Keyword: status
Paper Title Other Keywords Page
TUPAF044 Schedule Evolution of the Linac4 Installation During the Lifetime of the Linac4 Project and Connection Forecast linac, civil-engineering, MMI, site 794
 
  • J. Coupard, A. Berjillos, J.-P. Corso, K. Foraz, B. Nicquevert, E. Paulat, M. Vretenar
    CERN, Geneva, Switzerland
 
  The new CERN linear accelerator Linac4 started the installation phase in 2010 after the delivery of the new building and tunnel by the civil engineering and was inaugurated six years later. It will be connected to the CERN accelerators chain and replace the current proton linear accelerator, Linac2, during the second long shut-down (LS2) of the Large Hadron Collider (LHC) in 2019. This paper aims to summarize the schedule evolution through the different phases of installation, from general services to machine installation, highlight the key factors that contributed to drive the schedule (safety, logistics and integration) and describe the coordination study of the future connection (integration, schedule, logistics, constraints and priorities).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF075 Design Status of the LBNF/DUNE Beamline target, proton, shielding, site 902
 
  • V. Papadimitriou, J.E. Anderson, R. Andrews, J.J. Angelo, V.T. Bocean, C.F. Crowley, A. Deshpande, N. Eddy, K. E. Gollwitzer, S. Hays, P. Hurh, J. Hylen, J.A. Johnstone, P.H. Kasper, T.R. Kobilarcik, G.E. Krafczyk, N.V. Mokhov, D. Pushka, S.D. Reitzner, P. Schlabach, V.I. Sidorov, M. Slabaugh, S. Tariq, L.R. Valerio, K. Vaziri, G. Velev, G.L. Vogel, K.E. Williams, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • C.J. Densham
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
 
  Funding: DOE, contract No. DE-AC02-07CH11359
The Long Baseline Neutrino Facility (LBNF) will utilize a beamline located at Fermilab to provide and aim a wide band beam of neutrinos of sufficient intensity and appropriate energy toward DUNE detectors, placed 4850 feet underground at SURF in South Dakota, about 1,300 km away. The primary proton beam (60-120 GeV) will be extracted from the MI-10 section of Fermilab's Main Injector. Neutrinos are produced after the protons hit a four-interaction length solid target and produce mesons which are subsequently focused by a set of three magnetic horns into a 194 m long helium filled decay pipe where they decay into muons and neutrinos. The parameters of the facility were determined taking into account the physics goals, spatial and radiological constraints, extensive simulations and the experience gained by operating the NuMI facility at Fermilab. The Beamline facility is designed for initial operation at a proton-beam power of 1.2 MW, with the capability to support an upgrade to about 2.4 MW. LBNF/DUNE obtained CD-1 approval in November 2015 and CD-3a approval in September 2016. We discuss here the Beamline design status and the associated challenges.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF083 SIS100 Tunnel Design and Civil Construction Status site, radiation, experiment, shielding 927
 
  • C. Omet, J. Falenski, H. Kisker, K. Konradt, P.J. Spiller
    GSI, Darmstadt, Germany
  • A. Fischer
    FAIR, Darmstadt, Germany
 
  As the FAIR Project is proceeding, building designs have been frozen and the according work packages tendered. For the future FAIR main driver accelerator, SIS100, the 1.1 km long accelerator tunnel "T110", has been planned 17 m deep under ground. In this article, environmental boundary conditions, the chosen layout and the current status of civil construction is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK015 The SARAF-LINAC Project 2018 Status linac, cryomodule, cavity, controls 994
 
  • N. Pichoff, D. Chirpaz-Cerbat, R. Cubizolles, J. Dumas, R.D. Duperrier, G. Ferrand, B. Gastineau, P. Gastinel, F. Gougnaud, M. Jacquemet, C. Madec, Th. Plaisant, F. Senée, A. Sutra-Fourcade, D. Uriot
    IRFU, CEA, University Paris-Saclay, Gif-sur-Yvette, France
  • D. Berkovits, J. Luner, A. Perry, E. Reinfeld, J. Rodnizki
    Soreq NRC, Yavne, Israel
  • M. Di Giacomo
    GANIL, Caen, France
 
  SNRC and CEA collaborate to the upgrade of the SARAF accelerator to 5 mA CW 40 MeV deuteron and proton beams (Phase 2). CEA is in charge of the design, construction and commissioning of the MEBT line and the superconducting linac (SARAF-LINAC Project). The prototypes of the 176 MHz NC rebuncher, SC cavities, RF coupler and SC Solenoid-Package are under construction and their test stands construction or adaptation is in progress at Saclay. Meanwhile, the cryomodules and the global system just passed their Critical Design Reviews. This paper presents the status of the SARAF-LINAC Project at April 2018.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL017 Performance and Status of the J-PARC Accelerators operation, target, linac, ion-source 1038
 
