Keyword: solenoid
Paper Title Other Keywords Page
MOPMF053 Observations, Analysis and Mitigation of Recurrent LHC Beam Dumps Caused by Fast Losses in Arc Half-Cell 16L2 MMI, operation, electron, vacuum 228
 
  • J.M. Jimenez, D. Amorim, S. A. Antipov, G. Arduini, A. Bertarelli, N. Biancacci, B. Bradu, E. Bravin, G. Bregliozzi, K. Brodzinski, R. Bruce, X. Buffat, L.R. Carver, P. Chiggiato, S.D. Claudet, P. Collier, R. Garcia Alia, M. Giovannozzi, L. K. Grob, E.B. Holzer, W. Höfle, G. Iadarola, G. Kotzian, A. Lechner, T.E. Levens, B. Lindstrom, T. Medvedeva, A. Milanese, D. Mirarchi, E. Métral, D. Perini, S. Redaelli, G. Rumolo, B. Salvant, R. Schmidt, M. Valette, D. Valuch, J. Wenninger, D. Wollmann, C. Yin Vallgren, C. Zamantzas, M. Zerlauth
    CERN, Geneva, Switzerland
  • D. Amorim
    Université Grenoble Alpes, Grenoble, France
  • A.A. Gorzawski
    University of Manchester, Manchester, United Kingdom
  • L. Mether
    EPFL, Lausanne, Switzerland
 
  Recurrent beam dumps significantly perturbed the operation of the CERN LHC in the summer months of 2017, especially in August. These unexpected beam dumps were triggered by fast beam losses that built up in the cryogenic beam vacuum at the half-cell 16 left of LHC-IP2 and were detected either at that location but mainly in the collimation insertions. This contribution details the experimental observables (beam losses, coherent instabilities, heat load to cryogenic system, vacuum signals), the extent of the understanding of the beam loss and instability mechanisms and the mitigation steps and new settings that allowed recovering the luminosity performance of the LHC for the rest of the Run.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMF071 Polarization Studies for the eRHIC electron Storage Ring polarization, storage-ring, electron, coupling 292
 
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • S. Tepikian
    BNL, Upton, Long Island, New York, USA
 
  Funding: Manuscript authored by Fermi Res. All., LLC under Contr. No. DE-AC02-07CH11359 and Brookhaven Sc. Ass., LLC under Contr. No. DE-AC02-98CH10886 with the U.S. DOE, Office of Science, Office of HEP.
A hadron/lepton collider with polarized beams has been under consideration by the scientific community since some years, in the U.S. and Europe. Among the various proposals, those by JLAB and BNL with polarized electron and proton beams are currently under closer study in the U.S. Experimenters call for the simultaneous storage of electron bunches with both spin helicity. In the BNL based Ring-Ring design, electrons are stored at top energy in a ring to be accommodated in the existing RHIC tunnel. The transversely polarized electron beam is injected into the storage ring at variable energies, between 5 and 18 GeV. Polarization is brought into the longitudinal direction at the IP by a couple of spin rotators. In this paper results of first studies of the attainable beam polarization level and lifetime in the storage ring at 18 GeV are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPMF071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML002 Status of the JLEIC Ion Collider Ring Design dynamic-aperture, collider, detector, survey 394
 
  • G.H. Wei, F. Lin, V.S. Morozov, Y. Zhang
    JLab, Newport News, Virginia, USA
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
 
  Funding: Authored by JSA, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 and DE-AC02-06CH11357. Work supported also by the US DOE Contract DE-AC02-76SF00515.
We present an update on the lattice design and beam dynamics study of the ion collider ring of JLEIC (Jefferson Lab Electron Ion Collider). The collider ring consists of two 261.7 degree arcs connected by two straight sections crossing each other. One of the straights houses an interaction region (IR) and is shaped to make a 50 mrad crossing angle with the electron beam at the interaction point (IP) to meet physics requirements. The forward acceptance requirements downstream of the IP in the ion direction lead to an asymmetric IR lattice design. The detector solenoid effects and the multipole fields of the IR magnets further complicate this picture. In this paper, compensation of the detector solenoid effects is considered together with orbit correction and multipole effects. We also study local compensation of the magnet multipoles using dedicated multipole correctors. And an optimization of the betatron tunes is also presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML029 A Portable X-ray Source Based on Dielectric Accelerators electron, vacuum, target, shielding 464
 
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • S.P. Antipov, A. Kanareykin, R.A. Kostin
    Euclid Beamlabs LLC, Bolingbrook, USA
 
  Funding: The work has been supported by the U.S. Department of Homeland Security (DHS), Domestic Nuclear Detection Office (DNDO), under a competitively awarded contract No. HSHQDC-17-C-00007.
The portable low energy accelerator based X-ray sources have attractive applications in the non-destructive examination as a replacement of radiological gamma isotope sources. We are developing an inexpensive ultra-compact dielectric accelerator technology for low energy electron beams. The portability in the realm of this proposal is unprecedented ~ 1 ft3 volume with ~ 50 lbs of weight. The use of ceramics makes the transverse size of the accelerating waveguide comparable to that of a pencil. Because of this size reduction, additional weight reduction of shielding becomes possible. The article will report on the progress of this project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPML044 Start-to-End Beam Dynamic Simulations for PRAE gun, emittance, linac, laser 495
 
  • A. Vnuchenko
    IFIC, Valencia, Spain
  • C. Bruni, M. El Khaldi, A. Faus-Golfe, P. Lepercq, C. Vallerand
    LAL, Orsay, France
  • A. Latina
    CERN, Geneva, Switzerland
 
  The PRAE project (Platform for Research and Applications with Electrons) aims at creating a multidisciplinary R&D facility in the Orsay campus gathering various scientific communities involved in radiobiology, subatomic physics, instrumentation and particle accelerators around an electron accelerator delivering a high-performance beam with energy up to 70 MeV and later 140 MeV, in order to perform a series of unique measurements and future challenging R&D. In this paper we report the first start-to-end simulations from the RF gun, going through the linac and finally to the different experimental platforms. The beam dynamics simulations have been performed using a concatenation of codes. In particular for the linac the RF-Track code recently developed at CERN will be used and benchmarked. The different working points have been analysed in order to minimise the transverse emittance and the beam energy spread including space charge effects at low electron energies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOPML044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYGBE4 Optically-pumped Polarized H and 3 He++ Ion Sources Development at RHIC injection, polarization, ion-source, electron 644
 
