    ISA, Aarhus, Denmark
  • L. Rinolfi
    ESI, Archamps, France
  • A. Simonsson
    Stockholm University, Stockholm, Sweden
  • V.G. Vaccaro
    Naples University Federico II and INFN, Napoli, Italy
 
  Funding: European Union H2020 - ARIES Project
The TIARA (Test Infrastructure and Accelerator Research Area) project funded by the European Union 7th framework programme made a survey of provision of education and training in accelerator science in Europe highlighted the need for more training opportunities targeting undergraduate-level students. This need is now being addressed by the European Union H2020 project ARIES (Accelerator Research and Innovation for European Science and Society) via the preparation of a Massive Online Open Course (MOOC) on particle accelerator science and engineering. We present here the current status of this project, the main elements of the syllabus, how it will be delivered, and the schedule for providing the course.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML053 Mu*STAR Accelerator-Driven Subcritical Reactors Burning Spent Nuclear Fuel at Light-Water-Reactor Sites site, neutron, operation, SRF 524
 
  • R.P. Johnson, R.J. Abrams, M.A. Cummings, T.J. Roberts
    Muons, Inc, Illinois, USA
 
  This project will use modeling and simulation tools to optimize many aspects of the Mu*STAR design and begin to explore accident scenarios. At present we have a conceptual design of the accelerator, the reactor, the spallation target, and the fractional distillation to separate volatile fission products. Our GAIN project with ORNL is preparing a design of the Fuel Processing Plant that will convert spent nuclear fuel into the molten-salt fuel for Mu*STAR. This includes all of the nuclear components, but not such things as the turbine and generator, physical plant, control and monitoring systems, etc. We currently have basic simulations of the reactor neutronics, and a start at calculating the fuel evolution. These have used MCNP and ORIGEN, and initial results have been reported1. This project will support the use of additional neutronics and multi-physics codes, enabling a much more thorough analysis of the system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML056 Evidence of the Electron-Screened Oppenheimer Philips Reactions 162Er(d, n)163Tm or 162Er(p,γ)163Tm in Deuterated Materials Subjected to a Low-Energy Photon Beam electron, neutron, proton, experiment 533
 
  • T.L. Benyo, A. Chait, L.P. Forsley, M. Pines, V. Pines, B.M. Steinetz
    NASA Glenn Research Center, Cleveland, USA
 
  NASA GRC has investigated electron-screening of deuterated metals using MV electron linear accelerators (LINACs). GRC found that repeatable sub-threshold nuclear reactions may have occurred resulting in nuclear products observed via witness-material neutron activation using high purity germanium (HPGe) gamma spectroscopy and liquid scintillator spectroscopy. The suspected path of creation may be the result of electron-screened Oppenheimer-Phillips reactions or Mirror Oppenheimer-Phillips reactions. Evidence of 162Er(d, n)163Tm or 162Er(p,γ)163Tm has been shown with the appearance of gamma peaks coinciding with 163Tm with a published ' life of 22 minutes from samples containing deuterated erbium exposed to a photon beam. Both of these reactions are a variation of the Oppenheimer-Phillips nuclear reaction. Evidence of the reactions have been detected by an HPGe gamma detection system and witnessed within gamma spectra collected from deuterated materials subjected to a nominally 1.95 MeV photon beam. This paper describes the theory behind the proposed reactions, the experiments conducted at GRC, and the experimental evidence of the suspected creation of the 163Tm isotope.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML059 Precise Beam Delivery for Proton Therapy with Dynamic Energy Modulation proton, radiation, MMI, controls 540
 
  • O. Actis, A. Mayor, D. Meer, D.C. Weber
    PSI, Villigen PSI, Switzerland
  • D.C. Weber
    University of Zurich, University Hospital, Zurich, Switzerland
 
  Gantry 2 at PSI is a Pencil Beam Scanning (PBS) cyclotron based proton therapy system. PBS proved to be an effective treatment method for static tumors but for mobile targets (e.g lung) organ motion interferes with beam delivery lowering the treatment quality. A method to mitigate motion effects is to re-scan the treatment volume multiple times. The downside of re-scanning is the increase of treatment time due to high number of energy switches and magnet initializations (ramping) between scans. Our current re-scanning implementation is performed with a decreasing energy sequence and takes about 6s/scan thanks to fast energy switching of 100ms. Ramping adds 8s more leading to a treatment time of >60s. We developed beam line settings for reverse energy sequence and removed the full ramping between scans. This dynamic beam delivery leads to non-negligible beam position errors of >1.5mm which we compensate by field specific corrections. Using a patient file we proved that our novel re-scanning concept doubles the treatment efficiency. Using in-house developed measurement equipment we obtained a precision of <0.5mm in position and <1mm in range which fulfills all clinical requirements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML063 In Situ Observations of Blistering of a Metal Irradiated with 2 MeV Protons proton, neutron, radiation, experiment 553
 
  • S.Yu. Taskaev, D.A. Kasatov, A.N. Makarov, I.M. Shchudlo
    BINP SB RAS, Novosibirsk, Russia
  • A. Badrutdinov, Y. Higashi, T. Miyazawa
    OIST, Onna-son, Okinawa, Japan
  • T.A. Bykov
    Budker INP & NSU, Novosibirsk, Russia
  • S.A. Gromilov
    Nikolaev IIC, Novosibirsk, Russia
  • Ya.A. Kolesnikov, A.M. Koshkarev, E.O. Sokolova
    NSU, Novosibirsk, Russia
  • H. Sugawara
    KEK, Ibaraki, Japan
 
  Funding: This study was carried out with a grant from the Russian Science Foundation (project No. 14-32-00006-P) with the support of the Budker Institute of Nuclear Physics and Novosibirsk State University.
A vacuum-insulated tandem accelerator was used to observe in situ blistering during 2-MeV proton irradiation of metallic samples to a fluence of up to 6.7 1020 cm2. Samples consisting of copper of different purity, tantalum, and tantalum-copper compounds were placed on the proton beam path and forced to cool. The surface state of the samples was observed using a CCD camera with a remote microscope. Thermistors, a pyrometer, and an infrared camera were applied to measure the temperature of the samples during irradiation. After irradiation, the samples were analyzed on an X-ray diffractometer, laser and electron microscopes. The present study describes the experiment, presents the results obtained and notes their relevance and significance in the development of a lithium target for an accelerator-based neutron source, for use in boron neutron capture therapy of cancer.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML070 Thermal and Stress Analysis of an X-Ray Target for 6 MeV Medical Linear Accelerators electron, simulation, site, photon 572
 
  • Z.H. Wang, H.B. Chen, J. Shi, H. Zha
    TUB, Beijing, People's Republic of China
 
  We present an optimal design of an X-ray target for 6 MeV medical linear accelerators using FLUKA simula-tions. The target is composed of high-atomic number tungsten and high-thermal conductivity copper, corre-sponding water-cooling system is showed too. Further-more, we analyse the temperature and thermal stress re-sponses of the target under transient thermal loads using Ansys Code. For 6 MeV electron beam with 100 uA cur-rent, the results show that the target can achieve 1014 cGy/min at 1meter in front of the target. Within 100 ms, the maximum temperature reaches 512 °C under pulsed heating source with 250 Hz frequency and 1' duty cycle and the number of cycles to failure is estimated as 5.8·108.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYGBF3 An EBIS-Based Low-Energy Accelerator for Fine-Focussed Ion Beams ion-source, electron, acceleration, emittance 647
 
  • M. Schmidt, P. Laux, G.H. Zschornack
    DREEBIT, Großröhrsdorf, Germany
 
  Technologies based on focused ion beams have become indispensable for research institutions as well as commercial laboratories and high-tech production facilities (micro- and nanotechnology, semiconductor technology). We report on a compact setup combining an Electron Beam Ion Source (EBIS), a Wien filter for ion species separation, and a fine focusing ion acceleration column capable of producing ion beams with beam diameters in the micrometer range at ion beam energies up to the MeV range. Almost all elements of the periodic system can be injected into the EBIS to produce a broad spectrum of ion charge states with only one ion source. The beam energy of a selected ion species can easily be varied by changing the electric potential of the EBIS drift tube in which the ions are generated, resulting in different implantation depths in various solids. We present studies on beam diameter and emittance, available charge states, and SEM imaging as application.  
slides icon Slides TUYGBF3 [3.972 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBF3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF003 Integrated Prototyping in View of the 100 MeV Linac for Myrrha Phase 1 linac, cryomodule, cavity, controls 661
 
  • D. Vandeplassche, J. Belmans
    SCK•CEN, Mol, Belgium
  • C. Angulo, D. Davin, W. De Cock, P. Della Faille, F. Doucet, A. Gatera, Pompon, F.F. Pompon
    Studiecentrum voor Kernenergie - Centre d'Étude de l'énergie Nucléaire (SCK•CEN), Mol, Belgium
  • D. Bondoux, F. Bouly
    LPSC, Grenoble Cedex, France
  • H. Höltermann, D. Mäder
    BEVATECH, Frankfurt, Germany
  • C. Joly, G. Olry, H. Saugnac
    IPN, Orsay, France
  • M. Loiselet, N. Postiau, L. Standaert
    UCL, Louvain-la-Neuve, Belgium
  • H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  Funding: Work partially supported by the European Commission H2020 programme MYRTE #662186
The MYRRHA project borne by SCK•CEN, the Belgian Nuclear Research Centre, aims at realizing a pre-industrial Accelerator Driven System (ADS) for exploring the transmutation of long lived nuclear waste. The linac for this ADS will be a High Power Proton Accelerator delivering 2.4 MW CW beam at 600 MeV. It has to satisfy stringent requirements for reliability and availability: a beam-MTBF of 250h is targeted. The reliability goal is pursued through a phased approach. During Phase 1, expected till 2024, the MYRRHA linac up to 100 MeV will be constructed. It will allow to evaluate the reliability potential of the 600 MeV linac. It will also feed a Proton Target Facility in which radioisotopes of interest will be collected through an ISOL system. This contribution will focus on the transition to integrated prototyping, which will emphasize (i) a test platform consisting of the initial section of the normal conducting injector (5.9 MeV), (ii) the realization of a complete cryomodule for the superconducting linac and of its cryogenic valve box. The cryomodule will house two 352 MHz single spoke cavities operated at 2K.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF006 Operation of RHIC Injectors with Isobaric Ruthenium and Zirconium Ions laser, booster, ion-source, injection 672
 
  • H. Huang, E.N. Beebe, I. Blacker, J.J. Butler, C. Carlson, P.S. Dyer, W. Fischer, C.J. Gardner, D.M. Gassner, D. Goldberg, T. Hayes, S. Ikeda, J.P. Jamilkowski, T. Kanesue, N.A. Kling, C. Liu, D. Maffei, G.J. Marr, B. Martin, J. Morris, C. Naylor, M. Okamura, D. Raparia, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, D. Steski, P. Thieberger, K. Zeno, I.Y. Zhang
    BNL, Upton, Long Island, New York, USA
  • H. Haba
    RIKEN Nishina Center, Wako, Japan
  • T. Karino
    Utsunomiya University, Utsunomiya, Japan
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The FY18 RHIC physics program calls for Ru-Ru and Zr-Zr collisions at 100GeV using isobaric Ruthenium and Zirconium ions, each having 96 nucleons. In the injector chain, these two ions have to come from tandem and EBIS source, respectively. To reduce systematic errors in the detector, the luminosity between the two species combinations is matched as closely as possible, and the species are switched frequently. Several bunch merges are needed in the Booster and AGS to reach the desired bunch intensity for RHIC. The setup and performance of Booster and AGS with these ions are reviewed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF016 Increase of IPHI Beam Power at CEA Saclay rfq, neutron, proton, detector 694
 
  • F. Senée, F. Benedetti, E. Giner-Demange, A. Gomes, M. Oublaid
    CEA/DRF/IRFU, Gif-sur-Yvette, France
  • P. Ausset, M. Ben Abdillah, C. Joly
    IPN, Orsay, France
  • F. Belloni, B. Bolzon, N. Chauvin, M. Desmons, Y. Gauthier, C. Marchand, J. Marroncle, T. Papaevangelou, G. Perreu, O. Piquet, B. Pottin, Y. Sauce, J. Schwindling, L. Segui, O. Tuske, D. Uriot
    CEA/IRFU, Gif-sur-Yvette, France
  • F. Harrault, R. Touzery
    CEA/DSM/IRFU, France
 