  • K. Hasegawa, N. Hayashi, M. Kinsho, H. Oguri, K. Yamamoto, Y. Yamazaki
    JAEA/J-PARC, Tokai-mura, Japan
  • T. Koseki, F. Naito, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
  • N. Yamamoto
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  The J-PARC is a high intensity proton facility and the accelerator consists of a 400 MeV linac, a 3 GeV Rapid Cycling Synchrotron (RCS) and a 30 GeV Main Ring Synchrotron (MR). Regarding 3 GeV beam from the RCS, we delivered it at 150 kW to the materials and life science experimental facility (MLF), for the neutron and muon users. The beam powers for the neutrino experiment at 30 GeV was 420 kW in May 2016, but increased to 470 kW in February 2017 thanks to the change and optimization of operation parameters. For the hadron experimental facility which uses a slow beam extraction mode at 30 GeV, we delivered beam at a power of 37 kW, after the recovery from a trouble at an electro static septum. We have experienced many failures and troubles to impede full potential and high availability. In this report, operational performance and status of the J-PARC accelerators are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF071 Status of Impedance Modeling for the PETRA IV impedance, wakefield, lattice, synchrotron 1423
 
  • Y.-C. Chae, R. Wanzenberg
    DESY, Hamburg, Germany
 
  The diffraction limited synchrotron light source envisioned for the PETRA IV project will require strong focusing to produce the small emittances in both planes. The large natural chromaticity together with small dispersion will require very strong sextupoles. In order to cope with high gradient magnets the radius of vacuum chamber tends to be in the range of 10 mm, which is very small compared to the current 40-mm wide elliptic chamber. The impedance element in the PETRA III was scaled down to fit into the smaller aperture so that the short range wakepotential can be computed numerically. For instance the beam position monitor (BPM) was reduced to 60% in dimension so that it can be used in PETRA IV. Even if the actual design of hardware does not exist yet, we assume that generic feature of PETRA III model is still valid. In this paper we report the up-to-date information on impedance model of PETRA IV together with the preliminary impedance budget based on the analytical formula. We also report the specific studies carried out to understand the kickfactor scaling with the chamber aperture whose radius is in the range of 8-12 mm.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMF086 Status of the ARES RF Gun at SINBAD: From its Characterization and Installation towards Commissioning gun, cavity, linac, electron 1474
 
  • B. Marchetti, R.W. Aßmann, S. Baark, F. Burkart, U. Dorda, K. Flöttmann, I. Hartl, J. Hauser, J. Herrmann, M. Hüning, K. Knebel, O. Krebs, G. Kube, W. Kuropka, S. Lederer, F. Lemery, F. Ludwig, D. Marx, F. Mayet, M. Pelzer, I. Peperkorn, F. Poblotzki, S. Pumpe, J. Rothenburg, H. Schlarb, M. Titberidze, G. Vashchenko, T. Vinatier, P.A. Walker, L. Winkelmann, K. Wittenburg, S. Yamin, J. Zhu
    DESY, Hamburg, Germany
 
  The SINBAD facility (Short and INnovative Bunches and Accelerators at DESY) is foreseen to host multiple experiments relating to the production of ultra-short electron bunches and novel high gradient acceleration techniques. The SINBAD-ARES linac will be a conventional S-band linear RF accelerator allowing the production of low charge (0.5 pC - tens pC) ultra-short electron bunches (FWHM length =< 1 fs - few fs) with 100 MeV energy. The installation of the linac will proceed in stages. In this paper we report on the status of the characterization of the ARES RF gun and the installations of the related infrastructure.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPMF086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF090 CS-Studio Operator Training at ReA3 interface, controls, EPICS, power-supply 2061
 
  • T. Summers, D.B. Crisp
    NSCL, East Lansing, Michigan, USA
  • A.C.C. Villari
    FRIB, East Lansing, Michigan, USA
 
  Funding: This material is based upon work supported by the National Science Foundation under Grant No. PHY-1565546
In the past year, Control System Studio (CS-Studio) has become the predominant graphical user interface tool at ReA3, the 3 MeV/u rare isotope beam Reaccelerator at Michigan State University's National Superconducting Cyclotron Laboratory. CS-Studio is a set of control system interface tools that include operator interfaces, history plots, an alarm handler, save/restore, scanning, and more. Becoming an effective user of these tools takes considerable time and training. This contribution will describe the challenges and strategies for training operators on the general use of the CS-Studio tools. It will describe the use of a simulated user interface environment for training operators at any time without affecting the operating facility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF090  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL016 Study of the Performances of a 3D Printed BPM vacuum, HOM, impedance, instrumentation 3656
 
  • N. Delerue, D. Auguste, J. Bonis, F. Gauthier, A. Gonnin, S. Jenzer, O. Trofimiuk
    LAL, Orsay, France
  • A. Vion
    BV Proto, Sévenans, France
 
