A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

quadrupole

Paper Title Other Keywords Page
MOOCRA01 The Magnetic Model of the LHC in the Early Phase of Beam Commissioning injection, dipole, sextupole, optics 55
 
  • E. Todesco, N. Aquilina, B. Auchmann, L. Bottura, M.C.L. Buzio, R. Chritin, G. Deferne, L. Deniau, L. Fiscarelli, J. Garcia Perez, M. Giovannozzi, P. Hagen, M. Lamont, G. Montenero, G.J. Müller, S. Redaelli, RV. Remondino, F. Schmidt, R.J. Steinhagen, M. Strzelczyk, M. Terra Pinheiro Fernandes Pereira, R. Tomás, W. Venturini Delsolaro, J. Wenninger, R. Wolf
    CERN, Geneva
  • N.J. Sammut
    University of Malta, Faculty of Engineering, Msida
 
 

The relation between field and current in each family of the Large Hadron Collider magnets is modeled with a set of empirical equations (FiDeL) whose free parameters are fitted on magnetic measurements. They take into account of residual magnetization, persistent currents, hysteresis, saturation, decay and snapback during initial part of the ramp. Here we give a first summary of the reconstruction of the magnetic field properties based on the beam observables (orbit, tune, coupling, chromaticity) and a comparison with the expectations based on the large set of magnetic measurements carried out during the 5-years-long production. The most critical issues for the machine performance in terms of knowledge of the relation magnetic field vs current are pinned out.

 

slides icon

Slides

 
MOPEA042 Epicyclic Twin-helix Magnetic Structure for Parametric-resonance Ionization Cooling optics, dipole, resonance, betatron 166
 
  • A. Afanasev, R.P. Johnson
    Muons, Inc, Batavia
  • Y.S. Derbenev
    JLAB, Newport News, Virginia
  • V.S. Morozov
    ODU, Norfolk, Virginia
 
 

Parametric-resonance Ionization Cooling (PIC) is envisioned as the final 6D cooling stage of a high-luminosity muon collider. Implementing PIC imposes stringent constraints on the cooling channel's magnetic optics design. This paper presents a linear optics solution compatible with PIC. Our solution consists of a superposition of two opposite-helicity equal-period and equal-strength helical dipole harmonics and a straight normal quadrupole. We demonstrate that such a system can be adjusted to meet all of the PIC linear optics requirements while retaining large acceptance.

 
MOPEA052 Sub-micrometer Resolution Transverse Electron Beam Size Measurement System based on Optical Transition Radiation electron, target, laser, radiation 193
 
  • A.S. Aryshev, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • S.T. Boogert, V. Karataev
    JAI, Egham, Surrey
  • D.F. Howell
    OXFORDphysics, Oxford, Oxon
 
 

Optical Transition Radiation (OTR) appearing when a charged particle crosses a boundary between two media with different dielectric properties has widely been used as a tool for transverse profile measurements of charged particle beams in various facilities worldwide. The resolution of the conventional monitors is defined by so-called Point Spread Function (PSF) dimension - the source distribution generated by a single electron and projected by an optical system onto a screen. In our experiment we managed to create a system which can practically measure the PSF distribution. We demonstrated that is it is non-uniform. In this paper we represent the development of a novel sub-micrometer electron beam profile monitor based on the measurements of the PSF structure. The visibility of the structure is sensitive to micrometer electron beam dimensions. In this report we shall represent the recent experimental results. The future plans on the optimization of the monitor will also be presented.

 
MOPEA075 GEANT4 Validation Studies at the ISIS Muon Facility proton, target, simulation, neutron 247
 
  • A. Bungau, R. Cywinski
    University of Huddersfield, Huddersfield
  • C. Bungau
    Manchester University, Manchester
  • P.J.C. King, J.S. Lord
    STFC/RAL, Chilton, Didcot, Oxon
 
 

GEANT4 provides an extensive set of alternative hadronic models. Simulations of the ISIS muon production using three such models applicable in the energy range of interest are presented in this paper and compared with the experimental data.

 
MOPEA076 Geometry Optimization of the ISIS Muon Target target, proton, simulation, neutron 250
 
  • A. Bungau, R. Cywinski
    University of Huddersfield, Huddersfield
  • C. Bungau
    Manchester University, Manchester
  • P.J.C. King, J.S. Lord
    STFC/RAL, Chilton, Didcot, Oxon
 
 

ISIS is the world's most successful pulsed spallation neutron source that provides beams of neutrons and muons that enable scientists to study the properties of the matter at the atomic level. Restrictions are imposed on the muon target regarding thickness as this will affect the proton transmission to the second neutron target. However, it could be possible to improve the muon production by optimizing the target geometry. Currently the muon target is a 7 mm thick graphite plate oriented at 45 degrees with respect to the proton beam. A set of slabs placed at variable distance is proposed instead of the 7 mm thick graphite target. The performance of the set of slabs is examined in this paper.

 
MOPEB001 Multi-function Corrector Magnet sextupole, lattice, power-supply, insertion 274
 
  • L.O. Dallin, D.G. Bilbrough
    CLS, Saskatoon, Saskatchewan
 
 

Storage rings require corrector magnets for a variety of tasks. Foremost are small dipole magnets for both horizontal and vertical correction. In light sources, for example, other corrector magnets are needed to compensate for the effect of changing insertion device operation points. These can include quadrupole, skew quadrupole, sextupole and skew sextupole corrections. As well octupole magnets may be desirable to improve dynamic aperture in small emittance lattices. One magnet can perform all these tasks. This is achieved by having separate windings with separate power supplies on an octopole yoke. The simultaneous excitation of any combination of modes can be achieved through superposition. Corrections are necessarily limited to avoid saturation effects that will degrade the superposition.

 
MOPEB003 Design and Performance of Printed Circuit Steering Magnets for the FLASH Injector dipole, gun, kicker, multipole 277
 
  • K. Flöttmann
    DESY, Hamburg
 
 

Printed circuit boards offer a simple method for the design of hysteresis free, compact air coil magnets. The emphasis for the steering magnets developed for the FLASH injector is placed on a high integrated field strength for a short magnetic length to cope with space limitations in the injector beam line. The possibility to combine a pair of orthogonal steerers at the same longitudinal position has been realized by two layers of printed circuit boards. Design principles and magnetic measurements will be discussed.

 
MOPEB004 Magnetic Modeling, Measurements and Sorting of the CNAO Synchrotron Dipoles and Quadrupoles dipole, sextupole, synchrotron, resonance 280
 
  • C. Priano, G. Bazzano, D. Bianculli, E. Bressi, I. De Cesaris, M. Pullia
    CNAO Foundation, Milan
  • M.C.L. Buzio, R. Chritin, D. Cornuet, J.M. Dutour, L. Vuffray
    CERN, Geneva
  • E. Froidefond
    LPSC, Grenoble
  • C. Sanelli
    INFN/LNF, Frascati (Roma)
 
 

CNAO is a synchrotron accelerator presently under commissioning in Pavia. The aim of this accelerator is to treat tumors with hadrons and to perform advanced clinical and radiobiological research. The CNAO will start treating patients with protons (60-250 MeV range) and carbon ions (120-400 MeV/u range) in three treatment rooms with four beam lines. Future upgrade with gantries is foreseen. This paper describes the design, magnetic measurements and sorting criterion used for the sixteen synchrotron main dipoles and twenty-four quadrupoles. The magnetic measurements results are compared with magnetic simulation.

 
MOPEB006 Design Study of Combined Function Type Magnets for HiSOR-II synchrotron, synchrotron-radiation, radiation, dipole 286
 
  • S. Hanada
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
  • A. Miyamoto, S. Sasaki
    HSRC, Higashi-Hiroshima
 
 

The HiSOR-II is a storage ring planned as a successive machine of HiSOR, a present ring at Hiroshima Synchrotron Radiation Center. This accelerator has the circumference equal to or less than 50 m, and it has the emittance about 14 nm-rad and aims at the beam energy of 700 MeV. In the HiSOR-II project, we decided to adopt electromagnets with combined function. This type magnet has an advantage for constructing a small storage ring by reducing the total number of magnet, though it has a difficulty for the independent tuning of multipole field components. In addition, we decided to share a single return yoke between a bending magnet and adjacent quadrupole magnets. In this paper, we discuss about a possible magnetic interference between a bending magnet and a quadrupole magnet. Calculation is made with magnetic field simulation cord RADIA to analyze interference effect and examine the possibility of adoption to HiSOR-II storage ring. Also, we perform the tracking simulation of the beam with the mapping data of a magnetic field provided by this three-dimensional magnetic field analysis. By the simulation, the dynamic aperture is determined.

 
MOPEB007 Multi-Element Corrector Magnet for the Storage Ring NewSUBARU dipole, sextupole, octupole, storage-ring 289
 
  • Y. Shoji
    NewSUBARU/SPring-8, Laboratory of Advanced Science and Technology for Industry (LASTI), Hyogo
 
 

A multi-element octupole-base corrector magnet is designed and fabricated. The new corrector magnet will be installed in the electron storage ring NewSUBARU in place of vertical steering (skew dipole) magnets. It has coil windings to produce skew quadrupole, skew sextupole, normal octupole, and the skew dipole field. The skew dipole element is used to achieve vertical steering. The skew quadrupole and the skew sextupole elements are for the resonance correction. The normal octupole element is used to control the higher order dispersion function and the higher order momentum compaction factor. In this design the main coil is wound around the return yoke instead of the pole. We expect improvement of the beam lifetime and injection efficiency during normal operation as well as improved isochronism during extreme quasi-isochronous operation. In designing the magnet, careful consideration is given to field interference caused by a neighboring magnet, set close to the corrector magnet of comparable yoke and bore diameter dimensions. The magnetic field with field interference is calculated using OPERA-3D.

 
MOPEB008 Magnetic Field Measurement required for High Luminosity Accelerator dipole, luminosity, factory, power-supply 292
 
  • K. Egawa, M. Masuzawa
    KEK, Ibaraki
 
 

The KEKB is a high luminosity accelerator which achieved the highest luminosity record of 2.1x1034. It requires the precise and stable beam control to keep its high luminosity continually. Slight change of the magnetic field may easily deteriorate the performance of the collisions of the very small and thin beams. The field measurement accuracy better than 10-4 has been already achieved. The resolution of the measurement has reached to a few 10-5. But it is known by the beam studies that the field change less than 10-4 may cause deterioration of the luminosity. The requirement on the stability of magnetic field will be stricter for future nano beam colliders. We have studied the effects of the following conditions on the magnetic field by using some KEKB magnets: changes of the magnetic field due to air or cooling water temperature, changes due to initialization conditions, field coupling between the adjacent magnets, effect of excitation of the adjacent magnet and behavior of the magnetic field under polarity change have been measured. These studies are not only useful for the existing KEKB but also important for future nano beam accelerators.

 
MOPEB011 Magnetic Field Ripple Reduction of Main Magnets of the J-PARC Main Ring using Trim Coils power-supply, sextupole, impedance, acceleration 301
 
  • S. Igarashi, T. Oogoe, H. Someya, S. Yamada
    KEK, Ibaraki
  • Y. Kuniyasu
    MELCO SC, Tsukuba
  • S. Nakamura
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

Efforts have been made to reduce the magnetic field ripple of the bending, quadrupole and sextupole magnets of the J-PARC main ring using the trim coils of the magnets. The quadrupole magnet has 24 turn main coil and 11 turn trim coil per pole those can be considered as a primary winding and a secondary winding of a transformer. When the trim coil is shorted, the induced trim coil current cancels the field ripple. The field ripple of the quadrupole magnet was reduced by a factor of 6 by shorting trim coil. The trim coil current, however, deforms the acceleration field pattern if the coil is shorted all the time of the current pattern of flat bottom, acceleration, flat top and recovery. The MOSFET relay was used to short the coil and to reduce the field ripple during the flat bottom and flat top. The circuits were built for the quadrupole and sextupole magnets. The plan has been made to wind optimized trim coils for the bending magnets.

 
MOPEB014 Status of the PLS-II Magnet Design and Fabrication sextupole, dipole, lattice, electron 307
 
  • D.E. Kim, H.S. Han, Y.-G. Jung, K.R. Kim, H.-G. Lee, S.H. Nam, K.-H. Park, H.S. Suh
    PAL, Pohang, Kyungbuk
 
 

Pohang Light Source (PLS) is planning a major upgrade of the storage ring to meet the more demanding requirement from the synchrotron light users. The main features of the major upgrade are (1) increasing the electron beam energy from 2.5 GeV to 3.0 GeV for more higher energy X-ray photons, (2) decreasing the electron beam emittance from 1.89 nm to 5.8 nm to increase the photon brilliances, and (3) increasing the number of straight sections to install the insertion devices from 10 to 20 to meet the demand for insertion devices. in the upgraded PLS (PLS-II), there will be 24 combined function dipole magnets, 96 quadrupole magnets, and 144 sextupole magnets with some auxiliary magnets for electron beam injection. In this report, the physical design features, mechanical aspects of the magnet design are described.

 
MOPEB016 Development of Upgraded Magnetic Instrumentation for CERN's Real-time Reference Field Measurement Systems controls, diagnostics, focusing, synchrotron 310
 
  • M.C.L. Buzio, P. Galbraith, S.S. Gilardoni, D. Giloteaux, G. Golluccio, C. Petrone, L. Walckiers
    CERN, Geneva
  • A. Beaumont
    EBG MedAustron, Wr. Neustadt
 
 

At CERN, the control of five of the accelerators in the injector chain (i.e. PS, PS Booster, SPS, LEIR and AD) is based upon real-time magnetic measurements in a reference magnet. These systems ("B-trains") include usually a field marker to signal the achievement of a given field value, complemented by one or more pick-up coils to integrate flux changes. Recently, some issues have been raised concerning long-term reliability and possible performance improvements, in terms of both resolution and operational flexibility, for these systems. This paper reports the results of R&D activities launched to address these concerns, namely: the development of a novel ferrite gradient compensator to enable dynamic NMR field marking in the PS' combined function magnets; and the preliminary design of a standardized electronic acquisition and conditioning system aimed at enabling the requested improvements and at facilitating rapid maintenance interventions.

 
MOPEB017 Magnetic Measurements of Permanent and Fast-pulsed Quadrupoles for the CERN LINAC4 Project linac, instrumentation, DTL, coupling 313
 
  • M.C.L. Buzio, P. Arpaia, O. Dunkel, D. Giloteaux, G. Golluccio, A.M. Lombardi, F. Mateo Jimenez, S. Ramberger
    CERN, Geneva
 
 

Linac 4 is the injector upgrade currently under construction at CERN to improve luminosity and reliability for the whole accelerator chain. This machine will include about 120 high-gradient, 20 mm aperture Halbach-array permanent quadrupoles (PMQ) housed in the Drift Tube tanks, as well as about 80 electromagnetic quadrupoles (EMQ) with power cycles approx. 2 ms long. This paper is concerned with the magnetic measurements carried out at CERN on the first batch of PMQ, including several prototypes from different manufacturers, as well as those done on several spare Linac 2 EMQs reused in Linac 4's 3 MeV test stand. We first describe the test setup, focusing our attention on a prototype test bench based on technology developed for the LHC and able to carry out high-precision harmonic measurements in both continuously-rotating and stepping-coil mode (FAME*). Next we present the results obtained in terms of integral field strength and quality, with special emphasis on the analysis of very fast eddy current transients in the EMQs. Finally, we discuss the expected impact of these findings on the operation of the machine.


* N. R. Brooks et al, "Estimation Of Mechanical Vibration Of The LHC Fast Magnetic Measurement System", IEEE Transactions on Applied Superconductivity, vol. 18, No. 2 , 2008.

 
MOPEB020 Measurement of Accelerator Lattice Magnet Prototypes for TPS Storage Ring sextupole, dipole, multipole, synchrotron 319
 
  • F.-Y. Lin, C.-H. Chang, H.-H. Chen, J.C. Huang, M.-H. Huang, C.-S. Hwang, J.C. Jan, C.Y. Kuo, C.-S. Yang
    NSRRC, Hsinchu
 
 

Taiwan Photon Source (TPS) is a new third generation synchrotron storage ring with energy 3 GeV, which consists of 24 double-bend cells and its circumference is 518.4 m. Various accelerator lattice magnets which consist of 48 bending magnets, 240 quadrupoles and 168 multifunction sextupole magnets. All magnets pole profiles, edge shim and magnet end chamfer were designed in TOSCA and RADIA magnetic computation code. In order to verify the magnetic field quality of computation code, prototype magnets have been manufactured in this year. Two measurement systems, hall probe and rotating coils, were used for magnetic field mapping. This paper presents magnetic field mapping results of prototype magnets and compared with original magnetic circuit designs.

 
MOPEB022 Magnet Field Crosstalk Effect of TPS Storage Ring Magnets sextupole, shielding, storage-ring, vacuum 325
 
  • C.Y. Kuo, C.-H. Chang, C.-S. Hwang
    NSRRC, Hsinchu
 
 

The free space between magnets of TPS storage ring is very tight, especially the space between quadrupole and sextupole magnets. The minimum space between the yoke of quadrupole and sextupole is about 150mm, and the space between coils is only 10mm. In this case, the significant magnetic field distortions could have an impact on the performance of machine. Two magnets simulation compare to the individual magnet were performed in TOSCA 3D model. The crosstalk effect shows that the sextupole component increases from 0.0004% to 0.04% in the quadrupole magnet and the quadrupole component increases from 0.0008% to 0.06% in the sextupole magnet. We discuss this crosstalk effect and how to decrease the effect with appropriate shielding.

 
MOPEB024 A Homogeneous Superconducting Combined Multipole Magnet for the Large Acceptance Spectrometer S3, based on Flat Racetrack Coils octupole, sextupole, multipole, dipole 328
 
  • O. Delferrière, D. Boutin, A. Dael, A. Drouart, C. Mayri, J. Payet, J.-M. Rifflet
    CEA, Gif-sur-Yvette
 
 

S3 (Super Separator Spectrometer) [1] is a future device designed for experiments with the very high intensity heavy ion stable beams of SPIRAL2. It will be set-up at the exit of the linear accelerator LINAG at GANIL (Caen, France). It will include a target resistant to very high intensities, a first stage momentum achromat for primary beam suppression, a second stage mass spectrometer and a dedicated detection system. This mass spectrometer includes a set of four large aperture quadrupole triplets with embedded multipolar corrections. These magnets are a combination of three multipoles which could be realized with superconductor wound in flat racetrack coils. To enable the primary beam extraction one triplet has to be opened on one side, which requires a careful design of such a multipolar magnet. This paper describes the opened multipole geometry. It is adapted to large apertures as demonstrated by Opera 3d© magnetic simulations [2], including harmonic analysis and integral field homogeneity.

 
MOPEB026 Magnet Design of the ENC@FAIR Interaction Region dipole, electron, proton, multipole 334
 
  • P. Schnizer, E.S. Fischer
    GSI, Darmstadt
  • K. Aulenbacher, A. Jankowiak, U. Ludwig-Mertin
    IKP, Mainz
  • C. Montag
    BNL, Upton, Long Island, New York
 
 

The Electron Nucleon Collider, proposed as an extension to the High Energy Storage Ring (HESR), is currently investigated and a first layout of the Interaction Region (IR) proposed. The limited size of the machine, the low beam energy and the Lorentz force vector pointing in the same direction for both beams make the IR design demanding. In this paper we present the parameters of the IR magnets, show the boundary conditions given by the beam dynamics and the experiments. We present first 2D designs for the electron and proton triplet magnets along with the separating dipole next to the collision point. Different methods to shield the beam in the spectrometer dipoles are investigated and presented.

 
MOPEB027 3D Static and Dynamic Field Quality Calculations for Superconducting SIS100 Corrector Magnets multipole, sextupole, dipole, vacuum 337
 
  • K. Sugita, E.S. Fischer, P. Schnizer
    GSI, Darmstadt
  • P.G. Akishin
    JINR, Dubna, Moscow Region
  • A. Mierau
    TEMF, TU Darmstadt, Darmstadt
 
 

Superconducting magnets are planned to be installed at the SIS100 accelerator ring for FAIR. The error compensation multipole corrector and the steerer are built as nested magnets to save longitudinal space in the ring, the chromaticity sextupole is a superferric magnet. We present the dynamic field quality of the SIS100 dipole and the vacuum chamber deterioration next to the 2D and 3D field quality of the multipole corrector and of the chromaticity corrector. The quality of the injection field of the SIS100 dipole is mainly dominated by eddy currents as soon as the field ramp starts. We show its AC losses concerning the hydraulic limits for cooling the magnet with forced two phase helium flow and conclude on the maximum chromaticity correction which is feasible for the foreseen magnet design. The results are discussed in respect of recent beam dynamic calculations on the ramp.

 
MOPEB033 Operation of Superconducting Combined Function Magnet System for J-PARC Neutrino Beam Line superconducting-magnet, dipole, proton, cryogenics 343
 
  • T. Ogitsu, Y. Ajima, O. Araoka, Y. Fujii, N. Hastings, N. Higashi, M. IIda, N. Kimura, T. Kobayashi, Y. Makida, T. Nakadaira, T. Nakamoto, H. Ohhata, T. Okamura, K. Sakashita, K. Sasaki, M. Shibata, S. Suzuki, K. Tanaka, A. Terashima, T. Tomaru, A. Yamamoto
    KEK, Ibaraki
  • A. Ichikawa
    Kyoto University, Kyoto
  • H. Kakuno
    University of Tokyo, Tokyo
 
 

A superconducting magnet system for the J-PARC neutrino beam line was completed at the end of 2008. The system consists of 14 doublet cryostats; each contains 2 combined function magnets (SCFM). The SCFM uses two single layer left/right asymmetric coils that produce a dipole field of 2.6 T and quadrupole of 19 T/m. By 2008, the world first SCFM had been developed and tested successfully at KEK. The mass-production was started in 2005, and completed by summer 2008. The system installation and commissioning took place from Feb. 2008 to Mar. 2009. The beam operation was started in April 2009 and the first neutrino beam was generated on April 23rd. Since then beam operation and commissioning to increase beam intensity has been performed to achieve the near term milestone of 100 kW beam operation. The paper briefly summarizes the history of SCFM development and the system construction as an introduction to a discussion on beam operation experience of the SCFM system.

 
MOPEB034 Progress of Design Study of Interaction Region Quadrupoles for the SuperKEKB solenoid, focusing, permanent-magnet, electron 346
 
  • M. Tawada, Y. Funakoshi, M. Iwasaki, H. Koiso, A. Morita, Y. Ohnishi, N. Ohuchi, K. Oide, K. Tsuchiya, Z.G. Zong
    KEK, Ibaraki
 
 

KEK is studying the design of the interaction region quadrupoles for the SuperKEKB of which the two beams of 4GeV/7GeV for LER/HER have a crossing angle of 83 mrad. For each beam, the final beam focusing system consisting of superconducting and permanent magnets is studied. The superconducting quadrupoles close to the interaction point for each beam are located in the compensation superconducting solenoid which cancels the solenoid field by the particle detector, Belle. These magnet parameters are optimized to obtain higher luminosity. In this paper, the design progress of final focusing system and magnets will be reported.

 
MOPEB037 Development of Current Leads for the Superconducting Correctors in the SuperKEKB-IR cryogenics, simulation, luminosity, interaction-region 355
 
  • Z.G. Zong, N. Higashi, N. Ohuchi, M. Tawada, K. Tsuchiya
    KEK, Ibaraki
 
 

To supply the electrical power for the superconducting correctors in the interaction region of the proposed SuperKEKB, a kind of vapor cooled current leads is designed, which consists of 8 brass leads and can transport currents to 4 correctors simultaneously. The design current of the leads is about 50 A. The thermal and electrical behaviors have studied by the finite elements method and the cryogenic experiment is also planed to validate the performance. In this paper the design will be presented and the finite element model will be compared with the experimental data.

 
MOPEB040 Superconducting Magnets for the NICA Facility at JINR: Status of the Design and Construction Plans collider, dipole, booster, ion 361
 
  • A.D. Kovalenko, N.N. Agapov, V.D. Kekelidze, H.G. Khodzhibagiyan, I.N. Meshkov, V.A. Mikhaylov, V.A. Petrov, A.N. Sissakian, A. Sorin, G.V. Trubnikov
    JINR, Dubna, Moscow Region
 
 

NICA (Nuclotron-based Ion Collider fAcility) is the new accelerator complex currently under construction at JINR. The facility is aimed to provide collider experiments with heavy ions up to uranium (gold at the beginning stage) with a centre of mass energy up to 11 GeV/u and an average luminosity up to 1027 cm-2 s-1. The collisions of polarized deuterons and protons are foreseen also. The accelerator complex includes two injector linacs, a superconducting booster synchrotron, a 6 GeV/u superconducting synchrotron (existing Nuclotron) and a collider consisting of two storage rings. Different modifications of superferric magnets based on a hollow composite NbTi cable operating at 4.5 K is proposed to be used for the NICA booster and collider rings. The twin-aperture collider dipole consists of two vertically assembled cold masses placed inside a common thermal shield and a common cryostat. The dipole good field aperture is fixed to 60 mm. The 2 T option, which design is very similar to the Nuclotron's one, was fixed as basis for the collider of 350 m long. R&D work on a curved 4 T Cosine(θ)-dipoles based on a hollow Nuclotron-type cable is proposed to be continued.