  • A. Zelenski, G. Atoian, E.N. Beebe, A. Poblaguev, D. Raparia, J. Ritter
    BNL, Upton, Long Island, New York, USA
  • J.D. Maxwell, R. Milner, M. Musgrave
    MIT, Cambridge, Massachusetts, USA
 
  The RHIC Optically-pumped Polarized H Ion Source (OPPIS) upgrade with the atomic beam hydrogen injector and the He-ionizer cell was commissioned for operation in the Run-2013. The use of the high brightness primary proton source resulted in higher polarized beam intensity and polarization delivered for injection to Linac-Booster-AGS-RHIC accelerator complex. The proposed polarized 3He++ acceleration in RHIC and future electron- ion col-lider (eRHIC) will require about 2·1011 ions in the source pulse. A new technique had been proposed for production of high intensity polarized 3He++ ion beam. It is based on ionization and accumulation of the 3He gas (polarized by optical-pumping and metastability-exchange technique in the high magnetic field of a 5.0 T) in the Electron Beam Ion Source (EBIS). We present a status of the 3He++ ion source development.  
slides icon Slides TUYGBE4 [4.596 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUYGBE4  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF014 Beam Dynamics Studies For the IFMIF-DONES SRF-Linac linac, SRF, cryomodule, cavity 687
 
  • L. Du, N. Bazin, N. Chauvin, S. Chel, J. Plouin
    CEA/IRFU, Gif-sur-Yvette, France
 
  The DONES (DEMO oriented neutron source) project is aimed at constructing a DEMO of IFMIF to provide sufficient material damage [1]. In the SRF-Linac of this project, losses can cause harmful material activation and must be maintained much less than 1W/m. It's a challenge to keep losses at such a low level with high beam power and high space charge. This paper presents two designs of the DONES SRF-Linac, one with 4 cryomodules and another with 5 cryomodules. The design details to reduce the losses and the multi-particle simulation results will be shown. The errors studies for these results will also be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF039 Electron Cooling Simulation and Experimental Benchmarks at LEIR electron, plasma, experiment, simulation 776
 
  • A. Latina, H. Bartosik, N. Biancacci, R. Corsini, D. Gamba, S. Hirlaender, A. Huschauer
    CERN, Geneva, Switzerland
 
  A fast and accurate simulation of Electron Cooling has recently been implemented in the tracking code RF-Track. The implementation, which is based on a "hybrid kinetic" model, enables the simulation of a large variety of realistic scenarios, including imperfections such as gradients in the electron density, misalignments of electrons / ions / solenoidal fields, both in the static and in the dynamic regimes. Benchmarks of the simulations against measurements performed at LEIR, using Lead and Xenon ions, are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF039  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF056 The CERN-ELENA Electron Cooler Magnetic System electron, alignment, gun, proton 842
 
  • G. Tranquille, L.V. Jørgensen
    CERN, Geneva, Switzerland
  • D. Luckin, R.J. Warner
    Tesla Engineering Limited, West-Sussex, United Kingdom
 
  Phase space compression of the antiproton beam in ELENA will be performed by a new electron cooler the performance of which is greatly influenced by the properties of the electron beam. Careful design of the electron gun electrodes, the efficient recuperation of the electrons in the collector and the quality of the guiding magnetic field ensure an optimal performance of the cooler. The ELENA cooler is a compact device incorporating an adiabatic expansion to reduce the electron beam temperature as well as electrostatic bending plates for efficient collection of the electron beam. The transverse components of the longitudinal field in the cooling section must be kept small (Bt/Bl ≤ 5x10-4) to ensure a minimal perturbation to the electron beam transverse temperature. The longitudinal field itself needs to be as low as possible such that the distortion to the closed orbit of the circulating ion beam due to the short 90° toroids is kept as small as possible. We present the solutions chosen to design and construct a magnetic system within the above constraints as well as the setup used to measure and optimise the magnetic field components.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF064 Preparation Towards the Ess Linac Ion Source and Lebt Beam Commissioning on Ess Site MMI, rfq, linac, site 874
 
  • R. Miyamoto, M. Eshraqi, A. Jansson, E. Laface, Y. Levinsen, O. Midttun, N. Milas, M. Muñoz, D.C. Plostinar, A. Ponton, E. Sargsyan, L. Tchelidze
    ESS, Lund, Sweden
  • L. Celona, L. Neri
    INFN/LNS, Catania, Italy
  • W. Ledda
    Vitrociset s.p.a, Roma, Italy
 
  Beam commissioning of the proton linac of the European Spallation Source begin in summer, 2018, from the ion source (IS) and low energy beam transport (LEBT), and continues in stages until 2022, when the first beam is sent to its spallation target. This paper presents the plan, status, and highlights of preparation works for the upcoming IS and LEBT beam commissioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF066 Transverse Dynamics and Software Integration of the ESS Low Energy Beam Transport simulation, MMI, ion-source, proton 882
 
  • N. Milas, K.S. Louisy, D.C. Plostinar
    ESS, Lund, Sweden
 
  The first part of the ESS linac, also called front-end, comprising the Ion Source and the Low Energy Beam Transport (LEBT) section, will be installed and commissioned in 2018. The LEBT is used to focus and correct the proton beam trajectory and clean the head and tail of the proton pulse from the flat top before entering the RFQ. During the ion source and LEBT commissioning a full beam characterization at the RFQ entrance interface is planned. It is thus important to have an application in the control room able to display quantities measured by the diagnostic devices and also to quickly run a simulation including not only centre of mass dynamics but also envelope. This paper presents the efforts in modelling the LEBT elements, as accurately as possible, and implementing the dynamics calculation and integration with diagnostics tools. The final result is a Java FX GUI based on the OpenXAL library.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK003 Beam Dynamics Simulations for the New Superconducting CW Heavy Ion LINAC at GSI cavity, linac, heavy-ion, cryomodule 959
 
  • M. Schwarz, M. Basten, M. Busch, H. Podlech
    IAP, Frankfurt am Main, Germany
  • K. Aulenbacher
    IKP, Mainz, Germany
  • K. Aulenbacher, W.A. Barth, F.D. Dziuba, V. Gettmann, T. Kürzeder, M. Miski-Oglu
    HIM, Mainz, Germany
  • W.A. Barth, M. Heilmann, A. Rubin, A. Schnase, S. Yaramyshev
    GSI, Darmstadt, Germany
 