  For the first time, in April 2016, the SILHI source produced a proton beam for IPHI RFQ. Due to several technical difficulties on the RFQ water cooling skid, a short RF power pulse (100 μs at the beginning until few hundred microseconds) is injected into the RFQ accelerates the high intensity proton beam up to 3 MeV. The repetition rate is tuned between 1 and 5 Hz. Under these conditions, the beam power after the RFQ is lower than 100 W. At the end of 2017, the 352 MHz RFQ conditioning has been completed (with the same duty cycle) and the proton beam has been accelerated. The increase of the beam power is expected to continue in 2018 in order to reach several kilowatts by the end of the year. In addition, two Ionization beam Profile Monitors (IPM) developed for ESS have been tested on the deviated beam line with a very low duty cycle. The IPHI facility should demonstrate the possibility to produce neutrons with a flexible compact accelerator in the framework of the SONATE project. This paper presents the status of the IPHI project in April 2018.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF021 Identification and Removal of SPS Aperture Limitations optics, vacuum, proton, injection 709
 
  • V. Kain, R. Alemany-Fernández, H. Bartosik, S. Cettour Cave, K. Cornelis, P. Cruikshank, J.A. Ferreira Somoza, B. Goddard, C. Pasquino
    CERN, Geneva, Switzerland
 
  The CERN SPS (Super Proton Synchrotron) serves as LHC injector and provides beam for the North Area fixed target experiments. Since the 2016 run automated local aperture scans have been performed with the main focus on the vertical plane where limitations typically arise due to the flat vacuum chambers in most SPS elements. For LHC beams the aperture limitations with the present low integer tune optics also occur at locations with large dispersion. Aperture measurements in the horizontal plane using a variety of techniques were performed and showed surprising results, which could partially explain the unexpected losses of high intensity LHC beams at the SPS flat bottom. In this paper, reference measurements from 2016 are compared with the ones taken at the beginning of the run in 2017. Several aperture restrictions in the vertical plane could be found and cured, and a potential systematic restriction in the horizontal plane has been identified. The results of the measurements and the origin of the restrictions are presented in this paper, and the outlook for partial mitigation is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF023 The Beamlines of the CERN East Area Renovation Project secondary-beams, radiation, experiment, operation 717
 
  • J. Bernhard, M. Bonnet, Q. Bouirek, D. Brethoux, B.D. Carlsen, A. Ebn Rahmoun, J. Etheridge, S. Evrard, L. Gatignon, E. Harrouch, M. Lazzaroni, M. Van Dijk, A. Watrigant
    CERN, Geneva, Switzerland
 
  The East Area at the Proton Synchrotron is one of CERN's longest running facilities for experiments, beam tests, and irradiations with a successful history of over 55 years. The facility serves more than 20 user teams for about 200 days of running each year and offers mixed secondary hadron, electron and muon beams of 0.5 GeV/c to 10 GeV/c. In addition, the primary proton beam or ion beam is transported to the irradiation facilities CHARM and IRRAD. Due to the steadily high user demand, the CERN management approved an upgrade and renovation of the facility to meet future beam test and physics requirements. New beam optics will assure a better transmission and purity of the secondary beams, now also with the possibility of highly pure electron, hadron or muon beams. The upgrade includes a pulsed powering scheme with energy recovering power supplies and new magnets, reducing both power and cooling requirements. Together with the building consolidation, this results in a considerably lower energy consumption. The renovation phase is scheduled during the technical stops between 2018 and 2020. We will give an overview of the project scope including upgrades and future beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF032 Beam Transfer Line Design to the SPS Beam Dump Facility proton, experiment, extraction, quadrupole 751
 
  • Y. Dutheil, J. Bauche, M. Calviani, L.A. Dougherty, M.A. Fraser, B. Goddard, C. Heßler, J. Kurdej, E. Lopez Sola
    CERN, Geneva, Switzerland
 
  Studies for the SPS Beam Dump Facility (BDF) are ongoing within the scope of the Physics Beyond Collider project. The BDF is a proposed fixed target facility to be installed in the SPS North Area, to accommodate the SHiP experiment (Search for Hidden Particles), which is most notably aiming at studying hidden sector particles. This experiment requires a high intensity slowly extracted 400 GeV proton beam with 4·1013 protons per 1 s spill to achieve 4·1019 protons on target per year. The extraction and transport scheme will make use of the first 600 m of the existing North Area extraction line. In this paper, we will present the design of the additional 600 m of transfer line towards BDF branching off from the existing line and discuss the detailed design of the BDF beam line, its components and optics. We present the latest results on the study and design of a new laminated Lambertson splitter magnet to provide fast switch between the current North Area experiments and the BDF. The latest specification of a dipole dilution system used to reduce the local peak power of the beam on the target is also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF033 Beam Optics Studies for BDF and for Tests of a Prototype Target optics, extraction, emittance, proton 754
 
  • C. Heßler, M. Calviani, Y. Dutheil, M.A. Fraser, B. Goddard, V. Kain, E. Lopez Sola, F.M. Velotti
    CERN, Geneva, Switzerland
 
  Within the frame of the Physics Beyond Collider project a new fixed target facility at the SPS North Area, the so-called Beam Dump Facility (BDF), is under study. BDF requires a high intensity slowly extracted 400 GeV proton beam with 4·1013 protons per 1 s spill to achieve 4·1019 protons on target per year. This results in an exceptionally high average beam power of 355 kW on the target, which is a major challenge. To validate the target design, a test of a prototype target is planned for 2018 at an existing North Area beam line. A large part of this beam line is in common with the future BDF beam line with comparable beam characteristics and several measurement campaigns were performed in 2017 to study the optics of the line in preparation for the test. The intrinsic characteristics of the slow extraction process make the precise characterisation of the beam reaching the target particularly challenging. This paper presents beam and lattice characterisation methods and associated measurement results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF038 Prototyping Activities for a New Design of CERN's Antiproton Production Target proton, experiment, antiproton, operation 772
 
  • C. Torregrosa, M.E.J. Butcher, M. Calviani, J.P.C. Espadanal, R. Ferriere, L. Gentini, E. Grenier-Boley, L. Mircea Grec, A. Perillo-Marcone, R. Seidenbinder, N.S. Solieri, M.A. Timmins, E. Urrutia, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  Antiprotons are produced at CERN by impacting intense proton beams of 26 GeV/c onto a high-Z water-cooled target. The current design consists in an Ir core target in a graphite matrix and inserted in a Ti-6Al-4V assembly. A new target design has been foreseen for operation after 2021 aiming at improving the operation robustness and antiproton production yield, triggering several R&D activities during the last years. First, both numerical (use of hydrocodes) and experimental approaches were carried out to study the core material response under extreme dynamic loading when impacted by the primary proton beam. The lessons learnt from these studies have been then applied to further prototyping and testing under proton beam impact at the CERN-HiRadMat facility. A first scaled prototype consisting in Ta rods embedded in an expanded graphite matrix was irradiated in 2017, while in 2018, the PROTAD experiment will test different real-scale AD-Target prototypes, in which the old water-cooled assembly is replaced by a more compact air-cooled one, and different core geometry and material configurations are investigated. This contribution details these prototyping and testing activities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF043 Testing the Double-Crystal Setup for Physics Beyond Colliders Experiments in the UA9-SPS Experiment experiment, proton, detector, collimation 790
 
  • S. Montesano
    CERN, Geneva, Switzerland
 
  Funding: on behalf of the UA9 Collaboration
The UA9 experiment is installed in the CERN SPS to study how coherent interaction in crystalline materials can be used to steer particles beams. Recently, new experiments requiring complex beam manipulations by means of crystals have been proposed in the framework of the Physics Beyond Colliders study group at CERN. In particular, it was proposed to use a first crystal to direct protons from the LHC beam halo on a target placed in the beam pipe and to use a second crystal to deflect the particles produced in the target (double-crystal setup), allowing to measure their polarization. The layout of the UA9 experiment in the CERN SPS has been modified to study the feasibility of the proposed scenario and its compatibility with the delicate environment of a superconducting collider. A first set of measurements was performed in 2017 proving that the protons deflected by the first crystal can be intercepted and successfully deflected by a second crystal. A further upgrade of the experiment in 2018 will allow measuring more precisely the combined efficiency of the two crystals and the beam-induced background.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF045 Studies for Future Fixed-Target Experiments at the LHC in the Framework of the CERN Physics Beyond Colliders Study experiment, collider, proton, luminosity 798
 
  • S. Redaelli, M. Ferro-Luzzi
    CERN, Geneva, Switzerland
  • C. Hadjidakis
    IN2P3-CNRS, Orsay, France
 
  A study on prospects for Physics Beyond Colliders at CERN was launched in September 2016 to assess the capabilities of the existing accelerators complex. Among several other working groups, this initiative triggered the creation of a working group with the scope of studying a few specific proposals to perform fixed-target physics experiments at the Large Hadron Collider (LHC). This includes for example physics experiments with solid or gaseous internal targets, polarized gas targets, and experiments using bent-crystals for halo splitting from beam core for internal targets. The focus of the working group's activities is on the technical feasibility and on implications to the LHC ring. In this paper, the current status of the studies is presented and future plans are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF062 Parametric Study of the Beam Footprint Characteristics on the ESS Target linac, HOM, ion-source, operation 866
 
  • R. Miyamoto
    ESS, Lund, Sweden
  • H.D. Thomsen
    ISA, Aarhus, Denmark
 
  The beam delivery system of the ESS linac utilizes fast oscillating triangular wave dipole magnets of two transverse planes (raster magnets) to spray each long beam pulse (2.86 ms) over a rectangular cross-check pattern on the target. The characteristics of this beam footprint on the target are determined by the amplitudes of the raster magnets, RMS sizes of the beam and, in some case, the tail of the beam profile and have to satisfy the requirements from the target for the peak density as well as the fraction outside of a given rectangular boundary. This paper presents approximate closed-form expressions for the characteristics of the beam footprint and, based on the presented expressions, explores the parameter space of the raster magnets and beam parameters for achieving the optimal characteristics of the beam footprint.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF065 Opportunities and Challenges in Planning the Installation, Testing and Commissioning of Large Accelerator Facilities MMI, linac, DTL, neutron 878
 
  • D.C. Plostinar, D. Bergenholtz, H. Danared, L. Gunnarsson, M.I. Israelsson, A. Jansson, M. Lindroos, A. Sunesson, L. Tchelidze, J.G. Weisend
    ESS, Lund, Sweden
 
  Delivering major accelerator facilities requires complex project preparation, organisation and scheduling. Often, multiple factors have to be taken into account including technical, financial and political. This makes planning particularly difficult, but at the same time opens opportunities for improving and optimising the project prospects. In this paper, we discuss the major drivers governing the installation, testing and commissioning of major accelerators in general, with particular emphasis on the European Spallation Source (ESS) accelerator, currently under construction in Lund, Sweden.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF075 Design Status of the LBNF/DUNE Beamline proton, shielding, site, status 902
 
  • V. Papadimitriou, J.E. Anderson, R. Andrews, J.J. Angelo, V.T. Bocean, C.F. Crowley, A. Deshpande, N. Eddy, K. E. Gollwitzer, S. Hays, P. Hurh, J. Hylen, J.A. Johnstone, P.H. Kasper, T.R. Kobilarcik, G.E. Krafczyk, N.V. Mokhov, D. Pushka, S.D. Reitzner, P. Schlabach, V.I. Sidorov, M. Slabaugh, S. Tariq, L.R. Valerio, K. Vaziri, G. Velev, G.L. Vogel, K.E. Williams, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • C.J. Densham
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: DOE, contract No. DE-AC02-07CH11359
The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to provide and aim a wide band beam of neutrinos of sufficient intensity and appropriate energy toward DUNE detectors, placed 4850 feet underground at SURF in South Dakota, about 1,300 km away. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a four-interaction length solid target and produce mesons which are subsequently focused by a set of three magnetic horns into a 194 m long helium filled decay pipe where they decay into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spatial and radiological constraints, extensive simulations and the experience gained by operating the NuMI facility at Fermilab. The Beamline facility is designed for initial operation at a proton-beam power of 1.2 MW, with the capability to support an upgrade to about 2.4 MW. LBNF/DUNE obtained CD-1 approval in November 2015 and CD-3a approval in September 2016. We discuss here the Beamline design status and the associated challenges.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK007 Simulation of Surface Muon Beamline, Ultra-Slow Muon Production and Extraction for the J-PARC g-2/EDM Experiment simulation, experiment, laser, proton 970
 
  • M. Otani, N. Kawamura, T. Mibe, T. Yamazaki
    KEK, Tsukuba, Japan
  • K. Ishida
    RIKEN Nishina Center, Wako, Japan
  • G. Marshall
    TRIUMF, Vancouver, Canada
 
  The E34 experiment aims to measure muon anomalous magnetic moment with a precision of 0.1 ppm to cast light on beyond standard model in elementary particle physics. The experiment utilizes a brand new muon beam line in J-PARC (H line), which is designed to have large acceptance to supply an intense muon beam. The surface muons are injected into a silica aerogel target to generate bound state of muon and electron (muonium). Then the muoniums are ionized by lasers and ultra slow (30 meV) muons (USM) are generated. The USM's are extracted by electro-static lens and injected to a muon linac. In this poster, simulation for optics of the surface muon beamline, muonium production and extraction by the electro-static lens, and the estimation of the USM's intensity are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK017 Abandoned Proton Beam Separation Design at MOMENT proton, separation-scheme, simulation, secondary-beams 1001
 
