A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

linear-collider

Paper Title Other Keywords Page
MOXAMH01 International Collaboration with High Energy Accelerators collider, controls, cavity, site 1
 
  • A. Wagner
    DESY, Hamburg
 
 

International collabollations on high energy physics will be described, referring its long history and with emphasis on the recent activity based on ICFA.

 

slides icon

Slides

 
MOPEB073 Single Crystal Niobium Development niobium, electron, cavity, collider 438
 
  • H. Umezawa, K. Takeuchi
    Tokyo Denkai Co., Ltd., Tokyo
  • F. Furuta, T. Konomi, K. Saito
    KEK, Ibaraki
  • K. Nishimura
    TKX Corporation, Osaka
 
 

KEK and Tokyo Denkai have developed new niobium ingot slicing technique. 150 pieces of the large grain niobium discs can be sliced in two days by using of this technique. Tokyo Denkai installed the slicing machine in December 2009. During the development of the slicing technique, we found that crystal growth mechanism in Electron Beam Melting. It gave us the suggestion to make a single crystal niobium ingot. This paper describes the production process of low cost and short production time niobium discs and single crystal niobium ingot development.

 
MOPE074 Development of a Fast, Single-pass, Micron-resolution Beam Position Monitor Signal Processor: Beam Test Results from ATF2 feedback, electron, positron, extraction 1152
 
  • P. Burrows, R. Apsimon, D.R. Bett, G.B. Christian, B. Constance, H. Dabiri Khah, C. Perry, J. Resta-López, C. Swinson
    JAI, Oxford
 
 

We present the design of a stripline beam position monitor (BPM) signal processor with low latency (c. 10ns) and micron-level spatial resolution in single-pass mode. Such a BPM processor has applications in single-pass beamlines such as those at linear colliders and FELs. The processor was deployed and tested at the Accelerator Test Facility (ATF2) extraction line at KEK, Japan. We report the beam test results and processor performance, including response, linearity, spatial resolution and latency.

 
MOPE094 X-band Travelling Wave Deflector for Ultra-fast Beams Diagnostics diagnostics, electron, cavity, collider 1206
 
  • L. Faillace, R.B. Agustsson, P. Frigola, A.Y. Murokh
    RadiaBeam, Marina del Rey
  • D. Alesini
    INFN/LNF, Frascati (Roma)
  • J.B. Rosenzweig
    UCLA, Los Angeles, California
  • V. Yakimenko
    BNL, Upton, Long Island, New York
 
 

The quest for detailed information concerning ultra-fast beam configurations, phase spaces and high energy operation is a critical task in the world of linear colliders and X-ray FELs. Huge enhancements in diagnostic resolutions are represented by RF deflectors. In this scenario, Radiabeam Technologies has developed an X-band Travelling wave Deflector (XTD) in order to perform longitudinal characterization of the subpicosecond ultra-relativistic electron beams. The device is optimized to obtain a single digit femtosecond resolution using 100 MeV electron beam parameters at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory; however, the design can be easily extended to be utilized for diagnostics of GeV-class beams. The XTD design fabrication and tuning results will be discussed, as well as installation and commissioning plans at ATF.


* J. England et al., "X-Band Dipole Mode Deflecting Cavity for the UCLA Neptune Beamline".
** D. Alesini, "RF deflector-based sub-ps beam diagnostics: application to FELs and advanced accelerators".

 
MOPE100 The Straightness Monitor System at ATF2 laser, collider, target, feedback 1218
 
  • M.D. Hildreth
    University of Notre Dame, Notre Dame
  • A.S. Aryshev
    Royal Holloway, University of London, Surrey
  • S.T. Boogert
    JAI, Egham, Surrey
  • Y. Honda, T. Tauchi, N. Terunuma
    KEK, Ibaraki
  • G.R. White
    SLAC, Menlo Park, California
 
 

The demonstration of the stability of the position of the focused beam is a primary goal of the ATF2 project. We have installed a laser interferometer system that will eventually correct the measurement of high-precision Beam Position Monitors used in the ATF2 Final Focus Steering Feedback for mechanical motion or vibrations. Here, we describe the installed system and present preliminary data on the short- and long-term mechanical stability of the BPM system.

