Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPMF044 | New Coordination Tools to Prepare Programmed Stops in the LHC and its Injectors | simulation, MMI, dipole, FEL | 200 |
|
|||
The LHC and its Injectors are submitted to an overall lifecycle of three to four years of physics delivery to Experiments with a two-year long stop, also known as Long Shutdown (LS). The years of physics delivery are ended by a programmed stop for the immediate preventive and corrective maintenance, also known as (Extended)-Year-End Technical Stop - (E)YETS. This regular cycle is to be addressed in parallel with other projects: the upgrade projects to the accelerator complex of the LHC (High-Luminosity project) and to its Injectors (LHC Injectors Upgrade), and the "standard" consolidation tasks. This paper describes the way the programmed stops coordination group prepares the activities to take place during the stop with a set of new tools and processes that ease the communication between the stakeholders of the coordination. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF044 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAF058 | Optimization of the FCC-hh Beam Extraction System Regarding Failure Avoidance and Mitigation | extraction, kicker, collider, septum | 850 |
|
|||
A core part of the Future Circular Collider (FCC) study is a high energy hadron-hadron collider with a circumference of nearly 100~km and a center of mass beam energy of 100~TeV. The energy stored in one beam at top energy is 8.3~GJ, more than 20 times that of the LHC beams. Due to the large damage potential of the FCC-hh beam, the design of the beam extraction system is dominated by machine protection considerations and the requirement of avoiding any material damage in case of an asynchronous beam dump. Erratic operation of one or more extraction kickers is a main contributor to asynchronous beam dumps. The presented study shows ways to reduce the probability and mitigate the impact of erratic kicker switching. Key proposals to achieve this include layout considerations, different hardware options and alternative reaction strategies in case of erratic extraction kicker occurrence. Based on these concepts, different solutions are evaluated and an optimized design for the FCC-hh extraction system is proposed. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF058 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPAF078 | Recent Results of HESR Original Stochastic Cooling Tanks at COSY | kicker, pick-up, experiment, storage-ring | 913 |
|
|||
The High Energy Storage Ring (HESR) of the FAIR project at GSI Darmstadt will be very important for different scientific programs due to the modularized start version of FAIR. Stochastic cooling together with barrier bucket operation will be the key component to fulfill the requirements of the different experiments. First pickup and first kicker of the HESR stochastic cooling system have been installed into the COSY accelerator at FZJ Jülich. COSY is well suited to test the performance of the HESR stochastic cooling hardware at different energies and variable particle numbers. The novel dedicated HESR-structures were already successfully tested at the Nuclotron in Dubna for longitudinal cooling and during a beam time 2017 for transverse cooling at COSY. The results of the last stochastic cooling beam time will be presented as well as the first use of GaN based amplifiers in a stochastic cooling system. The HESR needs fast transmission-lines between PU and KI. Beside air-filled coax-lines, optical hollow fiber-lines are very attractive. First results with such a hollow fiber used for the transverse signal path will be presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF078 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMF082 | FLASHForward: DOOCS Control System for a Beam-Driven Plasma-Wakefield Acceleration Experiment | controls, laser, timing, detector | 1460 |
|
|||
The FLASHForward project at DESY is an innovative beam-driven plasma-wakefield acceleration experiment integrated in the FLASH facility, aiming to accelerate electron beams to GeV energies over a few centimetres of ionised gas. These accelerated beams are tested for their capability to demonstrate exponential free-electron laser gain; achievable only through rigorous analysis of both the driver and witness beam's phase space. The thematic priority covered in here the control system part of FLASHForward. To be able to control, read out and save data from the diagnostics into DAQ, the DOOCS control system has been integrated into FLASH Forward. Laser beam control, over 70 cameras, ADCs, timing system and motorised stages are combined into the one DOOCS control system as well as vacuum and magnet controls. Micro TCA for Physics (MTCA.4) is the solid basic computing system, supported from high power workstations for camera read-out and normal Linux computers. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF082 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAF053 | Status and Commissioning of the European XFEL Beam Loss Monitor System | FEL, electron, high-voltage, controls | 1940 |
|
|||
The European XFEL MTCA based Beam Loss Monitor System (BLM) is composed of about 450 monitors, which are part of the Machine Protection System (MPS). The BLMs detect losses of the electron beam, in order to protect accelerator components from damage and excessive activation, in particular the undulators, since they are made of permanent magnets. Also each cold accelerating module is equipped with a BLM to measure the sudden onset of field emission (dark current) in cavities. In addition some BLMs are used as detectors for wire- scanners. Experience from the already running BLM system in FLASH2 which is based on the same technology, led to a fast implementation of the system in the XFEL. Further firmware and server developments related to alarm generation and handling are ongoing. The BLM systems structure, the current status and the different possibilities to trigger alarms which stop the electron beam will be presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF053 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAF059 | A Low Cost Beam Position Monitor System | pick-up, electron, electronics, target | 1961 |
|
|||