  • C. Meng, H.T. Jing, Y.P. Song, J.Y. Tang, H. Wang
    IHEP, Beijing, People's Republic of China
 
  Funding: The National Natural Science Foundation of China under Grants 11575217
MOMENT (MuOn-decay MEdium baseline NeuTrino beam facility) is an accelerator-based neutrino beam facility using neutrino from muon decays. The proton driver is a continuous-wave proton linac of 1.5 GeV and 10 mA, which means an extremely high beam power of 15 MW. After bombarding the target, the abandoned proton beam power is very high and should be separate from target station carefully. Because of the energy is not very high and the layout of following transport line isn't linear, we should design special separation line for high momentum proton beam. In this paper the design of separation scheme at MOMENT will be proposed and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL010 Research on an Accelerator-Based BNCT Facility neutron, rfq, proton, DTL 1024
 
  • L. Lu, T. He, W. Ma, L.B. Shi, L.P. Sun, C.C. Xing, X.B. Xu, L. Yang
    IMP/CAS, Lanzhou, People's Republic of China
 
  Seven people have been diagnosed with cancer per minute in China, and cancer has been the leading cause of death with about one fourth of all deaths in China. As effective means and ways for cancer therapy, Boron Neutron Cancer Therapy (BNCT) has drawn greater attention. Accelerator based neutron source is a compact neutron source, and technologies of accelerating a high current beam has matured. We proposed an accelerator based BNCT (AB-BNCT), which can accelerate a 10 mA proton beam up to 7 MeV and target on a shelled-Beryllium. The dynamics of accelerators and neutron calculations will be reported in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL015 Progress in the Realization and Commissioning of the Exotic Beam Facility SPES at INFN-LNL rfq, cyclotron, proton, acceleration 1035
 
  • G. Bisoffi, A. Andrighetto, P. Antonini, L. Bellan, D. Benini, J. Bermudez, D. Bortolato, M. Calderolla, M. Comunian, S. Corradetti, A. Facco, E. Fagotti, P. Favaron, A. Galatà, F. Galtarossa, M.G. Giacchini, F. Gramegna, A. Lombardi, M. Maggiore, M. Manzolaro, D. Marcato, T. Marchi, P. Mastinu, P. Modanese, M.F. Moisio, A. Monetti, M. Montis, A. Palmieri, S. Pavinato, D. Pedretti, A. Pisent, M. Poggi, G.P. Prete, C. R. Roncolato, M. Rossignoli, L. Sarchiapone, D. Scarpa, D. Zafiropoulos, L. de Ruvo
    INFN/LNL, Legnaro (PD), Italy
  • V. Andreev
    ITEP, Moscow, Russia
  • M.A. Bellato
    INFN- Sez. di Padova, Padova, Italy
  • A.J. Mendez
    ORNL, Oak Ridge, Tennessee, USA
 
  SPES (Selective Production of Exotic Species) is an ISOL type facility for production and post-acceleration of exotic nuclei for forefront research in nuclear physics. Radioactive (RA) species (A=80/160) will be produced by fissions induced by a proton beam impinging on an UCx target: the proton beam will be delivered by a com-mercial cyclotron with a 40 MeV maximum energy and a 0.25 mA maximum current. The RA species, extracted from the Target-Ion-Source system as a 1+ beam , will be cooled in a RFQ (radiofrequency quadrupole) beam cool-er (RFQ-BC) and purified from the isobars contaminants through a High Resolution Mass Separator (HRMS). Post-acceleration will be performed via an ECR-based charge breeder, delivering the obtained q+ RA beam to a being built CW RFQ and to the being upgraded superconducting (sc) linac ALPI (up to 10 MeV/A for a mass-to-charge ratio A/q=7).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL017 Performance and Status of the J-PARC Accelerators operation, linac, ion-source, status 1038
 
  • K. Hasegawa, N. Hayashi, M. Kinsho, H. Oguri, K. Yamamoto, Y. Yamazaki
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Koseki, F. Naito, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
  • N. Yamamoto
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  The J-PARC is a high intensity proton facility and the accelerator consists of a 400 MeV linac, a 3 GeV Rapid Cycling Synchrotron (RCS) and a 30 GeV Main Ring Synchrotron (MR). Regarding 3 GeV beam from the RCS, we delivered it at 150 kW to the materials and life science experimental facility (MLF), for the neutron and muon users. The beam powers for the neutrino experiment at 30 GeV was 420 kW in May 2016, but increased to 470 kW in February 2017 thanks to the change and optimization of operation parameters. For the hadron experimental facility which uses a slow beam extraction mode at 30 GeV, we delivered beam at a power of 37 kW, after the recovery from a trouble at an electro static septum. We have experienced many failures and troubles to impede full potential and high availability. In this report, operational performance and status of the J-PARC accelerators are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL020 Recent Status of J-PARC Rapid Cycling Synchrotron operation, injection, emittance, proton 1045
 
  • K. Yamamoto, P.K. Saha
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  The 3 GeV Rapid Cycling Synchrotron (RCS) of the Japan Proton Accelerator Research Complex (J-PARC) provides more than 300 kW beam to the Material and Life Science Facility (MLF) and the Main Ring (MR). In such high intensity hadron accelerator, the lost protons that are a fraction of the beam less than 0.1 % cause many problems. Those particles bring about a serious radioactivation and a malfunction of the accelerator components. Therefore, we carried out the beam study to achieve high power beam operation. Moreover, we also maintain the accelerator components to keep a steady operation. We report present status of the J-PARC RCS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL021 Evaluation of Activated Nuclides Due to Secondary Particles Produced in Stripper Foil in J-PARC RCS proton, experiment, radiation, neutron 1048
 
  • M. Yoshimoto, S. Kato, M. Kinsho, K. Okabe, P.K. Saha, K. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  Multi-turn charge-exchange beam injection is key technique to achieve the high intensity proton beam accelerators. In the J-PARC RCS, 400MeV H beams from the LINAC are converted to H+ beam with the stripper foils, and then injected into the ring. The stripper foil is irradiated by not only the injecting H beams but also the circulating H+ beams. The high energy and high power beam irradiation into the foil induces the nuclear reactions, and generated secondary neutrons and protons. These secondary particles causes high residual does around the stripper foil. Now, to identify species of secondary particles and to identify energies and emission angles, activation analysis method using the sample pieces is considered. In this presentation, we report the result of the evaluation of this activation analysis with PHITS codes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL025 Preliminary Test of the Beam Transport System for Li-8 Production Target Ion Source beam-transport, proton, ion-source, neutron 1054
 
  • H.-J. Kwon, Y.-S. Cho, J.J. Dang, D.I. Kim, H.S. Kim, S. Lee, Y.G. Song, S.P. Yun
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work has been supported by through KOMAC (Korea Multi-purpose Accelerator Complex) operation fund of KAERI by MSIT (Ministry of Science and ICT)
A prototype target ion source was developed in order to produce a radioactive beam such as Li-8 as a part of the goals to establish a platform for secondary particle production at KOMAC (Korea Multi-purpose Accelerator Complex). A beam transport system from the 100-MeV linac to prototype target ion source was designed and constructed. It consists of 8 quadrupole magnets, 2 bending magnets and beam diagnostic devices such as AC current transformers, beam position monitors, beam profile monitors and beam loss monitors. Details on the beam transport system and test results are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL025  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL041 Vacuum Accelerating Tube with Two Symmetrically Located Targets for Neutron Generation electron, cathode, neutron, plasma 1097
 
  • V.I. Rashchikov, A.A. Isaev, A.E. Shikanov
    MEPhI, Moscow, Russia
 
  Original neutron generator* on the base of pulse accelerating vacuum tube with two targets, symmetrically located on the both sides of deuteron source is discussed. Two immersion lenses in front of each other uses as accelerating and focusing systems. Lenses cathodes are Faraday cups with targets for neutron production on the bottom. Symmetric ring magnetic elements cover immersion lenses for correcting focusing conditions. Computer simulation allows us to choose electrodes geometry and accelerating pulse value for electron flow from ion-electron emission oscillate between the targets and provide device operate as reflective triode. Estimations of neutron flow and spatio-temporal neutron field structure are done.
* Patent RF N2467526, 14.06.2011
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL047 Strain Measurement in the Recent SNS Mercury Target with Gas Injection injection, proton, radiation, neutron 1117
 
  • Y. Liu, W. Blokland, C.D. Long, S.N. Murray, B.W. Riemer, R.L. Sangrey, M. W. Wendel, D.E. Winder
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. DOE.
High-radiation-tolerant fiber-optic strain sensors were recently developed to measure the transient proton-beam-induced strain profiles on the mercury target vessel at the Spallation Neutron Source (SNS). Here we report the strain measurement results and radiation-resistance performance on the latest SNS mercury target vessel equipped with helium gas injection. The results have demonstrated the efficacy of gas injection to reduce the cyclic stress on the target module.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL061 Target and Ion Source Development for Better Beams in the ARIEL Era ion-source, TRIUMF, ISOL, optics 1155
 
  • C. Babcock, T. Day Goodacre, A. Gottberg
    TRIUMF, Vancouver, Canada
  • A. Gottberg
    Victoria University, Victoria, B.C., Canada
 
  Any ISOL facility pushing the boundaries of nuclear physics must be able to provide cutting-edge ion beams to its users - beams of isotopes far from stability, with few contaminants, that may be difficult to extract from an ISOL target. The development of these pure, exotic beams must be supported by continuing research and development on targets and ion sources. In the ARIEL era, new target/ion source geometries and operational modes will provide new opportunities which can only be exploited with time for development. To prioritize this, TRIUMF proposes to build a dedicated test stand for target and ion source research which will model the critical features of the new ARIEL target stations. This stand will provide a testing ground for methods of increasing efficiency and selectivity, such as investigations of new surface ion source [1,2] and FEBIAD ion source [3] designs. In addition, this will provide a development environment for new beams, either from new target materials, or through techniques such as extracting molecular beams. In order to maximize the gain from these investigations in on-line operation, the ion optical properties of the final beam will be investigated concurrently.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL076 Result of the First Muon Acceleration with Radio Frequency Quadrupole rfq, acceleration, experiment, simulation 1190
 
  • R. Kitamura
    University of Tokyo, Tokyo, Japan
  • S. Bae, B. Kim
    SNU, Seoul, Republic of Korea
  • Y. Fukao, K. Futatsukawa, N. Kawamura, T. Mibe, Y. Miyake, M. Otani, T. Yamazaki
    KEK, Tsukuba, Japan
  • K. Hasegawa, Y. Kondo, T. Morishita
    JAEA/J-PARC, Tokai-mura, Japan
  • H. Iinuma, Y. Nakazawa
    Ibaraki University, Ibaraki, Japan
  • G.P. Razuvaev
    Budker INP & NSU, Novosibirsk, Russia
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • Y. Sue
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
 
  Funding: This work is supported by JSPS KAKENHI Grant Numbers JP15H03666, JP16H03987, and JP16J07784.
J-PARC E34 experiment aims to measure the muon g-2/EDM precisely with novel techniques including the muon linear accelerator. Slow muon source by the metal foil method in order to cool the muon beam has been developed for the muon acceleration test with RF accelerator, because the muon beam derived from the proton driver was the tertiary beam and has a large emittance. The first verification test of the muon acceleration with RFQ was carried out at the muon test beam line of J-PARC MLF in October 2017. The incident surface muons were decelerated by the thin metal foil target and produced the negative muonium ions (Mu-), which is the bound stat of a positive muon and two electrons. After Mu- were extracted by a electrostatic accelerator as the injector of the RFQ, they were accelerated with RFQ to 88.6 keV. The accelerated Mu- were identified by the momentum selection with the bending magnet after the RFQ, and the measurement of the Time-Of-Flight. Accelerated Mu- were easily distinguished from penetrated positive muons by the difference of the polarity. The latest analysis result of the world's first muon acceleration with RFQ will be reported in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL076  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZGBF4 The South African Isotope Facility cyclotron, isotope-production, proton, radiation 1240
 