 
MOPEB041 Calculation and Design of the Magnet Package in the IFMIF Superconducting RF Linac solenoid, shielding, cavity, linac 364
 
  • S. Sanz, J. Calero, J.L. Gutiérrez, I. Moya, I. Podadera Aliseda, I. Rodríguez, L. Sanchez, F. Toral
    CIEMAT, Madrid
  • P. Bosland, P. Bredy, G. Disset, N. Grouas, P. Hardy, V.M. Hennion, H. Jenhani, J. Migne, A. Mohamed, F. Orsini, J. Plouin, J. Relland
    CEA, Gif-sur-Yvette
  • E.N. Zaplatin
    FZJ, Jülich
 
 

The IFMIF-EVEDA accelerator will handle a 9 MeV, 125 mA continuous wave (CW) deuteron beam which aims to validate the technology that will be used in the future IFMIF accelerator. The Linac design is based on superconducting Half Wave Resonators (HWR) operating at 4.4 K. Due to space charge associated to the high intensity beam, a strong superconducting focusing magnet package is necessary between cavities, with nested steerers and a Beam Position Monitor (BPM). First of all, this paper describes the preliminary study to choose between two quadrupoles or one solenoid as focusing device, both using NbTi wire. The solenoid shows more advantages, mainly associated to available space and reliability. Then, electromagnetic and mechanical design of the solenoid and the steerers are reported. Special care is taken in order to fulfil the fringe field limit at the cavity flange. An active shield configuration using an anti-solenoid has been adopted, avoiding remnant magnetization associated to passive shielding materials.

 
MOPEB042 Towards a Consolidation of LHC Superconducting Splices for 7 TeV Operation diagnostics, controls, superconductivity, cryogenics 367
 
  • F.F. Bertinelli, N. Catalan-Lasheras, P. Fessia, C. Garion, S.J. Mathot, A. Perin, C.E. Scheuerlein, S. Sgobba, H.H.J. Ten Kate, J.Ph. G. L. Tock, A.P. Verweij, G.P. Willering
    CERN, Geneva
 
 

Following the analysis of the September 2008 LHC incident, the assembly process and the quality assurance of the main 13 kA interconnection splices were improved, with new measurement and diagnostics methods introduced. During the 2008-2009 shutdown ~5% of these 10 000 splices were newly assembled with these improvements implemented, but essentially maintaining the original design. It is known today that a limiting factor towards 7 TeV operation is the normal conducting resistance of ~15% of the original main 13 kA interconnection splices, associated to the electrical continuity of the copper stabiliser. A "Splices Task Force" has been set up at CERN to evaluate the need for, develop and test design improvements and prepare the implementation of a consolidation campaign. Important issues of splice design, process choice, resources and time requirements are considered.

 
MOPEB044 High-current Bus Splice Resistances and Implications for the Operating Energy of the LHC extraction, cryogenics, dipole 373
 
  • M. Koratzinos, F.F. Bertinelli, Z. Charifoulline, K. Dahlerup-Petersen, R. Denz, C.E. Scheuerlein, R. Schmidt, A.P. Siemko, A.P. Verweij
    CERN, Geneva
  • R.H. Flora, H. Pfeffer, J. Strait
    Fermilab, Batavia
 
 

At each interconnection between LHC main magnets, a low-resistance solder joint must be made between superconducting cables to provide a continuous current path through the superconductor, and between the surrounding copper stabilizer to provide a current path in case the cable quenches. About 10,000 such joints exist in the LHC. An extensive campaign has been undertaken to characterize and map the resistances of both types of joints. All of the superconducting cable splices were measured using the enhanced protection system of the LHC superconducting circuits. No high-resistance superconductor splices were found above 3 nano-Ohms. Non-invasive measurements of the stabilizer joints were made at 300K in 5 of the 8 sectors, and at 80K in 3 sectors. More precise local measurements were made on suspect interconnects that were opened up, and poor joints were repaired. However, it is likely that additional imperfect stabilizer joints still exist in the LHC. A statistical analysis is used to place bounds on the remaining worst-case resistances. This sets limits on the maximum operating energy of the LHC, prior to a more extensive intervention.

 
MOPEB045 Commissioning of the LHC Magnet Powering System in 2009 dipole, extraction, vacuum, monitoring 376
 
  • M. Solfaroli Camillocci, G. Arduini, B. Bellesia, J. Coupard, K. Dahlerup-Petersen, M. Koratzinos, M. Pojer, R. Schmidt, A.P. Siemko, H. Thiesen, A. Vergara-Fernández, M. Zanetti, M. Zerlauth
    CERN, Geneva
 
 

On 19th September 2008 the Large Hadron Collider (LHC) experienced a serious incident, caused by a bad electrical joint, which stopped beam operation just a few days after its beginning. During the following 14 months the damage was repaired, additional protection systems were installed and the measures to avoid a similar incident were taken (i.e. new layer of the Magnet Quench Protection System [nQPS], more efficient He release valves). As a consequence, a large number of powering tests had to be repeated or carried out for the first time. The re-commissioning of the already existing systems as well as the commissioning of the new ones has been carefully studied, then performed taking into account the history of each of the eight LHC sectors (warm-up, left at floating temperature,'). Moreover, a campaign of measurements of the bus-bar splice resistances has been carried out with the nQPS in order to spot out non conformities, thus assessing the risk of the LHC operation for the initial energy level. This paper discusses how the guidelines for the LHC 2009 re-commissioning were defined, providing a general principle to be used for the future re-commissioning.

 
MOPEB050 Superconducting Magnets for SCRF Cryomodules at Front End of Linear Accelerators dipole, cryomodule, linac, focusing 379
 
  • V.S. Kashikhin, N. Andreev, Y. Orlov, D.F. Orris, M.A. Tartaglia
    Fermilab, Batavia
 
 

Linear accelerators based on a superconducting technology need various superconducting magnets installed inside SCRF Cryomodules. At front end of Linear Accelerators installed relatively weak iron-dominated magnets. The focusing quadrupoles have integrated gradients in the range of 1 T - 4 T, and apertures 35 mm - 90 mm. At Fermilab were designed superconducting dipole correctors, and quadrupoles for various projects. In the paper presented these magnet designs, and test results of fabricated dipole corrector. There are also briefly discussed: magnetic and mechanical designs, quench protection, cooling, fabrication, and assembly inside cryomodule.

 
MOPEB051 Design of Helical Solenoid Combined with RF Cavity cavity, solenoid, beam-cooling, dipole 382
 
  • V.S. Kashikhin, N. Andreev, V. Kashikhin, M.J. Lamm, A.V. Makarov, G.V. Romanov, K. Yonehara, M. Yu, A.V. Zlobin
    Fermilab, Batavia
 
 

Helical Solenoids (HS) were proposed for a muon beam ionization cooling. There are substantial up to 30 MeV/m energy losses during passing the muon beam through an absorber. The main issue of such system is the energy recovery. A conventional RF cavity has diameter which is too large to be placed inside HS. In the paper presented results of dielectric filled RF cavity design. The proposed cavity has helical configuration. Presented Helical Cooling Channel module design which includes: high pressure vessel, RF cavity, and superconducting HS. Discussed parameters of this module sub-systems and shown results of muon beam tracking in combined magnetic and electric 3D fields.

 
MOPEB052 120 mm Superconducting Quadrupole for Interaction Regions of Hadron Colliders radiation, interaction-region, magnet-design, luminosity 385
 
  • A.V. Zlobin, V. Kashikhin, N.V. Mokhov, I. Novitski
    Fermilab, Batavia
 
 

Magnetic and mechanical designs of a superconducting quadrupole magnet with 120-mm aperture suitable for interaction regions of hadron colliders are presented. The magnet is based on a two-layer shell-type coil and a cold iron yoke. Special spacers made of a low-Z material are implemented in the coil midplanes to reduce the level of radiation heat deposition in the coil. The quadrupole mechanical structure is based on a thick aluminum collar supported by the iron yoke and stainless steel skin. Magnet parameters including maximum field gradient, field quality and temperature margin for NbTi or Nb3Sn coils at the operating temperatures of 1.9 K and 4.5 K are reported. The level and distribution of radiation heat deposition in the coil and other magnet components are discussed.

 
MOPEB053 Magnet Designs for Muon Collider Ring and Interaction Regions dipole, storage-ring, collider, magnet-design 388
 
  • A.V. Zlobin, Y. Alexahin, V. Kashikhin, N.V. Mokhov
    Fermilab, Batavia
 
 

Conceptual designs of superconducting magnets (dipoles and quadrupoles) for a muon collider with a 1.5 TeV c.o.m. energy and an average luminosity of 1034 cm-2s-1 are presented. All magnets are based on the Nb3Sn superconductor and designed to provide an adequate operation field/field gradient in the aperture with the critical current margin required for reliable machine operation. In contrary to proton machines, the dipole magnets should have open midplanes, and, for some of them, the required good field quality region needs to have a vertical aspect ratio of 2:1 that imposes additional challenges for the magnet design. Magnet cross-sections were optimized to achieve the best possible field quality in the magnet aperture occupied with beams. The magnets and corresponding protective measures are designed to handle about 0.5 kW/m of dynamic heat loads from the muon beam decays. Magnet parameters are reported and compared with the requirements.

 
MOPEB059 Assembly and Test of a 120 mm Bore 15 T Nb3Sn Quadrupole for the LHC Upgrade alignment, instrumentation, target, luminosity 403
 
  • S. Caspi, D.W. Cheng, D.R. Dietderich, H. Felice, P. Ferracin, R.R. Hafalia, J.M. Joseph, J. Lizarazo, G.L. Sabbi, X. Wang
    LBNL, Berkeley, California
  • G. Ambrosio, R. Bossert, A.V. Zlobin
    Fermilab, Batavia
  • M. Anerella, A.K. Ghosh, J. Schmalzle, P. Wanderer
    BNL, Upton, Long Island, New York
 
 

Advanced superconductors such as Nb3Sn are being considered for future magnet upgrades of the Large Hadron Collider (LHC) at CERN. The US LHC Accelerator Research Program (LARP) has developed a large bore (120mm) Nb3Sn IR quadrupole (HQ) capable of reaching 15 T at its conductor and a gradients of 199T/m at 4.4K and 219T/m at 1.9K. HQ is addressing coil alignment and accelerator field quality in a shell-based mechanical structure. In this paper we summarize the fabrication, assembly and initial test results of the 1 m long two-layer magnet.

 
MOPEC002 Dynamic Aperture Studies and Field Quality Considerations for the LHC Upgrade Optics multipole, optics, simulation, ion 453
 
  • B.J. Holzer, S.D. Fartoukh, F. Schmidt
    CERN, Geneva
 
 

The layout of the interaction region for the LHC upgrade project is based on a number of new magnets that will provide the required strengths to focus the colliding beams as well as to separate them after the collision. As in the nominal LHC, a triplet of quadrupole magnets is foreseen for the upgrade optics and in addition a separator dipole to limit the parasitic bunch crossings of the two counter rotating bunch trains. Due to the smaller beta function at the IP however, the requirements for the free aperture of these IR magnets are more demanding and the effect of the higher order multipoles is more severe than under the nominal LHC conditions. Using the tracking simulations to study these effects, target values for the multipole coefficients of the new magnets have been defined as well as a multipole correction scheme that will be used to compensate those field errors which cannot be avoided due to design and construction tolerances. Based on these considerations the required field quality of the new LHC low beta magnets is discussed and the resulting dynamic aperture for different multipole correction scheme is presented.

 
MOPEC005 Kick Response Measurements during LHC Injection Tests and Early LHC Beam Commissioning optics, injection, simulation, dipole 462
 
  • K. Fuchsberger, S.D. Fartoukh, B. Goddard, V. Kain, M. Meddahi, F. Schmidt, J. Wenninger
    CERN, Geneva
 
 

The transfer lines from the SPS to the LHC, TI2 and TI8, with a total length of almost 6km are the longest ones in the world. For that reason even small systematic optics errors are not negligible because they add up and result in an injection mismatch in the LHC. Next to other lattice measurement methods Kick-response measurements were the most important sources of information during the early phases of beam commissioning of these transfer lines and the LHC ring. This measurement technique was used to verify orbit-corrector and BPM gains as well as to sort out optics errors. Furthermore fits to off-momentum kick response turned out to be an appropriate method to establish a model for systematic errors of the transfer line magnets. This paper shortly describes the tools and methods developed for the analysis of the taken data and presents the most important results of the analysis.

 
MOPEC006 JMAD - Integration of MADX into the JAVA World optics, lattice, controls, status 465
 
  • K. Fuchsberger, V. Baggiolini, R. Gorbonosov, W. Herr, V. Kain, G.J. Müller, S. Redaelli, F. Schmidt, J. Wenninger
    CERN, Geneva
 
 

MADX (Methodical Accelerator Design) is the de-facto standard software for modeling accelerator lattices at CERN. This feature-rich software package is implemented and maintained in the programming languages C and FORTRAN. Nevertheless the controls environment of modern accelerators at CERN, e.g. of the LHC, is dominated by JAVA applications. A lot of these applications, for example for lattice measurement and fitting, require a close interaction with the numerical models, which are all defined by the use of the proprietary MADX scripting language. To close this gap an API to MADX for the JAVA programming language (JMAD) was developed. Already the current implementation provides access to a large subset of the MADX capabilities (e.g. twiss-calculations, matching or querying and setting arbitrary model parameters) without any necessity to define the models in yet another environment. This paper describes shortly the design of this project as well as the current status and some usage examples.

 
MOPEC007 Operational Experience during the LHC Injection Tests injection, kicker, ion, optics 468
 
  • K. Fuchsberger, R. Alemany-Fernandez, G. Arduini, R.W. Assmann, R. Bailey, O.S. Brüning, B. Goddard, V. Kain, M. Lamont, A. Macpherson, M. Meddahi, G. Papotti, M. Pojer, L. Ponce, S. Redaelli, M. Solfaroli Camillocci, W. Venturini Delsolaro, J. Wenninger
    CERN, Geneva
 
 

Following the LHC injection tests of 2008, two injection tests took place in October and November 2009 as preparation for the LHC restart on November 20, 2009. During these injection tests beam was injected through the TI2 transfer line into sector 23 of ring 1 and through TI8 into the sectors 78, 67 and 56 of ring 2. The beam time was dedicated to injection steering, optics measurements and debugging of all the systems involved. Because many potential problems were sorted out in advance, these tests contributed to the rapid progress after the restart. This paper describes the experiences and issues encountered during these tests as well as related measurement results.

 
MOPEC015 Single-pass Beam Measurements for the Verification of the LHC Magnetic Model sextupole, octupole, kicker, optics 489
 
  • F. Zimmermann, M. Giovannozzi, S. Redaelli, Y. Sun, R. Tomás, W. Venturini Delsolaro
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
 
 

During the 2009 LHC injection tests, the polarities and effects of specific quadrupole and higher-order magnetic circuits were investigated. A set of magnet circuits had been selected for detailed investigation based on a number of criteria. On or off-momentum difference trajectories launched via appropriate orbit correctors for varying strength settings of the magnet circuits under study - e.g. main, trim and skew quadrupoles; sextupole families and spool piece correctors; skew sextupoles, octupoles - were compared with predictions from various optics models. These comparisons allowed confirming or updating the relative polarity conventions used in the optics model and the accelerator control system, as well as verifying the correct powering and assignment of magnet families. Results from measurements in several LHC sectors are presented.

 
MOPEC028 Recent Triplet Vibration Studies in RHIC damping, feedback, laser, interaction-region 516
 
  • P. Thieberger, R. Bonati, G.F. Corbin, J.P. Cozzolino, A.K. Jain, G.T. McIntyre, M.G. Minty, C. Montag, J.F. Muratore, C. Schultheiss, S. Seberg, J.E. Tuozzolo
    BNL, Upton, Long Island, New York
 
 

We report on recent developments for mitigating vibrations of the quadrupole magnets near the interaction regions of the Relativistic Heavy Ion Collider (RHIC). High precision accelerometers, geophones, and a laser vibrometer were installed around one of the two interaction points to characterize the frequencies of the mechanical motion. In addition actuators were mounted directly on the quadrupole cryostats. Using as input the locally measured motion, dynamic damping of the mechanical vibrations has been demonstrated. In this report we present these measurements and measurements of the beam response. Future options for compensating the vibrations are discussed.

 
MOPEC037 High Beta Operation Scenarios for Crab Cavities in the Insertion Region 4 of the CERN Large Hadron Collider cavity, optics, luminosity, insertion 540
 
  • R. De Maria, R. Calaga
    BNL, Upton, Long Island, New York
  • M. Giovannozzi, Y. Sun, R. Tomás, F. Zimmermann
    CERN, Geneva
 
 

IR4 is a potential candidate for the installation of crab cavities in the CERN Large Hadron Collider. In this paper we present several operational scenarios in which the effect of the kick imparted by the cavity is enhanced by performing a dynamic unsqueeze of the beta function at collision energy. Linear optics, power supply requirements, beam aperture and finally potential luminosity increase studies will be discussed in order to rank and assess the feasibility of the various options.

 
MOPEC046 Modelling of the EMMA ns-FFAG Injection Line using GPT injection, space-charge, emittance, electron 561
 
  • R.T.P. D'Arcy
    UCL, London
  • D.J. Holder, B.D. Muratori
    Cockcroft Institute, Warrington, Cheshire
  • J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

EMMA (Electron Machine with Many Applications) is a prototype non-scaling Fixed Field Alternating Gradient (NS-FFAG) accelerator presently under construction at Daresbury Laboratory, UK. The energy recovery linac ALICE will serve as an injector for EMMA within the energy range of 10 to 20 MeV. The injection line consists of a symmetric 30° dogleg to extract the beam from ALICE, a matching section and a tomography section for transverse emittance measurements. This is followed by a transport section to the injection point of the EMMA ring. Commissioning of the EMMA injection line started in early 2010. A number of different injection energy and bunch charge regimes are planned; for some of the regimes the effects of space charge will be significant. It is therefore necessary to model the electron beam transport in this line using a code capable of both calculating the effect of, and compensating for, space charge. Therefore the General Particle Tracer (GPT) code has been used. A range of injection beam parameters have been modelled for comparison with experimental results.

 
MOPEC061 The IFMIF RFQ Real-scale Aluminum Model: RF Measurements and Tuning rfq, dipole, insertion, coupling 603
 
  • A. Palmieri, F. Grespan
    INFN/LNL, Legnaro (PD)
  • G. Cotto
    Torino University, ., Torino
  • D. Dattola, P. Mereu
    INFN-Torino, Torino
 
 

In order to validate the tuning and stabilization procedures established for the IFMIF RFQ, a campaign of low power tests on an aluminum real-scale RFQ built on purpose has been carried out. Such campaign consisted of the determination of mode spectra, the measurements of the electric field distribution with bead pulling technique, and the implementation of the tuning procedure. The main outcomes and results obtained are reported in the article.

 
MOPEC062 Perturbation Analysis on a Four-vane RFQ rfq, dipole, coupling, cavity 606
 
  • A. Palmieri, F. Grespan, A. Pisent
    INFN/LNL, Legnaro (PD)
 
 

An important issue for high intensity RFQs (tenth of mA beam current and more) is the necessity of keeping the beam losses as low as possible, in order to allow reliable and safe maintenance of the machine. Typically, beam dynamics outcomes driven by these constraints result both in a RFQ length that is considerably higher than the wavelength and in an intra-vane voltage admitted variation with respect to the design value that must not exceed a few percent. Therefore an analytical tool is needed in order to foresee the effect of geometric perturbations on the voltage profile, in order to give an indication on the permitted ranges of geometrical errors in the RFQ construction. In this article a five conductors transmission line equivalent circuit for the four-vane RFQ is presented and the effects of geometrical perturbations on the voltage profile are analyzed in some particular cases. The case study is the IFMIF RFQ (125 mA deuteron current, 9.8 m length, 175 MHz frequency), whose features are particularly suitable for this kind of analysis.

 
MOPEC075 Status of the RAL Front End Test Stand rfq, ion, ion-source, emittance 642
 
  • A.P. Letchford, M.A. Clarke-Gayther, D.C. Faircloth, S.R. Lawrie, M. Perkins, P. Wise
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • S.M.H. Alsari, S. Jolly, D.A. Lee, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
  • I. Ariz, R. Enparantza, P. Romano, A. Sedano
    Fundación TEKNIKER, Eibar (Gipuzkoa)
  • J.J. Back
    University of Warwick, Coventry
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao
  • M. Eguiraun
    ESS-Bilbao, Zamudio
  • V. Etxebarria
    University of the Basque Country, Faculty of Science and Technology, Bilbao
  • C. Gabor, D.C. Plostinar
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • N. Garmendia, H. Hassanzadegan
    ESS Bilbao, Bilbao
  • A. Kurup
    Fermilab, Batavia
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
 
 

The Front End Test Stand (FETS) under construction at the Rutherford Appleton Laboratory is the UK's contribution to research into the next generation of High Power Proton Accelerators (HPPAs). HPPAs are an essential part of any future Spallation Neutron Source, Neutrino Factory, Muon Collider, Accelerator Driven Sub-critical System, Waste Transmuter etc. FETS will demonstrate a high quality, high intensity, chopped H-minus beam and is a collaboration between RAL, Imperial College and the Universtity of Warwick in the UK and the Universidad del Pais Vasco in Spain. This paper describes the current status and future plans of FETS.

 
MOPEC076 Integrated Design Method and Beam Dynamics Simulations for the FETS Radio Frequency Quadrupole rfq, simulation, controls, radio-frequency 645
 
  • S. Jolly, M.J. Easton
    Imperial College of Science and Technology, Department of Physics, London
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
 
 

A 4m-long, 324MHz four-vane RFQ, consisting of four coupled sections, is currently being designed for the Front End Test Stand (FETS) at RAL in the UK. A novel design method, integrating the CAD and electromagnetic design of the RFQ with beam dynamics simulations, is being used to optimise the design of the RFQ. Basic RFQ parameters are produced with the RFQSIM code. A full CAD model of the RFQ vane tips is produced in Autodesk Inventor, based upon these parameters. This model is then imported into a field mapping code to produce a simulation of the electrostatic field around the vane tips. This field map is then used to model the beam dynamics within the RFQ using General Particle Tracer (GPT). Previous studies have been carried out using field mapping in CST EM Studio. A more advanced technique using Comsol Multiphysics and Matlab, that more tightly integrates the CAD modelling, field mapping and beam dynamics simulations, is described. Results using this new method are presented and compared to the previous optimisation process using field maps from CST.

 
MOPD003 Engineering Status of SIS100 dipole, kicker, extraction, vacuum 672
 
  • P.J. Spiller, U. Blell, L.H.J. Bozyk, H. Eickhoff, E.S. Fischer, E. Floch, F. Hagenbuck, M. Kauschke, A. Krämer, J.P. Meier, C. Mühle, N. Pyka, S. Ratschow, H. Reich-Sprenger, P. Schnitzer, J. Stadlmann, St. Wilfert
    GSI, Darmstadt
 
 

The engineering design, including the specifications for the accelerator components of the FAIR synchrotron SIS100 has been summarized in the Technical Design Report. The final stage of technical planning shall approach production readiness for the major technical systems in 2010. Significant progress has been achieved in the design of the cryomagnetic system with its main dipole and quadrupole modules, enabling the production of the first pre-series dipole magnet. Slight modifications of the lattice have been implemented to equalize most of the cryostat interconnections, leading to a simplified design and installation effort, and a reduced variety of components and spar parts. The new parallel tunnel allows optimal short interconnections between the supply units and power converters and the accelerator components. The status of the engineering design of SIS100 will be reported.

 
MOPD013 Upgrade of the Quench Protection Systems for the Superconducting Circuits of the LHC Machine at CERN: From Concept and Design to the First Operational Experience dipole, simulation, extraction, power-supply 696
 
  • F. Formenti, Z. Charifoulline, G.-J. Coelingh, K. Dahlerup-Petersen, R. Denz, A. Honma, E. Ravaioli, R. Schmidt, A.P. Siemko, J. Steckert
    CERN, Geneva
  • SF. Feher, R.H. Flora, H. Pfeffer
    Fermilab, Batavia
 
 

Two events, occurring in 2008 during commissioning of the LHC circuits, lead to fundamental changes to the scope of circuit protection. The discovery of aperture-symmetric quenches and the accidental rupture at 9kA of an interconnecting busbar resulted in an emergency program for development and implementation of new protection facilities. The new scheme comprises a distributed busbar supervision system with early warning capabilities based on high-precision splice resistance measurements and system interlocks for rapid de-excitation of the circuit in case of a sudden splice resistance increase. The developed symmetric quench detectors are digital systems with radiation-resistant FPGA logic controllers, having magnet heater firing capabilities. This program successfully allowed a safe re-powering of the collider. The concept of the new electronics boards and the powering modules will be described. More than 14'600 extra cables and 6'000 new detector and control cards were added to the existing QPS system. A first evaluation of the system performance as well as a number of interesting discoveries made during the commissioning will be presented.

 
MOPD021 Low Energy Ion Injector at KACST ion, storage-ring, ion-source, cathode 720
 
  • M.O.A. El Ghazaly, A.A. Almukhem, A.M. Mandil
    KACST, Riyadh
  • A.I. Papash
    JINR, Dubna, Moscow Region
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire
 
 

At the National Centre for Mathematics and Physics (NCMP), at the King Abdulaziz City for Science and Technology (KACST), Saudi Arabia, a versatile low energy ion injector has been developed in collaboration with the QUASAR group. This project will allow for a broad experimental program with most different kinds of ions both in single pass setups, but also with ions stored in a fixed-energy electrostatic storage ring. In this contribution, the design of the injector is presented. It was designed for beams with energies of up to 30 kV/q and will allow for switching between different ion sources from e.g. duoplasmatron to electrospray ion sources and to thus provide the users with a wide range of different beams. The mechanical construction of the injector is summarized and the status of its assembly at KACST presented.

 
MOPD026 Unsegmented vs. Segmented 4-Vane RFQ: Theory and Cold Model Experiments rfq, dipole, coupling, simulation 735
 
  • A. France, O. Delferrière, M. Desmons, Y. Le Noa, J. Novo, O. Piquet
    CEA, Gif-sur-Yvette
 
 

The RF design of a RFQ should satisfied several conditions, namely: voltage profile required by beam dynamics, a tunable structure, RF stability and reasonable sensitivity to possible perturbations induced by power operation. Voltage profile may be obtained either by a dedicated profiling of 2D cross-section and/or slug tuner adjustment. Tunability is directly related to spatial distribution of tuners. RF stability requires sufficient separation between accelerating quadrupole mode and (i) adjacent quadrupole modes, or (ii) adjacent dipole modes. Quadrupole modes separation is directly related to RFQ length, and can be increased if necessary via segmentation; position of dipole modes spectrum w.r.t. quadrupole spectrum may be adjusted using rod stabilizers inserted at RFQ ends and on either side of coupling circuits. We present a thorough comparison of these two options for a 6-meter long structure at 352 MHz, and show they both lead to a tunable structure. The design includes 3D electromagnetic simulation and application of transmission line to tuning. The sensitivity of both designs to perturbations is also evaluated.