 
TUPEC062 Advanced Multi-program GUI for Accelerator Modeling simulation, quadrupole, lattice, collider 1868
 
  • T.J. Roberts
    Muons, Inc, Batavia
  • D.M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois
 
 

There are dozens of programs for designing and modeling accelerator systems, most of which have their own language for describing the system. This means a designer must spend considerable time learning the languages of different programs and converting system descriptions among them. This paper describes a project to develop a new language for accelerator modeling, together with a portable suite of programs to implement it. These programs will assist the user while editing, visualizing, developing, simulating, and sharing models of accelerator components and systems. This suite is based on a Graphical User Interface (GUI) that will permit users to assemble their system graphically and then display it and check its sanity visually, even while using modeling programs that have no graphical or visualization capabilities. Incorporating the concept of libraries as a primary component of the language will encourage collaboration among geographically diverse teams. The requirements for developing this language and its tools will be based on generality, flexibility, extensibility, portability, usability, and sharability.

 
WEOBMH02 Multi-bunch Beam Extraction using Strip-line Kicker at KEK-ATF kicker, extraction, collider, damping 2386
 
  • T. Naito, H. Hayano, K. Kubo, S. Kuroda, T. Okugi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
 
 

The beam extraction experiment using the strip-line kicker has been carried out at KEK-ATF. The specification of the International linear collider (ILC) is that the long bunch train (1320 - 5120 bunches), which has the bunch spacing of 189 - 480ns, is compressed to 3 or 6ns bunch spacing into the DR, and again decompressed from the DR. The kicker manipulates the changes of the bunch spacing. The kicker requires a fast rise/fall time (3 or 6ns) and a high repetition rate (3 or 6MHz). A multiple strip-line kicker system is the most promising candidate to realize the specification for the ILC*. The beam extraction experiment at KEK-ATF** using proto-type of the strip-line kicker was done by following parameters, up to 30 bunches of the multi-bunch in the DR, which has 5.6ns bunch spacing, are extracted bunch-by-bunch with 308ns interval to the extraction line. The stored multi-bunch was extracted successfully. The detail of the experiment and the result are reported.


* T. Naito et. al., Proc. of PAC07, pp2772-2274.
** T. Naito et. al., Proc. of EPAC08, pp601-603.

 

slides icon

Slides

 
WEOCMH01 First Beam Test of the Tilt Monitor in the ATF2 Beam Line cavity, extraction, simulation, collider 2402
 
  • D. Okamoto
    Tohoku University, Graduate School of Science, Sendai
  • Y. Honda, T. Tauchi
    KEK, Ibaraki
  • T. Sanuki
    Tohoku University, School of Scinece, Sendai
 
 

We have studied a beam orbit tilt monitor for stabilizing the beam orbit in ATF2. Once we can measure a beam orbit tilt with high precision at one point, we can relate this data with the beam position profile at the focal point. A tilt monitor is composed of a single rectangular sensor cavity and a waveguide to extract the signal. In the sensor cavity, there is the most basic resonant mode called monopole mode. This monopole mode is perpendicular to the nominal beam axis, and excited by the beam tilt. We extract this monopole mode. As the result, the amplitude of the extracted signal is proportional to the tilt angle. The tilt monitor is almost indepnedent with beam postion, so we can get the tilt date independently. According to our simulation, the sensitivity is estimated about 35nrad in the vertical direction. The prototype was completed and installed in the test area on the ATF2 beamline. The first beam test will be performed in December 2009. We will report this result and future update plan.

 

slides icon

Slides

 
WEPEB044 Latest Beam Test Results from ATF2 with the Font ILC Prototype Intra-train Beam Feedback Systems feedback, kicker, extraction, collider 2788
 
  • P. Burrows, R. Apsimon, D.R. Bett, G.B. Christian, B. Constance, H. Dabiri Khah, C. Perry, J. Resta-López, C. Swinson
    JAI, Oxford
 
 

We present the design and beam test results of a prototype beam-based digital feedback system for the Interaction Point of the International Linear Collider. A custom analogue front-end signal processor, FPGA-based digital signal processing boards, and kicker drive amplifier have been designed, built, deployed and tested with beam in the extraction line of the KEK Accelerator Test Facility (ATF2). The system was used to provide orbit correction to the train of bunches extracted from the ATF damping ring. The latency was measured to be approximately 140 ns.