  • J.L. Conradie, L.S. Anthony, F. Azaiez, S. Baard, R.A. Bark, A.H. Barnard, P. Beukes, J.I. Broodryk, J.C. Cornell, J.G. De Villiers, H. Du Plessis, W. Duckitt, D.T. Fourie, P.G. Gardiner, M.E. Hogan, I.H. Kohler, J.J. Lawrie, C. Lussi, N.R. Mantengu, R.H. McAlister, J. Mira, K.V. Mjali, H.W. Mostert, C. Naidoo, F. Nemulodi, M. Sakildien, V.F. Spannenberg, G.F. Steyn, N. Stodart, R.W. Thomae, M.J. Van Niekerk, P.A. van Schalkwyk
    iThemba LABS, Somerset West, South Africa
 
  iThemba LABS has developed a strategy to respond to the need to expand the research agenda of the facility, as well as to seize the opportunity to exploit the growing global demand for radioisotopes. This strategy will depend on the existing accelerator and isotope production infrastructure, as well as the acquisition of a cyclotron capable of accelerating protons to 70 MeV at beam currents in excess of 700 microampere. This development will be approached in two phases: Phase 1 will include the migration of the existing radioisotope production from the separated-sector cyclotron (SSC) to a new 70 MeV cyclotron. This rearrangement will increase the isotope production capability and also free up the SSC for research. In phase 2, beams of artificial isotopes will be produced at energies up to 5 MeV/nucleon to allow iThemba LABS to expand its research capabilities to new frontiers. The various different aspects of the proposed project will be discussed.  
slides icon Slides TUZGBF4 [23.489 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUZGBF4  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF042 Design of a High Dose Rate Micro-Focused X-Ray Source electron, emittance, dipole, cavity 1346
 
  • X. He, S.Q. Liao, J. Long, J. Shi, W. Wang, L. Yang
    CAEP/IFP, Mainyang, Sichuan, People's Republic of China
 
  High energy X-ray computer tomography has wide application in industry, especially in quality control of complicated high-tech equipment. In many applications, higher spatial resolution is needed to discover smaller defects. Decreasing the spot size of the X-Ray source is a promising way to get higher spatial resolution. Rhodotron have been used to produce high power CW electron beam in hundreds of kilowatts level. In this paper, we propose to use an improved Rhodotron to generate high brightness electron beam with high average power. Beam dynamics study shows that when producing tens of kilowatts electron beam, the normalized RMS emittance can be lower than 10 μm, and the relative RMS energy spread can be lower than 0.2%. The beam can be focused to a spot size of about 100μm by using a series of quadruple, and converted to X-Ray by using a rotating target within several kilowatts beam power. Improved Rhodotron proposed in this paper is a good candidate of X-ray source for high resolution high energy industrial CT systems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMK015 Initial Studies into Longitudinal Ionization Cooling for the Muon g-2 Experiment emittance, simulation, experiment, storage-ring 1522
 
  • J. Bradley
    Edinburgh University, Edinburgh, United Kingdom
  • J.D. Crnkovic
    BNL, Upton, Long Island, New York, USA
  • D. Stratakis, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
 
  Fermilab's Muon g-2 experiment aims to measure the anomalous magnetic moment of the muon to an unprecedented precision of 140 ppb. It relies on large numbers of muons surviving many turns in the storage ring without colliding with the sides, at least long enough for the muons to decay. Longitudinal ionization cooling is introduced with respect to Fermilab's Muon g-2 experiment in an attempt to increase storage and through this the statistics and quality of results. The ionization cooling is introduced to the beam through a material wedge, an initial simulation study is made into the positioning, material, and geometrical parameters of this wedge using G4Beamline. Results suggest a significant increase of 20 - 30% in the number of stored muons when the optimal wedge is included in the simulation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMK015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML020 Beamline Design of EMuS - the First Experimental Muon Source in China solenoid, proton, experiment, polarization 1574
 
  • Y. Bao, Y.K. Chen, Z.L. Hou, Y.P. Song, J.Y. Tang, N. Vassilopoulos, Y. Yuan, G. Zhao, L. Zhou
    IHEP, Beijing, People's Republic of China
  • H.T. Jing
    IHEP CSNS, Dongguan, People's Republic of China
 
  Funding: This work is supported by National Natural Science Foundation of China under Grants 11575217 and 11527811. Yu Bao thanks Hundred Talents Program of Chinese Academy of Science.
We report the beamline design of the Experimental Muon Source (EMuS) project in China. Based on the 1.6 GeV/100 kW proton accelerator at the Chinese Spallation Neutron Source (CSNS), EMuS will extract one bunch from every 10 double-bunch proton pulses to hit a stand-alone target sitting in a superconducting solenoid, and the secondary muons/pions are guided to the experimental area. The beamline is designed to provide both a surface muon beam and a decay muon beam, so that various experiments such as muSR applications and particle/nuclear physics experiments can be conducted. In this work we present the conceptual design and simulation of the beamlines, and discuss the future aspects of the project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML068 The European Spallation Source Neutrino Super Beam Design Study proton, detector, linac, neutron 1702
 
  • M. Dracos
    IPHC, Strasbourg Cedex 2, France
 
  Funding: This project is now supported by the COST Action CA15139/EuroNuNet and EU/H2020 innovation programme ESSnuSB under grant agreement No 777419.
ESSnuSB proposes to use the proton linac of the European Spallation Source (ESS) currently in construction in Lund (Sweden) to produce a very intense neutrino super beam, in parallel with the spallation neutron production. The ESS linac is expected to be operational by 2023 delivering 5 MW average power, 2 GeV proton beam, with 2.86 ms long pulses at a rate of 14 Hz. The primary proton beam-line completing the linac will consist of an accumulator ring to compress the beam pulses to 1.3 μs and a switchyard to distribute the protons onto the target station. The secondary beam-line producing neutrinos will consist of a four-horn/target station, a decay tunnel and a beam dump. A megaton scale water Cherenkov detector will be located at a baseline of about 500 km in one of the existing mines in Sweden and it will measure the neutrino oscillations. ESSnuSB was recently granted by the European H2020-INFRADEV program to start beginning of 2018 a 4-year design study on the feasibility of such facility. This paper presents the objectives, the steps and the organization of the ESSnuSB DS.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML070 Laser Ablation Plasma with Solenoid Field Confinement laser, solenoid, plasma, ion-source 1706
 
  • G.C. Wang, Q. Jin, L.T. Sun, J. Zhang, X.Z. Zhang, H.W. Zhao, H. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
 
  Funding: This work is supported by National Natural Science Foundation of China (Grant Nos. 11722547, 11605263 and 11505257) and West Light Foundation of The Chi-nese Academy of Sciences (Grant Nos. 29Y637020)
A Laser Ion Source (LIS) can produce high charge state and high intensity ion beams (~emA), especially refracto-ry metallic ion beams, which makes it a promising candi-date as an ion source for heavy ion cancer therapy facili-ties and future accelerator complexes, where pulsed high intensity and high charged heavy ion beams are required. However, it is difficult for LIS to obtain a long pulse width while ensuring high current intensity, thus limiting the application of LIS. To solve the conflict, magnetic fields are proposed to confine the expansion of the laser produced plasma. With a solenoid along the normal direc-tion to the target surface, the lateral adiabatic expansion of the laser ablation plasma is suppressed which extends the pulse width of the ion beam effectively.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML075 Development of Target/ion Source for Li-8 Beam at KOMAC* ion-source, proton, operation, vacuum 1718
 
  • J.J. Dang, Y.-S. Cho, H.S. Kim, H.-J. Kwon, P. Lee, S. Lee, Y.G. Song
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work has been supported through KOMAC operation fund of KAERI by MSIT and the NRF of Korea grant funded by the Korea government (MSIT) (No. NRF-2017M2A2A6A02071070).
A target/ion source (TIS) for Li-8 isotope beam has been developed at Korea Multi-purpose Accelerator Complex (KOMAC). The TIS was designed based on various numerical studies such as Monte Carlo simulation for Li-8 yield estimation, an ionization efficiency calculation of a surface ionization ion source and thermal analysis by a power balance model. Then, it was fabricated that a prototype of the TIS which consists of a beryllium oxide (BeO) target, a graphite target container, a tantalum target heater and a rhenium surface ion source. Also, the target heater and the surface ion source were heated to designed operation temperatures. In addition, it has been designed and constructed that an online test facility including Li-8 beam optics and diagnostics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML077 Development of Physical Processes in Geant4 for Simulation of ISOL Target-Ion-Source System simulation, proton, ISOL, ion-source 1724
 
  • P. Lee, Y.-S. Cho, J.J. Dang, H.S. Kim, H.-J. Kwon, S. Lee, Y.G. Song, S.P. Yun
    Korea Atomic Energy Research Institute (KAERI), Gyeongbuk, Republic of Korea
 
  Funding: This work has been supported through KOMAC operation fund of KAERI and the NRF of Korea grant funded by the Korea government (MSIT) (No. NRF-2017M2A2A6A02071070).
Geant4 physical processes for simulating diffusion and effusion of radioactive ions in matter have been developed for optimizing ISOL target-ion-source (TIS) system. The developed processes simulate motions of radioactive ions with sub-eV kinetic energy in the TIS geometry. The processes consist of diffusion, effusion, and radioactive decay modules, and they are designed to work seamlessly with other implemented physics lists, extending capability of the Geant4 toolkit to more complicated applications in the field of nuclear physics. The diffusion probability is analytically calculated by using the well-known Fick's formula. The effusive flow of neutral atoms is interpreted in terms of kinetic molecular theory of gases, where the interaction between atoms and the wall of a target container is described by employing Lorentz-Lambert model. By the help of newly implemented processes, it is able to simulate the release of radioactive ions from the irradiation of a proton beam on the TIS system with different geometrical parameters in a single environment. Here, we present the status of the development and plans for further improvements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML077  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF035 Coherent Diffraction Radiation Imaging as an RMS Bunch Length Monitor radiation, FEL, experiment, detector 1895
 
  • J. Wolfenden, R.B. Fiorito, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • R.B. Fiorito, C.P. Welsch, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • T.H. Pacey, T.H. Pacey
    UMAN, Manchester, United Kingdom
  • A.G. Shkvarunets
    UMD, College Park, Maryland, USA
 
  Funding: This work was supported by the EU under Grant Agreement No. 624890 and the STFC Cockcroft Institute core Grant No. ST/G008248/1.
High-resolution bunch length measurement is of the utmost importance for current and future generations of light sources and linacs. It is also key to the optimisation of the final beam quality in plasma-based acceleration. We present progress in the development of a novel RMS bunch length monitor based on imaging the coherent diffraction radiation (CDR) produced by a non-invasive circular aperture. Due to the bunch lengths involved, the radiation produced is in the THz range. This has led to the development of a novel THz imaging system, which can be applied to low energy electron beams. For high energy beams the imaging system can be used as a single shot technique. Simulation results show that the profile of a CDR image of a beam is sensitive to bunch length and can thus be used as a diagnostic. The associated benefits of this imaging distribution methodology over the typical angular distribution measurement are discussed. Plans for experiments conducted at the SwissFEL (PSI, Switzerland), along with plans for future high energy single shot measurements are also presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF059 A Low Cost Beam Position Monitor System pick-up, electron, electronics, hardware 1961
 
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • J.G. Power, J.H. Shao
    ANL, Argonne, Illinois, USA
  • C. Yin
    University of Chicago, Chicago, Illinois, USA
 
  A Beam Position Monitor (BPM) system is essential to beam diagnostics for almost all particle accelerators. However, a typical BPM system contains customized hardware and complicated processing electronics which considerably drive the cost for large facilities where hundreds of them may be used. It also limits its use in the small scale accelerator facilities. In the paper, we present a low cost BPM system which consists of a commercial available CF flange based signal pickup device, a low cost integrated circuit adjacent to the pickup to filter, sample, digitize, and broadcast the signals out of the pickup electrodes. The digital signal is transmitted out for post processing through noise-protected Wi-Fi router. We will briefly discuss the working principle and experimental progress to date.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF066 The New CLIC Main Linac Installation and Alignment Strategy alignment, quadrupole, linac, collider 1979
 
  • H. Mainaud Durand, J. Gayde, J. Jaros, M. Sosin, A. P. Zemanek
    CERN, Geneva, Switzerland
  • V. Rude
    ESGT-CNAM, Le Mans, France
 
  A complete solution has been proposed for the pre-alignment of the CLIC main linac in 2012 for the Conceptual Design Report. Two recent studies provide new perspectives for such a pre-alignment. First in a study on Particle Accelerator Components' Metrology and Alignment to the Nanometre scale (PACMAN), new solutions to fiducialise and align different types of components within a micrometric accuracy on the same support were proposed and validated, using a stretched wire. Secondly, a 5 degree of freedom adjustment platform with plug-in motors showed a very accurate and efficient way to adjust remotely components. By combining the results of both studies, two scenarios of installation and alignment for the CLIC main linac are proposed, providing micrometric and automatized solutions of micrometric assembly, fiducialisation and alignment in metrological labs or in the tunnel. In this paper, the outcome of the two studies are presented; the two scenarios of installation and alignment are then detailed and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF067 Alignment and Monitoring Systems for Accelerators and Experiments Based on BCAM - First Results and Benefits of Systems Developed for ATLAS, LHCb and HIE-ISOLDE detector, alignment, monitoring, ISOL 1983
 
  • J. Gayde, B. Di Girolamo, Y. Kadi, G. Kautzmann, F. Klumb, R. Lindner, D. Mergelkuhl, L. Pontecorvo, M. Raymond, P. Sainvitu, E. Thomas
    CERN, Geneva, Switzerland
  • F. Blanc, P. Stefko
    EPFL, Lausanne, Switzerland
 