 
MOPD027 The RF Design of the Linac4 RFQ rfq, linac, simulation, cavity 738
 
  • O. Piquet, O. Delferrière, M. Desmons, A. France
    CEA, Gif-sur-Yvette
  • A.M. Lombardi, C. Rossi, M. Vretenar
    CERN, Geneva
 
 

In the Linac 4 and the SPL, a 3 MeV RFQ is required to accelerate the H- beam from the ion source to the DTL input energy. While the 6-meter long IPHI RFQ was initially chosen for this application, a CERN study* suggested that a dedicated, shorter 3-meter RFQ might present several advantages. The 2D cross-section is optimized for lower power dissipation, while featuring simple geometrical shape suitable for easy machining. RF stability is evaluated using a 4-wire transmission model and 3D simulations, taking electrode modulation into account. The resulting RFQ is intrinsically stable and do not require rod stabilizers. End circuits are tuned with dedicated rods. RF power is fed via a ridged waveguide and a slot iris. Vacuum port assemblies are positioned prior to brazing to minimize RF perturbation. The 32 tuning slugs form a set of stable sampling, able to tune 9 modes. Tuner parameters are derived from bead-pull accuracy specification and fabrication tolerances. Signals delivered by pickup loops inserted in 16 of these tuners will be used to reconstruct the voltage profile under operation. Thermo-mechanical simulations are used to design temperature control specifications.

 
MOPD053 Conceptual Design of the ESS LINAC linac, cavity, rfq, DTL 804
 
  • M. Eshraqi, M. Brandin, I. Bustinduy, C.J. Carlile, H. Hahn, M. Lindroos, C. Oyon, S. Peggs, A. Ponton, K. Rathsman
    ESS, Lund
  • R. Calaga, T. Satogata
    BNL, Upton, Long Island, New York
  • A. Jansson
    Fermilab, Batavia
 
 

A three year design update for the European Spallation Source (ESS) linac is just starting and a full review of this work will be presented. The acceleration in the medium energy part of the LINAC using the spoke cavities have been optimized and the rest of the machine has been redesigned to incorporate this optimization. The ESS LINAC will deliver an average power of 5~MW to the target in the nominal design and the possibility to upgrade to 7.5~MW has been included in all the design steps.


Acknowledgments to all the people in the ESS LINAC Reference Group.

 
MOPD058 Combined Electromagnetic-Thermal-Structural Simulation of the Four-metre Radio Frequency Quadrupole to be Installed on the Front End Test Stand rfq, simulation, vacuum, cavity 816
 
  • S.R. Lawrie, A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
 
 

The front end test stand (FETS) [1] being constructed at the Rutherford Appleton Laboratory is entering the next stage of commissioning, with the three-solenoid magnetic low energy beam transport (LEBT) now installed and undergoing commissioning. The next major component to be manufactured is the 3 MeV, 324 MHz, four metre radio frequency quadrupole (RFQ). The mechanical design is almost complete so a comprehensive finite element model of the entire RFQ has been made in ANSYS to ensure the electromagnetic, thermal and structural properties are sound. An analysis of the cooling strategy and expected resonant frequency shift due to thermal expansion are presented.

 
MOPD059 MEBT Design for the RAL Front End Test Stand emittance, rfq, cavity, simulation 819
 
  • D.C. Plostinar
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
 

The Medium Energy Beam Transport (MEBT) line for the Front End Test Stand (FETS) at RAL will transport a 60 mA, 2ms, 50 pps H- beam at 3 MeV. It uses a number of quadrupoles, re-bunching cavities and a fast-slow chopping system. In this paper we present the underlying MEBT design philosophy, beam dynamics simulations and implementation details.

 
MOPD062 H-Mode Accelerating Structures with PMQ Focusing for Low-Beta Ion Beams focusing, simulation, ion, linac 828
 
  • S.S. Kurennoy, J.F. O'Hara, E.R. Olivas, L. Rybarcyk
    LANL, Los Alamos, New Mexico
 
 

We are developing high-efficiency normal-conducting RF accelerating structures based on inter-digital H-mode (IH) cavities and the transverse beam focusing with permanent-magnet quadrupoles (PMQ), for beam velocities in the range of a few percent of the speed of light. Such IH-PMQ accelerating structures following a short RFQ can be used in the front end of ion linacs or in stand-alone applications, e.g. a compact deuteron-beam accelerator up to the energy of several MeV. Results of combined 3-D modeling for a full IH-PMQ accelerator tank ' electromagnetic computations, beam-dynamics simulations with high currents, and thermal-stress analysis ' are presented. The accelerating field profile in the tank is tuned to provide the best beam propagation using coupled iterations of electromagnetic and beam-dynamics modeling. A cold model of the IH-PMQ tank is being manufactured.

 
MOPD075 Effect of Secondary Ions on the Electron Beam Optics in the Recycler Electron Cooler ion, electron, focusing, antiproton 867
 
  • A.V. Shemyakin, L.R. Prost, G.W. Saewert
    Fermilab, Batavia
 
 

AAntiprotons in Fermilab's Recycler ring are cooled by a 4.3 MeV, 0.1 ' 0.5 A DC electron beam (as well as by a stochastic cooling system). The unique combination of the relativistic energy (γ = 9.49), an Ampere - range DC beam, and a relatively weak focusing makes the cooling efficiency particularly sensitive to ion neutralization. A capability to clear ions was recently implemented by way of interrupting the electron beam for 1-30 μs with a repetition rate of up to 40 Hz. The cooling properties of the electron beam were analyzed with drag rate measurements and showed that accumulated ions significantly affect the beam optics. For a beam current of 0.3 A, the longitudinal cooling rate was increased by factor of ~2 when ions were removed.

 
MOPD076 A Helical Cooling Channel System for Muon Colliders cavity, emittance, simulation, solenoid 870
 
  • K. Yonehara
    Fermilab, Batavia
  • Y.S. Derbenev
    JLAB, Newport News, Virginia
  • R.P. Johnson, M.L. Neubauer
    Muons, Inc, Batavia
 
 

Fast muon beam six dimensional (6D) phase space cooling is essential for muon colliders. The Helical Cooling Channel (HCC) uses hydrogen-pressurized RF cavities imbedded in a magnet system with solenoid, helical dipole, and helical quadrupole components that provide the continuous dispersion needed for emittance exchange and effective 6d beam cooling. A series of HCC segments, each with sequentially smaller aperture, higher magnetic field, and higher RF frequency to match the beam size as it is cooled, has been optimized by numerical simulation to achieve a factor of 105 emittance reduction in a 300 m long channel with only a 40% loss of beam. Conceptual designs of the hardware required for this HCC system and the status of the RF studies and HTS helical solenoid magnet prototypes are described.

 
MOPD099 High Brightness Beam Measurement Techniques and Analysis at SPARC emittance, background, bunching, brightness 939
 
  • D. Filippetto, M. Bellaveglia, E. Chiadroni, A. Gallo, B. Marchetti
    INFN/LNF, Frascati (Roma)
  • A. Cianchi
    INFN-Roma II, Roma
  • A. Mostacci
    Rome University La Sapienza, Roma
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
 
 

Ultra-short electron bunch production is attractive for a large number of applications ranging from short wavelength free electron lasers (FEL), THz radiation production, linear colliders and plasma wake field accelerators. SPARC is a test facility able to accelerate high brightness beam from RF guns up to 150 MeV allowing a wide range of beam physics experiments. Those experiments require detailed beam measurements and careful data analysis. In this paper we discuss the techniques currently used in our machine; by combining quadrupoles, RF deflector, spectrometer dipole and reliable data analysis codes, we manage to characterize the 6D phase space and the beam slice properties. We focus on the ongoing studies on the emittance compensation in the velocity bunching regime.

 
MOPE039 Beam Parameter Measurements of fs-THz Linac at PAL radiation, electron, emittance, linac 1059
 
  • C.M. Yim, S. Noh
    POSTECH, Pohang, Kyungbuk
  • H.-S. Kang, C. Kim, I.S. Ko
    PAL, Pohang, Kyungbuk
 
 

At Pohang Accelerator Laboratory, a femto-second THz facility was constructed for the experiments using femto-second THz radiation. The fs-THz radiation is generated from 60-MeV electron linac which consists of a photocathode RF gun, two accelerating columns, and two magnetic-chicane bunch compressors. The coherent transition radiation (CTR) is used for THz radiation generation. To generate high intensity THz radiation, the electron bunch length should be smaller than 200 fs. We report THz image obtained using IR-CCD camera and measured beam parameters including bunch length, energy spread, charge, emittance, and transverse beam size.

 
MOPE051 Development and Test Benchmarks of the Beam Position Monitor Series for the TBL line of the CTF3 at CERN pick-up, monitoring, linac, extraction 1086
 
  • A. Faus-Golfe, C. Blanch Gutierrez, J.V. Civera-Navarrete, J.J. García-Garrigós
    IFIC, Valencia
 
 

A set of 16 Inductive Pick-Ups (IPU) for Beam Position Monitoring (BPM) with its associated electronics were designed, constructed and characterized at IFIC for the Test Beam Line (TBL) of the 3rd CLIC Test Facility (CTF3) at CERN. In October 2009 the full set of IPUs, (BPS) was successfully installed in the TBL line. In this paper, we describe the prototyping and series production phases of the BPSs development, focusing in the implementation and the results analysis derived from their characterization tests. Two special test benches were designed and built to perform the characterization tests at low and high frequencies. The low frequency set up based on a wire-method test bench for emulating the beam position variations helped us to determine the BPS performance parameters at beam pulse time scale from 100μs/10kHz to 10ns/100MHz. On the other hand, the high frequency test setup, based on an adapted coaxial transmission line, was dedicated to obtain the BPS longitudinal coupling impedance at the beam microbunches time scale (83ps/12GHz). Furthermore, we also present the first beam performance tests made in the TBL line.

 
MOPE062 Continuous Measurement and Control of Beta-Beating in the LHC pick-up, feedback, resonance, lattice 1119
 
  • R.J. Steinhagen, A. Boccardi, E. Calvo Giraldo, M. Gasior, J.L. Gonzalez, O.R. Jones
    CERN, Geneva
 
 

The beta function has a fundamental impact on the LHC performance and on the functioning of its machine protection and collimation systems. A new beta-beat diagnostic system, prototyped at the SPS, has been used to verify the time-dependent variations of the LHC lattice with unprecedented 1% beta-beta resolution and at a measurement bandwidth of about 1 Hz.

 
MOPE065 Transverse Phase-space Beam Tomography at PSI and SNS Proton Accelerators proton, emittance, target, diagnostics 1128
 
  • D. Reggiani, M. Seidel
    PSI, Villigen
  • C.K. Allen
    ORNL, Oak Ridge, Tennessee
 
 

Operation and upgrade of very intense proton beam accelerators like the PSI facility and the SNS spallation source at ORNL is typically constrained by potentially large machine activation. Besides the standard beam diagnostics, beam tomography techniques provide a reconstruction of the beam transverse phase space distribution, giving insights to potential loss sources like irregular tails or halos. Unlike more conventional measurement approaches (pepper pot, slits) beam tomography is a non destructive method that can be performed at high energies and, virtually, at any beam location. Results from the application of the Maximum Entropy Tomography (MENT) algorithm to different beam sections at PSI and SNS will be shown. In these reconstructions the effect of nonlinear forces is made visible in a way not otherwise available through wire scanners alone. These measurements represent a first step towards the design of a beam tomography implementation that can be smoothly employed as a reliable diagnostic tool.

 
MOPE066 Application of BPM Data to Locate Noise Source power-supply, feedback, septum, injection 1131
 
  • P.C. Chiu, J. Chen, Y.K. Chen, Y.-S. Cheng, K.T. Hsu, K.H. Hu, C.H. Kuo
    NSRRC, Hsinchu
 
 

To keep and achieve desired performance of a modern synchrotron light source, it requires continuous efforts including good design of the accelerator, good performed subsystems and sophisticated feedback system. While some wonders happen unexpectedly and could deteriorate performance of the light source. For examples, some strong source occasionally occurred especially after long shut down or malfunction of some corrector power supply and it would result in increased noise level. Non ideal injection element will cause large perturbation as well. This report presents algorithms to spatially locate source and summarize some of our practical experience to identify the source.

 
MOPE070 Cavity Beam Position Monitor System for ATF2 cavity, dipole, EPICS, lepton 1140
 
  • S.T. Boogert, G.E. Boorman, C. Swinson
    JAI, Egham, Surrey
  • R. Ainsworth, S. Molloy
    Royal Holloway, University of London, Surrey
  • A.S. Aryshev, Y. Honda, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • J.C. Frisch, J. May, D.J. McCormick, J. Nelson, T.J. Smith, G.R. White, M. Woodley
    SLAC, Menlo Park, California
  • A. Heo, E.-S. Kim, H.-S. Kim, Y.I. Kim
    Kyungpook National University, Daegu
  • A. Lyapin
    UCL, London
  • H.K. Park
    KNU, Deagu
  • M.C. Ross
    Fermilab, Batavia
  • S. Shin
    PLS, Pohang
 
 

The Accelerator Test Facility 2 (ATF2) in KEK, Japan, is a prototype scaled demonstrator system for the final focus required for a lepton linear collider. The ATF2 beam-line is instrumented with a total of 38 C and S band resonant cavity beam position monitors (BPM) with associated mixer electronics and digitizers. The current status of the BPM system is described, with a focus on operational techniques and performance.

 
MOPE072 Electron Beam Quality Measurements on the ALPHA-X Laser-plasma Wakefield Accelerator electron, emittance, laser, plasma 1146
 
  • G.H. Welsh, M.P. Anania, C. Aniculaesei, E. Brunetti, R.T.L. Burgess, S. Cipiccia, D. Clark, B. Ersfeld, M.R. Islam, R.C. Issac, D.A. Jaroszynski, G.G. Manahan, T. McCanny, G. Raj, A. J. W. Reitsma, R.P. Shanks, G. Vieux, S.M. Wiggins
    USTRAT/SUPA, Glasgow
  • W.A. Gillespie
    University of Dundee, Nethergate, Dundee, Scotland
  • M.J. Loos, S.B. van der Geer
    TUE, Eindhoven
  • A. MacLeod
    UAD, Dundee
 
 

The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme at the University of Strathclyde is developing laser-plasma wakefield accelerators to produce high energy, ultra-short duration electron bunches as drivers of radiation sources. Coherent emission will be produced in a free-electron laser by focussing the electron bunches into an undulator. To achieve net gain, a high peak current, low energy spread and low emittance are required. A high intensity ultra-short pulse from a 30 TW Ti:sapphire laser is focussed into a helium gas jet to produce femtosecond duration electron bunches in the range of 80 - 200 MeV. Beam transport is monitored using a series of Lanex screens positioned along the beam line. We present measurements of the electron beam energy spread as low as 0.7% (at 90 MeV) obtained using a high resolution magnetic dipole spectrometer. We also present pepper-pot measurements of the normalised transverse emittance of the order of 1 pi mm mrad. With further acceleration to 1 GeV, the beam parameters indicate the feasibility of a compact X-ray FEL with a suitable undulator.

 
MOPE080 Single Shot Emittance Measurement from Beam Size Measurement in a Drift Section emittance, diagnostics, scattering, FEL 1167
 
  • C.A. Thomas, G. Rehm
    Diamond, Oxfordshire
  • S.I. Bajlekov
    University of Oxford, Clarendon Laboratory, Oxford
  • R. Bartolini, N. Delerue
    JAI, Oxford
 
 

Single shot emittance measurement is essential to assess the performance of new generation light sources such as linac based X-ray FELs or laser plasma wakefield accelerators. To this aim, we have developed a single shot emittance measurement using at least 3 screens inserted in the beam at the same time, measuring the beam size at different positions in a drift space in one shot. We present here test measurements performed at Diamond in the transfer line from the Booster to the Storage Ring, using thin OTR and also YAG screens. We also compare these measurements with results from the more conventional quadrupole scan method and also measurements using an OTR screen and an assembly of two cameras imaging the beam size and the beam divergence at a point near the waist of the beam. The validity and limits of the new method are discussed in the paper.

 
TUXMH02 LHC Optics Model Measurements and Corrections optics, dipole, coupling, injection 1232
 
  • R. Tomás, O.S. Brüning, M. Giovannozzi, M. Lamont, F. Schmidt, G. Vanbavinckhove
    CERN, Geneva
  • M. Aiba
    PSI, Villigen
  • R. Calaga, R. Miyamoto
    BNL, Upton, Long Island, New York
 
 

Optics stability during all phases of operation is crucial for the LHC. The optical properties of the machine have been optimized based on a detailed magnetic model of the SC magnets and on their sorting. Tools and procedures have been developed for rapid checks of beta beating, dispersion, and linear coupling, as well as for prompt optics correction. Initial optics errors, correction performance and optics stability from the first LHC run will be reported, and compared with expectations. Possible implications for the collimation cleaning efficiency and LHC machine protection will be discussed.

 

slides icon

Slides

 
TUOCMH02 Stabilization and Fine Positioning to the Nanometre Level of the CLIC Main Beam Quadrupoles alignment, controls, linac, collider 1274
 
  • K. Artoos, C.G.R.L. Collette, P. Fernandez Carmona, M. Guinchard, C. Hauviller, S.M. Janssens, A.M. Kuzmin, F. Lackner, R. Leuxe, A. Slaathaug
    CERN, Geneva
 
 

The CLIC main beam quadrupoles need to be stabilized to 1.5 nm integrated R.M.S. displacement at 1 Hz. The choice was made to apply active stabilization with piezoelectric actuators in a rigid support with flexural guides. The advantages of this choice are the robustness against external forces and the possibility to make fast incremental nanometre positioning of the magnet with the same actuators. The study and feasibility demonstration is made in several steps from a single degree of freedom system (s.d.o.f.) with a small mass, a s.d.o.f. with a large mass, leading to the demonstration including the smallest (type 1) and largest (type 4) CLIC main beam quadrupoles. The paper discusses the choices of the position and orientation of the actuators and the tailored rigidities of the flexural hinges in the multi degree of freedom system, and the corresponding MIMO control system. The compatibility with the magnet support and micrometer alignment system is essential. The status of the study and performed tests will be given.

 
TUPEA013 New Approach to Optimization of RFQ Radial Matching Section rfq, controls, focusing, emittance 1351
 
  • D.A. Ovsyannikov, A.D. Ovsyannikov
    St. Petersburg State University, St. Petersburg
 
 

New approach to define geometry of the radial matching section in RFQ accelerator is suggested. Approach is based on the application methods of the control theory. In paper special functionals are introduced which allow optimize radial section parameters with taking into account space charge. This approach gives wider opportunities for the design of the radial matching section because it does not have certain prescribed laws of variation of focusing strength along the section.

 
TUPEA014 Alignment and Magnet Error Tolerances for the High Energy Beam Transport Line for the IFMIF-EVEDA Accelerator dipole, simulation, beam-transport, linac 1354
 
  • C. Oliver, B. Brañas, A. Ibarra
    CIEMAT, Madrid
  • A. Mosnier, P.A.P. Nghiem
    CEA, Gif-sur-Yvette
 
 

The design of the future IFMIF accelerators will be validated with the 9 MeV, 125 mA deuteron accelerator IFMIF-EVEDA. For this validation phase, a High Energy Beam Transport line (HEBT) is designed to drive the beam toward a beam dump with the required expansion, under the hands-on maintenance constraint. It consists of eight quadrupoles and one dipole. Given the very high space charge regime and the very high power (1.1 MW), any small deviation from the nominal conditions could seriously compromise the HEBT objective. That is why possible misalignments and rotations of those magnets as well as power supply errors have been thoroughly studied. The error budget is fairly distributed among the tolerances for the different components, and effects of those errors on loss distribution and beam profile at the beam dump entrance carefully analysed.

 
TUPEA023 The Design of Beam Abort System for the Super KEKB kicker, power-supply, extraction, emittance 1378
 
  • T. Mimashi, N. Iida, M. Kikuchi
    KEK, Ibaraki
  • K. Abe, S. Abe
    Hitachi Haramachi Electronics Co. Ltd., Hitachishi, Ibaraki
  • K. Iwamoto
    KFG, NEUSS
  • Y. Makino, T. Ozawa
    Kikusui Chemical Industries Co. Ltd, Kagamihara Shiga
  • A. Sasagawa
    KYOCERA Corporation, Higashiomi-city, Shiga
  • A. Tokuchi
    Pulsed Power Japan Laboratory Ltd., Kusatsu-shi Shiga
 
 

New beam abort system designed for KEKB upgrade, consists of horizontal and vertical kicker magnets, pulsed quadrupole magnets, a Lambertoson septum magnet and a beam dump. Water-cooling ceramic chambers are used for the kicker and pulsed quadrupole magnets. At the KEKB upgrade project, the beam abort gap is required to be less than 200 nsec. The beam currents are increased and their emittance is supposed to be much smaller than KEKB. In order to avoid melting the extraction Ti window, the pulsed quadrupole magnets will be installed. They enlarge the beam cross section at the extract window. The components for the SuperKEKB abort system are developed. The compact water-cooling ceramic chambers are developed to reduce the gap of kicker magnets and bore radius of the pulsed quadrupole magnets. The power supply for the kicker magnet is also developed to satisfy the 200 nsec rise time requirement.

 
TUPEB005 High Luminosity Interaction Region Design for Collisions with Detector Solenoid coupling, luminosity, collider, optics 1524
 
  • C. Milardi, M.A. Preger, P. Raimondi, G. Sensolini, F. Sgamma
    INFN/LNF, Frascati (Roma)
 
 

An innovatory interaction region has been recently conceived and realized on the Frascati DAΦNE lepton collider. The concept of tight focusing and small crossing angle adopted until now to achieve high luminosity in multibunch collisions has evolved towards enhanced beam focusing at the interaction point with large horizontal crossing angle, thanks to a new compensation mechanism for the beam-beam resonances. The novel configuration has been tested with a small detector without solenoidal field yielding a remarkable improvement in term of peak as well as integrated luminosity. The high luminosity interaction region has now been modified to host a large detector with a strong solenoidal field integral which significantly perturbs the beam optics introducing new design challenges in terms of interaction region optics design, beam transverse coupling control and beam stay clear requirements.

 
TUPEB007 Low Emittance Tuning Studies for SuperB emittance, simulation, coupling, sextupole 1530
 
  • S.M. Liuzzo
    University of Pisa and INFN, Pisa
  • M.E. Biagini, P. Raimondi
    INFN/LNF, Frascati (Roma)
  • M.H. Donald
    SLAC, Menlo Park, California
 
 

SuperB is an international project for an asymmetric 2 rings collider at the B mesons cm energy to be built in the Rome area in Italy. The two rings will have very small beam sizes at the Interaction Point and very small emittances, similar to the Linear Collider Damping Rings ones. In particular, the ultra low vertical emittances, 7 pm in the LER and 4 pm in the HER, need a careful study of the misalignment errors effects on the machine performances. Studies on the closed orbit, vertical dispersion and coupling corrections have been carried out in order to specify the maximum allowed errors and to provide a procedure for emittance tuning. A new tool which combines MADX and Matlab routines has been developed, allowing for both corrections and tuning. Results of these studies are presented.

 
TUPEB015 Dynamic Aperture Limit caused by IR Nonlinearity in Extremely Low-beta B Factories dynamic-aperture, sextupole, interaction-region, factory 1548
 
  • K. Ohmi, H. Koiso
    KEK, Ibaraki
 
 

Progress of Graphic Processor Unit (GPU) is marveled. The performance is 1TFlops per unit. Simulation of electron gun can be performed by particle-particle interactions, in which the calculation cost is NxN. Since the calculation of each interaction is very simple, GPU can demonstrate its ability. We show simulation results and discuss the possibilities to extend other simulations.

 
TUPEB020 Beam Dynamic Issues in the BEPCII Luminosity Commissioning luminosity, collider, storage-ring, injection 1560
 
  • Q. Qin, N. Huang, D. Ji, Y. Jiao, Y.D. Liu, Y.M. Peng, D. Wang, J.Q. Wang, N. Wang, X.H. Wang, Y. Wei, X.M. Wen, J. Xing, G. Xu, C.H. Yu, C. Zhang, Y. Zhang
    IHEP Beijing, Beijing
  • Z. Duan
    IHEP Beiing, Beijing
 
 

As a tau-charm factory like collider, the upgrade project of the Beijing Electron Positron Collider (BEPCII), has reached its first design value of luminosity. During the commissioning of its luminosity, beam optics recovery, machine parameters measurement, detector solenoid compensation, and instability cure are main problems we met. Besides commissioning the machine, beams were delivered to the users from high energy physics and synchrotron radiation. This paper summarizes the accelerator physics issues in the BEPCII luminosity commissioning.


Supported by National Natural Sciences Foundation of China (10725525)

 
TUPEB022 Muon Collider Interaction Region Design dipole, electron, collider, luminosity 1566
 
  • Y. Alexahin, E. Gianfelice-Wendt, V. Kashikhin, N.V. Mokhov, A.V. Zlobin
    Fermilab, Batavia
  • V.Yu. Alexakhin
    JINR, Dubna, Moscow Region
 
 

Design of a muon collider interaction region (IR) presents a number of challenges arising from low beta* < 1 cm, correspondingly large beta-function values and beam sizes at IR magnets, as well as the necessity to protect superconducting magnets and collider detectors from muon decay products. As a consequence, the designs of the IR optics, magnets and machine-detector interface are strongly interlaced and iterative. A consistent solution for the 1.5 TeV c.o.m. muon collider IR is presented. It can provide an average luminosity of 1034/cm2/s with an adequate protection of magnet and detector components.