A Beam Position Monitor (BPM) system is essential to beam diagnostics for almost all particle accelerators. However, a typical BPM system contains customized hardware and complicated processing electronics which considerably drive the cost for large facilities where hundreds of them may be used. It also limits its use in the small scale accelerator facilities. In the paper, we present a low cost BPM system which consists of a commercial available CF flange based signal pickup device, a low cost integrated circuit adjacent to the pickup to filter, sample, digitize, and broadcast the signals out of the pickup electrodes. The digital signal is transmitted out for post processing through noise-protected Wi-Fi router. We will briefly discuss the working principle and experimental progress to date. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF059 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAK004 | Beam Instrumentation for CRYRING@ESR | injection, instrumentation, rfq, detector | 2084 |
|
|||
We present the beam instrumentation of CRYRING@ESR, a low-energy experiment facility at the GSI Helmholtz-Centre for heavy ion research. The 1.44 Tm synchrotron and storage ring, formerly hosted at the Manne Siegbahn laboratory in Stockholm, Sweden, was modified in its configuration and installed behind the existing ESR, the experimental storage ring. As the first machine within the ongoing FAIR project, the facility for antiproton and ion research, it is built on the future timing system and frameworks for data supply and acquisition. Throughout the past year CRYRING was commissioned including its electron cooler with hydrogen beams from the local linear accelerator. Storage, acceleration and cooling have been demonstrated. The contribution provides an overview of the beam instrumentation. The design of the detector systems and their current performance are presented. Emphasis is given to beam position monitors, detectors for intensity measurements, and the ionization profile monitors. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK004 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAK015 | Beam Gate Control System for SuperKEKB | controls, injection, operation, software | 2124 |
|
|||
The electron beam pulses of injector linac for the SuperKEKB collider are enabled and disabled by Beam Gate control system. This system controls the delivery of triggers to the electron guns at the injector. Also, the septum and kicker magnets for injection point of main ring are controlled with this Beam Gate to avoid unnecessary operation and to prolong their lifetime. The Beam Gate synchronizes the enabling and disabling operations of these hardware even though they are about 1km distant. Besides, from the phase-2 operation, the kicker and septum magnets for newly constructed damping ring becomes controlled apparatus of this system. We develop the new Beam Gate control system with the Event Timing System network*. The new system improves the unsatisfied performance of Beam Gate in the phase-1 operation and realizes the complicated control for phase-2. The advantages of new system are: the control signal is delivered via Event nettork, so that we do not need to cable new network. The enabling and disabling operations for distant hardware are surely synchronized by the Event Timing System.
* H. Kaji et al., "Construction and Commissioning Event Timing System at SuperKEKB", Proceedings of IPAC14, Dresden, Germany (2014). |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAK015 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAL015 | Improvement of Motor Control System in J-PARC Linac and RCS | controls, operation, radiation, PLC | 2180 |
|
|||
In J-PARC, at the Linac wire scanner, the RCS collimator, and etc., a motor control system by VME is constructed as a drive system of them. Since the malfunction of operation occurred in the control system of the RCS collimator drive system in 2016, we decided to improve the motor control system. As a cause of malfunction, it is considered that aging of control equipment is one of them as J-PARC has been operated for more than 10 years. However, the defect did not occur in the reproduction test. Therefore, it can be considered that a malfunction occurred in the VME control system due to abnormality of the semiconductor element due to radiation ray. Then, in the improved motor control system, PLC with FA* specification with high reliability was adopted as the control device. Also, in case of unexpected event that a malfunction occurred in the PLC, the emergency stop mechanism was developed to stop the drive system by the signal of the limit switch, and a system incorporating it was constructed. In this paper, we show the inference of cause of the malfunction and details the improved motor control system with high safety.
* Factory Automation |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL015 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAL043 | Distributed Control Architecture for an Integrated Accelerator and Experimental System | controls, FPGA, software, real-time | 2268 |
|
|||
Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. A neutron imaging demonstration system is under construction at LLNL, integrating 4 MeV and 7 MeV deuteron accelerators with gas-based neutron production target the associated supply and return systems. This requires integrating a wide variety of control points from different rooms and floors of the Livermore accelerator facility at a single operator station. The control system adopted by the commercial vendor of the accelerators relies on the National Instruments cRIO platform, so that hardware system has been extended across all the beamline and experimental components. Here we present the unified, class-based framework that has been developed and implemented to connect the operator station through the deployed Real Time processors and FPGA interfaces to the hardware on the floor. Connection between the deployed processors and the operator workstations is via a standard TCP/IP network and relies on a publish/subscribe model for data distribution. This measurement and control framework has been designed to be extensible as additional control points are added, and to enable comprehensive, controllable logging of shot-correlated data at up to 300 Hz. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL043 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPAL064 | Diagnosis Application by Great Amount Operation Data Analysis Program for Taiwan Photon Source | quadrupole, power-supply, LabView, interface | 2323 |
|
|||