  Funding: Work supported by BMBF Contr. No. 05P15RFBA and EU Framework Programme H2020 662186 (MYRTE)
For future experiments with heavy ions near the coulomb barrier within the super-heavy element (SHE) research project a multi-stage R&D program of GSI/HIM and IAP is currently in progress. It aims for developing a supercon-ducting (sc) continuous wave (CW) LINAC with multiple CH cavities as key components downstream the High Charge State Injector (HLI) at GSI. The LINAC design is challenging due to the requirement of intense beams in CW mode up to a mass-to-charge ratio of 6, while covering a broad output energy range from 3.5 to 7.3 MeV/u with unchanged minimum energy spread. Testing of the first CH-cavity in 2016 demonstrated a promising maximum accelerating gradient of Ea = 9.6 MV/m; the worldwide first beam test with this sc multi-gap CH-cavity in 2017 was a milestone in the R&D work of GSI/HIM and IAP. In the light of experience gained in this research so far, the beam dynamics layout for the entire LINAC has recently been updated and optimized.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZGBE2 Final-focus Superconducting Magnets for SuperKEKB quadrupole, MMI, operation, detector 1215
 
  • N. Ohuchi, K.A. Aoki, Y. Arimoto, M.K. Kawai, T. Kawamoto, H. Koiso, Y. Kondo, M. Masuzawa, A. Morita, S. Nakamura, Y. Ohnishi, Y. Ohsawa, T. Oki, H. Sugimoto, K. Tsuchiya, R. Ueki, X. Wang, H. Yamaoka, Z.G. Zong
    KEK, Ibaraki, Japan
  • M. Anerella, J. Escallier, A.K. Jain, A. Marone, B. Parker, P. Wanderer
    BNL, Upton, Long Island, New York, USA
  • J. DiMarco, T.G. Gardner, J.M. Nogiec, M.A. Tartaglia, G. Velev
    Fermilab, Batavia, Illinois, USA
  • T.-H. Kim
    Mitsubishi Electric Corp, Advanced Technology R & D Center, Hyogo, Japan
 
  The SuperKEKB collider aims at 40 times higher luminosity than that achieved at KEKB, based on the nano-beam scheme. The vertical beta function at the interaction point will be squeezed to 300μmeter. Final-focus superconducting magnet system which consists of eight main quadrupole magnets, 43 corrector windings, and compensation solenoids is a key component to achieve high luminosity. This invited talk presents the construction and commissioning of the final-focus magnet system.  
slides icon Slides TUZGBE2 [4.235 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUZGBE2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMK011 Single Ring Permanent Magnet Lens permanent-magnet, emittance, optics, TRIUMF 1513
 
  • K. Jayamanna, R.A. Baartman, Y. Bylinskii, T. Planche
    TRIUMF, Vancouver, Canada
  • M. Corwin
    UW/Physics, Waterloo, Ontario, Canada
  • R.N. Simpson
    UBC, Vancouver, B.C., Canada
 
  Funding: TRIUMF receives its funding from the National Research Council of Canada.
A permanent magnet lens has been designed to be a non-powered alternative to solenoids for low energy beam transport. The lens consists of a single ring of 12 sectors, each sector with poles directed inward. This forms an axial field that reverses sign at the midpoint, somewhat like two opposing short solenoids. It is similar to the Iwashita lens* but consists of only one ring, not two. A prototype lens optimized to decrease the magnetic material required while also reducing aberration, has been built and tested for a 25 keV H-minus beam. Emittance figures measured downstream of the lens are compared with theory.
* Y. Iwashita, "Axial Magnetic Field Lens with Permanent Magnet", Proc. PAC 1993, p.3154.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMK011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML004 Correction of Emittance Growth Due to Quad Components in Solenoids With Quad Correctors at AWA emittance, simulation, linac, electron 1536
 
  • L.M. Zheng, C.-X. Tang
    TUB, Beijing, People's Republic of China
  • M.E. Conde, D.S. Doran, W. Gai, W. Liu, J.G. Power, J.H. Shao, C. Whiteford, E.E. Wisniewski
    ANL, Argonne, Illinois, USA
 
  An asymmetrical electron beam is observed on the drive beamline at Argonne Wakefield Accelerator (AWA) due to the quad components in the solenoids. An ASTRA simulation shows that the emittance will increase when the electron beam passes through solenoids with quad errors. We use two quad correctors to correct this emittance growth. A preliminary emittance correction result is presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML020 Beamline Design of EMuS - the First Experimental Muon Source in China proton, target, experiment, polarization 1574
 
  • Y. Bao, Y.K. Chen, Z.L. Hou, Y.P. Song, J.Y. Tang, N. Vassilopoulos, Y. Yuan, G. Zhao, L. Zhou
    IHEP, Beijing, People's Republic of China
  • H.T. Jing
    IHEP CSNS, Dongguan, People's Republic of China
 
  Funding: This work is supported by National Natural Science Foundation of China under Grants 11575217 and 11527811. Yu Bao thanks Hundred Talents Program of Chinese Academy of Science.
We report the beamline design of the Experimental Muon Source (EMuS) project in China. Based on the 1.6 GeV/100 kW proton accelerator at the Chinese Spallation Neutron Source (CSNS), EMuS will extract one bunch from every 10 double-bunch proton pulses to hit a stand-alone target sitting in a superconducting solenoid, and the secondary muons/pions are guided to the experimental area. The beamline is designed to provide both a surface muon beam and a decay muon beam, so that various experiments such as muSR applications and particle/nuclear physics experiments can be conducted. In this work we present the conceptual design and simulation of the beamlines, and discuss the future aspects of the project.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML029 Novel Photocathode Geometry Optimization: Field Enhancing Photoemission Tips cathode, emittance, electron, simulation 1605
 
  • W. H. Li, I.V. Bazarov, C.M. Gulliford, J.M. Maxson
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was supported by the U.S. National Science Foundation under award PHY-1549132, the Center for Bright Beams.
For photoemission sources, the extraction electric field defines the maximum achievable emission current, and hence the maximum achievable beam brightness. Recently, interest has been growing in studying photocathodes with non-flat geometries to produce local field enhancements in excess of what can be achieved with large area flat cathodes. However, such geometries cause image charge effects which require self-consistent field solvers to correctly simulate. We present a novel simulation framework which combines a full particle in cell field solver (WARP) with a fast adaptive mesh space charge particle tracker (GPT) and a parallel multi-objective genetic optimizer to explore photocathode geometries for ultra high brightnesses. A first application of this technique is also shown, namely the use of field enhanced photoemission tips to create bright beams for ultra-fast electron diffraction.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML046 Characterization of Self-Modulated Electron Bunches in an Argon Plasma plasma, electron, experiment, focusing 1645
 