 
WEPEB055 Straightness Alignment of Linac by Detecting Slope Angle linac, alignment, vacuum, collider 2815
 
  • T. Kume, K. Furukawa, M. Satoh, T. Suwada
    KEK, Ibaraki
  • E. Okuyama
    Akita University, Akita
 
 

Profile shape measurements detecting profile slope angle, which corresponds to the differential of the profile shape, have been used for evaluating profile shapes highly precisely. They are hardly affected by scanning error in measurement and considered to have advantages for long distance measurements. Here, profile measurement using a level was adopted for straightness alignment of the KEK e-/e+ injector linac, considering the straightness alignment as a profile shape measurement. The slope angles between the alignment base plates of the linac could be detected with reproducibility of 10 micro-rad (σ) by sequential measurement interval of 1 to 2 m. The reproducibility of the straightness derived from the angle measurements was 42 micrometer (σ) for 69 m of the measurement distance and agreed well with the estimated value based on our error propagation model. These results show that straightness reproducibility of better than 1 mm (2-σ) can be achieved for 500 m of the KEK e-/e+ injector linac by sampling interval of 2m, and for 10 km of the ILC linac by sampling interval of 20 cm.

 
WEPEB071 The CLIC Machine Protection interlocks, linac, controls, kicker 2860
 
  • M. Jonker, E.B. Holzer, S. Mallows, D. Manglunki, G. Morpurgo, Th. Otto, M. Sapinski, F. Tecker, J.A. Uythoven
    CERN, Geneva
 
 

The proposed Compact Linear Collider (CLIC) is based on a two-beam acceleration scheme. The energy of high intensity, low energy drive beams is extracted and transferred to low intensity, high energy main beams. Direct ionization loss by the beam particles is the principal damage mechanism. The total charge gives a single drive beam-train a damage potential that is two orders of magnitude above the level causing structural damage in copper. For the main beam, it is the extreme charge density due to the microscopic beam size that gives it a damage potential of four orders of magnitude above the safe level. The machine protection system has to cope with a wide variety of failures, from real time failures (RF breakdowns, kickers misfiring), to slow equipment failures, to beam instabilities (caused by e.g. temperature drifts, slow ground motions). This paper discusses the baseline for the CLIC machine protection system which is based on passive, active and permit based protection. As the permit based protection depends on the measured performance of the previous pulse, the bootstrap procedure with safe beams and stepwise increase in beam intensities, is also discussed.

 
WEPEC020 Realistic Evaluation of Local Field Enhancement based on Precision Profilometry of Surface Defects cavity, accelerating-gradient, superconductivity, simulation 2932
 
  • Y. Morozumi
    KEK, Ibaraki
 
 

The limitation of the accelerating gradient is one of the current major issues in the development of 1.3 GHz superconducting RF accelerator structures. While some of single-cell cavities and a few of 9-cell structures have occasionally seen accelerating gradients over 50 MV/m and 40 MV/m respectively, the reproducibility of high gradient performance is still poor. Field emission and thermal breakdown due to surface imperfections are supposed to limit the gradient. Magnetic field enhancement at small surface defects can give rise to thermal breakdown through local heating ending up with low gradients. Simulations with idealized primitive models are totally unrealistic since real existing defects have complicated and irregular shapes. Profilometry-based realistic high-fidelity modelling of field enhancement will be presented.

 
WEPEC033 Repair Techniques of Superconducting Cavity for Improvement Cavity Performance at KEK-STF cavity, laser, superconducting-cavity, accelerating-gradient 2965
 
  • K. Watanabe, H. Hayano, E. Kako, S. Noguchi, T. Shishido, Y. Yamamoto
    KEK, Ibaraki
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
 
 

The repair techniques of superconducting cavity is important to obtain better yield of accelerating gradient of superconducting 1.3 GHz 9-cell cavities. The techniques for repair of the cavity are combination of the optical inspection, make a replica of defect, the local grinding and the result of temperature mapping in vertical test. The pit type defect (size: 0.7 mm x 0.5 mm, depth: about 115 um) was found at the quench location of MHI-08 cavity at 16 MV/m by optical inspection after 1st vertical test at June 2009. The location of defect is boundary between EBW seam and heat affected zone at 172 degree of 2-cell equator. If a cause of field limitation for MHI-08 is really this pit type defect, then the cavity can repair to remove the defect by mechanical grinding method. The defect was removed completely by the special grinding machine. After grinding, Electric polishing process and optical inspection were carried out to check the surface condition at grinding area. The 2nd vertical test of MHI-08 was carried out at October 2009. The accelerating field was improved from 16 MV/m to 27 MV/m. The result of repair of MHI-08 will be reported in this paper.