 
TUPEB023 High Gradient Final Focusing Quadrupole for a Muon Collider collider, shielding, background, focusing 1569
 
  • S.A. Kahn, G. Flanagan, R.P. Johnson
    Muons, Inc, Batavia
 
 

To achieve the high luminosity required for a muon collider strong quadrupole magnets will be needed for the final focus in the interaction region. These magnets will be located in regions with space constraints imposed both by the lattice and the collider detector. There are significant beam related backgrounds from muon decays and synchrotron radiation which create unwanted particles which can deposit significant energy in the magnets of the final focus region of the collider. This energy deposition results in the heating of the magnet which can cause it to quench. To mitigate the effects of heating from the energy deposition shielding will need to be included within the magnet forcing the aperture to be larger than desired and consequently reducing the gradient. We propose to use exotic high magnetization materials for pole tips to increase the quadrupole gradient.

 
TUPEB024 Solenoid Compensation for the SuperB Interaction Region solenoid, coupling, interaction-region, emittance 1572
 
  • K.J. Bertsche, M.K. Sullivan
    SLAC, Menlo Park, California
 
 

We present an approach for compensating adverse effects of the detector solenoid in the SuperB Interaction Region (IR). We place compensating solenoids around the IR quadrupole magnets to reduce the magnetic fields nearly to zero. This allows more operational headroom for superconducting IR magnets and avoids saturation of ferric IR magnets. We place stronger compensating solenoids between IR magnets to reverse the magnetic field direction. This allows adjusting the total integrated solenoid field to zero, which eliminates coordinate plane rotation and reduces vertical beam displacements in the IR.

 
TUPEB027 A New Interaction Region Design for the Super-B Factory interaction-region, emittance, permanent-magnet, focusing 1581
 
  • M.K. Sullivan, K.J. Bertsche
    SLAC, Menlo Park, California
  • S. Bettoni
    CERN, Geneva
  • E. Paoloni
    University of Pisa and INFN, Pisa
  • P. Raimondi
    INFN/LNF, Frascati (Roma)
  • P. Vobly
    BINP SB RAS, Novosibirsk
 
 

A final focus magnet design that uses super-ferric magnets is introduced for the Super-B interaction region. The baseline design has air-core super-conducting quadrupoles. This idea instead uses super-conducting wire in an iron yoke. The iron is in the shape of a Panofsky quadrupole and this allows for two quadrupoles to be side-by-side with no intervening iron as long as the gradients of the two quads are equal. This feature allows us to move in as close as possible to the collision point and minimize the beta functions in the interaction region. The super-ferric design has advantages as well as drawbacks and we will discuss these in the paper.

 
TUPEB037 Interaction-Region Design Options for a Linac-Ring LHeC proton, electron, dipole, optics 1605
 
  • F. Zimmermann, S. Bettoni, O.S. Brüning, B.J. Holzer, S. Russenschuck, D. Schulte, R. Tomás
    CERN, Geneva
  • H. Aksakal
    N.U, Nigde
  • R. Appleby
    UMAN, Manchester
  • S. Chattopadhyay, M. Korostelev
    Cockcroft Institute, Warrington, Cheshire
  • A.K. Çiftçi, R. Çiftçi, K. Zengin
    Ankara University, Faculty of Sciences, Tandogan/Ankara
  • J.B. Dainton, M. Klein
    The University of Liverpool, Liverpool
  • E. Eroglu, I. Tapan
    UU, Bursa
  • P. Kostka
    DESY Zeuthen, Zeuthen
  • V. Litvinenko
    BNL, Upton, Long Island, New York
  • E. Paoloni
    University of Pisa and INFN, Pisa
  • A. Polini
    INFN-Bologna, Bologna
  • U. Schneekloth
    DESY, Hamburg
  • M.K. Sullivan
    SLAC, Menlo Park, California
 
 

In a linac-ring electron-proton collider based on the LHC ("LR-LHeC"), the final focusing quadrupoles for the electron beam can be installed far from the collision point, as far away as the proton final triplet (e.g. 23 m) if not further, thanks to the small electron-beam emittance. The inner free space could either be fully donated to the particle-physics detector, or accommodate "slim" dipole magnets providing head-on collisions of electron and proton bunches. We present example layouts for either scenario considering electron beam energies of 60 and 140 GeV, and we discuss the optics for both proton and electron beams, the implied minimum beam-pipe dimensions, possible design parameters of the innermost proton and electron magnets, the corresponding detector acceptance, the synchrotron radiation power and its possible shielding or deflection, constraints from long-range beam-beam interactions as well as from the LHC proton-proton collision points and from the rest of the LHC ring, the passage of the second proton beam, and the minimum beta* for the colliding protons.

 
TUPEB040 Small Gap Magnet Prototype Measurements for eRHIC dipole, survey, electron, vacuum 1614
 
  • Y. Hao, P. He, A.K. Jain, V. Litvinenko, G.J. Mahler, W. Meng, J.E. Tuozzolo
    BNL, Upton, Long Island, New York
 
 

In this paper we present the design and prototype measurement of small gap (5mm to 10 mm aperture) dipole and quadrupole for the future high energy ERL (Energy Recovery Linac). The small gap magnets have the potential of largely reducing the cost of the future electron-ion collider project, eRHIC, which requires a 10GeV to 30 GeV ERL with up to 6 energy recovery passes (3.8 km each pass). We also studied the sensitivity of the energy recovery pass and the alignment error in this small magnets structure and countermeasure methods.

 
TUPEB042 The Transverse Linac Optics Design in Multi-pass ERL linac, optics, electron, focusing 1620
 
  • Y. Hao, J. Kewisch, V. Litvinenko, E. Pozdeyev, V. Ptitsyn, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York
 
 

In this paper, we analyzed the linac optics design requirement for a multi-pass energy recovery linac (ERL) with one or more linacs. A set of general formula of constrains for the 2-D transverse matrix is derived to ensure design optics acceptance matching throughout the entire accelerating and decelerating process. Meanwhile, the rest free parameters can be adjusted for fulfilling other requirements or optimization purpose. As an example, we design the linac optics for the future MeRHIC (Medium Energy eRHIC) project and the optimization for enlarging the BBU threshold.

 
TUPEB044 Spin Rotator Optics for MEIC electron, solenoid, polarization, ion 1626
 
  • H. K. Sayed
    CASA, newport news
  • S.A. Bogacz, P. Chevtsov
    JLAB, Newport News, Virginia
 
 

A unique design feature of a polarized Medium Energy Electron-Ion Collider (MEIC) based on CEBAF is its 'Figure-8' storage rings for both electrons and ions, which significantly simplifies beam polarization maintenance and manipulation.  While electron (positron) polarization is maintained vertical in arcs of the ring, a stable longitudinal spin at four collision points is achieved through solenoid based spin rotators and horizontal orbit bends. The proposed MEIC lattice was developed in order to preserve a very high polarization (more than 70%) of the electron beams injected from the CEBAF machine. The otherwise coupled beam trajectory due to solenoids used in the spin rotators was decoupled by design. Aspin matching technique needs to be implemented in order to enhance quantum self-polarization and minimize depolarization effects.

 
TUPEB045 Correction of the Chromaticity up to Second Order for MEIC sextupole, collider, lattice, electron 1629
 
  • H. K. Sayed
    CASA, newport news
  • S.A. Bogacz, Y. Roblin
    JLAB, Newport News, Virginia
 
 

The proposed electron collider lattice exhibits low β- functions at the Interaction Point (IP) (βx∗100mm − βy∗ 20 mm) and rather large equilibrium momentum spread of the collider ring (δp/p = 0.00158). Both features make the chromatic corrections of paramount importance. Here the chromatic effects of the final focus quadruples are cor- rected both locally and globally. Local correction features symmetric sextupole families around the IP, the betatron phase advances from the IP to the sextupoles are chosen to eliminate the second order chromatic aberration. Global interleaved families of sextupoles are placed in the figure-8 arc sections, and non-interleaved families at straight sec- tion making use of the freely propagated dispersion wave from the arcs. This strategy minimizes the required sex- tupole strength and eventually leads to larger dynamic aper- ture of the collider. The resulting spherical aberrations induced by the sextupoles are mitigated by design; the straight and arc sections optics features an inverse identity transformation between sextupoles in each pair.

 
TUPEB051 Interaction Region Design for the Electron-nucleon Collider ENC at FAIR electron, dipole, proton, synchrotron 1635
 
  • C. Montag
    BNL, Upton, Long Island, New York
  • A. Jankowiak
    IKP, Mainz
  • A. Lehrach
    FZJ, Jülich
 
 

To facilitate studies of collisions between polarized electron and protons at {s} = 14 GeV constructing an electron-nucleon collider at the FAIR facility has been proposed. This machine would collide the stored 15 GeV polarized proton beam in the HESR with a polarized 3.3 GeV electron beam circulating in an additional storage ring. We describe the interaction region design of this facility, which utilizes the PANDA detector.

 
TUPEB055 Optics correction at BEPCII Storage Ring sextupole, optics, dipole, luminosity 1644
 
  • D. Ji, Y. Jiao, Q. Qin, Y. Wei
    IHEP Beijing, Beijing
 
 

Optics correction is an important issue at BEPCII. Due to the errors in all kinds of components of a storage ring, the real optics of a storage ring is different from the design one. This paper introduces some developments of optics calibration at BEPCII storage ring. We use the method that fit the measured response matrix to the model response matrix to get the fudge factor of the quadrupole field and the sextupole field. On the other hand, in considering fringing fields of quadrupole magnet and interaction of quadrupole magnet iron core and sextupole magnet iron core, the model is calibrated.

 
TUPEB058 Online Analyzer System for the Development of the Long-lived Charge-Stripping Foil at the J-PARC dipole, proton, optics, emittance 1653
 
  • H. Fujimori, Z. Igarashi, Y. Irie, Y. Sato, M.J. Shirakata, I. Sugai, A. Takagi, Y. Takeda
    KEK, Ibaraki
 
 

The carbon stripping foil is the key element for the high-intensity proton accelerator. At KEK, the foil test system using the 650keV H- Cockcroft-Walton accelerator is in operation, which can simulate the energy depositions to the foil with the same amount in the J-PARC. In order to quantatively observe the foil degradations (such as foil thinning, pin-hole production) during irradiation, online energy and particle analyzing system is under construction. This report outlines the design detail of the analyzing system including the detectors.

 
TUPEB069 Results of 2009 Optics Studies of the SPS to LHC Transfer Lines injection, optics, dipole, alignment 1680
 
  • M. Meddahi, S.D. Fartoukh, K. Fuchsberger, B. Goddard, W. Herr, V. Kain, V. Mertens, J. Wenninger
    CERN, Geneva
  • D. Kaltchev
    TRIUMF, Vancouver
 
 

In 2008, the SPS-to-LHC transfer line operation allowed for the first time to perform beam measurements in the last part of the lines and into the LHC. Beam parameters were measured and compared with expectation. Discrepancies were observed in the dispersion matching into the LHC, and also in the vertical phase advance along the line. In 2009, extensive theoretical and simulation work was performed in order to understand the possible sources of these discrepancies. This allowed establishing an updated model of the beam line, taking into account the importance of the full magnetic model, the limited dipole corrector strengths and the precise alignment of beam elements. During 2009, beam time was allocated in order to perform further measurements, checking and refining the optical model of the transfer line and LHC injection region and validating the different assumptions. Results of the 2009 optics measurements and comparison with the beam specification and model are presented.

 
TUPEC022 X-band Photoinjector Beam Dynamics emittance, gun, wakefield, simulation 1761
 
  • F. Zhou, C. Adolphsen, Y.T. Ding, Z. Li, A.E. Vlieks
    SLAC, Menlo Park, California
 
 

SLAC is studying the feasibility of using an X-band RF photocathode gun to produce low emittance bunches for applications such as an MeV gamma source (in collaboration with LLNL) and an injector for a compact FEL. Systematic beam dynamics study are being done for a 5.5 cell X-band gun followed by several 53 cm long high-gradient X-band accelerator structures. A fully 3D program, ImpactT*, is used to track particles taking into account space charge forces, short-range longitudinal and transverse wakefields and the 3D rf fields in the structures, including the quadrupole component of the couplers. The effect of misalignments of the various elements (drive-laser, gun, solenoid and accelerator structures) are being evaluated. This paper presents these results and estimates of the expected bunch emittance versus bunch charge and cathode gradient.


*Ji Qiang, LBNL-62326, January 25, 2007.

 
TUPEC038 Multipole Kickers for the ALS octupole, sextupole, multipole, dipole 1808
 
  • G.C. Pappas
    LBNL, Berkeley, California
 
 

For quadrupole or sextupole magnets, the field at the center is zero and will not disturb the stored beam, while the field away from the center increases in magnitude, giving a larger kick to the particles off axis. By pulsing such multipole magnets it is possible to improve the injection efficiency of the Advanced Light Source (ALS) in top off mode. The requirements for a multipole pole kicker injection scheme for ALS are to kick a 1.9 GeV beam by an angle of 10 mrad with a magnet of 1 meter length. Both quadrupole and sextupole magnets have been studied, as well as a dipole magnet with non-constant field magnitude across the center of the aperture. This paper describes the design and gives a comparison of each type of magnet as well as the modulators needed to drive them.

 
TUPEC059 Start-to-End Tracking Simulations of the Compact Linear Collider linac, emittance, luminosity, alignment 1859
 
  • J. Resta-López, J. Dale
    JAI, Oxford
  • B. Dalena, D. Schulte, J. Snuverink, F. Stulle, R. Tomás
    CERN, Geneva
  • A. Latina
    Fermilab, Batavia
 
 

We present the current status of the beam tracking simulations of the Compact Linear Collider (CLIC) from the exit of the damping ring to the interaction point, including the ring to main linac (RTML) section, main linac, beam delivery system (BDS) and beam-beam interactions. This model introduces realistic alignment survey errors, dynamic imperfections and also the possibility to study collective effects in the main linac and the BDS. Special emphasis is put on low emittance transport and beam stabilization studies, applying beam based alignment methods and feedback systems. The aim is to perform realistic integrated simulations to obtain reliable luminosity predictions.

 
TUPEC060 Serpentine: A New Code for Particle Tracking simulation, lattice, sextupole, alignment 1862
 
  • S. Molloy, S.T. Boogert
    Royal Holloway, University of London, Surrey
 
 

Serpentine is a Python library, written for the purpose of simulating charged particle accelerators. It has been written to allow for the simulation of both rings and single-shot machines in a light-weight way (i.e. without requiring significant computational resources for typical calculations, such as the determination of transfer matrices, or matching of Twiss parameters), and has been structured to be highly modular (i.e. allowing extension of the simulations to include effects not already included in the base installation). Through the use of the Universal Accelerator Parser (UAP), Serpentine has no need for a new lattice representation, and allows access to any lattice format understood by UAP. The operation of this code on several complex accelerator designs is demonstrated.

 
TUPEC062 Advanced Multi-program GUI for Accelerator Modeling simulation, lattice, collider, linear-collider 1868
 
  • T.J. Roberts
    Muons, Inc, Batavia
  • D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois
 
 

There are dozens of programs for designing and modeling accelerator systems, most of which have their own language for describing the system. This means a designer must spend considerable time learning the languages of different programs and converting system descriptions among them. This paper describes a project to develop a new language for accelerator modeling, together with a portable suite of programs to implement it. These programs will assist the user while editing, visualizing, developing, simulating, and sharing models of accelerator components and systems. This suite is based on a Graphical User Interface (GUI) that will permit users to assemble their system graphically and then display it and check its sanity visually, even while using modeling programs that have no graphical or visualization capabilities. Incorporating the concept of libraries as a primary component of the language will encourage collaboration among geographically diverse teams. The requirements for developing this language and its tools will be based on generality, flexibility, extensibility, portability, usability, and sharability.

 
TUPEC077 Electron Trapping in Wiggler and Quadrupole Magnets of CESRTA electron, wiggler, photon, simulation 1892
 
  • L. Wang, X. Huang, M.T.F. Pivi
    SLAC, Menlo Park, California
 
 

The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D. One of the primary goals of the CesrTA program are to investigate the interaction of the electron cloud with low emittance positron beam, to explore methods to suppress the electron cloud, and to develop suitable advanced instrumentation required for these experimental studies. This paper report the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using 3D code CLOUDLAND. The transverse distribution of electron cloud in a wiggler magnet is similar to a dipole magnet except in the zero vertical field regions where the electrons have complicated trajectories and therefore a longer lifetime. Fortunately, these electrons are dominantly direct-photo-electrons and can be easily reduced by properly arranging photon absorbers. Simulations show that the electron cloud in a quadrupole magnet can be trapped for long time due to the mirror field effect.

 
TUPD004 Linear Coupling with Space Charge in SIS18 coupling, emittance, injection, space-charge 1922
 
  • W.M. Daqa
    IAP, Frankfurt am Main
  • O. Boine-Frankenheim, I. Hofmann, V. Kornilov, J. Struckmeier
    GSI, Darmstadt
 
 

For high current synchrotrons and for the SIS18 operation as booster of the projected SIS100 it is important to improve the multi-turn injection efficiency. This can be achieved by coupling the transverse planes with skew quadrupoles, which can move the particles away from the septum. Linear betatron coupling by skew quadrupole components in SIS18 including space charge effect was studied in an experiment using different diagnostic methods during the crossing of the difference coupling resonance. The beam loss was measured using a fast current transformer, the transverse emittance exchange was observed using a residual gas monitor and the coupled tunes were obtained from the Schottky noise spectrum. We compared the experimental results with simulation using PARMTRA which is a code developed at GSI.

 
TUPD009 Study of the Beam Dynamics for the 'Fast Extraction' Operating Scenario of the J-PARC Main Ring resonance, injection, coupling, sextupole 1937
 
  • A.Y. Molodozhentsev, T. Koseki, M.J. Shirakata, M. Tomizawa
    KEK, Ibaraki
  • A. Ando, J. Takano
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

During the early J-PARC Main Ring commissioning and the machine operation with the moderate beam power the 'fast extraction' bare working point has been chosen to provide the machine operation in the safe regime. We discuss main experimental results obtained so far and compare with the results of the computational model of the machine, including the first experimental approach to minimize the effect of the 'sum' linear coupling resonance. The strategy to increase the beam power without changing the operational working point is presented by keeping the moderate space-charge detuning. The advantage of the second harmonic MR RF cavity, including the estimation of the beam losses during the injection and acceleration processes, is discussed.

 
TUPD023 CesrTA Retarding Field Analyzer Measurements in Drifts, Dipoles, Quadrupoles and Wigglers wiggler, dipole, electron, damping 1973
 
  • J.R. Calvey, Y. Li, J.A. Livezey, J. Makita, R.E. Meller, M.A. Palmer, R.M. Schwartz, C.R. Strohman
    CLASSE, Ithaca, New York
  • S. Calatroni, G. Rumolo
    CERN, Geneva
  • K.C. Harkay
    ANL, Argonne
  • K. Kanazawa, Y. Suetsugu
    KEK, Ibaraki
  • M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California
 
 

Over the course of the CesrTA program, the Cornell Electron Storage Ring (CESR) has been instrumented with several retarding field analyzers (RFAs), which measure the local density and energy distribution of the electron cloud. These RFAs have been installed in drifts, dipoles, quadrupoles, and wigglers; and data have been taken in a variety of beam conditions and bunch configurations. This paper will provide an overview of these results, and give a preliminary evaluation of the efficacy of cloud mitigation techniques implemented in the instrumented vacuum chambers.

 
TUPD041 Measurement of the Electron Cloud Density in a Solenoid Coil and a Quadrupole Magnet at KEKB LER electron, solenoid, simulation, synchrotron 2015
 
  • K. Kanazawa, H. Fukuma
    KEK, Ibaraki
 
 

The near beam electron cloud density in a magnetic field was estimated with a simple electron current detector at KEKB LER. The estimation is based on the assumption that high energy electrons which hit a chamber wall come directly from the region around the beam after the interaction with a circulating bunch. The first successful application of this idea for a drift space was reported at PAC05 by the authors. In a solenoid field of 50 G, the near beam cloud density is reduced by about four orders of magnitude compared to the no field case. In a quadruple magnet, the density around the beam is by two orders of magnitude lower than the density in a typical drift space, as most simulations show.

 
TUPD048 Amorphous Carbon Coatings for Mitigation of Electron Cloud in the CERN SPS electron, dipole, vacuum, simulation 2033
 
  • C. Yin Vallgren, G. Arduini, J. Bauche, S. Calatroni, P. Chiggiato, K. Cornelis, P. Costa Pinto, E. Métral, G. Rumolo, E.N. Shaposhnikova, M. Taborelli, G. Vandoni
    CERN, Geneva
 
 

Amorphous carbon coatings with low secondary electron yield have been applied to the liners in the electron cloud monitors and to vacuum chambers of three dipole magnets in the SPS. The electron cloud is completely suppressed for LHC type beams in these monitors even after 3 months air venting and no performance deterioration is observed after more than one year of SPS operation. Upon variation of the magnetic field in the monitors the electron cloud current maintains its intensity down to weak fields of some 40 Gauss, where fast conditioning is observed. This is in agreement with dark traces observed on the RF shields between dipoles. The dynamic pressure rise has been used to monitor the behavior of the magnets. It is found to be about the same for coated and uncoated magnets, apart from a weak improvement in the carbon coated ones under conditions of intense electron cloud. Inspection of the coated magnet is foreseen in order to detect potential differences with respect to the coated monitors. Measurements of the stray fields outside the dipoles show that they are sufficiently strong to induce electron cloud in these regions.

 
TUPD058 Collective Effects Simulations for the TPS Storage Ring wakefield, storage-ring, simulation, sextupole 2063
 
  • A. Rusanov, P.J. Chou
    NSRRC, Hsinchu
 
 

Taiwan Photon Source (TPS) is a new third generation synchrotron storage ring which will be built at the present site of the NSRRC. Collective effects in the TPS storage ring have been simulated with tracking code ELEGANT. Quasi-Green's function for the entire ring and coherent synchrotron radiation (CSR) have been taken into account in the simulations. Thresholds of the longitudinal microwave instability and the CSR induced instability have been estimated. Time-dependent sawtooth oscillations of the bunch length at high bunch currents have been analyzed and compared to the bunch length oscillations observed at the SLC damping ring.

 
TUPD090 The Development of New Terahertz Generator using Beam Optics and RF Deflector electron, cathode, optics, simulation 2114
 
  • F. Furugohri, H. Hioka, S. Someya
    SUT, Noda-shi, Chiba
  • M. Yoshida
    KEK, Ibaraki
 
 

New terahertz(THz) generator using the non-relativistic electron beam was developed based on the beam optics and the RF deflector. The conventional THz generators using the electron beam are almost based on the relativistic beam to utilize the lorentz factor as FELs or the strong magnet to make high electron density like gyrotrons or BWOs. Thus it causes that the total equipment becomes large. New THz generator uses the non-relativistic electron beam. And it consists of the beam optics which makes the sliced beam by using a anode slit to focus at second slit as the THz radiation plane. In this configuration, the RF deflector works to move for the transverse direction matched with the phase velocity of the radiated electromagnetic field. The moving sliced beam separates into a number of bunches through the second slit and the bunches makes the THz coherent radiation in zero time interval. In this new THz generator, no strong magnet is required and the large diameter beam can be utilized to generate the high power THz electromagnetic wave. In this paper, the design of new THz generator and its experimental results are reported.

 
TUPE019 Integration of Elegant Tracking Code into the Tango Server-based High Level Software of FERMI@elettra for Optics Measurements and Modeling optics, controls, linac, laser 2179
 
  • C. Scafuri, S. Di Mitri, G. Penco
    ELETTRA, Basovizza
 
 

The electron beam transverse emittance and Twiss parameters have been measured during the commissioning of FERMI@elettra. Matching of the beam optics to the lattice transverse acceptance and beam transport was performed by means of the elegant particle tracking code; this was integrated with the Tango-server based high level software of FERMI@elettra. Matlab scripts were used as an intermediate layer between the code and the server to automate the matching procedure. The software environment, the experimental results and the comparison with the model are described in this paper.

 
TUPE052 The ALPHA-X Beam Line: towards a Compact FEL electron, FEL, undulator, simulation 2263
 
  • M.P. Anania, E. Brunetti, S. Cipiccia, D. Clark, R.C. Issac, D.A. Jaroszynski, G.G. Manahan, T. McCanny, A. J. W. Reitsma, R.P. Shanks, G.H. Welsh, S.M. Wiggins
    USTRAT/SUPA, Glasgow
  • J.A. Clarke, M.W. Poole, B.J.A. Shepherd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • M.J. de Loos, S.B. van der Geer
    Pulsar Physics, Eindhoven
 
 

Recent progress in developing laser-plasma accelerators is raising the possibility of a compact coherent radiation source that could be housed in a medium sized university department. Furthermore, since the duration of electron bunches from laser-plasma wakefield accelerators is determined by the relativistic plasma wavelength, radiation sources based on these accelerators can produce pulses with femtosecond durations. Beam properties from laser-plasma accelerators have been traditionally thought of as not being of sufficient quality to produce amplification. Our work shows that this is not the case. Here we present a study of the beam characteristics of a laser-plasma accelerator and the compact ALPHA-X (Advanced Laser Plasma High-energy Accelerators towards X-rays) FEL. We discuss the implementation of a focussing system consisting of a triplet of permanent magnet quadrupoles and a triplet of electromagnetic quadrupoles*. We will present a study of the influence of beam transport on FEL action in the undulator, paying particular attention to bunch dispersion in the undulator. This is an important step for developing a compact synchrotron source or a SASE free-electron laser.


*The design of these devices has been carried out using the GPT code, which considers space charge effects and allows a realistic estimate of electron beam properties along the beam line.