  In the last few years alignment and monitoring systems based on BCAM* cameras active sensors, or their HBCAM evolution, have been developed at the request of the Technical Coordination of LHC experiments and HIE-ISOLDE facility Project Leader. ADEPO (ATLAS DEtector POsition) has been designed to speed up the precise closure - 0.3 mm - of large detector parts representing in total ~2500 tons. For LHCb a system has been studied and installed to monitor the positions of the Inner Tracker stations during the LHCb dipole magnet cycles. The MATHILDE (Monitoring and Alignment Tracking for HIE-ISOLDE) system has been developed to fulfil the alignment and monitoring needs for components of the LINAC enclosed in successive Cryo-Modules. These systems have been in each case configured and adapted to the objectives and environmental conditions: low space for integration; presence of magnetic fields; exposure to non-standard environmental conditions such as high vacuum and cryogenic temperatures. After a short description of the different systems and of the environmental constraints, this paper summarizes their first results, performances and their added value.
* BCAM: Brandeis CCD Angle Monitor, http://alignment.hep.brandeis.edu/Devices/BCAM/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF068 Frequency Scanning Interferometry as New Solution for on-Line Monitoring Inside a Cryostat for the HL-LHC project cavity, vacuum, monitoring, dipole 1986
 
  • H. Mainaud Durand, T. Dijoud, J. Gayde, F. Micolon, M. Sosin
    CERN, Geneva, Switzerland
  • M. Duquenne, V. Rude
    ESGT-CNAM, Le Mans, France
 
  Funding: Research supported by the HL-LHC project
For the HL-LHC project, the cryostats of the key components will be equipped permanently with an on-line position monitoring system based on Frequency Scanning Interferometry (FSI). Such a system, based on absolute distance measurement, will determine the position of the inner triplet cold masses w.r.t. their cryostat and the position of the crab cavities also inside their cryostat, within an uncertainty of measurement of 0.1 mm, in a harsh environment: cold temperature of 2 K and high radiation level of the order of 1 MGy. The FSI system was validated first successfully on one LHC dipole cryostat and its associated cold mass to undergo qualification tests under different conditions: warm, vacuum and cold (2K). The FSI system also equips the first crab cavities prototype cryostat. The configuration of the FIS system chosen after simulations, the conditions of tests as well as their results and analysis are presented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF069 Evaluation of Frequency Scanning Interferometer Performances for Surveying, Alignment and Monitoring of Physics Instrumentation alignment, laser, luminosity, cavity 1990
 
  • J. Gayde, S.W. Kamugasa
    CERN, Geneva, Switzerland
 
  During the last three years, the performance of Frequency Scanning Interferometry, accurate to a few micrometres, has been evaluated at CERN in the frame of the PACMAN project. Improvements have been studied and tested to make it better suited for typical alignment and survey conditions in accelerators and experiments. The results of these developments and tests, coupled with the multi-channel capability of the system, and its compactness which eases its integration in the area to be surveyed, offer a wide scope of possible applications for in-situ large scale metrology for physics equipment and facility elements. Furthermore, the fact that the system electronics can be placed far away from the position to be measured, allows the system to be used in confined and hazardous spaces. This paper briefly describes the system and its improvements. It gives the precision obtained for distance measurements and for the 3D point reconstruction based on FSI observations in the case of CLIC component fiducialisation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF075 Availability Allocation to Particle Accelerators Subsystems by Complexity Criteria factory, operation, collider, linear-collider 2009
 
  • O. Rey Orozko, A. Apollonio, M. Jonker, J.A. Uythoven
    CERN, Geneva, Switzerland
 
  In the early design stages of an accelerator, an effective allocation method is needed to translate an overall accelerator availability goal into availability requirements for its subsystems. During the allocation process, many factors are considered to obtain so-called ‘complexity weights', which are at the basis of the system availability allocation. Some of these factors can be measured quantitatively while other have to be assessed qualitatively. Based on our analysis of factors affecting availability, we list six criteria for complexity resulting in an availability allocation of accelerator subsystems. System experts determine the scales of factors and relationships between subsystems. In this paper, we consider four availability apportionment techniques to allocate complexity weights to subsystems. Finally, we apply this method to the Compact Linear Collider (CLIC) and we propose another application of the complexity weights to the Large Hadron Collider (LHC).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAG003 Hadron Beam Monitor Design with Gas-Filled RF Resonators in Intense Neutrino Source cavity, hadron, scattering, radiation 2067
 
  • M.D. Balcazar, K. Yonehara
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DOE STTR Grant, No. DE-SC0013795.
For the future Long Baseline Neutrino Facility at Fermilab, a new radiation-robust hadron beam profile monitor has been proposed consisting of an interface of gas-filled radiofrequency cavity detectors in the backward region of the LBNF decay pipe. A tailored monitor layout will be used along with the new RF instrumentation. Proposed designs for the detector configuration include a variety of radially symmetric arrangements of RF resonators located at the position of maximum gradient in the beam distribution across the monitor. Until the final detector cavities are available, a prototype tunable Q-factor RF cavity will provide functional emulation for studies of the monitor layout configurations presented here.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAG003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAK001 Intense Neutrino Source Front End Beam Diagnostics System R&D cavity, detector, plasma, hadron 2077
 
  • K. Yonehara, M.D. Balcazar, A. Moretti, A.V. Tollestrup, A.C. Watts, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • M.A. Cummings, A. Dudas, R.P. Johnson, G.M. Kazakevich, M.L. Neubauer
    Muons, Inc, Illinois, USA
 
  Funding: Work supported by Fermilab Research Alliance, LLC under Contract No. DE-AC02-07CH11359 and DOE STTR Grant, No. DE-SC0013795.
We overview the front end beam diagnostic system R&D to prepare operation of a multi-MW proton beam for intensity frontier Neutrino experiments. One of critical issues is shorter life time of a detector with higher beam intensity due to radiation damage. We show a possible improvement of the existing ion chamber based detector, and a study of a conceptually new radiation-robust detector which is based on a gas-filled RF resonator.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL018 A Non-destructive 2D Profile Monitor Using a Gas Sheet experiment, electron, proton, linac 2190
 
  • N. Ogiwara, Y. Namekawa
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
  • M. Fukuda, K. Hatanaka, T. Shima, K. Takahisa
    RCNP, Osaka, Japan
  • Y. Hikichi, J. Kamiya, M. Kinsho
    JAEA/J-PARC, Tokai-mura, Japan
  • Y. Hori
    KEK, Tokai, Ibaraki, Japan
 
  We are developing a non-destructive and fast-response beam profile monitor using a dense gas sheet target. To make a gas sheet, we use the beaming effect, which is well known in vacuum science and technology. The emitted molecules through a long rectangular channel, which has a very small ratio of the gap to the width, are forced to concentrate on a plane. The gas sheet with a thickness of 1.5 mm and the density of 2×10-4 Pa was easily generated by the combination of the deep slit and the thin slit. Here, the gas sheet was produced by the deep slit, and the shape of the sheet was improved by the thin slit. The usefulness of this monitor was shown by the following experiments: 1) For the electron beam of 30 keV with a diameter greater than 0.35 mm, the position and the two-dimensional profiles were well measured using the gas sheet. 2) Then the profiles of the 10 and 400 MeV proton beam with a current of several microamperes were well measured, too. 3) Recently, the profiles of the 400 MeV H ion beams in J-PARC linac were measured.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL044 ENSOLVE : A Simulation Code for FXR LIA Downstream Section emittance, solenoid, space-charge, electron 2271
 
  • Y.H. Wu, Y.-J. Chen
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspi-ces of the U.S. Department of Energy by Law-rence Livermore National Laboratory under Contract DE-AC52-07NA27344.
In this paper, we describe an envelope code, ENSOLVE. It solves the rms beam envelope equation by including space change depression of the potential, spherical aberration of the so-lenoidal lens, emittance growth and focusing effects of backstreaming ions in the final focus region. In this paper, we focus on the physics included for beam transport simulations in the downstream section of flash x-ray radiography linear induction accelerators, such as FXR LIA. We have used ENSOLVE to design final focus tunes for FXR LIA downstream section
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL068 Improving Machine and Target Protection in the SINQ Beam Line at PSI-HIPA proton, quadrupole, diagnostics, operation 2337
 
  • D. Reggiani, P.-A. Duperrex, R. Dölling, D.C. Kiselev, J. Welte, M. Wohlmuther
    PSI, Villigen PSI, Switzerland
 
  With a nominal beam power of nearly 1.4 MW, the PSI High Intensity Proton Accelerator (HIPA) facility is currently at the forefront of the high intensity frontier of particle accelerators. A key issue of this facility is to ensure safe operation of the SINQ spallation source. In particular, too large beam current density and/or inaccurate beam steering can seriously compromise the integrity of the spallation target. Recently, a campaign has been launched in order to improve the fast detection of improper beam delivery and therefore the reliability of the system. New beam diagnostics elements such as an absolute intensity monitor, a beam ellipticity monitor and additional loss monitors have been installed during the 2017 shutdown. In 2018 a new SINQ target will be installed featuring a system of thermocouples which will keep track of the beam position. Moreover, an additional monitor is currently under study which should reliably detect small beam fractions accidentally bypassing the muon production target TE and which are intrinsically dangerous for the SINQ spallation target. This contribution reviews the all efforts to increase the efficiency of the SINQ protection system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF034 Development of Superconducting RF Double Spoke Cavity at IHEP cavity, coupling, electron, proton 2432
 
  • Z.Q. Zhou, H.F.S. Feisi, W.M. Pan
    IHEP, Beijing, People's Republic of China
 
  Funding: State Key Development Program for Basic Research of China (Grant No.2014CB845500)
The China Initiative Accelerator Driven System (CiADS) has been approved to transmute long-lived radi-oisotopes in used nuclear fuel into shorter-lived fission products. IHEP is developing a 325MHz double spoke cavity at β0 of 0.5 for the CiADS linac. The cavity shape was optimized to minimize Ep/Ea while keeping Bp/Ep reasonably low, while the multipacting was analyzed. Meanwhile, mechanical design was applied to check stress, Lorentz force detuning and microphonic effects, and to minimize pressure sensitivity. A new RF coupling scheme was proposed to avoid electrons hitting directly on ceramic window. The detailed design for the cavity is addressed in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF071 Dynamic Testing and Characterization of Advanced Materials in a New Experiment at CERN HiRadMat Facility experiment, damping, site, proton 2534
 
  • A. Bertarelli, C. Accettura, E. Berthomé, L. Bianchi, F. Carra, C. Fichera, M.I. Frankl, G. Gobbi, P. Grosclaude, M. Guinchard, A. Lechner, M. Pasquali, S. Redaelli, E. Rigutto, O. Sacristan De Frutos
    CERN, Geneva, Switzerland
  • Ph. Bolz, P. Simon
    GSI, Darmstadt, Germany
  • T.R. Furness
    University of Huddersfield, Huddersfield, United Kingdom
  • J. Guardia Valenzuela
    Universidad de Zaragoza, Zaragoza, Spain
  • P. Mollicone, M. Portelli
    UoM, Msida, Malta
 
  Funding: This work has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 730871.
An innovative and comprehensive experiment (named "Multimat") was successfully carried out at CERN HiRadMat facility on 18 different materials relevant for Collimators and Beam Intercepting Devices. Material samples, tested under high intensity proton pulses of 440 GeV/c, exceeding the energy density expected in HL-LHC, ranged from very light carbon foams to tungsten heavy alloys, including novel composites as graphite/carbides and metal/diamond without and with thin-film coatings. Experimental data were acquired relying on extensive integrated instrumentation (strain gauges, temperature sensors, radiation-hard camera) and on laser Doppler vibrometer. This allows investigating relatively unexplored and fundamental phenomena as dynamic strength, internal energy dispersion, nonlinearities due to inelasticity and inhomogeneity, strength and delamination of coatings and surfaces. By benchmarking sophisticated numerical simulations against these results, it is possible to establish or update material constitutive models, which are of paramount importance for the design of devices exposed to interaction with particle beams in high energy accelerators such as the HL-LHC or FCC-hh.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF083 Comparison of Superconducting Septa Topologies and Parameter Space Exploration septum, dipole, experiment, shielding 2578
 
  • M.G. Atanasov, J.C.C.M. Borburgh, M. Hourican, A. Sanz Ull
    CERN, Geneva, Switzerland
 
  The unprecedented energy scale of the FCC poses challenging requirements for its magnetic elements including the septum magnets for injection and extraction. With an ambitious target field of 4 T and an apparent septum thickness of only 25 mm, different superconducting septa topologies have been investigated to explore their limitations. This article will cover the currently feasible topologies, amongst which the truncated cosine-theta, the double truncated cosine-theta, the superconducting shield (SuShi) and the so called stealth dipole. A performance figure of merit will be proposed, taking into account the maximum achievable magnetic field, the septum thickness and the leak field magnitude.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF084 Design, Prototyping Activities and Beam Irradiation Test for the New nTOF Neutron Spallation Target interface, neutron, proton, radiation 2582
 