  • M. Groß, P. Boonpornprasert, Y. Chen, J. Engel, J.D. Good, H. Huck, I.I. Isaev, M. Krasilnikov, X. Li, O. Lishilin, G. Loisch, R. Niemczyk, A. Oppelt, H.J. Qian, Y. Renier, F. Stephan, Q.T. Zhao
    DESY Zeuthen, Zeuthen, Germany
  • R. Brinkmann, A. Martinez de la Ossa, J. Osterhoff
    DESY, Hamburg, Germany
  • F.J. Grüner
    CFEL, Hamburg, Germany
  • F.J. Grüner, A. Martinez de la Ossa
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • T.J. Mehrling, C.B. Schroeder
    LBNL, Berkeley, USA
  • I. Will
    MBI, Berlin, Germany
 
  The self-modulation instability is fundamental for the plasma wakefield acceleration experiment of the AWAKE (Advanced Wakefield Experiment) collaboration at CERN where this effect is used to generate proton bunches for the resonant excitation of high acceleration fields. Utilizing the availability of flexible electron beam shaping together with excellent diagnostics including an RF deflector, a supporting experiment was set up at the electron accelerator PITZ (Photo Injector Test facility at DESY, Zeuthen site), given that the underlying physics is the same. After demonstrating the effect* the next goal is to investigate in detail the self-modulation of long (with respect to the plasma wavelength) electron beams. In this contribution we describe parameter studies on self-modulation of a long electron bunch in an argon plasma. The plasma was generated with a discharge cell with densities in the 1013 cm-3 to 1015 cm-3 range. The plasma density was deduced from the plasma wavelength as indicated by the self-modulation period. Parameter scans were conducted with variable plasma density and electron bunch focusing.
* M. Gross et al., "Observation of the self-modulation instabil-ity via time-resolved measurements", accepted for publication at Phys. Rev. Lett.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML053 The BERLinPro SRF Photoinjector System - From First RF Commissioning to First Beam cathode, cavity, SRF, operation 1660
 
  • A. Neumann, D. Böhlick, M. Bürger, P. Echevarria, A. Frahm, H.-W. Glock, F. Göbel, S. Heling, K. Janke, A. Jankowiak, T. Kamps, S. Klauke, G. Klemz, J. Knobloch, G. Kourkafas, J. Kühn, O. Kugeler, N. Leuschner, N. Ohm, E. Panofski, H. Plötz, S. Rotterdam, M.A.H. Schmeißer, M. Schuster, H. Stein, Y. Tamashevich, J. Ullrich, A. Ushakov, J. Völker
    HZB, Berlin, Germany
 
  Funding: The work is funded by the Helmholtz-Association, BMBF, the state of Berlin and HZB.
Helmholtz-Zentrum Berlin (HZB) is currently constructing a high average current superconducting (SC) ERL as a prototype to demonstrate low normalized beam emittance of 1 mm-mrad at 100 mA and short pulses of about 2 ps. To attain the required beam properties, an SRF based photo-injector system was developed and during the past year underwent RF commissioning and was setup within a dedicated diagnostics beamline called Gunlab to analyze beam dynamics of both, a copper cathode and a Cs2KSb cathode as well as their quantum efficiency at UV and green light respectively. The medium power prototype - a first stage towards the final high power 100 mA design - presented here features a 1.4 x λ/2 cell SRF cavity with a normal-conducting, high quantum efficiency CsK2Sb cathode, implementing a modified HZDR-style cathode insert. This injector potentially allows for 6 mA beam current and up to 3.5 MeV kinetic energy, limited by the modified twin TTF-III fundamental power couplers. In this contribution, the first RF commissioning results of the photo-injector module will be presented including dark current analysis as well as measured beam properties with an initially installed Copper cathode.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML060 Three-Dimentional Spiral Beam Injection for a Compact Storage Ring injection, experiment, coupling, electron 1673
 
  • H. Iinuma
    Ibaraki University, Hitachi, Ibaraki, Japan
  • M.R. Abdul
    Sokendai, Ibaraki, Japan
  • Y. Fukao, K. Furukawa, H. Hisamatsu, T. Mibe, H. Nakayama, S. Ohsawa, K. Oide, K. Sasaki
    KEK, Tsukuba, Japan
 
  Funding: This work is supported by JSPS KAKENHI Grant Numbers JP26287055 and JP 23740216.
A newly developed three-dimensional spiral injection scheme for beam insertion into a compact (medical MRI size) solenoidal storage ring is introduced. This is a one of key R&D items for a new planned muon g-2/EDM experiment at J-PARC, which aims to measure g-2 to a factor 5 better statistical precision and a factor of 100 better sensitivity for the electric dipole moment measurement (EDM) compared to the previous experiments. The new scheme provides a smooth injection utilizing a radial solenoidal fringe field, without causing any error field in the storage volume. Magnetic pulsed kicker will guide and set the beam in the storage field volume. The strongest point of this new scheme is that any source of the electric field is removed in this scheme to perform ideal EDM measurement. We have performed a test bench experimental work to demonstrate a feasibility of this new injection scheme. Instead of the muon beam, we inject electron beam, from an electron-gun, into the solenoid magnet, and detect three-dimensional spiral beam trajectory inside of the storage chamber by CCD camera. We will discuss outline of a new injection scheme and the latest results from the test bench works.
*H. Iinuma et al.,Nuclear Instruments and Methods in Physics Research A, 832, 51-62 (2016)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML061 Study of Mean Transverse Energy of (N)UNCD with Tunable Laser Source photon, cathode, electron, laser 1677
 
  • G. Chen
    IIT, Chicago, Illinois, USA
  • G. Adhikari, W.A. Schroeder
    UIC, Chicago, Illinois, USA
  • S.P. Antipov, C.-J. Jing, K. Kovi
    Euclid TechLabs, LLC, Solon, Ohio, USA
  • S.V. Baryshev
    ANL, Argonne, Illinois, USA
  • L.K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois, USA
 