  Funding: Work supported by IN2P3 ‘‘3D Metal'' innovation program; Oleh Trofimiuk stay in France is supported by the IDEATE International Associated Laboratory (LIA) between France and Ukraine.
Following previous results which have shown that some components built using additive manufacturing (3D printing) are compatible with ultra high vacuum, we have adapted the design of a stripline BPM to the requirements of additive manufacturing and built it. We report here on the design adaptation and on its mechanical and electrical performances.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL051 The Data Acquisition on Vibration Evaluation for Ice Water Pumps Systems in TPS data-acquisition, synchrotron, operation, controls 3757
 
  • Y.-H. Liu, C.-S. Chen, Y.-C. Chung, Z.-D. Tsai
    NSRRC, Hsinchu, Taiwan
 
  The vibration status is a critical problem for the utility system, especially for those continuously operate deionized and cooling water pumps used in synchrotron accelerator. The purpose of this paper is to evaluate the vibration level and spectrum condition for TPS water pump systems. In order to predictive maintenance before pump systems fail, the vibration monitoring system was constructed. After vibration test for several months, the alignment of some of the ice water pumps were found mismatched because of poor system positioning and operate continuously. Besides, the ice water pump were redundantly operated and switch over every Monday morning. The recorded data showed the system sometimes switch fail because of control status or system stability. Thus, the water pump systems were repaired and maintained base on vibration monitoring system. There is still some remain problems for ice water pump systems. The utility systems could prevent malfunction through regular vibration inspection and daily data acquisition.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL068 Status of the Polarix-TDS Project FEL, electron, undulator, klystron 3808
 
  • P. Craievich, M. Bopp, H.-H. Braun, R. Ganter, T. Kleeb, M. Pedrozzi, E. Prat, S. Reiche, R. Zennaro
    PSI, Villigen PSI, Switzerland
  • R.W. Aßmann, F. Christie, R.T.P. D'Arcy, U. Dorda, M. Foese, P. González Caminal, M. Hoffmann, M. Hüning, R. Jonas, O. Krebs, S. Lederer, V. Libov, B. Marchetti, D. Marx, J. Osterhoff, F. Poblotzki, M. Reukauff, H. Schlarb, S. Schreiber, G. Tews, M. Vogt, A. Wagner
    DESY, Hamburg, Germany
  • N. Catalán Lasheras, A. Grudiev, G. McMonagle, W. Wuensch
    CERN, Geneva, Switzerland
 
  A collaboration between DESY, PSI and CERN has been established to develop and build an advanced modular X-band transverse deflection structure (TDS) system with the new feature of providing variable polarization of the deflecting force. This innovative CERN design requires very high manufacturing precision to guarantee highest azimuthal symmetry of the structure to avoid the deterioration of the polarization of the streaking field. Therefore, the high-precision tuning-free production process developed at PSI for the C-band and X-band accelerating structures will be used for the manufacturing. We summarize in this paper the status of the production of the prototype and the waveguide networks foreseen in the different facilities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAL141 Optimizing Procurement Strategies for LCLS-II cavity, cryomodule, niobium, HOM 3972
 
  • K.M. Wilson, G. Cheng, E. Daly, J.A. Fitzpatrick, N.A. Huque, M.L. Laney, F. Marhauser, A.D. Palczewski, H. Park, T. Peshehonoff, G. Tenbusch, M. Torres
    JLab, Newport News, Virginia, USA
 
  Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract DE-AC02-76SF00515
The SLAC National Accelerator Laboratory is currently constructing a major upgrade to its accelerator, the Linac Coherent Light Source II (LCLS-II). Several Department of Energy national laboratories, including the Thomas Jefferson National Accelerator Facility (JLab), are participating in this project. JLab is responsible for procuring a number of critical components. Over the course of this project, JLab has evolved several procurement strategies to minimize risk and improve performance while working within the constraints of budget and schedule. This paper discusses the impact of procurement choices on project technical success.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAL141  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPMF010 Status of Elettra and Future Upgrades operation, dipole, lattice, emittance 4054
 
  • E. Karantzoulis, A. Carniel, R. De Monte, S. Krecic, C. P. Pasotti
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The operational status of the Italian 2.4/2.0 GeV third generation light source Elettra is presented together with the possible future upgrades especially concerning the next ultra low emittance light source Elettra 2.0  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPMF010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML067 SXFEL Linac BPM System Development and Performance Evaluation FEL, linac, experiment, electron 4794
 
  • F.Z. Chen, T. Wu
    SSRF, Shanghai, People's Republic of China
  • J. Chen, L.W. Lai, Y.B. Leng, L.Y. Yu, R.X. Yuan
    SINAP, Shanghai, People's Republic of China
 
  Shanghai Soft X-ray Free Electron Laser (SXFEL) is a test facility to study key technologies and new FEL physics. In order to deliver high quality electron beams to the undulator section, a high resolution (better than 10 microns with 200pC beam) Linac beam position monitor system has been developed. The system consists of stripline pickup and custom designed DBPM processor. The hardware and software architecture will be introduced in this paper. The online performance evaluation results will be presented as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)