  • R. Esposito, M. Bergeret, J. Busom, M.E.J. Butcher, M. Calviani, R. Cimmino, T. Coiffet, J.P.C. Espadanal, L. Gentini, R. Illan Fiastre, V. Maire, F. Ogallar Ruiz, A. Perillo-Marcone, S. Sgobba, M.A. Timmins, C. Torregrosa, E. Urrutia, V. Vlachoudis
    CERN, Geneva, Switzerland
  • R. Logé
    EPFL, Lausanne, Switzerland
 
  A third-generation neutron spallation target for the neutron time-of-flight facility at CERN (nTOF) is currently undergoing the design and prototyping stage. The new design aims at improving reliability, increasing beam intensity on target and avoiding issues encountered in the current generation target, in particular the contamination of the cooling system water with radioactive spallation products coming from washing out lead. After a preliminary design and an initial prototyping stage*, a baseline solution has been defined consisting in a pure lead target core contained in a Ti-6Al-4V cladding and embedded in a massive Pb block. A backup solution has also been defined, consisting in a Ta-cladded W core embedded in a Pb block. Both solutions are currently undergoing the detailed design stage. This contribution details the prototyping activity, the robustness studies for accidental scenarios and the design of a beam irradiation test on prototypes of the target core.
R. Esposito et al., "Design of the new CERN nTOF neutron spallation target: R&D and prototyping activities," in Proc. of IPAC'17, Copenhagen, May 2017.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF086 Eradication of Mercury Ignitron from the 400 kA Magnetic Horn Pulse Generator for CERN Antiproton Decelerator proton, antiproton, operation, kicker 2586
 
  • V. Namora, M. Calviani, L. Ducimetière, P. Faure, L.E. Fernandez, G. Gräwer, V. Senaj
    CERN, Geneva, Switzerland
 
  The CERN Antiproton Decelerator (AD) produces low-energy antiprotons for studies of antimatter. A 26 GeV proton beam impacts the AD production target which produces secondary particles including antiprotons. A magnetic Horn (AD-Horn) in the AD target area is used to focus the diverging antiproton beam and increase the antiproton yield enormously. The horn is pulsed with a current of 400 kA, generated by capacitor discharge type generators equipped with ignitrons. These mercury-filled devices present a serious danger of environmental pollution in case of accident and safety constraints. An alternative has been developed using solid-state switches and diodes. Similar technology was already implemented at CERN for ignitron eradication in the SPS Horizontal beam dump in the early 2000s. A project was launched to design and set up a full-scale test-bench, to install and test a dedicated solid-state solution. Following the positive results obtained from the test-bench, the replacement of ignitrons by solid-state devices in the operational AD-Horn facility is currently under preparation. This paper describes the test-bench design and results obtained for this very high current pulser.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMG002 Beam Dump Facility Target: Design Status and Beam Tests in 2018 radiation, operation, experiment, simulation 2604
 
  • E. Lopez Sola, O. Aberle, P. Avigni, L. Bianchi, J. Busom, M. Calviani, M. Casolino, J.P.C. Espadanal, M.A. Fraser, S. Girod, B. Goddard, D. Grenier, M. Guinchard, C. Heßler, R. Illan Fiastre, R. Jacobsson, M. Lamont, A. Ortega Rolo, B. Riffaud, G. Romagnoli, L. Zuccalli
    CERN, Geneva, Switzerland
 
  The Beam Dump Facility (BDF) Project, currently in its design phase, is a proposed general-purpose fixed target facility at CERN, dedicated to the Search for Hidden Particles (SHiP) experiment in its initial phase. At the core of the installation resides the target/dump assembly, whose aim is to fully absorb the high intensity 400 GeV/c SPS beam and produce charmed mesons. In addition to high thermo-mechanical loads, the most challenging aspects of the proposed installation lie in very high energy and power density deposition that are reached during operation. In order to validate the design of the BDF target, a scaled prototype is going to be tested during 2018 in the North Area at CERN, upstream the existing beryllium primary targets. The prototype testing under representative beam scenarios will allow having an insight of the material response in an unprecedented regime. Online monitoring and an extensive Post Irradiation Experimental (PIE) campaign are foreseen. The current contribution will detail the design and handling aspects of the innovative Target Complex as well as the design of the BDF target/dump core and the design and construction of the prototype target assembly.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMG002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMG006 Experimental Setup to Characterize the Radiation Hardness of Cryogenic Bypass Diodes for the HL-LHC Inner Triplet Circuits radiation, cryogenics, MMI, quadrupole 2620
 
  • A. Will, G. D'Angelo, R. Denz, M.F. Favre, D. Hagedorn, G. Kirby, T. Koettig, A. Monteuuis, F. Rodriguez-Mateos, A.P. Siemko, K. Stachon, M. Valette, A.P. Verweij, D. Wollmann
    CERN, Geneva, Switzerland
  • A. Bernhard, A.-S. Müller
    KIT, Karlsruhe, Germany
  • L. Kistrup
    KEA, Copenhagen, Denmark
 
  Funding: Work supported by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Research
For the high luminosity upgrade of the Large Hadron Collider (LHC), it is planned to replace the existing triplet quadrupole magnets with Nb3Sn quadrupole magnets, which provide a comparable integrated field gradient with a significantly increased aperture. These magnets will be powered through a novel superconducting link based on MgB2 cables. One option for the powering layout of this triplet circuit is the use of cryogenic bypass diodes, where the diodes are located inside an extension to the magnet cryostat and operated in superfluid helium. Hence, they are exposed to radiation. For this reason the radiation hardness of existing LHC type bypass diodes and more radiation tolerant prototype diodes needs to be tested up to the radiation doses expected at their planned position during their lifetime. A first irradiation test is planned in CERN's CHARM facility starting in spring 2018. Therefore, a cryo-cooler based cryostat to irradiate and test LHC type diodes in-situ has been designed and constructed. This paper will describe the properties of the sample diodes, the experimental roadmap and the setup installed in CHARM. Finally, the first measurement results will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMG006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML021 First Performance Results of the PIP2IT MEBT 200 Ω Kicker Prototype kicker, booster, impedance, ISOL 2724
 
  • G.W. Saewert, M.H. Awida, B.E. Chase, A.Z. Chen, J. Einstein-Curtis, D. Frolov, K.S. Martin, H. Pfeffer, D. Wolff
    Fermilab, Batavia, Illinois, USA
  • S. Khole
    BARC, Trombay, Mumbai, India
  • D. Sharma
    RRCAT, Indore (M.P.), India
 
  Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics
The PIP-II project is a program to upgrade the Fermilab accelerator complex. The PIP-II linac includes a 2.1 MeV Medium Energy Beam Transport (MEBT) section that incorporates a unique chopping system to perform arbi-trary, bunch-by-bunch removal of 162.5 MHz structured beam. The MEBT chopping system will consist of two identical kickers working together and a beam absorber. One design of two having been proposed has been a 200 Ω characteristic impedance traveling wave dual-helix kicker driven with custom designed high-speed switches. This paper reports on the first performance results of one prototype kicker built, installed and tested with beam at the PIP-II Injector Test (PIP2IT) facility. The helix deflector design details are discussed. The electrical performance of the high-speed switch driver operating at 500 V bias is presented. Tests performed were chopping beam at 81.25 MHz for microseconds as well as with a truly arbitrary pattern for 550 us bursts having a 45 MHz average switching rate and repeating at 20 Hz.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF011 Design of 4 Ampere S-Band LINAC Using Slotted Iris Structure for HOM Damping linac, HOM, damping, dipole 2965
 
  • J. Pang, S. Chen, X. He, L.W. Zhang
    CAEP/IFP, Mainyang, Sichuan, People's Republic of China
  • S. Pei, H. Shi, J.R. Zhang
    IHEP, Beijing, People's Republic of China
 
  Funding: Key Laboratory of Pulsed Power, CAEP (Contract NO. PPLF2014PZ05) Key Laboratory of Particle Acceleration Physics &Technology,IHEP, CAS (Contract Y5294109TD)
An S-band LINAC with the operating frequency of 2856 MHz and beam current of 4 A was designed for flash X-ray radiography for hydrodynamic test. The optimization of the parameters of the LINAC was processed to obtain the minimum beam radius and the maximum energy efficiency. For the purpose of reducing the beam orbits offset at the exit of LINAC, a slotted iris accelerating structure would be employed to suppress the transverse Higher Order Modes (HOMs) by cutting four radial slots in the iris to couple the HOMs to SiC loads. In this paper, we present the design of the LINAC and the results of beam dynamic analysis.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF059 Ultra Compact Symplectic Scheme for Fast Multi-Particle Tracking lattice, flattop, octupole, sextupole 3107
 
  • K. Skoufaris, Y. Papaphilippou, D. Pellegrini
    CERN, Geneva, Switzerland
 
  A versatile symplectic integration scheme has been developed in order to produce simplified versions of non linear lattices, preserving fundamental non-linear properties such as the detuning with amplitude and energy, in addition to the linear transport. The method has been applied to the LHC and benchmarked against tracking simulations with Sixtrack. This reduced lattice is made available as a refined replacement of the simple rotation matrix often used in multi-particle studies requiring a fast beam transport routine.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF059  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF060 A Benchmark Study of a High Order Symplectic Integration Method With Only Positive Steps lattice, quadrupole, sextupole, multipole 3111
 
  • K. Skoufaris, Y. Papaphilippou
    CERN, Geneva, Switzerland
  • J. Laskar
    IMCCE, Paris, France
  • Ch. Skokos
    University of Cape Town, Cape Town, South Africa
 
  The symplectic integrators CSABA & CSBAB are used in order to calculate single particles dynamics in accelerators and storage rings. These integrators include only forward drift steps while being highly accurate. Their efficiency to describe various optical and dynamical quantities for main magnetic elements and non-linear lattices is calculated and compared with the efficiency of the splitting methods used in MAD-X - PTC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK006 Design Status of the Beam Switchyard for ESSnuSB proton, linac, emittance, quadrupole 3215
 
  • E. Bouquerel
    IPHC, Strasbourg Cedex 2, France
 
  Funding: This project is now supported by the COST Action CA15139/EuroNuNet and EU/H2020 innovation programme ESSnuSB under grant agreement No 777419.
The ESSnuSB project, recently granted by the EU H2020 framework programme for a 4-year design study, proposes to use the proton linac (2 GeV, 5 MW) of the European Spallation Source (ESS) currently in construction in Lund (Sweden) to deliver a neutrino super beam. One of the work packages of this design study is dedicated to the primary proton beam-line completing the linac. It will mainly consist of an accumulator ring to compress the 2.86 ms long beam pulse to 1.32 μs and of a switchyard to distribute the protons onto a 4-target station. Dipoles, steerers, quadrupoles, collimators and several diagnostics will compose the switchyard to ensure the protons to hit the target with desired characteristics. This paper presents the objectives of this work package and the design status of this switchyard system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK051 Computer Simulation of Explosive Emission Electrons Acceleration and X-ray Quantum Generation in Pulse Coaxial Diode System with Interior Anode cathode, electron, radiation, simulation 3333
 
  • V.I. Rashchikov, A.A. Isaev, A.E. Shikanov, E.A. Shikanov
    MEPhI, Moscow, Russia
 
  Computer simulation of electrons from explosive emission acceleration and X-ray quantum generation in pulse coaxial diode system with interior anode, which is used in accelerating tube of compact X-ray generator* with Tesla transformer as high voltage source, was done. The results obtained allow us to choose accelerating tube diode system geometry for different running modes. Comparison of numerical results with experimental data of dose rate dependence on the distance from vacuum tube anode and energy at first circuit Tesla transformer was fulfilled.
*Patent RF N71817, 03.10.2007
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK097 Ion Optic Design of the Microprobe System at Sichuan University brightness, proton, focusing, quadrupole 3460
 
  • Z. Li, Z. An, J.F. Han, G.Q. Zheng
    SCU, Chengdu, People's Republic of China
 
  Funding: Supported by the National Natural Science Foundation of China (11375122, 11511140277)
At the end of 2016, the first beam was extracted from the 3.0 MV Tandetron accelerator system at Sichuan University, China. The accelerator is imported from the HVEE as a multi-purpose research platform. For one of the main applications, the system will be connected to a micro-beamline to achieve submicron resolution, so the accelerator is designed with energy stability as high as 0.01%. The measured brightness for 3 MeV proton beam is 5.06 pA/um2mrad2MeV and the energy stability is reached the goal of design. The ion optic design of the microprobe beam line will be presented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK104 New Proton Driver Beamline Design for ARIEL* Project at TRIUMF** proton, TRIUMF, cyclotron, optics 3473
 