  Funding: NSF grant No. NSF-1739150, DOE SBIR program grant No. DE-SC0013145, NSF grant No. PHYS-1535279, DOE Contract No. DE-AC02-06CH11357.
There is a strong motivation to develop and understand novel materials with the potential to be utilized as photocathodes, as these could have desirable photoemission properties for research and industrial applications. Nitrogen-incorporated ultrananocrystalline diamond ((N)UNCD) photocathodes have potential to become a material of choice for photocathode applications*. (N)UNCD has high quantum efficiency when processed in hydrogen plasma*, low surface roughness, and high electron conductivity through the bulk**. The mean transverse energy (MTE) was calculated for (N)UNCD thin films using the double-solenoid scan method. (N)UNCD thin film with thickness of 160nm was deposited on highly-doped silicon substrate. Studies of the MTE of a (N)UNCD sample were done using a tunable laser source with photon energies of 3.56 eV to 5.26 eV. These results are presented.
* K.J. Pérez Quintero et al., Appl. Phys. Lett. 105, 123103 (2014).
** S. Bhattacharyya et al., Appl. Phys. Lett. 79, 1441 (2001)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML063 A Non-parameteric Density Estimation Approach to Measuring Beam Cooling in MICE emittance, beam-cooling, experiment, simulation 1684
 
  • T.A. Mohayai
    IIT, Chicago, Illinois, USA
  • D.V. Neuffer
    Fermilab, Batavia, Illinois, USA
  • P. Snopok
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  The goal of the international Muon Ionization Cooling Experiment (MICE) is to demonstrate muon beam ionization cooling for the first time. It constitutes a key part of the R&D towards a future neutrino factory or muon collider. The intended MICE precision requires development of analysis tools that can account for any effects (e.g., nonlinearities) which may lead to inaccurate cooling measurements. Non-parametric density estimation techniques, in particular, kernel density estimation (KDE), allow very precise calculations of the muon beam phase-space density and its increase as a result of cooling. In this study, these density estimation techniques and their application to measuring the reduction in muon beam phase-space volume and amplitude in MICE are investigated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML067 Recent Results from the Study of Emittance Evolution in MICE emittance, detector, experiment, lattice 1699
 
  • V. Blackmore
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  Funding: STFC, DOE, NSF, INFN, and CHIPP
The Muon Ionization Cooling Experiment (MICE) has measured the evolution of emittance due to ionization energy loss. Muons were focused onto an absorber using a large aperture solenoid. Lithium-hydride and liquid hydrogen-absorbers have been studied. Diagnostic devices were placed upstream and downstream of the focus, enabling the phase-space coordinates of individual muons to be reconstructed. By observing the properties of ensembles of muons, the change in beam emittance was measured. Data taken during 2016 and 2017 are currently under study to evaluate the change in emittance due to the absorber for muon beams with various initial emittance, momenta, and settings of the magnetic lattice. The current status and the most recent results of these analyses will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPML070 Laser Ablation Plasma with Solenoid Field Confinement laser, plasma, target, ion-source 1706
 
  • G.C. Wang, Q. Jin, L.T. Sun, J. Zhang, X.Z. Zhang, H.W. Zhao, H. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
 
  Funding: This work is supported by National Natural Science Foundation of China (Grant Nos. 11722547, 11605263 and 11505257) and West Light Foundation of The Chi-nese Academy of Sciences (Grant Nos. 29Y637020)
A Laser Ion Source (LIS) can produce high charge state and high intensity ion beams (~emA), especially refracto-ry metallic ion beams, which makes it a promising candi-date as an ion source for heavy ion cancer therapy facili-ties and future accelerator complexes, where pulsed high intensity and high charged heavy ion beams are required. However, it is difficult for LIS to obtain a long pulse width while ensuring high current intensity, thus limiting the application of LIS. To solve the conflict, magnetic fields are proposed to confine the expansion of the laser produced plasma. With a solenoid along the normal direc-tion to the target surface, the lateral adiabatic expansion of the laser ablation plasma is suppressed which extends the pulse width of the ion beam effectively.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPML070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF003 Beamline Architect interface, simulation, quadrupole, software 1812
 
  • J.D. Kunz, C.M. Conrad, L.M. Romero
    Anderson University, Anderson, USA
 
  Funding: Indiana Space Grant Fellowship Program 2015-2018, subaward number 4103-82252
Beamline Architect is a new particle accelerator simulation tool. Currently, two of the most widely used tools in this field are G4beamline and COSY Infinity. While these codes are fast and quite accurate, sometimes their interfaces can be time-consuming for students to learn, particularly undergraduate students or students whose primary field is not accelerator physics. Without Beamline Architect, each code has its own high-level language that must be manually written into a file and then executed on the command line. Moreover, sometimes the use of both simulation tools is warranted in order to check for consistency between the codes. Writing the codes by hand or translating between software can sometimes be cumbersome, even for experts. Furthermore, knowledge of an additional language, such as Python, is required in order to analyze the outputs of the codes (which may be in different formats from one another). Beamline Architect is a tool that provides a graphical user interface to G4beamline and COSY Infinity. This lets the user build a particle accelerator channel in 3D with or without using code. The channel may then be saved, exported, translated, or run. Any output data will be plotted in Beamline Architect using Python, since it is both flexible aesthetically and quite standard in the particle accelerator community. For undergraduate and non-accelerator students, Beamline Architect allows a hands-on experience with accelerator simulations. Some applications for these students include health physics radiation dosimetry problems, medical imaging mechanics, security scanner simulations, and (of course) accelerator channel design for particle physics experiments. For experts, Beamline Architect provides visual confirmation of the channel and a faster, more consistent way of cross-referencing results between the codes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF086 Latest Developments and Updates of the ESS Linac Simulator DTL, linac, cavity, space-charge 2051
 
  • J.F. Esteban Müller, E. Laface
    ESS, Lund, Sweden
 
  A fast and accurate online model is required for optimal commissioning and reliable operation of the high-power proton linac at the European Spallation Source. The Open XAL framework, initially developed at SNS, is used at ESS for the development of high-level physics applications. The online model we use, known as ESS Linac Simulator (JELS), extends the Open XAL model with several features. This paper describes the latest updates carried out to JELS. Two new elements have been implemented: a solenoid field map for the LEBT and a DTL Tank element that automatically calculates each gap phase. All calculations are now done in the laboratory frame, in agreement with Open XAL convention. A thorough benchmark of the model against TraceWin, which is the tool used for the lattice design, is also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAL044 ENSOLVE : A Simulation Code for FXR LIA Downstream Section emittance, target, space-charge, electron 2271
 