To find out abnormal situations of the machine for preventive maintenance or machine trip tracking or instability source diagnosis, a large amount of operating data in an accelerator is thus can be used to build a series data analysis program. When the archived data is classified accordingly, the standard deviation (STD), peak-to-peak value and other statistic indexes within the inspection time zone by the belonging families can be used to point out the especially abnormal signals. The analysis program adopts the techniques of parallel calculation and memory optimization to greatly reduce the time for data transmission and analysis and also displays the correlation signals to opera-tors for deeper analysis. This paper illustrated a simple yet effective method for quickly identifying a not-so-obscure hardware issue by simply using a personal computer (PC). | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL064 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMF001 | Upgrade of the ALBA Magnetic Laboratory for Measuring LIPAc HEBT Quadrupoles and Dipole | controls, quadrupole, software, dipole | 2369 |
|
|||
Along 2017 ALBA magnetic measurements facility has measured LIPAc HEBT quadrupoles and dipole designed by CIEMAT and built by ELYTT company. ALBA magnetic measurements laboratory has been improved through an upgrade program of its measurement benches to complete their measurements. One of the main aims of the upgrade has been to standardize both the hardware and software and therefore ensure an easy maintenance. Especially relevant has been the upgrade of the flipping coil bench, in which the DC motors and the obsolete controller have been replaced by step-motors and ICEPAP controller. Also, software has been migrated to Tango package. Hardware and software of Hall probe bench has been upgraded as well, using the last DeltaTau motion controller. Tango has been upgraded too, using Devian 8 as operative system. Next step will be the upgrade of the rotating coil hardware and software using also step-motor and ICEPAP controller. In parallel, new shafts have been build and tested, with specific designs to improve the sensitivity and minimize the noise to signal ratio. In this contribution we detail the upgrades and the results of performance tests. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF001 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMF008 | Preliminary Designs and Test Results of Bipolar Power Supplies for APS Upgrade Storage Ring | power-supply, controls, operation, storage-ring | 2381 |
|
|||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The upgrade (APS-U) of the APS storage ring requires more than 1200 bipolar power supplies. Based on the performance requirement, the power supplies can be divided into two categories: fast bipolar power supplies for fast correctors and slow bipolar power supplies for trim coils and slow correctors. The common requirement of the power supplies is a bipolar output current up to ±15 A. The main difference is that the fast corrector power supplies require a small-signal bandwidth of 10 kHz. A prototype DC/DC power converter utilizing a MOSFET H-bridge circuit with a 500 kHz PWM was successfully developed through the R&D program, achieving the required bandwidth with less than 3-dB attenuation for a signal 0.5% of ±15 A. After the successful R&D program, the preliminary designs were performed to further improve the performance and to finalize the schematics, the PCB layouts, and the power supply constructions. The two types of the power supplies share the majority of the designs and features, with minor differences for the different bandwidth requirement. This paper presents the preliminary design, the key power supply functions and features, and the test results. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF008 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMF054 | Design and Status of the MicroTCA.4 Based LLRF System for TARLA | controls, LLRF, cavity, operation | 2490 |
|
|||
The Turkish Accelerator and Radiation Laboratory in Ankara (TARLA) is constructing a 40 MeV Free Electron Laser with continuous wave (CW) RF operation. In order to control and monitor the four superconducting (SC) TESLA type cavities as well as the two normal conducting (NC) buncher cavities, a MicroTCA.4 based LLRF system is foreseen. This highly modular system is further used to control the mechanical tuning of the SC cavities by control of piezo actuators and mechanical motor tuners. This paper focuses on giving brief overview on hardware and software components of LLRF control of TARLA, as well as updates on the ongoing integration tests at DESY. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF054 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMF074 | High Power Conditioning of X-Band RF Components | operation, vacuum, cavity, GUI | 2545 |
|
|||
As part of the effort to qualify CLIC accelerating struc-tures prototypes, new X-band test facilities have been built and commissioned at CERN in the last years. In this context, a number of RF components have been designed and manufactured aiming at stable operation above 50 MW peak power and several kW of average power. All of them have been tested now in the X-band facility at CERN either as part of the facility or in dedicated tests. Here, we describe shortly the main design and manufac-turing steps for each component, the testing and eventual conditioning as well as the final performance they achieved. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF074 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPMK084 | E-field Measurement of 9.3 GHz RF cavity for 6 MeV LINAC | cavity, linac, electromagnetic-fields, electron | 4496 |
|
|||
In order to achieve performance close to the design value, fabricated cavity was tuned at Sunkyunkwan university. Tuning was done in two step: each cell tuning and bead-pull system. Each cell tuning was used to determine the status of each cell and to remove the stop-band. Bead-pull system was used to measure the E-field distribution and obtain the required field flatness. This paper describes each cell measurement data and bead-pull measurement system and data.
x-band, linac, measurement |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK084 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPML110 | EPICS Driver for Siemens CP1616 Communication Module | EPICS, real-time, controls, network | 4923 |
|
|||
Funding: Work supported by National Natural Science Foundation of China (11375186) Siemens communication module CP1616 is a high-performance PROFINET controller, which can support both Real-time (RT) and Isochronous Real-Time (IRT) communication. Experimental Physics and Industrial Control System (EPICS) is a wildly used distributed control system in large scientific devices. In order to integrate PROFINET protocol into EPICS environment, we developed this driver based on CP1616 and established the prototype system. This paper will describe the design of EPICS driver for CP1616 and the test result of the prototype system. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML110 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||