  • Y.-N. Rao, R.A. Baartman, Y. Bylinskii, F.W. Jones
    TRIUMF, Vancouver, Canada
 
  Funding: ∗ Capital funding from CFI (Canada Foundation for Innovation). ** Funded under a contribution agreement with NRC (National Research Council Canada).
The new radioisotope facility at TRIUMF, ARIEL, under construction, comprises two primary driver beams: 50 MeV electrons from the SC linac and 480 MeV protons from the main TRIUMF cyclotron. New 80 m long proton beam line will transport up to 100 microamps beam from existing cyclotron extraction port to an ISOL target station. H− cyclotron stripping foil extraction allows to feed this additional user simultaneously with 3 present different experimental programs. Distinctive features of the new beam line include: a) compensation of the cyclotron energy dispersion; b) low-loss (< 1 nA/m) beam transport after a collimator dedicated to remove the beam halo produced by large-angle scattering in the extraction foil; c) broad range of beam size variability at the production target by applying beam rastering at 400 Hz; d) sharing the same tunnel with electron beam line that requires unique beam loss protect system. Details of beam optics design as well as beam instrumentation are discussed in the paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK136 Wide-Ranging Genetic Research of Matching Line Design for Plasma Accelerated Beams with GIOTTO plasma, emittance, electron, FEL 3561
 
  • M. Rossetti Conti
    Universita' degli Studi di Milano & INFN, Milano, Italy
  • A. Bacci, A.R. Rossi
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • A. Giribono, C. Vaccarezza
    INFN/LNF, Frascati (Roma), Italy
 
  GIOTTO is a code based on a Genetic Algorithm, being used in the field of particles accelerators for some years*-***. Its main use concerns beam-dynamics optimizations for low energy linacs, or injectors, where the beam space-charge plays an important role on its dynamics. Typical optimizations regard the Velocity Bunching technique or, more generally, the emittance and energy spread minimization. Recent improvements in GIOTTO, here discussed, have added the important capability to solve problems with a wide research domain, making GIOTTO able to design a beam Transfer Line (TL) from scratch****. The code, taking as input the TL length and the optics elements, can define the correct lattice of the line that transports and matches the beam from the linac to the undulators of an FEL, finding the right gradients, positions and dimensions for the optics elements by exploring the parameters values in selected ranges. Further, the introduction of Twiss parameters into the fitness function makes GIOTTO a powerful tool in the design of highly different beam lines. Lastly, a new routine for the statistical analysis of parameters jitters effects on the beam is under development.
*Bacci et al, NIM-B, 263, 488 (2007)
**Bacci et al, presented at PAC'07, THPAN031
***Bacci et al, presented at IPAC'16, WEPOY039
****Rossetti Conti et al, NIM-A (2018, in press)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK136  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL070 Multi-Physics Analysis of Two Bunchers for CIFNEF cavity, simulation, beam-transport, neutron 3815
 
  • Q.Y. Tan, M.J. Easton, Q. Fu, P.P. Gan, H.P. Li, Y.R. Lu, Z. Wang
    PKU, Beijing, People's Republic of China
 
  CIFNEF(Compact Intense Fast NEutron Facility) project will accelerate and deliver a 5 MeV deuteron beam to the targets to produce high-intense neutrons. A 2.5 MHz pulsed deuteron beam with bunch width within 2 ns is needed on the targets at last. To fulfill the special requirements of the beam dynamics, two types of bunchers are adopted in the CIFNEF. One is a 10.156 MHz buncher used in the low energy beam transport (LEBT) line to longitudinally focus the 50 keV deuteron beam to the RFQ longitudinal acceptance with 4 kV effective voltage. A lumped element model is adopted because of the low frequency and it consists of an inductance coil in parallel with the capacitance of drift tube. The other one is an 81.25 MHz buncher used in the high energy beam transport (HEBT) line to longitudinally focus the 5 MeV deuteron beam to 2 ns. A QWR cavity with 2-gaps is used to provide 150 kV effective voltage. Thermal and structural analyses have been carried out on these two bunchers. Details of simulations of these two bunchers are presented and discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL098 Pumping Properties of Single Metal Zirconium Non-Evaporable Getter Coating vacuum, site, experiment, injection 3869
 
  • Sirvinskaite, R. Sirvinskaite, M.D. Cropper, M.D. Cropper
    Loughborough University, Loughborough, Leicestershire, United Kingdom
  • A.N. Hannah, O.B. Malyshev, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • O.B. Malyshev, R. Valizadeh
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Non-evaporable getter (NEG) coating has been used for years in many particle accelerator facilities due to its evenly distributed pumping speed, low thermal outgassing, and low photon and electron stimulated desorption yields. We have previously demonstrated that quaternary Ti-Zr-Hf-V coating deposited from an alloy wire has the lowest desorption yields, the highest sticking probability and sorption capacity. In this work, we explore the single element targets which are widely available and can be produced in a form of a wire that is easy to apply for a uniform coating of various shapes of vacuum chamber. Single metal Zr coatings have been tested to find a more efficient and cheaper way of producing the NEG-coated vacuum chambers. Two samples coated with Zr of dense and columnar structure were analysed and results of the pumping properties are reported. The results show that pure Zr coating could be an economic solution, despite not being as effective as can be achieved with quaternary NEG film. It shows that columnar Zr coating can be activated and reaches full pumping capacity at 160°C. This is close to the activation temperature of Ti-Zr-Hf-V and lower than that for the widely used ternary Ti-Zr-V alloy.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL117 Development of a Proton-to-Neutron Converter for Radioisotope Production at ISAC-TRIUMF proton, neutron, ISAC, TRIUMF 3917
 
  • L. Egoriti, P.G. Bricault, T. Day Goodacre, A. Gottberg
    TRIUMF, Vancouver, Canada
  • M. Delonca, R.M. Dos Santos Augusto, J.P. Ramos, S. Rothe, T. Stora
    CERN, Geneva, Switzerland
  • M. Dierckx, D. Houngbo, L. Popescu
    SCK•CEN, Mol, Belgium
  • R.M. Dos Santos Augusto
    LMU, München, Germany
 
  At ISAC-TRIUMF, a 500 MeV proton beam is impinged upon thick targets to induce nuclear reactions to pro-duce reaction products that are delivered as a Radioactive Ion Beam (RIB) to experiments. Uranium carbide is among the most commonly used target materials which produces a vast radionuclide inventory coming from both spallation and fission- events. This can also represent a major limitation for the successful delivery of certain RIBs to experiments since, for a given mass, many isobar-ic isotopes are to be filtered by the dipole mass separator. These contaminants can exceed the yield of the isotope of interest by orders of magnitude, often causing a significant reduction in the sensitivity of experiments or even making them impossible. The design of a 50 kW proton-to-neutron (p2n) converter-target is ongoing to enhance the production of neutron-rich nuclei while significantly reducing the rate of neutron-deficient contaminants. The converter is made out of a bulk tungsten block which converts proton beams into neutrons through spallation. The neutrons, in turn, induce pure fission in an upstream UCx target. The present target design and the service infrastructure needed for its operation will be discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL117  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL129 Magnetron Sputtering of Nb3Sn for SRF Cavities cavity, SRF, site, controls 3946
 
  • MNS. Sayeed, H. Elsayed-Ali
    ODU, Norfolk, Virginia, USA
  • G.V. Eremeev, M.J. Kelley, C.E. Reece
    JLab, Newport News, Virginia, USA
  • M.J. Kelley, U. Pudasaini
    The College of William and Mary, Williamsburg, Virginia, USA
  • M.J. Kelley
    Virginia Polytechnic Institute and State University, Blacksburg, USA
 
  Nb3Sn is a potential candidate for surface material of SRF cavities since it can enable the cavity to operate at higher temperatures with high quality factor and at an increased accelerating gradient. Nb-Sn films were deposited using magnetron sputtering of individual Nb and Sn targets onto Nb and sapphire substrates. The as-deposited films were annealed at 1200 °C for 3 hours. The films were characterized for their structure by X-ray Diffraction (XRD), morphology by Field Emission Scanning Electron Microscopy (FESEM), and composition by Energy Dispersive X-ray Spectroscopy (EDS) and Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS). The surface resistivity was measured down to cryogenic temperature to determine the superconducting transition temperature and its width. The composition of the multilayered films was controlled by varying the thickness of the Nb and Sn layers. The films showed crystalline Nb3Sn phases with Tc up to 17.6 K.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL129  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF089 Design of a Radial RF Electron Gun cavity, gun, electron, cathode 4287
 
  • J.W. Lewellen, F.L. Krawczyk
    LANL, Los Alamos, New Mexico, USA
  • J.R. Harris
    Directed Energy Directorate, Air Force Research Laboratory, Albuquerque, USA
 
  Funding: DOE Accelerator Stewardship Program
Most electron beam sources generate beams that propagate away from the source in a single primary direction, with the overall envelope being either pencil-like or sheet-like. We present the design of a radial RF electron gun, intended to produce a radially propagating electron beam (either towards or away from an axis) with the overall envelope being that of an expanding or contracting annulus. Such a source has several potential advantages for materials processing, and may also be useful as the basis for unique optical elements for hadron machines.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF089  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK086 Low Intensity Electron Beam Measurement at SLRI Beam Test Facility electron, synchrotron, booster, detector 4502
 
  • K. Kittimanapun, N. Chanlek, A. Lakrathok, N. Laoiamnongwong
    SLRI, Nakhon Ratchasima, Thailand
 
  Funding: This work is supported by the National Science and Technology Development Agency (NSTDA) under contract FDA-C0-2558-855-TH.
The SLRI Beam Test Facility (SLRI-BTF), the latest extension of the existing accelerator complex, has recently been in operation at the Synchrotron Light Research Institute (SLRI). SLRI-BTF is capable of providing electron test beams with desired intensity and energy. By means of a wedge target downstream of the 40-MeV linac, the electron intensity of the test beam produced is variable between a few to millions of electrons per burst. The test beam energy is adjustable from 40 MeV to 1.2 GeV, depending on the acceleration time of the synchrotron booster. SLRI-BTF targets to service electron test beams to the development of the high-energy particle detectors and diagnostic instrumentations. In this paper, the measurement of the low intensity electron beam will be discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK094 Thermal Design of a 100 kW Electron to Gamma Converter at TRIUMF electron, TRIUMF, ISOL, experiment 4520
 
  • B.G. Cade, L. Egoriti, A. Gottberg
    TRIUMF, Vancouver, Canada
  • D.R. Priessl
    UVIC, Victoria, Canada
 
  The electron target station (AETE) of the TRIUMF-ARIEL Facility will employ an electron "driver" beam to irradiate Isotope Separator On-Line (ISOL) targets for the production of radioactive isotopes via photofission. 30 MeV electrons will be converted to gamma spectrum Bremsstrahlung photons via an electron to gamma (e-y) converter located upstream of the ISOL target. The e-y concept uses a composite metal with two layers: One high-Z material to convert electrons to photons, and one low-Z material to provide structural support, thermal dissipation, and maximal transparency to the produced gamma photons. Several material combinations and bonding processes are currently being evaluated and tested using TRIUMF's E-LINAC. Water-cooling and thermal design are being optimized for 100 kW operation and have thus far been validated up to 10 kW driver beam power. The latest test results and future prospects are summarized.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK118 GaN Thin Film Photocathodes for High Brightness Electron Beams cathode, electron, experiment, brightness 4594
 
  • M. Vogel, X. Jiang, M. Schumacher
    University Siegen, Siegen, Germany
 
  Funding: This work was supported by the German Federal Ministry of Education and Research under grant 05K16PS1 "HOPE II: Hochbrillante photoinduzierte Hochfrequenz-Elektronenquellen".
Gallium nitride (GaN) is one promising candidate as photocathode material showing high quantum efficiencies which is one of the requirements for high brightness electron beams. In addition to reported quantum efficiencies of up to 70%, GaN needs to satisfy the demands for long lifetime, low dark current and low thermal emittance. In this contribution, the ongoing activities of the synthesis by means of reactive rf magnetron sputtering and characterization of GaN is presented. The latter is done by standard materials science methods and in-situ measurements of the quantum efficiency in combination with lifetime and dark current measurements to asses and optimize the photocathode's performance. Along with the project's details, first experimental results of GaN thin films synthesized utilizing a GaAs source are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK118  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK125 Development of Non-Evaporable Getter (NEG) Coatings on Small Diameter Vacuum Chambers for Diffraction-Limited Storage Ring vacuum, site, electron, storage-ring 4611
 