  • Y.H. Wu, Y.-J. Chen
    LLNL, Livermore, California, USA
 
  Funding: This work was performed under the auspi-ces of the U.S. Department of Energy by Law-rence Livermore National Laboratory under Contract DE-AC52-07NA27344.
In this paper, we describe an envelope code, ENSOLVE. It solves the rms beam envelope equation by including space change depression of the potential, spherical aberration of the so-lenoidal lens, emittance growth and focusing effects of backstreaming ions in the final focus region. In this paper, we focus on the physics included for beam transport simulations in the downstream section of flash x-ray radiography linear induction accelerators, such as FXR LIA. We have used ENSOLVE to design final focus tunes for FXR LIA downstream section
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAL044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML011 Garnet Ring Measurements for the Fermilab Booster 2nd Harmonic Cavity cavity, booster, controls, simulation 2700
 
  • R.L. Madrak, J.E. Dey, K.L. Duel, J. Kuharik, A.V. Makarov, W. Pellico, J. Reid, G.V. Romanov, M. Slabaugh, D. Sun, C.-Y. Tan, I. Terechkine
    Fermilab, Batavia, Illinois, USA
 
  A perpendicularly biased tuneable 2nd harmonic cavity is being constructed for use in the Fermilab Booster. The cavity's tuner uses National Magnetics AL800 garnet as the tuning media. For quality control, the magnetic properties of the material and the uniformity of the properties within the tuner must be assessed. We describe two tests which are performed on the rings and on their corresponding witness samples.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML014 Tooling Systems for the Assembly and Integration of the SSR1 Cryomodule for PIP-II Project at Fermilab cavity, cryomodule, vacuum, insertion 2710
 
  • D. Passarelli, F. Di Ciocchis, M. Parise, V. Roger
    Fermilab, Batavia, Illinois, USA
 
  In this paper we present the assembly strategy and tooling design for the SSR1 cryomodule from the cavity string to the final module. Several challenging aspects were considered to minimize undesired stresses on critical components, to preserve the alignment of cavities and solenoids during final assembly, and ultimately to meet the technical requirements of the PIP-II project at Fermilab.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPML019 Design Update of the SSR1 Cryomodule for PIP-II Project cryomodule, cryogenics, HOM, interface 2721
 
  • V. Roger, S. Cheban, T.H. Nicol, Y.O. Orlov, D. Passarelli, P. Vecchiolla
    Fermilab, Batavia, Illinois, USA
 
  This paper reports the design update of the Single Spoke Resonator 1 (SSR1) cryomodule developed in the framework of PIP-II project at Fermilab. The most re-cent design changes and results of calculations per-formed to optimize the vacuum vessel, current leads, piping system and thermal shield are described. Then the estimated heat loads of the cryomodule leading to the sizing of the cryogenic valves will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPML019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK019 Beam Dynamics of the First Beams for IFMIF-EVEDA RFQ Commissioning rfq, proton, extraction, emittance 3246
 
  • L. Bellan, C. Baltador, M. Comunian, E. Fagotti, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • T. Akagi
    KEK, Ibaraki, Japan
  • B. Bolzon, N. Chauvin
    CEA/DSM/IRFU, France
  • H. Dzitko
    F4E, Germany
  • K. Kondo, M. Sugimoto
    QST, Aomori, Japan
  • I. Podadera
    CIEMAT, Madrid, Spain
  • F. Scantamburlo
    IFMIF/EVEDA, Rokkasho, Japan
 
  The installation of the IFMIF-EVEDA RFQ, MEBT, LEBT, source and beam dump was completed in September 2017. The beam dynamics of the first beams for the IFMIF-EVEDA RFQ commissioning is presented. Moreover, a proposal for the CW RFQ steady state commissioning is shown, with a focus on the beam dynamics challenges of the beam transport after the RFQ.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK040 Bunched Beam Envelope Instability in a Periodic Focusing Channel emittance, focusing, simulation, lattice 3301
 
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  The space-charge driven envelope instability presents a great danger in high intensity accelerator design. In this paper, we report on the study of bunched beam envelope instability in a periodic focusing channel using three-dimensional envelope model for a 3D uniform Waterbag distribution and a 3D Gaussian distribution. Our results show that the envelope instability stopband becomes broader with the increase of longitudinal focusing and are not sensitive to the type of distribution. Self-consistent macroparticle simulations using both distributions show similar structure in emittance growth but also extra instability stopbands. The emittance growth from the Waterbag distribution has larger stopband than that from the Gaussian distribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK061 Magnetized and Flat Beam Generation at the Fermilab's FAST Facility quadrupole, emittance, cathode, simulation 3364
 
  • A. Halavanau, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • D.J. Crawford, D.R. Edstrom, D. Mihalcea, S. Nagaitsev, P. Piot, A.L. Romanov, J. Ruan, V.D. Shiltsev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work is supported by the DOE contract No.DEAC02-07CH11359 to the Fermi Research Alliance LLC. A.H. is supported by the DOE under contract No. DE-SC0011831 with Northern Illinois University.
Canonical angular momentum (CAM) dominated beams can be formed in photoinjectors by applying an axial magnetic field on the photocathode surface. Such a beam possess asymmetric eigenemittances and is characterized by the measure of its magnetization. CAM removal using a set skew-quadrupole magnets maps the beam eigenemittances to the conventional emittance along each transverse degree of freedom thereby yielding flat beam with asymmetric transverse emittance. In this paper we report on the experimental generation of CAM dominated beam and their subsequent transformation into flat beams at the Fermilab Accelerator Science and Technology (FAST) facility. Our results are compared with numerical simulations and possible applications of the produced beams are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK061  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK067 Progress Toward a Self-Consistent Beam at the Spallation Neutron Source injection, kicker, simulation, quadrupole 3382
 
  • J.A. Holmes, S.M. Cousineau, T.V. Gorlov, M.A. Plum
    ORNL, Oak Ridge, Tennessee, USA
  • N.J. Evans
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: ORNL is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the US DOE. This research was supported by the DOE Office of Science, Accelerator and Detector Research Program.
We have proposed to inject a self-consistent "rotating" beam into the Spallation Neutron Source (SNS). Self-consistent beam distributions are defined to be ellipsoidal, or elliptical in 2D, distributions that have uniform density and that retain these properties under all linear transformations. We have made much progress since the original proposal. We have demonstrated computationally the feasibility of injecting a rotating beam under realistic physics assumptions. We have optimized the injection scheme with respect to beam loss and to minimum necessary hardware changes. We have also determined how existing SNS beam diagnostic equipment can be used to verify the self-consistency of the injected beam. This paper will report the details of this work as well as the status of plans to carry out the self-consistency experiments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK068 Fringe Field Effect of Solenoids optics, neutron, quadrupole, ECR 3385
 