 
WEOBMH01 Operational Experiences Tuning the ATF2 Final Focus Optics Towards Obtaining a 37nm Electron Beam IP Spot Size optics, emittance, coupling, background 2383
 
  • G.R. White, A. Seryi, M. Woodley
    SLAC, Menlo Park, California
  • S. Bai
    IHEP Beijing, Beijing
  • P. Bambade, Y. Renier
    LAL, Orsay
  • B. Bolzon
    IN2P3-LAPP, Annecy-le-Vieux
  • Y. Kamiya
    ICEPP, Tokyo
  • S. Komamiya, M. Oroku, Y. Yamaguchi, T. Yamanaka
    University of Tokyo, Tokyo
  • K. Kubo, S. Kuroda, T. Okugi, T. Tauchi
    KEK, Ibaraki
  • E. Marin
    CERN, Geneva
 
 

The primary aim of the ATF2 research accelerator is to test a scaled version of the final focus optics planned for use in next-generation linear lepton colliders. ATF2 consists of a 1.3 GeV linac, damping ring providing low-emittance electron beams (<12pm in the vertical plane), extraction line and final focus optics. The design details of the final focus optics and implementation at ATF2 are presented elsewhere* . The ATF2 accelerator is currently being commissioned, with a staged approach to achieving the design IP spot size. It is expected that as we implement more demanding optics and reduce the vertical beta function at the IP, the tuning becomes more difficult and takes longer. We present here a description of the implementation of the overall tuning algorithm and describe operational experiences and performances


* Beam-Based Alignment, Tuning and Beam Dynamics Studies for the ATF2 Extraction Line and Final Focus System. Glen R. White , S. Molloy, M. Woodley, (SLAC). EPAC08-MOPP039, SLAC-PUB-13303.

 

slides icon

Slides

 
WEPEA007 Production of Coherent Synchrotron Radiation at the Canadian Light Source synchrotron, single-bunch, storage-ring, injection 2484
 
  • L.O. Dallin, W.A. Wurtz
    CLS, Saskatoon, Saskatchewan
 
 

Preliminary observations of coherent synchrotron radiation (CSR) at the Canadian Light Source have been reported earlier. At that time a more suitable operating point was identified based on particle tracking calculations. These calculations showed that a large stable longitudinal phase space can be achieved through adjustment of the chromaticities. With the implementation of these operating conditions CSR has been produced with much improved beam lifetime. CSR has been produced both with multiple bunches at 1.5 GeV and with a single bunch at the nominal 2.9 GeV beam energy. The production of CSR with these new operating points has proven to be reliable and repeatable. Operations at the nominal beam energy allows for setup times of under 20 minutes. With a beam lifetime (1/e) of over 7 hours single shifts dedicated to CSR production are now practical.

 
WEPEA008 ASTRID2 -The New Low-Emmitance Light Source in Denmark dipole, sextupole, storage-ring, insertion 2487
 
  • S.P. Møller, N. Hertel, J.S. Nielsen
    ISA, Aarhus
 
 

At Aarhus University in Denmark, a new synchrotron radiation source is being built. The 46-m circumference storage ring with 6-fold symmetry will operate at 580 MeV to produce bright UV and soft x-ray radiation. The storage ring will have a horizontal emittance of around 10 nm. Four straight sections will be available for insertion devices including a 12-pole wiggler with a field of 2 Tesla. ASTRID2 will operate in top-up mode with electrons from the present storage ring ASTRID, used as a booster. The insertion devices will have a strong influence on the lattice, and studies of dynamical aperture and compensation of tunes and beta beat will be presented. Also injection simulations will be given. The technical layout with details about magnetic arrangements on girders will be shown, including the vacuum system with extensive use of NEG. A 105 MHz RF system is being built together with a new LLRF system. At present, most major components have been ordered, and first injection will take place in the first half of 2011.

 
WEPEA011 Double Low Beta Straight Section for Dual Canted Undulators at SOLEIL lattice, resonance, optics, sextupole 2496
 
  • A. Loulergue, C. Benabderrahmane, F. Bouvet, P. Brunelle, M.-E. Couprie, J.-C. Denard, J.-M. Filhol, C. Herbeaux, P. Lebasque, V. Leroux, A. Lestrade, O. Marcouillé, J.L. Marlats, F. Marteau, T. Moreno, A. Nadji, L.S. Nadolski, F. Polack, A. Somogyi, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette
 
 

SOLEIL is the French 2.75 GeV high brilliance third generation synchrotron light source delivering photons to 20 beamlines with a current of 400 mA in multibunch or hybrid modes, and 60 mA in 8 bunch mode. There are already 17 insertion devices installed and 9 others are planned in the next 2 coming years. Among them, two canted in vacuum insertion devices are planned, for the Nanoscopium and Tomography beamlines, and will be accommodated in a 12 m long straight section, with a 6.5 mrad separation angle. These ~150 m long beamlines will exploit the high brilliance and coherence characteristics of the X-ray (5-20 keV) beam both for diffraction limited focusing and for contrast formation. To provide low vertical beta functions at each undulator, an extra triplet of quadrupoles was added in the middle of the section. We present here the lattice implementation footprint, the different working point under investigations as well as the first results of the measurements on the machine performances.

 
WEPEA014 Optics calibration at the MLS and at BESSY II optics, synchrotron, lattice, radiation 2505
 
  • P.O. Schmid, P. Kuske
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin
  • D.B. Engel, J. Feikes, R. Müller, G. Wüstefeld
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

In this paper we present the results of our studies employing LOCO and MML for optics calibration at the MLS and at the BESSY II storage rings. Both the standard user modes and dedicated low alpha modes were analysed.

 
WEPEA048 A Design Approach of the Beam Optics in the Complex Storage Ring optics, lattice, storage-ring, emittance 2597
 
  • S.Q. Tian, H.H. Li, X.Y. Sun, M.Z. Zhang, W.Z. Zhang
    SINAP, Shanghai
 
 

Beam optics design is a crucial issue in modern synchrotron radiation facility. A design approach of the beam optics is presented here. It provides much convenience for effectively exploring achievable linear optics and globally investigating flexibility of a complex lattice with super-periodicity. Low-ε optics and low-αC optics are emphasized, and the SSRF storage ring is taken as a test lattice.

 
WEPEA052 Magnetic Field Measurement System for PLS-II Magnets multipole, sextupole, storage-ring, controls 2603
 
  • K.-H. Park, H.S. Han, Y.-G. Jung, D.E. Kim, K.R. Kim, H.-G. Lee, H.S. Suh
    PAL, Pohang, Kyungbuk
  • B.-K. Kang
    POSTECH, Pohang, Kyungbuk
 
 

The PAL (Pohang Accelerator Laboratory) has been carrying out the performance upgrade project, PLS-II. The lattice of the storage ring for PLS-II was changed in whole. The energy was increase from 2.5GeV to 3.0GeV thus many magnets installed in storage ring at present should be replaced with new one or modified. The field of the quadrupole and sextupole magnets will be measured using the rotating coils that are newly fabricated with the engineering ceramic for the first time at PAL. The data acquisition system for the field measurement was also rebuilt to make it simple and to have a good signal to noise ratio. In this presentation, the design parameters of the ceramic rotating coil are described. And various characteristics of the field measurement system are also presented

 
WEPEA056 Beam Optics Measurements During the Commissioning of the ALBA Booster booster, injection, lattice, closed-orbit 2612
 
  • G. Benedetti, D. Einfeld, Z. Martí, M. Muñoz
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès
 
 

The commissioning of the booster for the synchrotron light source ALBA should take place in the period December 2009-January 2010. In this paper, the beam dynamics aspects of the commissioning are described, including the studies performed, the main problems find during the commissioning and a comparison of the measured beam parameters to the design one. A description of the software tools used and developed for the task is included.

 
WEPEA076 NSLS-II Lattice Optimization with Non-zero Chromaticity resonance, sextupole, lattice, damping 2663
 
  • W. Guo, S. Krinsky, L. Yang
    BNL, Upton, Long Island, New York
 
 

Chromaticity is usually set to non-zero value at the third generation light sources to cure the intensity induced instabilities. It is effective in suppressing the beam centroid oscillation; however, it is repeatedly reported that the beam lifetime decreases significantly when chromaticity goes up. This is probably due to the crossing of resonance lines by the enlarged tune footprint. In this paper we optimize the NSLS-II lattice at different positive chromaticity settings. The tune footprint is adjusted to fit in the stable region divided by the strong resonance lines. Tracking results show that we can maintain a lifetime similar to that of the zero-chromaticity lattice solutions.

 
WEPEA077 Physics Considerations and Specifications for the NSLS-II Magnets multipole, lattice, sextupole, dynamic-aperture 2666
 
  • W. Guo, S.L. Kramer, S. Krinsky, B. Nash, J. Skarita, F.J. Willeke
    BNL, Upton, Long Island, New York
 
 

NSLS-II is a third-generation light source that is being built at the Brookhaven National Laboratory. The storage ring has 30 double-bend-achromatic cells. Six 3.5-m-long damping wigglers (DW) will be installed in three straight section to lower the emittance. The civil construction of the facility started in June 2009 and major accelerator components, such as magnets and vacuum chambers, have entered production phase. This paper will summarize the physics considerations for the NSLS-II magnet specifications. In particular, we discuss the tuning range required by the lattice flexibility, and the issues which lead to the specification for the higher-order multipoles.

 
WEPEB005 Magnet Pattern Control System of the J-PARC Main Ring extraction, resonance, survey, controls 2692
 
  • J. Takano, T. Koseki, S. Nakamura, T. Toyama, N. Yamamoto
    J-PARC, KEK & JAEA, Ibaraki-ken
  • S. Hatakeyama
    JAEA/J-PARC, Tokai-mura
  • K. Niki, M. Tomizawa, S. Yamada
    KEK, Ibaraki
 
 

In the J-PARC Main Ring (MR), the bending, quadrupole, sextupole, and steering magnets can be controlled on the operating interfaces (OPI). The optics parameters for all magnets are calculated by using SAD, and are converted to BL tables (ex: 2000 points for a steering magnet) for each power supplies. The BL tables are made from the parameters of optics, pattern timing, and beam energy at flat bottom and flat top. For MR beam studies, the BL tables are adjustable with offset and factor. This system is useful for COD correction, beta function measurement, aperture survey, and slow extraction. In this proceeding, the structure of the magnet control system and OPIs for beam studies will be shown.

 
WEPEB019 Virtual Accelerator Development for the TPS controls, EPICS, storage-ring, power-supply 2728
 
  • P.C. Chiu, J. Chen, Y.K. Chen, Y.-S. Cheng, K.T. Hsu, C.H. Kuo, C.Y. Wu
    NSRRC, Hsinchu
 
 

In order to help early development of TPS control system and user interface, a virtual accelerator model is constructed. The virtual accelerator has been created by AT toolbox and simulated beam behavior; the Middle Layer providing high level accelerator application is also used. LabCA interfaces between Matlab and EPICS (Experimental Physics and Industrial Control System). Such a system could speed development of commissioning required software and examine the correction of all procedures.

 
WEPEB038 The Spill Feedback Control Unit for J-PARC Slow Extraction feedback, controls, extraction, proton 2770
 
  • S. Onuma, K. Mochiki
    Tokyo City University, Tokyo
  • T. Adachi, A. Kiyomichi, R. Muto, H. Nakagawa, H. Someya, M. Tomizawa
    KEK, Ibaraki
  • T. Kimura
    Miyazaki University, Miyazaki
  • K. Noda
    NIRS, Chiba-shi
  • H. Sato
    Tsukuba University, Ibaraki
 
 

J-PARC is a new accelerator facility to produce MW-class high power proton beams. From the main ring (MR) high energy protons are extracted in a slow extracted mode for hadron experiments. The beam is required with as small ripple as possible to prevent pileup events in particle detectors or data acquisition systems. We took beam tests at HIMAC using a prototype signal processing unit. In these beam tests we had recognized the improvement of the extracted beam structure by using the feedback algorithm whose parameters were changed according to the beam characteristics. We have developed a new signal processing unit for the spill feedback control of J-PARC. The unit consists of three signal input ports (gate, spill intensity and residual beam intensity), three signal output ports (spill control magnets), two DSPs (power spectrum analysis and spill feedback control), dual port memories, FPGAs and a LAN interface (remote control with SUZAKU-EPICS). From October 2009, this unit is being used in the beam study of J-PARC MR to check the performance of digital filtering, phase-shift processing, servo feedback control, real-time power spectrum analysis and adoptive control.

 
WEPEB041 Commissioning and Initial Performance of the LHC Beam Based Feedback Systems feedback, controls, diagnostics, injection 2779
 
  • R.J. Steinhagen, A. Boccardi, A.C. Butterworth, E. Calvo Giraldo, R. Denz, M. Gasior, J.L. Gonzalez, S. Jackson, L.K. Jensen, O.R. Jones, Q. King, G. Kruk, M. Lamont, S.T. Page, J. Wenninger
    CERN, Geneva
 
 

The LHC deploys a comprehensive suite of beam-based feedbacks for safe and reliable machine operation. This contribution summarises the commissioning and early results of the LHC feedback control systems on orbit, tune, chromaticity, and energy. Their performance – strongly linked to the associated beam instrumentation, external beam perturbation sources and optics uncertainties – is evaluated and compared with the feedback design assumptions.

 
WEPEB042 Optimization of the Position of the Radial Loop Pickups in the CERN PS pick-up, beam-losses, controls, optics 2782
 
  • S. Aumon
    EPFL, Lausanne
  • S. Aumon, H. Damerau, S.S. Gilardoni
    CERN, Geneva
 
 

A part of the beam losses at transition crossing of high intensity beams in the CERN PS have been attributed to an excursion of the closed orbit. The orbit jump occurs simultaneously with the jump of the transition energy triggered by pulsed quadrupoles. Investigations showed that the position of the pickups used for the radial loop system was not optimized with respect to the dispersion change caused by the fast change of the transition energy. Thanks to new electronics of the orbit measurement system, turn-by-turn orbit data could be recorded around transition crossing. Their analysis, together with calculations of the transverse optics, allowed determining a new choice of pickup positions for the radial loop. In comparison to the previous pickup configuration, the new configuration improves the mean radial position not only during transition crossing, but all along the acceleration cycle.

 
WEPEB045 The Beam-based Intra-train Feedback System of CLIC luminosity, feedback, simulation, kicker 2791
 
  • J. Resta-López, P. Burrows
    JAI, Oxford
 
 

The design luminosity of the future linear colliders requires transverse beam size at the nanometre level at the interaction point (IP), as well as stabilisation of the beams at the sub-nanometre level. Different imperfections, for example ground motion, can generate relative vertical offsets of the two colliding beams at the IP which significantly degrade the luminosity. In principle, a beam-based intra-train feedback system in the interaction region can correct the relative beam-beam offset and steer the beams back into collision. In addition, this feedback system might considerably help to relax the required tight stability tolerances of the final doublet magnets. For CLIC, with bunch separations of 0.5 ns and train length of 156 ns intra-train feedback corrections are specially challenging. In this paper we describe the design and simulation of an intra-train feedback system for CLIC. Results of luminosity performance simulation are presented and discussed.

 
WEPEB058 Compatibility and Integration of a CLIC Quadrupole Nanometre-stabilization and Positioning System in a Large Accelerator Environment ground-motion, vacuum, alignment, resonance 2824
 
  • K. Artoos, C.G.R.L. Collette, P. Fernandez Carmona, M. Guinchard, C. Hauviller, S.M. Janssens, A.M. Kuzmin, A. Slaathaug, M.V. Sylte
    CERN, Geneva
 
 

A prerequisite for a successful nanometre level magnet stabilization and pointing system is a low background vibration level. This paper will summarize and compare the ground motion measurements made recently in different accelerator environments at e.g. CERN, CESRTA and PSI. Furthermore the paper will give the beginning of an inventory and characterization of some technical noise sources, and their propagation and influence in an accelerator environment. The importance of the magnet support is also mentioned. Finally, some advances in the characterization of the nanometre vibration measurement techniques will be given.

 
WEPEC047 New Methods for Thin Film Deposition and First Investigations of the use of High Temperature Superconductors for Thin Film Cavities cavity, target, superconductivity, SRF 2995
 
  • A.E. Gustafsson, S. Calatroni, W. Vollenberg
    CERN, Geneva
  • R. Seviour
    Cockcroft Institute, Lancaster University, Lancaster
 
 

Niobium thin film cavities have shown good and reliable performance for LEP and LHC, although there are limitations to overcome if this technique should be used for new accelerators such as the ILC. New coating techniques like High Power Impulse Magnetron Sputtering (HiPIMS) has shown very promising results and we will report on its possible improvements for Nb thin film cavity performance. Current materials used in accelerator SRF technologies operate at temperatures below 4 K, which require complex cryogenic systems. Researchers have investigated the use of High Temperature Superconductors (HTS) to form RF cavities, with limited success*. We propose a new approach to achieve a high-temperature SRF cavity based on the superconducting 'proximity effect'**. The superconducting proximity effect is the effect through which a superconducting material in close proximity to a non-superconducting material induces a superconducting condensate in the latter. Using this effect we hope to overcome the problems that have prevented the use of HTS for accelerating structures so far. We will report the preliminary studies of magnetron sputtered thin films of Cu on Nb.


* E. J. Minehara et al, Superconductivity 3, p277 (1990)
** R. Seviour et al, Superlattices and Microstructures, 25, p647 (1999)

 
WEPEC052 Higher Order Modes in Third Harmonic Cavities for XFEL/FLASH cavity, simulation, HOM, dipole 3007
 
  • I.R.R. Shinton, R.M. Jones, N. Juntong
    UMAN, Manchester
  • N. Baboi
    DESY, Hamburg
  • N. Eddy, T.N. Khabiboulline
    Fermilab, Batavia
  • T. Flisgen, H.-W. Glock, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock
 
 

We analyse the higher order modes in the 3.9GHz bunch shaping cavities recently installed in the XFEL/FLASH facility at DESY. We report on recent experimental results on the frequency spectrum, both beam and probe based. These are compared to those predicted by finite element computer codes, globalised scattering matrix calculations and a two-band circuit model. This study is focused on the dipole component of the multiband expansion of the wakefield.

 
WEPD003 Design of Magnet Prototypes for the new Brazilian Synchrotron Light Source - SIRIUS dipole, permanent-magnet, sextupole, electron 3084
 
  • G. Tosin, R. Basílio, J.F. Citadini, L. Liu, M. Potye, M.C. Rocha, P.P. Sanchez, E.W. Siqueira
    LNLS, Campinas
 
 

"Green solutions" using permanent magnets are being proposed for the dipoles and quadrupoles of the second Brazilian Synchrotron Light Source - LNLS2 - magnetic lattice. The main purpose is to reduce as much as possible the electrical energy consumption, assuring the reliability of the magnets during several years. Sextupoles will have multiple functions due to the limited space in the lattice design.

 
WEPD004 Modelling of Elliptically Polarizing Undulators sextupole, multipole, undulator, optics 3087
 
  • L.O. Dallin, D.G. Bilbrough
    CLS, Saskatoon, Saskatchewan
 
 

To investigate the effect of an elliptically polarized undulator (EPU) on the dynamic aperture of storage ring a model is required for use in an optics code. An EPU can be modelled as an array of skew dipole magnets. The skew angle ranges from zero to ninety degrees depending on the degree of polarization. Crudely the EPU can be modelled using alternating skew dipole blocks. A model that better reproduces the sinusoidally varying fields can be achieved by slicing blocks into smaller subsets. Field roll-off produced by the limited transverse dimensions of the magnet blocks can be included as skew multipoles. For example the roll-off of the horizontal field in the vertical undulator mode is very nearly a skew sextupole. The model has the advantage of correctly calculating the path length through the EPU which is important for tracking in six dimensions.

 
WEPD011 Mini-beta Sections in the Storage Ring BESSY II undulator, cryogenics, simulation, wiggler 3108
 
  • J. Bahrdt, W. Frentrup, A. Gaupp, M. Scheer, F. Schäfers, G. Wüstefeld
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

At BESSY II photon energies above 2keV can be produced only with bending magnets, a permanent magnet wiggler, superconducting (SC) wavelength shifters and a SC-wiggler. The wiggler brilliance suffers from the depth of field effect and the bending magnets and wavelength shifters produce the X-rays only with a single pole. Experiments such as HIgh Kinetic Energy photoelectron spectroscopy (HIKE) or microspectroscopy on nanostructured materials demand a high brilliance and flux as it is provided by a small period cryogenic undulator. This paper discusses the requirements for the operation of small gap cryogenic devices at BESSY II. A scheme with two adjacent, vertical low beta sections inside of one of the long straight sections is suggested. The straight is divided into two parts by a quadrupole triple in the center. An optic with an increased, vertical beta tune by 0.5 is presently studied. The optics outside of the low beta section and the horizontal tune are kept unchanged.

 
WEPD031 Observation and Correction of Effects of Variably Polarized Undulator on Electron Beam at SAGA-LS undulator, betatron, coupling, polarization 3162
 
  • T. Kaneyasu, Y. Iwasaki, S. Koda, Y. Takabayashi
    SAGA, Tosu
 
 

An APPLE-II type variably polarized undulator was installed in the SAGA-LS storage ring in 2008. Following the installation, we have investigated influence of the undulator on the electron beam. Based on the measurements, we have developed a feedforward correction system to minimize the effects of the undulator. The correction system successfully compensates for closed orbit distortion (COD), betatron tune shift and a weak change in the betatron coupling. The standard deviation of the COD variation relative to the reference orbit and the tune shift are suppressed to less than 4 micron and 0.001, respectively, when the pole gap is changed at a fixed phase. The observed tune shift is interpreted in terms of a second order focusing effect evaluated by RADIA code. The simulated tune shift fairly agrees with the measurements. To minimize the effects on the betatron coupling, a wire-type skew quadrupole magnet mounted on the undulator duct is utilized. The skew field required for the coupling compensation is consistent with those predicted by field integral measurements. The feedforward correction reduces the effect to a relative change in the vertical beamsize of 5%.

 
WEPD043 The Development of Gradient Damping Wiggler for ALPHA Storage Ring damping, wiggler, dipole, storage-ring 3186
 
  • Z.W. Huang, D.J. Huang
    NTHU, Hsinchu
  • S.D. Chen, M.-H. Huang, C.-S. Hwang, C.Y. Kuo, F.-Y. Lin, Y.T. Yu
    NSRRC, Hsinchu
  • S.-Y. Lee
    IUCF, Bloomington, Indiana
 
 

A novel gradient damping wiggler (GDW) was developed for the ALPHA storage ring in Indiana University. The GDW will be used to change the momentum compaction factor and the damping partition at ALPHA storage effectively. There is one middle pole and two outer poles that they have gradient field were assembled together on the same girder to be a full set of GDW magnet system. The dipole and gradient field strength of the middle (outer) pole is 0.67 T (-0.67) and 1.273 T/m (1.273 T/m), respectively. The magnet gap of the middle and outer pole is 40 mm and 35.87 mm, respectively, that the three combined function of dipole magnet can be charged by the same power supply. There is a trim coil on the three magnets to adjust the first and second integral field to zero. The good field region of middle pole and outer pole in transverse x-axis (deltaB/B=0.1%) are ±50mm and ±40mm separately. A prototype GDW magnet was fabricated and a Hall probe measurement system was set up to measure the magnet field to verify the magnet design and the magnet construction performance. The field cross-talk and the fringe field are also discussed herein by different methods.

 
WEPD060 Update of Main Magnet Power Supplies at Pf-Ar power-supply, controls, feedback, status 3233
 
  • T. Ozaki, A. Akiyama, K. Harada, T. Kasuga, Y. Kobayashi, T. Miyajima, S. Nagahashi, T.T. Nakamura, M. Ono, T. Sueno
    KEK, Ibaraki
 
 

At PF-AR, a bending magnet power supply was updated in 2007. The converter works in the 3 pulsed PWM. A trouble caused by higher harmonics above 40th had occurred. We manufactured filters and installed in 6.6kV ac lines in 2008. Furthermore, a QF magnet power supply was updated in 2009. This paper reports on the update of PF-AR main magnet power supplies.

 
WEPD062 Magnetic Field Measurement and Ripple Reduction of Quadrupole Magnets of the J-PARC Main Ring power-supply, pick-up, impedance, permanent-magnet 3239
 
  • H. Someya, S. Igarashi
    KEK, Ibaraki
  • S. Nakamura
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

The power supply current ripple of the quadrupole magnets of the J-PARC main ring has been measured to be the order of 10-4. The magnetic field of the quadrupole magnets has been measured and the ripple frequency distribution of each magnet was observed to be depending on where the magnet is in the magnet chain. A transmission line model for the cable and magnets was able to explain the distribution. The field ripple made by the common mode current ripple was reduced by changing the magnet cabling to be symmetrical with respect to the N and S poles of the quadrupole magnets. The common mode ripple was drastically reduced. The normal mode ripple of 600, 1200 and 1800 Hz however remained. The field ripple was further reduced using resistors those are connected in parallel to the magnet coils and bypass the current ripple. It was effective to the higher frequency ripple of 1200 and 1800 Hz and the effect was in a good agreement with an electric circuit simulation program LTspice.

 
WEPD065 Storage Ring Magnet Power Supply System at the PLS-II sextupole, power-supply, septum, lattice 3248
 
  • S.-C. Kim, K.R. Kim, S.H. Nam, C.D. Park, Y.G. Son, C.W. Sung
    PAL, Pohang, Kyungbuk
 
 

Lattice of the Storage Ring (SR) is changed from TDB to DBA, and beam energy is enhanced from 2.5 GeV to 3.0 GeV at the Pohang Light Source upgrade (PLS-II). Therefore all magnet specification and number have to change compare with exist PLS SR. At the PLS-II, Magnet Power Supplies (MPS) must be re-designed according to magnet specification of the PLS-II. Newly development MPSs are adopted switching type power conversion technology. High current unipolar MPSs are parallel operation type of unit module buck type power supply, and low current bipolar MPSs are H-bridge type. All MPSs are performed ± 10 ppm output current stability and adopted full digital controller. In this paper, we report on the development and characteristics of the MPS for PLS-II SR.