  • S. Wang, Y.Z. Hong, R. Huang, X.T. Pei, Y. Wang, W. Wei, B. Zhang, S.C. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Design of the fourth generation Diffraction-Limited Storage Ring reduces aperture of vacuum chambers to a few centimeters. To satisfy the small aperture, the intense photon bombardment and the requirement of low pressure, most of the beam pipes need to be deposited with Ti-Zr-V nonevaporable getter (NEG) thin films. NEG can provide distributed pumping and low gas desorption and allow to achieve low pressure in narrow and conductance limited chambers. In this paper, Ti-Zr-V thin film was deposited by DC magnetron sputtering using Ti-Zr-V alloy target. The morphology and thickness of Ti-Zr-V are characterized by Scanning Electron Microscopy (SEM). The average grain size is evaluated using X-ray diffraction (XRD). The composition and the corresponding chemical bonding of the thin film are analyzed by X-ray Photoelectron Spectroscopy (XPS). Finally, the adhesion between the film and substrate and the vacuum performance are evaluated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK125  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK145 Evaluation of Coherent Terahertz Radiation Generated from Tilted Electron Beams Aiming for Higher Light Intensity radiation, electron, controls, gun 4642
 
  • M. Brameld, K. Sakaue, Y. Tadenuma, M. Washio, R. Yanagisawa
    Waseda University, Tokyo, Japan
  • R. Kuroda, Y. Taira
    AIST, Tsukuba, Japan
 
  Funding: This work was supported by a research granted from The Murata Science Foundation and JSPS KAKENHI 26286083.
When a target medium is irradiated by electron beams travelling at relativistic speed, terahertz(THz) radiation is produced by Cherenkov radiation. THz radiation is released at an angle to the direction of travel of the electron beams, and the coherence of the radiation can be improved by tilting the electron beams to match this angle, resulting in higher light intensity. The Cherenkov angle differs according to the refraction index of the target medium. At Waseda University, the generation of high-quality electron beams by a Cs-Te Photocathode RF-Gun and its applications are being researched. By utilizing the RF-Deflector, the tilt angle of the electron beam can be controlled to achieve coherent THz radiation. To gain higher light intensity, the use of Silicon and Aerogel as a target medium was challenged and compared to the conventional medium TOPAS. The THz radiation produced from the three target mediums were analyzed by use of the power meter and time domain spectroscopy(TDS). At this conference, the generation of THz Cherenkov radiation from different target mediums and the measurement results will be reported along with future perspectives.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK145  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML018 Modeling of Self-Modulated Laser Wakefield Acceleration Driven by Sub-Terawatt Laser Pulses laser, electron, plasma, focusing 4690
 
  • C.-Y. Hsieh, S.-H. Chen
    NCU, Chung Li, Taiwan
  • M.W. Lin
    National Tsing-Hua University (NTHU), Hsinchu, Taiwan
 
  Funding: This work has been supported by the Ministry of Science and Technology in Taiwan by grant MOST104-2112-M-008-013-MY3 and by grant MOST105-2112-M-007-036-MY3.
Laser wakefield accelerator (LWFA) can be achieved in a scheme in which a sub-terawatt (TW) laser pulse is introduced into a thin, high-density target*. As a result, the self-focusing and the self-modulation can greatly enhance the peak intensity of the laser pulse capable of exciting a nonlinear plasma wave to accelerate electrons. A particle-in-cell model was developed to study the sub-TW LWFA, in which a 0.6-TW laser pulse is injected into a hydrogen gas cell with a flat-top density profile. In addition to using 800-nm laser pulses, laser pulses of 1030 nm were used in simulations as they represent a viable approach to realize the sub-TW LWFA driven by high-frequency, diode-pumped laser systems**. Process of the electron injection is complicated in such a high-density plasma; however, the simulation results show that the appropriate injection and acceleration of electrons can be achieved by optimizing the length of the gas cell. When a 340-micrometer long gas cell is introduced, energetic electrons (> 1 MeV) are produced with a relatively low emittance of 3.5 pi-mm-mrad and a total charge of 0.32 nC accordingly.
* A. J. Goers et al., Phys. Rev. Lett. 115, 194802 (2015).
** E. Kaksis et al., Opt. Express 24, 25, 28915 (2016).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML021 Individual Acceptance Testing and Comprehensive Testing of NSC KIPT SCA Neutron Source Technological Systems and Equipment neutron, detector, electron, MMI 4696
 
  • A.Y. Zelinsky, O.V. Bykhun, I.M. Karnaukhov, A. Mytsykov, I. Ushakov
    NSC/KIPT, Kharkov, Ukraine
  • I. Bolshinsky
    INL, Idaho Falls, Idaho, USA
  • Y. Gohar
    ANL, Argonne, Illinois, USA
 
  During 2016-2017 the installation, assembling and commissioning of the NSC KIPT SCA Neutron Source technological systems were completed. The facility was designed and developed by NSC KIPT of Ukraine in collaboration with ANL of USA. The construction of the neutron source facility was started in 2012. The neutrons of the subcritical assembly are generated by 100 MeV/ 100 kW electron beam uniformly distributed at the surface of the tungsten target. It is supposed that the facility will be used to perform basic and applied nuclear research, produce medical isotopes, and train nuclear specialists. The individual acceptance testing and comprehensive testing were conducted for the technological and engineering systems of the neutron source. The tests were performed in compliance with programs and methodologies agreed by the State Nuclear Regulatory Inspectorate of Ukraine. The testing results confirmed compliance of the equipment with technical specifications, standards, regulations and rules on nuclear and radiation safety and preparedness of these systems for trial operation with the KIPT neutron source. The trial operation of the NSC KIPT SCA 'Neutron Source' has been started.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML031 Collective Acceleration of Laser Plasma in Non-stationary and Non-uniform Magnetic Field plasma, laser, acceleration, experiment 4716
 
  • A.A. Isaev, C.I. Kozlovskij, E.D. Vovchenko
    MEPhI, Moscow, Russia
 
  This paper presents the new experimental results concerning acceleration of deuterium ions extracted from laser plasma in the rapid-growing nonuniform magnetic field in order to initiate the nuclear reactions D(d, n)3He and Т (d,n)4He. In order to obtain plasma a laser that generates in Q-switched mode the pulses of infrared radiation (λ = 1.06 μm) with the energy W ≤ 0.85 J and duration of ≈10 ns. In the present study, the velocity of a bunch of a laser plasma at a magnetic field induction rate of 3-108 T/s was experimentally measured, and angular distributions of accelerated particle fluxes were measured in the range from 0 to 30 degrees. The maximum and mean ion velocities were determined by the time-of-flight technique. The proposed system allows the generation of neutrons, including possibly thermonuclear ones, on counterflows using two similar magnetic accelerators located coaxially, facing each other. In this case the problem related to degradation of solid neutron-generating targets is resolved. There also occurs a possibility of fast accumulated running time of packed solid targets at using of deuteron-tritium laser targets.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML041 FEBIAD Ion Source Development at TRIUMF-ISAC emittance, ISAC, ion-source, TRIUMF 4730
 
  • B.E. Schultz, F. Ames, O.K. Kester, P. Kunz, A. Mjøs, J.F. Sandor
    TRIUMF, Vancouver, Canada
 
  The ISOL facility TRIUMF-ISAC utilizes a number of different ion sources to produce radioactive ion beams. Most isotopes are ionized using surface or resonant laser ionization, but these techniques are prohibitively inefficient for species with high ionization energies, such as noble gases and molecules. For these cases, the Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source can be used. The FEBIAD uses a hot cathode to produce electrons, which are accelerated through a potential (< 200 V) into the anode volume. Isotopes entering the resulting plasma undergo impact ionization and are extracted. Efforts are under way to better understand the physics and operation of the FEBIAD, using both theory and experiment. Recent measurements and simulations on the ISAC FEBIAD will be reported here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML116 AutoTuner: A General Graphical User Interface for Automated Tuning GUI, interface, controls, kicker 4939
 
  • X. Huang
    SLAC, Menlo Park, California, USA
  • T. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  AutoTuner is a general graphical user interface (GUI) that we developed for automated tuning or online optimization. The GUI provides a convenient interface to select tuning knobs, objectives, and optimization algorithms and to change the tuning control parameters. Tuning setup can be created and saved for reuse. The progress of the tuning processing is plotted in real time. The tuning process can be paused, aborted, or resumed. We have tested the program for real-life accelerator tuning problems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML116  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML120 Development of Coating Technique for Superconducting Multilayered Structure site, cavity, experiment, acceleration 4954
 
  • R. Ito, T. Nagata
    ULVAC, Inc, Chiba, Japan
  • H. Hayano, T. Kubo, T. Saeki
    KEK, Ibaraki, Japan
  • H. Ito
    Sokendai, Ibaraki, Japan
  • Y. Iwashita, R. Katayama
    Kyoto ICR, Uji, Kyoto, Japan
  • H. Oikawa
    Utsunomiya University, Utsunomiya, Japan
 
  In order to increase the maximum acceleration gradient of SRF cavities, S-I-S (superconductor-insulator-superconductor) multilayered structure theory has been proposed. We focused on NbN which has a higher superconducting transition temperature than Nb. Firstly, we researched the optimal deposition condition for N2 gas reactive sputtering of NbN by using in-house inter-back type DC magnetron sputtering equipment. The critical condition for a thin film with strong crystalline orientation of NbN was identified. The superconducting transition temperature of the NbN thin film, which were coated under the best condition, was over 14 K. Secondly, we tried making S-I-S multilayered samples that was composed of NbN/SiO2/Nb substrate. The coating condition for the NbN layer was determined based on the research results in a single layer. The SiO2 layer was deposited with a film thickness of 30 nm that was theoretically expected to be effective as barrier layer. We applied O2 gas reactive AC magnetron sputtering for coating. In this article, the detailed results of the NbN single layer and multilayer film depositions are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML120  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML129 Deposition and Characterization of TiZrHfV films by DC Magnetron Sputtering vacuum, electron, controls, storage-ring 4983
 
  • X.Q. Ge, T.L. He, X.T. Pei, Y.G. Wang, Y. Wang, W. Wei, B. Zhang, Y.X. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The new generation of accelerators places higher demands on the surfaces of vacuum chamber materials. Search for low secondary electron yield (SEY) materials and an effective vacuum chamber surface treatment process, which can effectively reduce the electronic cloud effect, are important early works for the new generation of accelerators. In this work, we revealed the SEY characteristics of Ti-Zr-Hf-V NEG films and Ti-Zr-V NEG films which were deposited on Si (111) substrates using direct current magnetron sputtering method. The surface morphology and surface chemical bonding information were collected by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). With the same parameters, the maximum SEY of Ti-Zr-Hf-V NEG films and Ti-Zr-V NEG films are 1.24 and 1.51, respectively. These results are of great significance for the next-generation particle accelerators.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML129  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML130 Applications of a Distributed Beam Loss Monitor at the Australian Synchrotron storage-ring, synchrotron, detector, injection 4986
 
  • P.J. Giansiracusa, T.G. Lucas, R.P. Rassool, M. Volpi
    The University of Melbourne, Melbourne, Victoria, Australia
  • M.J. Boland
    CLS, Saskatoon, Saskatchewan, Canada
  • G. LeBlanc
    SLSA, Clayton, Australia
 
  A distributed beam loss monitoring system, based on Cherenkov silica fibres, has been installed at the Australian Synchrotron. The fibres are installed parallel to the beam pipe and cover the majority of the injection system and storage ring. Relativistic charged particles from beam loss events that have a velocity above the Cherenkov threshold produce photons in the fibres. These photons are then guided along the fibres to detectors outside of the accelerator tunnels. Originally the system was installed to determine its suitability for measuring losses at a future linear collider, such as the Compact Linear Collider, with single pass 150 ns bunch trains. This study builds on these results and attempts to use the system to measure loss locations with a circulating beam. We present the preliminary results and describe how the system could be improved.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML130  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML131 A NEW PRODUCTION PROCESS FOR UCx TARGETS FOR RADIOACTIVE ISOTOPE BEAMS AT TRIUMF vacuum, TRIUMF, ISOL, ISAC 4990
 
  • M. S. Cervantes, P. Fouquet-Métivier, A. Gottberg, P. Kunz, L. Lambert, A. Mjøs, J. Wong
    TRIUMF, Vancouver, Canada
  • M. S. Cervantes
    UVIC, Victoria, Canada
  • P. Fouquet-Métivier
    ENSCM, Montpellier, France
  • A. Gottberg
    Victoria University, Victoria, B.C., Canada
 
  TRIUMF has the objective of producing radioactive isotope beams (RIB) using the ISOL method. Radioactive isotopes are used in experiments in different areas of science. At the TRIUMF-ISAC facility, a 500 MeV proton driver beam impinges onto different targets and induces nuclear reactions in them. The isotopes obtained in this way then diffuse out of the target material before they are ionized and extracted to form an isotope beam. Targets of uranium carbide with excess of graphite (UCx) are the most requested targets at TRIUMF. ARIEL, TRIUMF's flagship project, aims at increasing the radioactive isotope production capabilities to satisfy the growing demand of radioactive isotopes. The current production method of UCx targest does not have the means to supply enough UCx targets to satisfy ARIEL's demand, therefore, a new method for efficient UCx target material synthesis is being developed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML131  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)