  • T.V. Gorlov, J.A. Holmes
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work has been supported by Oak Ridge National Laboratory, man-aged by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
We derive a precise analytical nonlinear transverse map for single particle transport through a solenoid with hard edge fringe fields. The transfer map is two dimensional for transverse coordinates and momenta with fixed longitudinal momentum. Because it is an accurate analytic map, it is also symplectic. The transfer map is compared with ex-act numerical tracking.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK071 Simulation Study of the Magnetized Electron Beam cathode, electron, simulation, gun 3395
 
  • S.A.K. Wijethunga, J.R. Delayen, G.A. Krafft
    ODU, Norfolk, Virginia, USA
  • J. F. Benesch, F.E. Hannon, G.A. Krafft, M.A. Mamun, M. Poelker, R. Suleiman
    JLab, Newport News, Virginia, USA
 
  Funding: This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177
Electron cooling of the ion beam plays an important role in electron ion colliders to obtain the required high luminosity. This cooling efficiency can be enhanced by using a magnetized electron beam, where the cooling process occurs inside a solenoid field. This paper compares the predictions of ASTRA and GPT simulations to measurements made using a DC high voltage photogun producing magnetized electron beam, related to beam size and rotation angles as a function of the photogun magnetizing solenoid and other parameters.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAK127 Toroidal Merger Simulations for the JLEIC Bunched Beam Electron Cooler Ring electron, emittance, space-charge, simulation 3540
 
  • A.V. Sy
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The bunched beam electron cooler ring for the Jefferson Lab Electron-Ion Collider (JLEIC) requires a merger system to transport magnetized electron beams of two different energies to the same energy recovery linac (ERL) beamline. The system is especially challenging compared to existing mergers for ERL or hadron cooling applications (as at COSY) due to the small separation in energy between the two beams; for the JLEIC bunched beam cooler, the two beam energies may only differ by a factor of 4. An additional complication is the use of a magnetized beam. A toroidal merger system is studied using G4Beamline/GEANT4. Preservation of the quality of the low energy beam from the injector is especially vital for efficient cooling performance and compatibility with the ERL. Effects of the toroidal system on transverse and longitudinal emittances of the magnetized beams, as well as space charge effects, are presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAK127  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL073 Progress on 1.5 GHz Multi-kW CW Amplifier klystron, operation, HOM, insertion 3821
 
  • A.V. Smirnov, R.B. Agustsson, S. Boucher, A.Y. Murokh, A.Yu. Smirnov
    RadiaBeam Systems, Santa Monica, California, USA
  • M.A. Ahmadi, P. Blanchard, M.D. Mccann, C. Nguen, P.B. Peter, J. Zabek
    Microsemi Corporation, Aliso Viejo, USA
  • G.R. Branner, K.S. Yuk
    UC Davis, Davis, USA
  • J.J. Hartzell, K.J. Hoyt, T.J. Villabona
    RadiaBeam, Santa Monica, California, USA
  • V. Khodos
    Sierra Nevada Corporation, Irvine, USA
 
  Funding: Work supported by the U.S. Department of Energy (award No. DE-SC0013136)
JLab upgrade program foresees new CW amplifiers operating at 1497 MHz and significantly increased efficiency vs. existing VKL-7811 klystron. One of possibilities for the replacement is usage of high electron mobility packaged GaN transistors applied in array of highly efficient amplifiers using precise in-phase, low-loss combiners-dividers. We present here performance of novel, compact 300 W pallets developed at MicroSemi specifically for this project including their new GaN transistor, as well as significantly upgraded divider and combiner. Design features and challenges related to amplifier modules (pallets), broadband 21-way dividers/combiners, as well construction and assembling of the entire system are discussed including measurements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL085 High Power RF Conditioning on CLARA cavity, vacuum, linac, multipactoring 3852
 
  • L.S. Cowie, D.J. Scott
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Burt, W.L. Millar
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
 
  The CLARA accelerator at Daresbury Laboratory will have 8 normal conducting RF cavities. Automating the high power RF conditioning of these cavities will mean a repeatable, research-lead process is followed. An auto-mated algorithm has been written in Python. A prototype algorithm was used to condition the first CLARA travel-ling wave linac in October 2017. The linac was success-fully conditioned over approximately 12 million pulses up to 27 MW for a 750 ns pulse. A more complex and robust algorithm was used to re-condition the standing wave 10 Hz photoinjector after a cathode change. The photoinjec-tor was conditioned to 10 MW for a 2.5 μs pulse in Feb-ruary 2018 over 2.1 million pulses. Conditioning method; differences for travelling and standing wave structures; difficulties and interesting phenomena are all discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF001 Beam Dynamics Studies for Beam Focusing and Solenoid Alignment at SINBAD alignment, emittance, linac, gun 4026
 
  • S. Yamin, R.W. Aßmann, B. Marchetti, J. Zhu
    DESY, Hamburg, Germany
 
  SINBAD (Short INnovative Bunches and Accelerators at DESY) facility under construction at DESY plans to host several experiments for the production of ultra-short bunches and will be a test facility for high-gradient compact novel acceleration techniques. The ARES (Accelerator Research Experiment at SINBAD) linac is foreseen to produce ultra-short bunches to be injected e.g. into Novel Dielectric Laser Acceleration structures or Laser Wake-Field Acceleration experiments. The work presented in this paper is based on optimization of the focusing system consisting of solenoids for the ARES, which have been studied earlier in detail but is revisited for updated beamline. Moreover tolerances for the possible misalignment of solenoids are presented investigating the effect on the beam properties during the gun commissioning.
* J. Zhu, R. Assmann, U. Dorda, B. Marchetti, "Matching sub-fs electron bunches for laser-driven plasma acceleration at SINBAD", Nucl. Instrum. Methods Phys. Res., Sect. A 829, 229 (2016)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF051 Research of a Locally-round Beam in HEPS Storage Ring Using Solenoids storage-ring, dynamic-aperture, emittance, undulator 4175
 