 
WEPD066 Power Converters for ALBA Storage Ring dipole, storage-ring, sextupole, controls 3251
 
  • M. Pont, D. Alloza, R. Petrocelli, D. Yepez
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès
  • R. Camell, G. Gross, M. Teixido
    CITCEA-UPC, Barcelona
 
 

ALBA is a 3 GeV third generation synchrotron light source under construction in Spain. The design and performance of the ALBA Storage Ring Power Converters will be described. A total of 122 power converters are required: 1 for the dipoles (all connected in series), 112 for the quadrupoles (each magnets with its own power supply) and 9 for the sextupoles (each family connected in series). All converters are switched mode with full digital regulation and a common control interface. The paper will describe the performance of the power converters and compare it with the design specifications.

 
WEPD067 Power Converters for ALBA Booster dipole, booster, controls, synchrotron 3254
 
  • M. Pont, D. Alloza, R. Petrocelli, D. Yepez
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès
  • R. Camell, G. Gross, M. Teixido
    CITCEA-UPC, Barcelona
 
 

ALBA is a 3 GeV third generation synchrotron light source under construction in Spain. The injection system is composed of a 100 MeV Linac as pre-injector followed by a full energy booster synchrotron. The booster requires AC power converters operating at 3.125 Hz with a sinusoidal current waveform. All converters are switched mode with full digital regulation and a common control interface. The design specifications have been demonstrated and early tests on the Booster commissioning with beam will be presented

 
WEPD069 Booster of the ALBA Synchrotron Light Source: Pre-commissioning experiences booster, injection, synchrotron, radiation 3257
 
  • M. Pont
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès
 
 

ALBA is a 3 GeV third generation synchrotron light source under construction in Spain. The injection system is composed of a 100 MeV Linac as pre-injector followed by a full energy booster synchrotron which shares the same tunnel as the storage ring. With a circumference of 249.6 m and a magnetic lattice based on combined magnets an emittance of 9 nm.rad has been predicted. At present time we are in an intensive sub-system commissioning testing with the aim to start the commissioning with beam early in January 2010.

 
WEPD070 High Precision Current Control for the LHC Main Power Converters controls, fibre-optics, dipole, superconducting-magnet 3260
 
  • H. Thiesen, M.C. Bastos, G. Hudson, Q. King, V. Montabonnet, D. Nisbet, S.T. Page
    CERN, Geneva
 
 

The LHC was restarted on the 20th of November 2009 after 14 months of shutdown. The machine is composed of 8 powering sectors, each containing a main dipole circuit and two main quadrupole circuits. Each of these main circuits is entirely independent. To operate the LHC, the magnetic fields in the main magnets must be controlled with unprecedented accuracy. Indeed, the current in each power converter must be controlled with an accuracy of a few ppm (parts per million of nominal current) and the currents must be perfectly synchronised between sectors. To achieve the performance required of the LHC power converters, many challenges have been resolved. These include: measuring the power converter currents with an extreme absolute precision, control of these currents without tracking error or overshoot, perfect synchronisation of the current references sent to the power converters of the 24 main circuits. This paper details how these various problems have been resolved to obtain the performance required. Many experimental results are included, in particular the results of the tracking tests performed with the main circuits of the LHC.

 
WEPD075 TPS Magnet Power Supply System power-supply, dipole, sextupole, storage-ring 3275
 
  • K.-B. Liu, K.T. Hsu, Y.D. Li, B.S. Wang
    NSRRC, Hsinchu
 
 

The Taiwan Photon Source (TPS), a third-generation synchrotron radiation light source, should be installed with 1032 sets of magnet power supplies for the storage ring and 152 sets for the injector. All of the power supplies are preferred in PWM switched mode with IGBT or MOSFET. A high precision DC power supply for 48 dipoles of the storage ring; there are 240 quadrupole magnets and 168 sextupole magnets in storage ring, the main winding of quadrupole and 168 sextupole magnets are powered by individual power supplies. In the booster ring, one set of dynamic power supply for the dipole magnets and four sets for quadrupole magnets run at the biased 3Hz quasi sinusoidal wave. There are several hundred corrector (fast and slow) magnets and skew quadrupole magnets in storage ring and injector are powered by the same bipolar power converters.

 
WEPE007 Simulation Study of Scale Error Effect of BPM in ILC Main Linac Corrections optics, emittance, linac, simulation 3353
 
  • K. Kubo
    KEK, Ibaraki
  • D. Wang
    IHEP Beijing, Beijing
 
 

For preserving low emittance beam in the ILC (International Linear Collider) main linacs, Dispersion Matching Steering (DMS) is planed to be used as a main correction method. The linacs are following the earth's curvature and the designed vertical dispersion in the linacs should not be zero. For this reason, the orbit difference due to beam energy difference will have to be measured accurately and tolerance of scale error of beam position monitors (BPM) can be tight. Here, the tolerance of the scale error are estimated by tracking simulations. Choice of optics design for relaxing the tolerance is also discussed.

 
WEPE017 Beam Test Plan of Permanent Magnet Quadrupole Lens at ATF2 permanent-magnet, coupling, feedback, vacuum 3380
 
  • Y. Iwashita, H. Fujisawa, M. Ichikawa, H. Tongu, S. Ushijima
    Kyoto ICR, Uji, Kyoto
  • M. Masuzawa, T. Tauchi
    KEK, Ibaraki
 
 

A prototype of a permanent magnet quadrupole lens for ILC final focus doublet is fabricated. In order to demonstrate the feasibility, it will be tested in a real beam line. Such practical experiences include its shipping, storage, handling, installation, alignment technique, and so on. Because permanent magnets cannot be switched off in contradistinction to electromagnets, they should be evacuated from beam lines when no interference is desired and the process should be quick with enough reproducibility. The magnetic center and strength stability including reproducibility are also important issues during the beam test. In order to reduce interferences with current ongoing testing items at ATF2, the magnet will be installed at a further upstream position of the ATF2 beam line. The installation and test plan will be described.

 
WEPE028 CLIC BDS Tuning, Alignment and Feedbacks Integrated Simulations feedback, luminosity, ground-motion, alignment 3413
 
  • R. Tomás, B. Dalena, J. Pfingstner, D. Schulte, J. Snuverink
    CERN, Geneva
  • J.K. Jones
    Cockcroft Institute, Warrington, Cheshire
  • A. Latina
    Fermilab, Batavia
  • J. Resta-López
    JAI, Oxford
 
 

The CLIC BDS tuning, alignment and feedbacks studies have been typically performed independently and only over particular sections of the BDS. An effort is being put to integrate all these procedures to realistically evaluate the luminosity performance.

 
WEPE030 The CLIC BDS Towards the Conceptual Design Report luminosity, alignment, collimation, lattice 3419
 
  • R. Tomás, B. Dalena, E. Marin, D. Schulte, G. Zamudio
    CERN, Geneva
  • D. Angal-Kalinin, J.-L. Fernandez-Hernando, F. Jackson
    Cockcroft Institute, Warrington, Cheshire
  • J. Resta-López
    JAI, Oxford
  • A. Seryi
    SLAC, Menlo Park, California
 
 

The CLIC Conceptual Design Report must be ready by 2010. This paper aims at addressing all the critical points of the CLIC BDS to be later implemented in the CDR. This includes risk evaluation and possible solutions to a number of selected points. The smooth and practical transition between the 500 GeV CLIC and the design energy of 3 TeV is also studied.

 
WEPE041 A Superconducting Magnet Upgrade of the ATF2 Final Focus laser, sextupole, linear-collider, collider 3440
 
  • B. Parker, M. Anerella, J. Escallier, P. He, A.K. Jain, A. Marone, P. Wanderer, K.-C. Wu
    BNL, Upton, Long Island, New York
  • P. Bambade
    LAL, Orsay
  • B. Bolzon, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • P.A. Coe, D. Urner
    OXFORDphysics, Oxford, Oxon
  • C. Hauviller, E. Marin, R. Tomás, F. Zimmermann
    CERN, Geneva
  • N. Kimura, K. Kubo, T. Kume, S. Kuroda, T. Okugi, T. Tauchi, N. Terunuma, T. Tomaru, K. Tsuchiya, J. Urakawa, A. Yamamoto
    KEK, Ibaraki
  • A. Seryi, C.M. Spencer, G.R. White
    SLAC, Menlo Park, California
 
 

The KEK ATF2 facility, with a well instrumented beam line and Final Focus (FF), is a proving ground for linear collider (LC) technology to demonstrate the extreme beam demagnification and spot stability needed for a LC FF*. ATF2 uses water cooled magnets but the baseline ILC calls for a superconducting FF**. Thus we plan to replace some ATF2 FF magnets with superconducting ones made via direct wind construction as planned for the ILC. With no cryogenic supply at ATF2, we look to cool magnets and current leads with a few cryocoolers. ATF2 FF coil winding is underway at BNL and production warm magnetic measurements indicate good field quality. Having FF magnets with larger aperture and better field quality than present FF might allow reducing the beta function at the FF for study of focusing regimes relevant to CLIC. Our ATF2 magnet cryostat will have laser view ports for cold mass movement measurement and FF support and stabilization requirements under study. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC R&D prototype at BNL. We want to be able to predict LC FF performance with confidence.


* ATF2 proposal, volumes 1 and 2 at http://lcdev.kek.jp/ILC-AsiaWG/WG4notes/atf2/proposal/index.html
** International Linear Collider Reference Design Report, ILC-REPORT-2007-001, August 2007.

 
WEPE047 Frictional Cooling for a Slow Muon Source dipole, simulation, proton, factory 3452
 
  • Y. Bao
    IHEP Beijing, Beijing
  • A. Caldwell, G.X. Xia
    MPI-P, München
  • D. Greenwald
    MPI für Physics, Muenchen
 
 

Low energy muon beams are useful for a wide range of physics experiments. High quality muon beams are also required for muon colliders and neutrino factories. The frictional cooling method holds promise for delivering slow muon beams with narrow energy spreads. With this technology, we consider the production of a cold muon beam from a surface muon source, such as that at the Paul Scherrer Institute. A cooling scheme based on frictional cooling is outlined. Simulation results show that the efficiency of slow muon production can be raised to 1%, which is significantly higher than current schemes.

 
WEPE052 Optimization of the MICE Muon Beam Line emittance, optics, target, solenoid 3461
 
  • M. Apollonio
    Imperial College of Science and Technology, Department of Physics, London
  • M.A. Rayner
    OXFORDphysics, Oxford, Oxon
 
 

In the Muon Ionization Cooling Experiment (MICE) at RAL muons are produced and transported in a dedicated beamline connecting the production point (target) to the diffuser, a mechanism inside the first spectrometer solenoid designed to inflate the initial normalized emittance up to 10 mm rad in a controlled fashion. In order to match the incoming muons to the downstream experiment, covering all the possible values of the emittance-momentum matrix, an optimisation procedure has been devised which is based upon a genetic algorithm coupled to the tracking code G4Beamline. Details of beamline tuning and initial measurements are discussed.

 
WEPE072 Incorporating RF into a Muon Helical Cooling Channel cavity, solenoid, collider, lattice 3509
 
  • S.A. Kahn, G. Flanagan, R.P. Johnson, M.L. Neubauer
    Muons, Inc, Batavia
  • V.S. Kashikhin, M.L. Lopes, K. Yonehara, M. Yu, A.V. Zlobin
    Fermilab, Batavia
 
 

A helical cooling channel (HCC) consisting of a pressurized gas absorber imbedded in a magnetic channel that provides solenoidal, helical dipole and helical quadrupole fields has shown considerable promise in providing six-dimensional cooling for muon beams. The energy lost by muons traversing the gas absorber needs to be replaced by inserting RF cavities into the HCC lattice. Replacing the substantial muon energy losses using RF cavities with reasonable gradients will require a significant fraction of the channel length be devoted to RF. However to provide the maximum phase space cooling and minimum muon losses, the HCC should have a short period and length. In this paper we examine an approach where each HCC cell has an RF cavity imbedded in the aperture with the magnetic coils are split allowing for half of the cell length to be available for the RF coupler and other services.

 
WEPE077 Permanent Magnet Quadrupole Final Focus System for the Muon Collider simulation, collider, permanent-magnet, emittance 3524
 
  • F.H. O'Shea, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • G. Andonian
    RadiaBeam, Marina del Rey
 
 

One of the challenges of the proposed muon collider is the beam size at the interaction region. The current target for the beta function (beta-star) is 10mm for the 1.5TeV scenario with a beam emittance of 25mm-mrad. In this paper, we describe the design and development of a final focusing scheme that attempts to reach these parameters. The final focus scheme is based on the use of permanent magnet quadrupoles (PMQ) in a triplet configuration. Initial simulations show that the PMQs reach gradients as high as ~990T/m using Praseodymium based magnets in a Halbach style arrangement. Possible methods for tuning the PMQs at the interaction region, via temperature control and high-resolution movers, are also described.

 
WEPE079 Particle Production in the MICE Beamline target, proton, solenoid, emittance 3530
 
  • L. Coney
    UCR, Riverside, California
  • A.J. Dobbs
    Imperial College of Science and Technology, Department of Physics, London
  • Y. Karadzhov
    Sofia University St. Kliment Ohridski, Faculty of Physics, Sofia
 
 

The Muon Ionization Cooling Experiment (MICE) is being built at the Rutherford Appleton Laboratory (RAL) to test ionization cooling of a muon beam. Successful demonstration of cooling is a necessary step along the path toward creating future high intensity muon beams in either a Neutrino Factory or Muon Collider. Production of particles in the MICE beamline begins with a titanium target dipping into the ISIS proton beam. The resulting pions are captured, momentum-selected, and fed into a 5T superconducting decay solenoid which contains the pions and their decay muons. Another dipole then selects the final particles for propagation through the rest of the MICE beamline. Within the last year, the MICE target has been redesigned, rebuilt, and has begun operating in ISIS. The decay solenoid has also become operational, dramatically increasing the number of particles in the MICE beamline. In parallel, particle identification detectors have also been installed and commissioned. In this paper, the commissioning of the improved MICE beamline and target will be discussed, including the use of Time-of-Flight detectors to understand the content of the MICE beam between 200 and 444 MeV/c.

 
WEPE084 Muon Acceleration with RLA and Non-scaling FFAG Arcs linac, optics, sextupole, lattice 3539
 
  • V.S. Morozov
    ODU, Norfolk, Virginia
  • S.A. Bogacz
    JLAB, Newport News, Virginia
  • D. Trbojevic
    BNL, Upton, Long Island, New York
 
 

Recirculating linear accelerators (RLA) are the most likely means to achieve the rapid acceleration of short-lived muons to multi-GeV energies required for Neutrino Factories and TeV energies required for Muon Colliders. In the work described here, a novel arc optics based on a Non Scaling Fixed Field Alternating Gradient (NS-FFAG) lattice is developed, which would provide sufficient momentum acceptance to allow multiple passes (two or more consecutive energies) to be transported in one string of magnets. We present a combination of the non-scaling NS-FFAG RLA placed in a straight section. Orbit offsets of different energy muons are kept small in the NS-FFAG arcs during multiple passes. The NS-FFAG, made of densely packed FODO cells, allows momentum acceptance of dp/p=±60%. This solution would reduce overall cost and simplify the operation. Difference in a muon path length for corresponding energies is corrected with a chicane. We will also discuss technical requirements to allow the maximum number of passes by using an adjustable path length to accurately control the returned beam phase to synchronize with the RF.

 
WEPE088 A New Design for ILC 3.2 km Damping Ring Based on FODO Cell damping, lattice, wiggler, dipole 3551
 
  • D. Wang, J. Gao, Y. Wang
    IHEP Beijing, Beijing
 
 

In this paper, we made a new design for ILC 3.2 km damping ring with 2 arcs based on FODO cell and 2 straight sections which are nearly the same as the new version of the 6.4 km ring DCO4. This new lattice uses less dipoles and quadrupoles than the present SuperB like lattice and has an adequate aperture for the large injected emittance of the positron beam. The work of lattice design and DA optimization will be presented in detail.

 
WEPE091 The Swiss Light Source a "Test-bed" for Damping Ring Optimization emittance, coupling, alignment, dipole 3560
 
  • M. Böge, M. Aiba, A. Lüdeke, N. Milas, A. Streun
    PSI, Villigen
 
 

The application of various optics correction techniques at the SLS allows to reduce the vertical emittance to <3 pm.rad corresponding to an emittance coupling of <0.05 %. Beam sizes can be measured with a resolution of ~0.5 um allowing to resolve vertical beam sizes close to the quantum radiation limit of 0.55 pm.rad. The application of beam-based alignment/ calibration techniques on magnet girders (remotely controlled), quadrupoles and sextupoles can be used to center the beam in all relevant optical elements at a minimum expense of vertical dipole corrector strength. Furthermore a fast orbit feedback based on a high resolution digital BPM system allows to stabilize the closed orbit up to ~90 Hz and to perform precise orbit manipulations within this bandwidth. Furthermore the top-up operation mode guarantees very stable conditions for the various beam-based measurements. These conditions make the SLS an excellent "test-bed" for future damping ring optimization.

 
WEPE092 Mechanical and Vacuum Design of the Wiggler Section of the ILC Damping Rings wiggler, vacuum, electron, damping 3563
 
  • O.B. Malyshev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N.A. Collomb, J.M. Lucas, S. Postlethwaite
    STFC/DL, Daresbury, Warrington, Cheshire
  • M. Korostelev
    The University of Liverpool, Liverpool
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire
  • K. Zolotarev
    BINP SB RAS, Novosibirsk
 
 

A vacuum vessel design of wiggler sections should meet a few challenging specification. The SR power of about 40 kW is generated in each wiggler. Expanding fan of SR radiation reaches the beam vacuum chamber walls in the following wiggler and may cause the following problem: massive power dissipation on vacuum chamber walls inside the cryogenic vessel, radiation damage of superconducting coil, high photo-electron production rate that cause an e-cloud build-up to unacceptable level. Therefore this power should be absorbed in the places where these effects are tolerable or manageable. A few possible solutions for tackling all SR related problems as well as vacuum design are discussed in the paper in details.

 
WEPE094 SR Power Distribution along Wiggler Section of ILC DR wiggler, vacuum, damping, electron 3569
 
  • O.B. Malyshev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N.A. Collomb, J.M. Lucas, S. Postlethwaite
    STFC/DL, Daresbury, Warrington, Cheshire
  • M. Korostelev
    The University of Liverpool, Liverpool
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire
  • K. Zolotarev
    BINP SB RAS, Novosibirsk
 
 

A 374-m long wiggler section is a key part of ILC damping ring that should alloy reaching a low beam emittance for the ILC experiment. Synchrotron radiation generated by the beam in the wigglers should be absorbed by different components of vacuum vessel, including specially designed absorbers. The optimisation of the mechanical design, vacuum system and anti-e-cloud mitigation requires accurate calculation of the SR power distribution. The angular power distribution from a single wiggler was calculated with in-house developed software. Then the superposition of SR from all wigglers allows calculating power distribution for all components along the wiggler section and the downstream straight section.

 
THPEA008 Experimental Characterization of the RF Gun Prototype for the SPARX-FEL Project gun, coupling, FEL, simulation 3688
 
  • L. Faillace, L. Palumbo
    Rome University La Sapienza, Roma
  • P. Frigola
    RadiaBeam, Marina del Rey
  • A. Fukasawa, B.D. O'Shea, J.B. Rosenzweig
    UCLA, Los Angeles, California
  • B. Spataro
    INFN/LNF, Frascati (Roma)
 
 

The quest for high brightness beams is a crucial key for the SPARX-FEL Project. In this paper, we present the design (including RF modeling, cooling, thermal and stress analyses as well as frequency detuning) of a single feed S-Band RF Gun capable of running near 500 Hz. An alternative design with dual feed has already been designed. Also, experimental results from the RF characterization of the prototype, including field measurements, are presented. The RF design follows the guidelines of the LCLS Gun, but the approach diverges significantly as far as the management of the cooling and mechanical stress is concerned. Finally, we examine the new proprietary approach of RadiaBeam Technologies for fabricating copper structures with intricate internal cooling geometries that may enable very high repetition rate.


* C.Limborg et al., "RF Design of the LCLS Gun".
** P. Frigola et al., "Development of solid freeform fabrication (SFF) for the production of RF Photoinjectors".

 
THPEA041 Manufacturing and Testing of a TBL PETS Prototype vacuum, extraction, scattering, instrumentation 3768
 
  • F. Toral, P. Abramian, J. Calero, D. Carrillo, F.M. De Aragon, L. García-Tabarés, J.L. Gutiérrez, A. Lara, E. Rodríguez García, L. Sanchez
    CIEMAT, Madrid
  • S. Döbert, I. Syratchev
    CERN, Geneva
 
 

The goal of the present CLIC test facility (CTF3) is to demonstrate the technical feasibility of the CLIC scheme. The Test Beam Line (TBL) is used to study a CLIC decelerator focusing on 12 GHz power production and the stability of the decelerated beam. The extracted CTF3 drive beam from the combiner ring (CR) features a maximum intensity of 28 A and 140 ns pulse duration, where the Test Beam Line consists of 16 cells, each one including a BPM, a quadrupole on top of a micrometer-accuracy mover and a RF power extractor so-called PETS (Power Extraction and Transfer Structure). This paper describes the first prototype fabrication techniques, with particular attention to the production of the long copper rods which induce the RF generation. A special test bench for the characterization of the device with low RF power measurements has been developed. Performed mesurements of the scattering parameters and the electric field profile along the structure are carefully described. Finally, the prototype has been installed at CLEX, and first measurements with beam are also reported.

 
THPEA063 X-band RF Gun Development gun, cathode, cavity, coupling 3816
 
  • A.E. Vlieks, V.A. Dolgashev, S.G. Tantawi
    SLAC, Menlo Park, California
  • S.G. Anderson, F.V. Hartemann, R.A. Marsh
    LLNL, Livermore, California
 
 

In support of the T-REX program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to an earlier gun developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200MeV/m with low breakdown rate. RF will be coupled into the structure through a symmetric final cell with a shape optimized to eliminable both dipole and quadruple field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.

 
THPEA065 RF Choke for Standing Wave Structures and Flanges vacuum, coupling, resonance, electromagnetic-fields 3822
 
  • A.D. Yeremian, V.A. Dolgashev, S.G. Tantawi
    SLAC, Menlo Park, California
 
 

SLAC participates in the U.S. High Gradient collaboration whose charter includes basic studies of rf breakdown properties in accelerating structures. These studies include experiments with different materials and construction methods for single cell standing wave accelerating structures. The most commonly used method of joining cells of such structures is the high temperature bonding and/or brazing in hydrogen and/or vacuum. These high temperature processes may not be suitable for some of the new materials that are under consideration. We propose to build structures from cells with an rf choke, taking the cell-to-cell junction out of the electromagnetic field region. These cells will be clamped together in a vacuum enclosure, the choke joint ensuring continuity of rf currents. Next, we propose a structure with a choke joint in a high gradient cell and a view port which may allow us microscopic, in-situ observation of the metal surface during high power tests. And third, we describe the design of a TM01 choke flange for these structures.

 
THPEA072 Model of He I/He II Phase Transition for the Superconducting Line Powering LHC Correctors cryogenics, dipole, simulation, collider 3837
 
  • M. Sitko, B. Skoczen
    CUT, Krakow
 
 

The array of corrector magnets in the LHC is powered by means of a superconducting line attached to the main magnets. The subcooling time of the line has to be minimized in order not to delay the operation of the collider. The corresponding cable-in-conduit problem is formulated in the framework of two-fluid model and the Gorter-Mellink law of heat transport in superfluid helium. A model of λ front propagation along the narrow channel containing superconductors and liquid helium is presented. The one-dimensional model* adopts plane wave equations to describe λ front propagation. This approach to normal-to-superfluid phase transition in liquid helium allows to calculate the time of subcooling and the temperature profile on either side of the travelling front in long channels containing superconducting bus-bars. The model has been verified by comparing the analytical solutions with the experimental results obtained in the LHC String 2 experiment. The process of the LHC Dispersion Suppressors subcooling has been optimized by using the presented model. Based on the results, a novel concept of copper heat exchanger for LHC DS operating in superfluid helium is introduced.


* M. Sitko, B. Skoczeń, Modelling HeI-HeII phase transformation in long channels containing superconductors, Int. Journal of Heat and Mass Transfer, Vol. 52, Issues 1-2,pp. 9-16, 2009.

 
THPEA086 Recovering about 5 km of LHC Beam Vacuum System after Sector 3-4 Incident vacuum, controls, interlocks, cryogenics 3870
 
  • V. Baglin, B. Henrist, B. Jenninger, J.M. Jimenez, E. Mahner, G. Schneider, A. Sinturel, A. Vidal
    CERN, Geneva
 
 

During the sector 3-4 incident, the two apertures of the 3 km long cryogenic vacuum sectors of the CERN Large Hadron Collider (LHC) were brutally vented to helium. A systematic visual inspection of the beam pipe revealed the presence of soot, metallic debris and super insulation debris. After four month of cleaning, the beam vacuum system was recovered. This paper describes the tools and methodologies developed during this period, the achieved performances and discusses possible upgrades.