  • C.C. Du, J.Q. Wang
    IHEP, Beijing, People's Republic of China
 
  "Round beam", that is, a beam with equivalent transverse emittance, is expected for a significant fraction of the beamline users in light sources. We investigate the possibility of reaching round beam in a storage ring, by means of a local exchange of the apparent horizontal and vertical emittance, performed with solenoids in a dedicated insertion line in the storage ring. In this paper, we show that a locally-round beam can be achieved by using solenoid in High Energy Photon Source (HEPS) storage ring, particularly to one of the design having natural emittance of 34.2 pm·rad.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF085 Beam Dynamics Simulation of the Solenoid Sextupole Error in the LCLS-II Injector sextupole, emittance, simulation, electron 4277
 
  • J. Qiang
    LBNL, Berkeley, California, USA
  • S.D. Anderson, D. Dowell, P. Emma, J.F. Schmerge, M.D. Woodley, F. Zhou
    SLAC, Menlo Park, California, USA
 
  The LCLS-II injector is a high brightness, high-repetition rate RF injector that consists of a 186 MHz VHF photo-electron gun, a focusing solenoid, a buncher cavity, another focusing solenoid, and a superconducting accelerating cryomodule to boost the electron beam energy to about final 100MeV. The solenoids provide transverse focusing and emittance compensation for the electron beam. However, in reality, the solenoid is not perfect due to manufacturing errors. Especially, the sextupole error in the solenoid field, which can cause significant beam emittance growth. In this paper, we report on the beam dynamics study of the effects of sextupole errors in the current LCLS-II injector.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF085  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK107 Design of a High Charge, Low Energy, Magnetized Electron Injector electron, emittance, cavity, cathode 4564
 
  • F.E. Hannon
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Simulations of a magnetized injector for the bunched-beam electron cooler ring, as part of the Jefferson Lab Electron Ion Collider (JLEIC) are presented. A challenge of such an injector is in generating a magnetized, 3.2nC electron bunch at low energy and preserving the angular momentum so it can subsequently be merged into the cooler ring and transported to the cooling solenoid without degradation. The design of the proposed injector and the effect it has on the beam are discussed in detail.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK107  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK108 Production of Magnetized Electron Beam from a DC High Voltage Photogun cathode, gun, electron, laser 4567
 
  • M.A. Mamun, P.A. Adderley, J. F. Benesch, D.B. Bullard, J.R. Delayen, J.M. Grames, J. Guo, F.E. Hannon, J. Hansknecht, C. Hernandez-Garcia, R. Kazimi, G.A. Krafft, M. Poelker, R. Suleiman, M.G. Tiefenback, Y.W. Wang, S. Zhang
    JLab, Newport News, Virginia, USA
  • S.A.K. Wijethunga
    ODU, Norfolk, Virginia, USA
 
  Funding: This work is supported by the Department of Energy, Laboratory Directed Research and Development funding, under contract DE-AC05-06OR23177
Bunched-beam electron cooling is a key feature of all proposed designs of the future electron-ion collider, and a requirement for achieving the highest promised collision luminosity. At the Jefferson Lab Electron Ion Collider (JLEIC), fast cooling of ion beams will be accomplished via so-called 'magnetized cooling' implemented using a recirculator ring that employs an energy recovery linac. In this contribution, we describe the production of magnetized electron beam using a compact 300 kV DC high voltage photogun with an inverted insulator geometry, and using alkali-antimonide photocathodes. Beam magnetization was assessed using a modest diagnostic beamline that includes YAG view screens used to measure the rotation of the electron beamlet passing through a narrow upstream aperture. Magnetization results are presented for different gun bias voltages and for different laser spot sizes at the photocathode, using 532 nm lasers with DC and RF time structure. Photocathode lifetime was measured at currents up to 4.5 mA, with and without beam magnetization.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMK123 Initial Design on the High Quality Electron Beam for the Hefei Advanced Light Source electron, emittance, bunching, laser 4605
 
  • R. Huang, Z.G. He, Q.K. Jia, Y. Lu, L. Wang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: Work is supported by China Postdoctoral Science Foundation (Grant No. 51627901) and Chinese Universities Scientific Fund (Contract WK2310000063)
The Hefei Advanced Light Source (HALS) was proposed as a future soft X-ray diffraction-limited storage ring with a Free Electron Laser (FEL) at National Synchrotron Radiation Laboratory (NSRL). We present a design for a high brightness electron source as an injector of a 2.4 GeV linac-based diffraction limited storage ring and a free electron laser. The electron beams with low emittance and high peak current will be generated from a photoinjector and designed to fulfill the requirement of the HALS. To compress the bunch length and enhance the pulse current, velocity bunching scenario by a deceleration injection phase is designed. Owing to a linear compression, the electron beam is expected to be extremely short with a further magnetic compression.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMK123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML126 Design of High Efficiency High Power CW Linacs for Environmental and Industrial Applications linac, cavity, simulation, focusing 4974
 
  • M. Shumail, V.A. Dolgashev, C.M. Markusen
    SLAC, Menlo Park, California, USA
 
  Funding: US Department of Energy, Office of High Energy Physics, through Accelerator Stewardship Grant
We have used our accelerator design toolbox equations to design three high efficiency and high power CW accelerators for the environmental and medical applications. These are: 2MeV-1MW, 10MeV-10MW, and 10MeV-1MW linacs. These are all 10 m long, 1.3 GHz, π-mode standing wave structures with design efficiencies of 96.8, 97.4 and 86.5 %, and optimal coupling coefficients of 32.9, 43.5, and 7.45, respectively. We present the detailed design parameters of these linacs. The study of single-bunch beam breakup for these linacs and the simulations results from ABCI are also included. The initial cavities are optimized according to the speed of the electron bunch to maximize the shunt impedance. The plots of peak surface fields on these cavities are also presented. We have also included a detailed thermal analysis of these linacs. Finally, we present the results of ASTRA simulations of the three linacs with magnetic focusing. We have also included the complete design of rf-distributed-coupling manifold for the third linac along with the HFSS® simulation results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXGBE3 First Demonstration of Ionization Cooling in MICE emittance, detector, electron, experiment 5035
 
  • T.A. Mohayai
    IIT, Chicago, Illinois, USA
 
  The Muon Ionization Cooling Experiment (MICE) at Rutherford Appleton Laboratory has studied ionization cooling of muons. Several million individual muon tracks have been recorded passing through a series of focusing magnets and a liquid hydrogen or lithium hydride absorber in a variety of magnetic configurations. Identification and measurement of muon tracks upstream and downstream of the absorber are used to study the evolution of the 4D (transverse) emittance. This paper presents and discusses these results.  
slides icon Slides FRXGBE3 [77.079 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-FRXGBE3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)