 
THPEB014 Status and Upgrade Plan of Slow Extraction from the J-PARC Main Ring extraction, feedback, power-supply, controls 3912
 
  • M. Tomizawa, T. Adachi, Y. Arakaki, A. Kiyomichi, S. Murasugi, R. Muto, H. Nakagawa, K. Niki, K. Okamura, Y. Sato, S. Sawada, Y. Shirakabe, H. Someya, K.H. Tanaka, T. Toyama, E. Yanaoka
    KEK, Ibaraki
  • A. Ando, Y. Hashimoto, T. Koseki, J. Takano
    J-PARC, KEK & JAEA, Ibaraki-ken
  • D. Horikawa, I. Sakai
    University of Fukui, Faculty of Engineering, Fukui
  • K. Mochiki, S. Onuma
    Tokyo City University, Tokyo
  • H. Sato
    Tsukuba University, Ibaraki
  • A. Schnase
    JAEA/J-PARC, Tokai-mura
 
 

High power protons from the J-PARC main ring is slowly extracted using the third integer resonance and delivered to the experimental hall for various nuclear and particle physics experiments. The slow extraction device comprises two electro static septa (ESS),ten magnetic septa, four bump magnets, eight resonant sextupole magnets and their power supply. One of the critical issue of the slow extraction is radiation caused by the beam loss during the slow extraction. We have developed the electrostatic and magnetic septa with thin septum thickness. A unique scheme with large step size and small angular spread of the extracted beam enables hit rate on the ESS less than 1% level. In January 2009, first 30 GeV proton beam has been successfully delivered to the fixed target. Quadrupole magnets and a DSP feedback control system to obtain a uniform beam spill structure were implemented in 2009 summer shutdown period. We will report the extraction efficiency, extracted beam profiles and spill structure obtained by the beam commissioning so far. We will also mention a upgrade plan based on some new ideas to aim a higher performance.

 
THPEB016 Beam Fast Extraction Tuning of the J-PARC Main Ring extraction, septum, simulation, emittance 3918
 
  • G.H. Wei
    KEK/JAEA, Ibaraki-Ken
  • A. Ando, T. Koseki, J. Takano
    J-PARC, KEK & JAEA, Ibaraki-ken
  • K. Fan, S. Igarashi, K. Ishii, T. Nakadaira, M. Tomizawa, M. Uota
    KEK, Ibaraki
  • H. Harada, P.K. Saha
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
 

The beam commissioning of J-PARC/MR has been started from May 2008 and is in progress*. One key purpose of MR commissioning is the 30 GeV beam fast extraction to Neutrino beam line, which reflect the overall commissioning result. In the MR, the third straight section is assigned for the fast extraction. 5 kickers and 8 septa were installed there, which can give beam a bipolar kick to inside or outside of MR. Inside kick means beam to Neutrino Oscillation Experiment, while outside kick means beam dumped to abort line. However before commissioning, the measured magnetic field distribution of each septa shows non-linear profile along the horizontal direction. In order to find the influence, a simulation with these measured field has been performed. Depends on this study and some OPI (Operation Interface) made by code SAD for orbit modification online, fast extraction of 30 GeV beam to Neutrino line has been achieved on April 23rd 2009. Beam orbit have been tuned to less than 0.5 mm and 0.1 mrad in both horizontal and vertical at the beginning of Neutrino line, which is also the end of MR fast extraction. And so far, 100 kW continual operation to neutrino line have been achieved, too.


* T. Koseki, "Challenges and Solutions for J-PARC Commissioning and Early Operation", in these proceedings

 
THPEB022 Beam Spill Control for the J-PARC Slow Extraction feedback, extraction, controls, target 3933
 
  • A. Kiyomichi, T. Adachi, A. Akiyama, S. Murasugi, R. Muto, H. Nakagawa, J.-I. Odagiri, K. Okamura, H. Sato, Y. Sato, S. Sawada, H. Someya, K.H. Tanaka, M. Tomizawa, A. Toyoda
    KEK, Tsukuba
  • T. Kimura
    Miyazaki University, Miyazaki
  • K. Mochiki, S. Onuma
    Tokyo City University, Tokyo
  • K. Noda
    NIRS, Chiba-shi
 
 

The slow extraction beam from the J-PARC Main Ring (MR) to the Hadron Experimental Facility is used in various nuclear and particle physics experiments. A flat structure and low ripple noise are required for the spills of the slow extraction. The spill control system has been developed for the J-PARC slow extraction to make a flat structure and small ripple. It consists of the extraction quadrupole magnets and feedback device. The extraction magnets consist of two kinds of quadrupole magnets, EQ (Extraction Q-magnet) which make flat beam and RQ (Ripple Q-magnet) which reject the high frequent ripple noise. The feedback system, which is using Digital Signal Processor (DSP), makes a ramping pattern for EQ and RQ from spill beam monitor. The extraction magnets and feedback device were installed in September 2009, and spill feedback study were successfully started from the beam time in October 2009. Here we report the operation status of magnets and first study of beam commissioning with spill feedback.

 
THPEB028 A Doublet-based Injection-extraction Straight Section for PS2 injection, optics, extraction, laser 3945
 
  • W. Bartmann, B. Goddard, C. Heßler
    CERN, Geneva
 
 

A new design of the injection-extraction straight section for PS2 has been made, motivated by problematic intersections of the PS2 transfer lines, potential gain in drift length for the beam transfer systems and reduction of the total straight section length. The new straight contains two injection systems with separate beam lines and three extraction systems to the SPS sharing a single beam line, together with an extracted "waste" beam from the H- injection with its line to a beam dump. A symmetric doublet structure was chosen, with a reduced number of cells and quadrupoles. The optics solutions are described and the matching and tuning flexibility investigated. The implications for the different injection and extraction systems and transfer lines will be discussed, together with the specific issues of integration into the overall lattice.

 
THPEB029 The Final Beam Line Design for the HiRadMat Test Facility target, vacuum, instrumentation, optics 3948
 
  • C. Heßler, B. Goddard, M. Meddahi
    CERN, Geneva
 
 

The High Radiation to Materials facility - thereafter HiRadMat - is designed to allow testing of accelerator components, in particular those of the LHC and its injectors, with the impact of high-intensity pulsed beams. The facility is currently under construction, as an approved CERN project. The installation of the dedicated primary beam line and experimental area is planned during the 2010-2011 CERN accelerator technical shutdown. It will be ready for users after commissioning and some initial running in October 2011. A detailed proton beam line design has been performed in order to fulfill the beam parameter specification, in particular the demanding optics flexibility at the test stand location. The studies presented include trajectory correction and aperture studies as well as specifications of magnetic systems, power converters, beam instrumentation and vacuum systems.

 
THPEB034 The Design of the MEBT for the PAMELA Medical FFAG proton, injection, dipole, cyclotron 3960
 
  • M. Aslaninejad, M.J. Easton, J. Pasternak, J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London
  • K.J. Peach, T. Yokoi
    JAI, Egham, Surrey
 
 

The PAMELA medical FFAG complex under design in the UK, aims to operate with both proton and carbon beams for hadron therapy. Medium energy beam transfer(MEBT) of PAMELA consists of the proton beam line coming out of the injector cyclotron, carbon beam transfer from the independent carbon 6+ injector linac, switching dipole when both beam merge and transfer line toward the PAMELA NS-FFAG. The MEBT layout and design, which needs to incorporate the beam chopper for the intensity modulation are discussed. The careful matching of optical functions between various components in the MEBT and beam dynamics simulations are presented.

 
THPEC040 Design and Shielding of a Beamline from ELENA to ATRAP using Electrostatic Quadrupole Lenses and Bends antiproton, solenoid, shielding, emittance 4146
 
  • Y. Yuri
    JAEA/TARRI, Gunma-ken
  • E. P. Lee
    LBNL, Berkeley, California
 
 

The construction of the Extra Low ENergy Antiprotons (ELENA) upgrade to the Antiproton Decelerator (AD) ring has been proposed at CERN to produce a greatly increased current of low energy antiprotons for various experiments including, of course, anti-hydrogen studies. This upgrade involves the addition of a small storage ring and electrostatic beam lines. 5.3 MeV antiproton beams from AD are decelerated down to 100 keV in the compact ring and transported to each experiment apparatus. In this paper, we describe an electrostatic beam line from ELENA to ATRAP and magnetic shielding of the low-energy beam line against the ATRAP solenoid magnet. A possible design of this system is displayed.

 
THPEC068 First Simulation Tests for the Bilbao Accelerator Ion Source Test Stand ion, ion-source, simulation, diagnostics 4211
 
  • I. Bustinduy, D. Fernandez-Cañoto, D. de Cos
    ESS Bilbao, Bilbao
  • J. Alonso, M. Eguiraun, R. Enparantza, M. Larrañaga
    Fundación TEKNIKER, Eibar (Gipuzkoa)
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao
  • V. Etxebarria, J. Jugo, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao
  • D.C. Faircloth, S.R. Lawrie, A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J. Feuchtwanger
    ESS-Bilbao, Zamudio
  • S. Jolly
    Imperial College of Science and Technology, Department of Physics, London
  • J. Lucas
    Elytt Energy, Madrid
 
 

The rationale behind the Bilbao Accelerator Ion Source Test Stand (ITUR) project is to perform a comparison between different kinds of hydrogen ion sources using the same beam diagnostics setup. In particular, a direct comparison will be made in terms of the emittance characteristics of Penning-type sources such as those currently being used in ISIS (UK) and those of microwave type such as CEA-Saclay and INFN. The aim here pursued is to build an Ion Source Test Stand where virtually any type of source can be tested and, thus, compared to the results of other sources under the same gauge. It would then be possible to establish a common ground for effectively comparing different ion sources. The work here presented reports on the first simulations for the H-/H+ extraction system, as well the devices that conform the diagnostic vessel: Faraday Cup, Pepperpot and Retarding Potential Analyzer (RPA), among others.

 
THPEC069 Beam Dynamics Studies on the Radio-Frequency Quadrupole for the Bilbao Accelerator rfq, simulation, emittance, proton 4214
 
  • I. Bustinduy, N. Garmendia, H. Hassanzadegan, D. de Cos
    ESS Bilbao, Bilbao
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao
  • V. Etxebarria, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao
  • J. Feuchtwanger
    ESS-Bilbao, Zamudio
  • S. Jolly, J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
 
 

The main objective of the Bilbao Front End Test Stand (ETORFETS) is to set up a facility to demonstrate experimentally the design ideas for the future ESS LINAC that are being proposed in discussion forums by the technical scientific community. ETORFETS is focused on the first stage of the linear accelerator, namely, that of the Radio-Frequency Quadrupole (RFQ) and its pre and post beam transport systems. The RFQ bunches, focuses transverse and longitudinally, and accelerates charged particles in the low-energy range (up to ~ 3 MeV), thus becoming one of the main components of the accelerating structure. The first RFQ simulations, performed in Superfish and GPT software packages, will be presented in this work.

 
THPEC078 Development of a Cryocatcher Prototype for SIS100 ion, vacuum, cryogenics, heavy-ion 4238
 
  • L.H.J. Bozyk
    TU Darmstadt, Darmstadt
  • D.H.H. Hoffmann, H. Kollmus, P.J. Spiller
    GSI, Darmstadt
 
 

The central accelerator SIS100 of the FAIR-facility will provide high intensity, intermediate charge state heavy ion beams. In order to assure a reliable operation with the intermediate charge states, a special synchrotron design, including ion catcher system had to be developed. Intermediate charge state heavy ions suffer from high cross sections for ionization. Due to the dedicated synchrotron layout, ions which have been further stripped by collisions with residual gas atoms are not lost uncontrolled onto the beam pipe but are caught by the ion catcher system in the cryogenic arcs. The construction and test of a cryo-catcher prototype at GSI is a workpackage of the EU-FP7 project COLMAT. A prototype catcher including cryostat will be set-up at GSI to perform measurements with heavy ion beams of the heavy ion synchrotron SIS18.

 
THPD011 Lattice Design for the LHeC Recirculating Linac linac, SRF, electron, cavity 4298
 
  • Y. Sun, A.L. Eide, F. Zimmermann
    CERN, Geneva
  • C. Adolphsen
    SLAC, Menlo Park, California
 
 

In this paper, we present a lattice design for the Large Hadron Electron Collider (LHeC) recirculating Linac. The recirculating Linac consists of one roughly 3km long linac hosting superconducting RF (SRF) accelerating cavities, two arcs and one transfer line for the recirculation. Electron beam will have two passes in the SRF linac to get a maximum energy of 140 GeV, or have four passes with a maximum energy of 60 GeV (two for acceleration and two for deceleration) in the Energy Recovery Linac (ERL) option.

 
THPD023 Beam Dynamics Simulations regarding the Experimental FFAG EMMA, using the on-line code injection, simulation, extraction, dipole 4322
 
  • F. Méot
    CEA, Gif-sur-Yvette
  • Y. Giboudot
    Brunel University, Middlesex
  • D.J. Kelliher
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • T. Yokoi
    JAI, Oxford
 
 

The Electron Model for Many Applications FFAG (EMMA) has been the object of extensive beam dynamics simulations during its design and construction phases, using the ray-tracing code Zgoubi, which has been retained as the on-line simulation engine. On the other hand EMMA commissioning requires further advanced beam dynamics studies as well as on-line and off-line simulations. This contribution reports on some aspects of the studies so performed during the last months using Zgoubi.

 
THPD027 Orbit Correction in a non-scaling FFAG closed-orbit, resonance, injection, lattice 4334
 
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • S.L. Sheehy
    JAI, Oxford
 
 

EMMA - the Electron Model of Many Applications - is to be built at the STFC Daresbury Laboratory in the UK and will be the first non-scaling FFAG ever constructed. The purpose of EMMA is to study beam dynamics in such an accelerator. The EMMA orbit correction scheme must deal with two characteristics of a non-scaling FFAG: i.e. the lack of a well defined reference orbit and the variation with momentum of the phase advance between lattice elements. In this study we present a novel orbit correction scheme that avoids the former problem by instead aiming to maximise both the symmetry of the orbit and the physical aperture of the beam. The latter problem is dealt with by optimising the corrector strengths over the energy range.

 
THPD029 Setting the Beam onto the Reference Orbit in Non Scaling FFAG Accelerators closed-orbit, septum, injection, controls 4340
 
  • S.I. Tzenov, J.K. Jones, B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • Y. Giboudot
    Brunel University, Middlesex
 
 

Described in the paper are systematic procedures to inject and keep the beam on the reference trajectory for a fixed energy, as applied to the EMMA non scaling FFAG accelerator. The notion of accelerated orbits in FFAG accelerators has been introduced and some of their properties have been studies in detail.

 
THPD030 Characterisation of the ALICE Accelerator as an Injector for the EMMA NS-FFAG emittance, cathode, simulation, electron 4343
 
  • J.M. Garland, H.L. Owen
    UMAN, Manchester
  • J.W. McKenzie, B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

EMMA (Electron Model with Many Applications) is the first proof-of-principle non-scaling FFAG accelerator and is presently under construction at Daresbury Laboratory in the UK. To probe different parts of the bunch phase space during the acceleration from 10 to 20 MeV (which requires rapid resonance crossing), electron bunches are needed with sufficiently small emittance. To understand the phase space painting into the 3000 mm-mrad EMMA acceptance, we have modelled ALICE (Accelerators and Lasers in Combined Experiments) - which acts as an injector for EMMA - using GPT and compared the estimated emittances with measurements made with a variety of screen-based methods. Although the emittances are not yet as small as desired, we obtain reasonable agreement between simulation and measurement.

 
THPD031 Development of Tomographic Reconstruction Methods for Studies of Transverse Phase Space in the EMMA FFAG Injection Line injection, simulation, betatron, space-charge 4346
 
  • M.G. Ibison, K.M. Hock, D.J. Holder, M. Korostelev
    Cockcroft Institute, Warrington, Cheshire
 
 

We present a simulation study on the reconstruction of the phase space distribution of a beam in the EMMA injection line. The initial step has been to use a Gaussian beam to calculate the phase space distribution and the horizontal and vertical beam projections which would be expected at a screen. The projections obtained from a range of optical configurations are provided as input for reconstructing the phase space distribution using a standard tomography method. The result from the reconstruction can be compared with the known phase space distribution. By taking into account the limited range of quadrupole strengths available, we can determine how practical limitations may affect the reconstruction.


*"EMMA: THE WORLD'S FIRST NON-SCALING FFAG," R. Edgecock, D. Kelliher, S. Machida, STFC/RAL, Didcot, UK et al. in Proceedings of EPAC08, Genoa, Italy

 
THPD053 Capture and Transport of Electron Beams from Plasma Injectors laser, electron, emittance, solenoid 4401
 
  • P. Antici, A. Mostacci
    INFN/LNF, Frascati (Roma)
  • C. Benedetti
    Bologna University, Bologna
  • M. Migliorati, L. Palumbo
    Rome University La Sapienza, Roma
 
 

Electron beams produced by laser-plasma interaction are attracting the interest of the conventional accelerator community. In particular Laser-accelerated electrons are particularly interesting as source, considering their high initial energy and their strong beam current. Moreover, the advantages of using laser-plasma electron beam can be expressed in terms of size and cost of the global accelerating infrastructure. However, improvements are still necessary since, currently, the many laser-accelerated beams are characterized by a large energy spread and a high beam divergence that degrades quickly the electron beam properties and makes those sources not suitable as a replacement of conventional accelerators. In this paper, we report on the progress of the study related to capture, shape and transport of laser generated electrons by means of tracking codes. Our study has focused on laser-generated electrons obtained nowadays by conventional multi hundred TW laser systems and on numerical predictions. We analyze different lattice structures, working on the optimization of the capture and transport of laser-accelerated electrons. Results and open problems are shown and discussed.

 
THPD056 Experimental Program for the CLIC Test Facility 3 Test Beam Line emittance, dipole, beam-transport, extraction 4410
 
  • E. Adli
    University of Oslo, Oslo
  • A.E. Dabrowski, S. Döbert, M. Olvegård, D. Schulte, I. Syratchev
    CERN, Geneva
  • R.L. Lillestol
    NTNU, Trondheim
 
 

The CLIC Test Facility 3 Test Beam Line is the first prototype for the CLIC drive beam decelerator. Stable transport of the drive beam under deceleration is a mandatory component in the CLIC two-beam scheme. In the Test Beam Line more than 50% of the total energy will be extracted from a 150 MeV, 28 A electron drive beam, by the use of 16 Power Extraction and Transfer structures. A number of experiments are foreseen to investigate the drive beam characteristics under deceleration in the Test Beam Line, including beam stability, beam blow up and the efficiency of the power extraction. General benchmarking of decelerator simulation and theory studies will also be performed. Specially designed instrumentation including precision BPMs, loss monitors and a time-resolved spectrometer dump will be used for the experiments. This paper describes the experimental program foreseen for the Test Beam Line, including the relevance of the results for the CLIC decelerator studies.

 
THPD076 Transverse Coupling Compensation at the UVX LNLS Storage Ring coupling, wiggler, photon, insertion 4455
 
  • X.R. Resende, L. Liu
    LNLS, Campinas
 
 

In this paper we report on recent developments in transverse coupling characterization and compensation in the UVX storage ring at the Brazilian Synchrotron Light Laboratory (LNLS). We have designed and manufactured a compact skew quadrupole with which it was possible to completely compensate coupling introduced by insertion devices (IDs) in the ring.

 
THPD078 A Non Invasive Technique for the Transverse Matching in a Periodic Focusing Channel of a Linac linac, focusing, emittance, ion 4461
 
  • R.D. Duperrier, D. Uriot
    CEA, Gif-sur-Yvette
 
 

A main interest in the high intensity ion linacs is the control of the particle loss in the vacuum chamber. A extremely low fraction of the beam (10-4 or 10-7) is sufficient to complicate the hands on maintenance in such accelerator. Beam mismatching being a major source of halo, it is proposed a non invasive technique to adapt the beam to a periodic focusing channel of a linac based on a FDO of FODO lattice. It is demonstrated that only the matched beam can correspond to a particular signature of the quadrupolar moment of the Beam Positions Monitors. This technique allows also to measure the emittance value or evolution along the channel.

 
THPD079 Optical Studies for the Super Separator Spectrometer S3 multipole, dipole, octupole, sextupole 4464
 
  • D. Boutin, M. Authier, F. Dechery, O. Delferrière, A. Drouart, J. Payet, D. Uriot
    CEA, Gif-sur-Yvette
  • M. Amthor, H. Savajols, M.-H. Stodel
    GANIL, Caen
  • S.L. Manikonda, J.A. Nolen
    ANL, Argonne
 
 

S3 (Super Separator Spectrometer) [1] is a future device designed for experiments with the high intensity heavy ion stable beams of SPIRAL2 [2] at GANIL (Caen, France). It will include a target resistant to these very high intensities, a first stage momentum achromat for primary beam extraction and suppression, a second stage mass spectrometer and a dedicated detection system. This spectrometer includes large aperture quadrupole triplets with embedded multipolar corrections. To enable the primary beam extraction one triplet has to be opened on one side, which requires an appropriate design of such a multipolar magnet. The final mass separation power required for S3 needs a careful design of the optics with a high level of aberration correction. Multiple symmetric lattices were studied for this purpose. A 4-fold symmetric lattice and the achieved results are described in this paper.


[1] A. Drouart et al., Nucl. Phys. A 834 (2010) 747c. [2] SPIRAL2, http://pro.ganil-spiral2.eu/spiral2

 
THPD080 Coupling Measurements in ATF2 Extraction Line coupling, extraction, emittance, controls 4467
 
  • C. Rimbault
    LAL, Orsay
  • S. Kuroda, T. Tauchi, N. Terunuma
    KEK, Ibaraki
  • G.R. White, M. Woodley
    SLAC, Menlo Park, California
 
 

The purpose of ATF2 is to deliver a beam with stable very small spotsizes as required for future linear colliders such as ILC or CLIC. To achieve that, precise controls of the aberrations such as dispersion and coupling are necessary. Theoretically, the complete reconstruction of the beam matrix is possible from the measurements of horizontal, vertical and tilted beam sizes, combining skew quadrupole scans at several wire-scanner positions. Such measurements were performed in the extraction line of ATF2 in May 2009. We present analysis results attempting to resolve the 4X4 beam matrix and discuss the experimental limitations of 4D emittance measurements with wire scanners.

 
THPD083 Apochromatic Beam Transport in Drift-Quadrupole Systems betatron, focusing, FEL, linac 4476
 
  • V. Balandin, R. Brinkmann, W. Decking, N. Golubeva
    DESY, Hamburg
 
 

A straight drift-quadrupole system, though not being an achromat, can transport certain incoming beam ellipses without introducing first-order chromatic distortions. Several examples of such apochromatic beam transport are available in the literature. In this paper we show that the possibility of apochromatic focusing is a general property: For every drift-quadrupole system there exist an unique set of Twiss parameters (apochromatic Twiss parameters), which will be transported through that system without first order chromatic distortions. Moreover, we prove that at the same time the apochromatic Twiss parameters bring the second order effect of the betatron oscillations on the shift of the average bunch path length to the minimal possible value and also minimize the effect of betatron oscillations on bunch lengthening for Gaussian beam. As an example we consider the application of the apochromatic focusing concept to the design of matching sections and phase shifter of the post-linac collimation section of the European XFEL Facility.

 
THPD085 Correction of the Linear Optics at PETRA III optics, undulator, emittance, wiggler 4482
 
  • J. Keil, K. Balewski
    DESY, Hamburg
 
 

PETRA III is a 6 GeV third generation light source located at DESY/Hamburg. The former pre-accelerator of HERA has been converted in 2007/2008 into a high brilliance synchrotron light source with an emittance of 1 nm*rad. The commissioning of PETRA III started in 2009. PETRA III is like other third generation light sources very sensitive to errors of the linear optics. Gradient errors reduce the dynamic aperture, increase the emittance and change the beam size. The correction of the optics is based on orbit response matrix data which were analyzed both with the program LOCO and with a fit of the beta-functions and phase-functions at BPMs and correctors. Initial results of the modelling of the machine and the correction of the linear optics functions will be presented.

 
THPD086 Measurement and Correction of Transverse Dispersion in PETRA III damping, wiggler, emittance, closed-orbit 4485
 
  • G.K. Sahoo, K. Balewski, W. Decking, J. Keil
    DESY, Hamburg
 
 

PETRA III is a 6GeV positron light source with a design horizontal beam emittance of 1nm.rad and 1% emittance coupling. This low emittance is achieved with proper correction of horizontal dispersion to its theoretical values in the arcs as well as dispersion free sections. The spurious vertical dispersion, arising due to misalignment and rotational errors of the magnets is also duly corrected as this contributes to the vertical beam size of the photon beam. Here we discuss the method taken to correct the horizontal dispersion using a combined orbit and dispersion correction scheme. In the vertical plane the same procedure can be used as that of horizontal plane or only the dispersion can be corrected using dedicated skew quadrupoles to millimeter level after orbit correction has been done. In this paper we present the methods used and results obtained in correction of dispersions in transverse planes.

 
THPD091 Explicit Maps for the Fringe Field of a Quadrupole focusing, optics, storage-ring, simulation 4500
 
  • D.M. Zhou
    KEK, Ibaraki
  • Y. Chen, J. Tang, N. Wang
    IHEP Beijing, Beijing
 
 

A perturbation method based on Lie technique, originated by J. Irwin and C.-x. Wang, was extended to calculate the linear maps for the fringe field of a quadrupole. In our method, the fringe field shape is not necessarily anti-symmetric with respect to the hard-edge position. The linear maps were explicitly expressed as functions of fringe field integrals. Thus they can be used to assess the influence of the quadrupole fringe fields in beam dynamics.

 
THPD096 Simulation of Multiknobs Correction at ATF2 coupling, optics, simulation, emittance 4512
 
  • S. Bai, J. Gao
    IHEP Beijing, Beijing
  • P. Bambade
    KEK, Ibaraki
  • B. Bolzon
    IN2P3-LAPP, Annecy-le-Vieux
 
 

The ATF2 project is the final focus system prototype for ILC and CLIC linear collider projects, with a purpose to reach a 37nm vertical beam size at the interaction point. During initial commissioning, we started with larger than nominal β-functions at the IP, to reduce the effects from higher-order optical aberrations and thereby simplify the optical corrections needed. We report on simulation studies at two different IP locations developed based on waist scan, dispersion, coupling and β function multiknobs correction in the large β optics of ATF2, in the presence of two kinds of magnet inaccuracies (quadrupole gradient and roll errors) to generate all possible linear optics distortions at the IP. A vertical beam size which is very close to the nominal beam size is obtained based on the simulation study.

 
THPE001 Low Emittance Lattice Optimization Using Multiobjective Genetic Algorithm lattice, emittance, storage-ring, optics 4515
 
  • W.W. Gao, W. Li, L. Wang
    USTC/NSRL, Hefei, Anhui
 
 

Low emittance is a desirable performance for high brightness synchrotron light source and damping ring. The work presented in this paper demonstrates that the lattice of a given electron storage ring, which has fixed circumference and magnet layout, can be optimized to obtain low emittance by using MOGA (Multi-objective Genetic Algorithm). Both dispersion-free and non-dispersion-free lattices of HLS (Hefei Light Source) upgrade project are computed as an illustration. Simulation result shows that this method is fast and straightforward.

 
THPE006 Closed Orbit Correction of Hefei Light Source (HLS) Upgrading Storage Ring closed-orbit, alignment, storage-ring, dipole 4521
 
  • S.C. Zhang, W. Fan, G. Feng, W.W. Gao, H. Geng, Z.G. He, W. Li, L. Wang, H. Xu
    USTC/NSRL, Hefei, Anhui
 
 

In order to meet the increasing requirements of synchrotron radiation users, an upgrading plan of hefei light source is undergoing by National Synchrotron Radiation Laboratory (NSRL). The emittance of storage ring is reduced from 166nm.rad to 36nm.rad. In this paper, we study the beam close orbit distortions' (COD) sensitivity to the field and alignment errors in magnets. Estimation of the COD from various error sources is investigated. The distribution of beam position monitors and the location of correctors are reported in the paper. Simulation proves that COD can be corrected down to 50 microns level. In the same time the corrector strengths are weaker enough in the correction scheme.

 
THPE011 Coupling Diagnostics and Control at PLS Storage Ring coupling, controls, resonance, emittance 4533
 
  • I. Hwang, C. Kim, K.R. Kim, M. Kim, S.H. Nam, S.J. Park, S. Shin
    PAL, Pohang, Kyungbuk
  • J. Hou, L.G. Liu
    SINAP, Shanghai
 
 

The measurement and the control of the coupling is essential to maximize synchrotron performance. Small coupling is required for small vertical size and high brightness. The Pohang Light Source has a 2.5 GeV storage ring and its coupling constant is measured as about 1%. In addition to errors at quadrupole or sextupole, the condition varying of the insertion device affects the coupling. The coupling for various condition is measured by the resonance and the response matrix and compared with the beam size and the lifetime. The correction and the control of the coupling is presented.

 
THPE014 Round Beam Lattice Correction using Response Matrix at VEPP-2000 lattice, closed-orbit, solenoid, dipole 4542
 
  • A.L. Romanov, D.E. Berkaev, I. Koop, A.N. Kyrpotin, E. Perevedentsev, Yu. A. Rogovsky, P.Yu. Shatunov, D.B. Shwartz
    BINP SB RAS, Novosibirsk
 
 

Lattice correction based on orbit responses to dipole correctors and orbit correction based on orbit responses to field gradient variations in quads were successfully implemented on VEPP-2000 [*] for the flat-beam lattice. The round-beam lattice involves strong coupling of vertical and horizontal motions that require a full-coupling analysis in the orbit response technique. Programs used were modified to treat this task. Also, automation and speed enhancements were done that enable a routine use of this technique at VEPP-2000. New experimental results from VEPP-2000 are presented.


* Yu.M.Shatunov et al. Project of a New Electron-Positron Collider VEPP-2000, in: Proc. 7th European Particle Accelerator Conf. (EPAC 2000), Vienna, Austria, 439-441

 
THPE018 Layout and Optics Solution for the LHC Insertion Upgrade Phase I optics, insertion, injection, sextupole 4548
 
  • S.D. Fartoukh
    CERN, Geneva
 
 

The main guidelines of the LHC insertion (IR) upgrade Phase I are 1) the development of wider aperture (120 mm) and lower gradient (~120 T/m) quadrupoles using the well-characterized Nb-Ti technology in order to replace the existing inner triplets (IT) equipping the ATLAS and CMS high-luminosity IRs of the LHC, 2) while maximizing the use of the current LHC infrastructure, in particular leaving unchanged the so-called "matching sections" (MS) and "dispersion suppressors" (DS) of these two insertions. One of the initial goals was to be able to squeeze the optics up to a beta* of 25 cm. However, optics solutions with a beta* of 30 cm seems already to be at edge of achievability, both in terms of the IT and MS mechanical acceptance, gradients of the MS and DS quadrupole magnets, and correctability by the LHC arc sextupoles of the huge chromatic aberrations induced by the new inner triplet at ultimate beta*. The layout of the new inner triplet and the corresponding injection and collision optics will be presented and analyzed both in terms of aperture, squeeze-ability and chromatic correction.

 
THPE019 CERN Proton Synchrotron Working Point Matrix for Extended Pole Face Winding Powering Scheme controls, proton, synchrotron, focusing 4551
 
  • P. Freyermuth, D.G. Cotte, M. Delrieux, H. Genoud, S.S. Gilardoni, K. Hanke, O. Hans, S. Mataguez, G. Metral, F.C. Peters, R.R. Steerenberg, B. Vandorpe
    CERN, Geneva
 
 

The CERN Proton Synchrotron has been continuously improving its beam performances since 1959. The working point parameters of the accelerator are mainly controlled by dedicated windings installed on the poles of the main combined function magnets. In 2007, the power supplies of these windings were renovated and extended from three to five independent groups, allowing exploration of new working point settings. This configuration offers the flexibility of several adjustment strategies such as leaving one current free or to control an additional physical parameter, like Q''h. A non-linear chromaticity measurement campaign, at different beam energies, resulted in matrices defining the relationship between the five pole face winding currents and the four beam parameters Qh, Qv, Xih, and Xiv. Each cell of these matrices was fitted against energy. The final result is a single matrix which is now used by the operational software to trim the working point. This paper summarises this measurement campaign by presenting the resulting matrix with a brief overview of the adjustment tools and strategy. Furthermore a few future possible benefits of this control enhancement will be discussed.

 
THPE020 Scenarios for the ATF2 Ultra-Low Betas Proposal emittance, lattice, wiggler, multipole 4554
 
  • E. Marin, R. Tomás
    CERN, Geneva
  • P. Bambade
    LAL, Orsay
  • S. Kuroda, T. Okugi, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • B. Parker
    BNL, Upton, Long Island, New York
  • A. Seryi, G.R. White, M. Woodley
    SLAC, Menlo Park, California
 
 

The current ATF2 Ultra-Low beta proposal was designed to achieve 20nm vertical IP beam size without considering the multipolar components of the FD magnets. In this paper we describe different scenarios that avoid the detrimental effect of these multipolar errors in the FD. The simplest approach consists in modifying the optics but other solutions are studied as the introduction of new higher order magnets or the replacement of the FD with SC technology. The practical aspects of such an upgrade are the tuning performance and the compatibility with existing devices and instrumentation. These are fully addressed in the paper.

 
THPE021 Comparison of PS2 Lattices with Different Geometries lattice, resonance, dynamic-aperture, optics 4557
 
  • Y. Papaphilippou, W. Bartmann, H. Bartosik, M. Benedikt, B. Goddard, A. Lachaize
    CERN, Geneva
  • Y. Senichev
    FZJ, Jülich
 
 

The PS2 ring is designed with negative momentum compaction arc cells and doublet straights. In this paper, different lattice geometries are considered. In particular, a two-fold symmetric lattice with dispersion suppressors and a 3-fold symmetric one with resonant arc cells are compared with respect to their optics properties, and ability to satisfy space and magnet constraints. The tuning flexibility of rings based on these two options is presented. Finally, the impact of different geometries on resonance excitation and dynamic aperture is evaluated.

 
THPE022 Linear Optimization and Tunability of the PS2 Lattice lattice, optics, injection, vacuum 4560
 
  • H. Bartosik, W. Bartmann, M. Benedikt, B. Goddard, Y. Papaphilippou
    CERN, Geneva
 
 

The PS2 lattice, based on Negative Momentum Compaction (NMC) arc cells is being optimized in order to accommodate a new all-doublet long-straight section (LSS) design. Apart from smoothing the optics and enabling different tuning solutions for H- injection, the optimization focuses on increasing the available magnet-to-magnet drift space and reducing the quadrupole types and strengths. The variation of lattice parameters for a wide range of working points is presented.

 
THPE023 Non-Linear Analysis of the PS2 Negative Momentum Compaction Lattice sextupole, dynamic-aperture, lattice, dipole 4563
 
  • H. Bartosik, M. Benedikt, Y. Papaphilippou
    CERN, Geneva
 
 

This paper describes a detailed analysis of various non-linear effects of the nominal Negative Momentum Compaction lattice for PS2. Chromaticity and orbit correction schemes together with dynamic aperture studies are presented. The impact of magnet errors is being assessed and tolerances are evaluated. Frequency and diffusion maps are produced and, combined with non-linear driving terms analysis, are used for working point optimization.

 
THPE024 Coupling and Vertical Dispersion Correction in the SPS resonance, coupling, sextupole, betatron 4566
 
  • G. Vanbavinckhove, M. Aiba, R. Tomás
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
 
 

Consolidation of the coupling correction scheme in the LHC is motivated due to a missing skew quadrupole family in Sector 3-4 at the start-up in 2009. Simultaneous coupling and vertical dispersion correction using vertical orbit bumps at the sextupoles, was studied by analyzing turn-by-turn data. This scheme was tested in SPS where the optical structure of arc cells is quite similar to the LHC. In SPS, horizontal and vertical beam positions are measured separately with single plane BPMs, thus a technique to construct "pseudo double plane BPM" is also discussed.

 
THPE025 Coupling and Vertical Dispersion Correction studies for the LHC using Skew Quadrupoles and Vertical Orbit Bumps coupling, resonance, betatron, simulation 4569
 
  • G. Vanbavinckhove, M. Aiba, R. Tomás
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
 
 

After the incident in the LHC in 2008, few skew quadrupoles were damaged and subsequently removed from the tunnel. This could limit the correction of local coupling in the LHC. In order to increase the flexibility in the coupling correction it has been proposed to use of vertical orbit bumps at the sextupoles is studied. Moreover a simultaneous coupling and vertical dispersion can be implemented. Various studies are presented addressing the optimal approach for the correction of the vertical dispersion and the sum and difference coupling resonances.

 
THPE027 Construction and Performance of IP Optics Tuning Knobs in the LHC optics, injection, luminosity, insertion 4575
 
  • S.M. White, R. Tomás, G. Vanbavinckhove, W. Venturini Delsolaro
    CERN, Geneva
 
 

During the first years of operation of the LHC unknown field errors or misalignments could lead to unmatched optics and discrepancies with respect to the model. This could affect some critical parameters such as the luminosity or the lifetime. It is therefore desirable to implement tools which allow for fine tuning of the IP optics and could be used during the commissioning phase of the LHC. In this paper we report on the implementation the performances and the limitations of these commissioning tools.

 
THPE031 MATLAB-based Accelerator Physics Applications for the TPS Commissioning and Operation at NSRRC storage-ring, controls, simulation, linac 4584
 
  • F.H. Tseng, H.-P. Chang, J. Chen, P.C. Chiu, K.T. Hsu, C.-C. Kuo, H.-J. Tsai
    NSRRC, Hsinchu
 
 

Taiwan Photon Source (TPS) is the second synchrotron light source in Taiwan which is currently under construction at the NSRRC existing site. With a 3 GeV beam energy, low emittance, 24-DB structure in the storage ring, the TPS can generate higher brilliance and more abundant X-ray sources. TPS is in complementary to the overbooked 1.5 GeV Taiwan Light Source (TLS). The MATLAB-based accelerator physics application programs planned for the TPS commissioning and operation is a high-level software collection including the MML, AT, LOCO, etc., developed at ALS and SLAC. In this report, the testing results by employing this package to the Taiwan Light Source (TLS) are given and the simulations of the TPS virtual machine are also demonstrated.

 
THPE032 Calculation of Coupled Lattice Functions from Turn-by-turn Trajectory Data in Storage Rings lattice, betatron, coupling, optics 4587
 
  • A. Wolski, M. Korostelev, K.G. Panagiotidis
    The University of Liverpool, Liverpool
 
 

BPMs capable of high resolution turn-by-turn bunch position measurements are becoming increasingly widely used in electron storage rings. Analysis of the data from a set of such BPMs following the excitation of a coherent betatron oscillation can yield useful information for tuning the optics and improving machine performance. This approach to optics measurement has the benefits that the data collection is very fast, and analysis can be local, so that application is as easy for a large ring as for a small one. Here, we describe a technique for using turn-by-turn BPM data to determine lattice functions that describe the local coupling in a storage ring; this may be helpful, for example, for achieving low vertical emittance. We discuss the principles of the technique, give some examples, and discuss possible limitations arising from BPM gain and coupling errors.

 
THPE036 Tune Measurement in Non Scaling FFAG EMMA with Model Independent Analysis lattice, betatron, simulation, kicker 4596
 
  • Y. Giboudot
    Brunel University, Middlesex
  • I. Kirkman, A. Wolski
    The University of Liverpool, Liverpool
 
 

The Non Scaling Fixed Field Alternating Gradient (NS-FFAG) EMMA accelerator has a purely linear lattice and thus allows important tune variation. The crossing of resonances during acceleration is a key characteristic of the beam dynamics. An accurate measurement of the tune is therefore mandatory. However commonly used measurement techniques requires the beam to perform an important number of turns in the machine. Simulations have shown that fast decoherence of the beam requires the study of another measurement technique. The model independent analysis (MIA) has been investigated. The singular value decomposition (SVD) of a matrix composed of simulated BPMs reading of various bunches trajectories gives a description of the optics function at each Beam Position Monitor. Including misalignment errors and electronic noise, an accurate value of the tune has been derived from statistical treatment repeating this process few hundreds of time.


yoel.giboudot@stfc.ac.uk

 
THPE038 Low-emittance Tuning Simulations for the ILC Damping Rings emittance, coupling, alignment, sextupole 4602
 
  • K.G. Panagiotidis, A. Wolski
    Cockcroft Institute, Warrington, Cheshire
  • M. Korostelev, K.G. Panagiotidis
    The University of Liverpool, Liverpool
 
 

One of the major challenges for the International Linear Collider (ILC) damping rings is the attainment of the 2 pm vertical emittance specification. To achieve such an ultra-low vertical emittance a highly effective diagnostics and correction system is needed. However, since both BPMs and correctors have also negative impacts on the design (cost, complexity, impedance), it is important to understand how the number and locations of both these components affect the correction. In this paper we present the results of simulations for the Technical Design Phase baseline damping rings lattice (DCO4), aimed at understanding the effectiveness of orbit, dispersion, and coupling correction for different design and operation scenarios.

 
THPE042 Single-stage Bunch Compressor for ILC-SB2009 emittance, wiggler, lattice, linac 4611
 
  • A. Latina, N. Solyak
    Fermilab, Batavia
 
 

The Project Management Design Team of the International Linear Collider has recently proposed fundamental changes to the published ILC RDR baseline with the goal of presenting a potential alternate design providing a more cost-effective solution. In this framework a new lattice for the Damping Rings has been presented, shortening the exit bunch length from the RDR value of 9 mm down to 6 mm. The shorter bunch length allowed the adoption of a simpler single-stage bunch compressor, instead of the RDR two-stage compressor. The new single-stage compressor has a compression ratio of 20 and still achieves the nominal RDR value of 0.3 mm bunch length at the Interaction Point. The new design has been optimized to generate the required compression while having a small SR emittance growth, and reduced energy spread. The new lattice and its optimization procedure are presented in this paper.

 
THPE044 Design of Injection and Extraction Beamlines for the ALPHA Project injection, linac, dipole, extraction 4617
 
  • Y.C. Jing, Y. Kim, S.-Y. Lee
    IUCF, Bloomington, Indiana
 
 

The Advanced eLectron-PHoton fAcility (ALPHA) is under construction to support Crane Naval Center's radiation effect testing program. This paper reports the design of injection and extraction beamlines for the ALPHA and discusses the nonlinear beam spreader which is used to convert transverse Gaussian beam distribution into uniform rectangular beam distribution.

 
THPE046 CesrTA Low Emittance Tuning emittance, resonance, sextupole, target 4620
 
  • J.P. Shanks, D. L. Rubin, D. Sagan
    CLASSE, Ithaca, New York
 
 

We are developing techniques for measuring and correcting emittance diluting optical and alignment errors in the CesrTA storage ring. Our principle measurement method is to resonantly excite the beam at all three normal mode frequencies and then to extract the amplitude and phase of each mode at all 100 beam position monitors. We reconstruct beta-functions, betatron phase advance, coupling parameters, dispersion, and BPM tilts from the data. A complete characterization including data collection and analysis can be done in a few minutes. To measure the emittance, an x-ray beam size monitor capable of measuring the size of a single bunch on a turn by turn basis provides a real time measure with a resolution on the order of a few microns. This resolution corresponds to a few pm emittance. Our ability to identify alignment and optical errors is limited by systematic measurement errors. We report on the status of our efforts to understand and eliminate systematic errors, the accuracy of our characterization of the machine optics, and our success at reducing sources of emittance dilution.

 
THPE047 Lattice Calibration with Turn-by-turn BPM Data lattice, simulation, optics, target 4623
 
  • X. Huang, J.J. Sebek
    SLAC, Menlo Park, California
 
 

Turn-by-turn beam position monitor (BPM) data from multiple BPMs are fitted with a tracking code to calibrate magnet strengths in similar manner as the well known LOCO code. Simulation shows that this method can be a quick and efficient way for optics calibration. The method is applicable to both linacs and ring accelerators. We also show experimental measurement of the transfer matrix with turn by turn BPM data.

 
THPE048 Lattice Modeling for SPEAR3 dipole, lattice, sextupole, alignment 4626
 
  • X. Huang, J.A. Safranek
    SLAC, Menlo Park, California
 
 

We use measured or simulated magnetic fields for dipoles and quadrupoles to build a lattice model for SPEAR3. In a non-symplectic approach the phase space coordinate mapping on the fields is based on Runge-Kutta integration of the equation of motion. In a symplectic approach we approximate the fields with proper fringe field models. Complication of the use of rectangular gradient dipoles in SPEAR3 is considered. Results of the model is compared to measurements on the real machine.

 
THPE050 Real Beam Line Optics from a Synthetic Beam optics, beam-losses, emittance, diagnostics 4629
 
  • R.M. Bodenstein, Y. Roblin, M.G. Tiefenback
    JLAB, Newport News, Virginia
 
 

The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab can be described as a series of concatenated beamlines. Methods used to measure the Twiss parameters in closed orbit machines are not applicable in such open ended systems. We are using properly selected sets of real orbits in the accelerator, as one would for numerical analysis. The evolution of these trajectories along the beamline models the behavior of a synthetic beam which deterministically supplements beam profile-based Twiss parameter measurements and optimizes the efficiency of beamline tuning. Examples will be presented alongside a description of the process.

 
THPE051 Magnet Optical and Beam Matching Issues in a Medium Energy Beam Transport line of SNS Linac lattice, simulation, focusing, optics 4632
 
  • J. G. Wang, Y. Zhang
    ORNL, Oak Ridge, Tennessee
 
 

A Medium Energy Beam Transport line (MEBT) is employed in the SNS linac to match the beam from an RFQ to a DTL and to perform other functions. The MEBT lattice consists of fourteen electromagnetic quadrupoles. The quads have very small aspect ratios (steel length over aperture diameter), and they are densely packed in the lattice. Significant fringe fields and magnetic interference cause difficulties in beam matching. We have performed 3D simulations of the magnets, computed their optical properties, and compared their performance with what predicted by simple hard edge models. This paper reports our findings and possible solutions to the problem.

 
THPE053 Linear and Chromatic Optics Measurements at RHIC optics, injection, coupling, lattice 4638
 
  • R. Calaga
    BNL, Upton, Long Island, New York
  • M. Aiba
    PSI-LRF, Villigen, PSI
  • R. Tomás, G. Vanbavinckhove
    CERN, Geneva
 
 

Measurements of chromatic beta-beating were carried out for the first time in the RHIC accelerator during Run 2009. The analysis package developed for the LHC was used to extract the off-momentum optics for injection and top energy. Results from the beam experiments and comparison to the optics model are presented.

 
THPE055 Linear Optics Measurements and Corrections Using AC Dipole In RHIC dipole, optics, beam-losses, injection 4644
 
  • G. Wang, M. Bai, L. Yang
    BNL, Upton, Long Island, New York
 
 

We report recent experimental results on linear optics measurements and corrections using ac dipole. In RHIC 2009 run, the concept of the SVD correction algorithm is tested at injection energy for both identifying the artificial gradient errors and correcting it using the trim quadrupoles. The measured phase beatings were reduced by 30% and 40% respectively for two dedicated experiments. In RHIC 2010 run, ac dipole is used to measure beta* and chromatic beta function. For the 0.65m beta* lattice, we observed a factor of 3 discrepancy between model and measured chromatic function in the yellow ring.

 
THPE063 Investigation and Optimization of Transverse Non-linear Beam Dynamics in the High-energy Storage Ring HESR dynamic-aperture, resonance, target, lattice 4659
 
  • D.M. Welsch, A. Lehrach, B. Lorentz, R. Maier, D. Prasuhn, R. Tölle
    FZJ, Jülich
 
 

The High-Energy Storage Ring (HESR) is part of the upcoming Facility for Antiproton and Ion Research (FAIR). The HESR will provide antiprotons in the momentum range from 1.5 to 15 GeV/c for the internal target experiment PANDA. The demanding requirements of PANDA in terms of beam quality and luminosity together with a limited production rate of antiprotons call for a long beam life time and a minimum of beam loss. Thus, a sufficiently large dynamic aperture of the HESR is crucial. To provide this, a chromaticity correction scheme for the HESR has been developed to reduce tune spread and thus to minimize the emittance growth caused by betatron resonances. The chromaticity correction scheme has been optimized through dynamic aperture calculations. The estimated field errors of the HESR dipole and quadrupole magnets have been included in the non-linear beam dynamics studies. The ion optical settings of the HESR have been improved using dynamic aperture calculations and frequency map analysis technique. In this presentation comprehensive beam simulations are presented and predictions of long-term stability based on short-term particle tracking and orbit diffusion discussed.

 
THPE066 Simulation Study on Coherent Resonant Instability of Non-neutral Plasmas Confined in a Linear Paul Trap simulation, resonance, plasma, focusing 4668
 
  • H. Sugimoto, K. Ito, H. Okamoto
    HU/AdSM, Higashi-Hiroshima
  • S.M. Lund
    LLNL, Livermore, California
 
 

Resonant instabilities of ion plasmas confined in a linear Paul trap are studied using the particle-in-cell code WARP. Transverse two-dimensional model is employed to save computing time and perform systematic investigations. Both applied and self-field forces are calculated with a boundary condition assuming a quadrupole electrode structure. A large number of simulations were carried out with rms matched plasmas to clarify characteristics of the instability caused by linear and nonlinear coherent resonances. Stop band distributions produced by the simulation runs are consistent with theoretical prediction. These results are also compared to experimental results obtained from Hiroshima University Paul trap that is developed to study beam dynamics. It is shown that the stop band distributions of both numerical and experimental results are good agreement each other. We confirmed from these results that coherent resonances are excited when one of the coherent tunes is close to a half integer.

 
THPE077 Predicted Effect of the Measured High Order Magnetic Multipole in the ALBA Storage Ring multipole, sextupole, dynamic-aperture, storage-ring 4698
 
  • M. Muñoz, G. Benedetti, D. Einfeld, Z. Martí
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès
 
 

The high order magnetic multipole components of all the magnets in the ALBA storage ring have been measured. Previous studies have simulated the effects of the HOMs using statistic methods. The magnets have been installed now in the tunnel, allowing for a better simulation of the future impact of the HOMs in the performance of the light source. In this paper, the effect of the high order multipoles of the dipole, quadrupole and sextupole magnets in the dynamic aperture and the Touschek lifetime are reviewed.

 
THPE091 Simultaneous Measurement of all Sextupole Offsets using the Response Matrix Fit sextupole, storage-ring, optics, coupling 4737
 
  • V. Sajaev, A. Xiao
    ANL, Argonne
 
 

APS linear model is defined by the quadrupole and skew quadrupole errors that are determined using the response matrix fit. What was missing until now were the sextupole offsets relative to the beam orbit. At APS the orbit is routinely steered according to user requests, and at some locations the steering has accumulated to rather large values. That is why the usual sextupole changes that are performed during operation mode switches lead to optics and coupling changes. Knowledge of the sextupole offsets would allow us to predict and control those changes. There are a number of ways to measure sextupole offsets but most of them utilize element by element approach. This would take very long time for the 280 sextupoles at APS. Here we describe a method that determines the beam offsets of all sextupoles based on fitted values of local optics and coupling changes at each sextupole. We perform response matrix measurement, fit several lattices with different sextupoles, and derive the sextupole offsets. The results are included in the linear model of the APS storage ring.

 
THPE097 Charged-Particle Dynamics in an Adiabatic Thermal Beam Equilibrium focusing, plasma, resonance, emittance 4749
 
  • H. Wei, C. Chen
    MIT/PSFC, Cambridge, Massachusetts
 
 

The dynamics of charged particles in a recently-discovered adiabatic thermal beam equilibrium* are studied. In particular, test particle motion is analyzed numerically, assuming the beam equilibrium fields are in a periodic solenoidal focusing channel. Poincare surface-of-section maps are generated to examine the behavior of the test particles in phase space such as nonlinear resonances and chaotic regions. Comparisons are made between the adiabatic thermal and rigid-rotor Vlasov beam equilibria**.


* J. Zhou, K.R. Samokhvalova, and C. Chen, Phys. Plasmas 15, 023102 (2008)
** C. Chen, R. Pakter and R.C. Davidson, Phys. Rev. Lett. 79, 225 (1997)