 
WEPEC049 Novel Geometries for the LHC Crab Cavity cavity, ion, luminosity, HOM 3001
 
  • B.D.S. Hall, G. Burt, C. Lingwood
    Cockcroft Institute, Lancaster University, Lancaster
  • R.A. Rimmer, H. Wang
    JLAB, Newport News, Virginia
 
 

The planned luminosity upgrade to LHC is likely to necessitate a large crossing angle and a local crab crossing scheme. For this scheme crab cavities align bunches prior to collision. The scheme requires at least four such cavities, a pair on each beam line either side of the interaction point (IP). Upstream cavities initiate rotation and downstream cavities cancel rotation. Cancellation is usually done at a location where the optics has re-aligned the bunch. The beam line separation near the IP necessitates a more compact design than is possible with elliptical cavities such as those used at KEK. The reduction in size must be achieved without an increase in the operational frequency to maintain compatibility with the long bunch length of the LHC. This paper proposes a suitable superconducting variant of a four rod coaxial deflecting cavity (to be phased as a crab cavity), and presents analytical models and simulations of suitable designs.

 
WEPE003 Design of an 18 MW Beam Dump for 500 GeV Electron/Positron Beams at an ILC positron, electron, radiation, status 3341
 
  • J.W. Amann, R. Arnold, A. Seryi, D.R. Walz
    SLAC, Menlo Park, California
  • K. Kulkarni, P. Rai, P. Satyamurthy, V. Tiwari
    BARC, Mumbai
  • H. Vincke
    CERN, Geneva
 
 

Significant progress has been made in the design of an 18MW Beam Dump for 500 GeV electron/positron beams at an ILC. The beam dump design is based on circulating water with a vortex-like flow pattern to dissipate and remove the energy deposited by the beam. Multi-dimensional technology issues have been addressed to design the beam dump system. Detailed thermal-hydraulic analysis was carried out in all the critical regions of the beam dump which include, 1) location of highest volumetric power deposition by the beam, 2) location of highest linear power deposition, 3) entrance window region, 4) vessel walls etc. Based on this analysis, the sizing of the beam dump and its components, water flow rate and inlet jet velocity, optimum location of the beam path in the beam dump, beam sweep radius etc have been estimated. In addition, preliminary mechanical design of the beam dump, cooling circuit details, sizing of the hydrogen/oxygen recombiner system, ion exchange and 7Be removal, prompt and residual radioactivity studies etc have been carried out. Details of this work will be presented.

 
WEPE018 ILC Siting in Russia, Dubna Region and ILC Related Activity at JINR site, collider, cryomodule, laser 3383
 
  • G. Shirkov, Ju. Boudagov, Yu.N. Denisov, A. Dudarev, I.N. Meshkov, B.M. Sabirov, A.N. Sissakian, G.V. Trubnikov
    JINR, Dubna, Moscow Region
 
 

The investigations on ILC siting in the Dubna region and ILC technical activity at JINR are presented. International intergovernmental status of JINR, stable geological and plain relief conditions, comfortable location and well developed infrastructure create a set of advantages of the JINR site in the neighborhood of Dubna. The shallow layout of accelerator tunnel makes it possible to use a communication gallery at the surface instead of second one. This is an effective way of significant cost reduction of all conventional facilities and explicit labor of the project. The results of the preliminary geological engineering surveys along the supposed route of the ILC in Dubna area of Moscow region are presented.

 
WEPE021 Assessing Risk in Costing High-energy Accelerators: from Existing Projects to the Future Linear Collider collider, civil-engineering, controls, vacuum 3392
 
  • P. Lebrun
    CERN, Geneva
  • P.H. Garbincius
    Fermilab, Batavia
 
 

High-energy accelerators are large projects funded by public money, developed over the years and constructed via major industrial contracts both in advanced technology and in more conventional domains such as civil engineering and infrastructure, for which they often constitute one-off markets. Assessing their cost, as well as the risk and uncertainty associated with this assessment is therefore an essential part of project preparation and a justified requirement by the funding agencies. Stemming from the experience with large circular colliders at CERN, LEP and LHC, as well as with the Main Injector, the Tevatron Collider Experiments and Accelerator Upgrades, and the NOvA Experiment at Fermilab, we discuss sources of cost variance and derive cost risk assessment methods applicable to the future linear collider, through its two technical approaches for ILC and CLIC. We also address disparities in cost risk assessment imposed by regional differences in regulations, procedures and practices.

 
WEPE033 Considerations for a Dielectric-based Two-beam-accelerator Linear Collider acceleration, collider, extraction, wakefield 3428
 
  • W. Gai, M.E. Conde, J.G. Power
    ANL, Argonne
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio
 
 

In this paper, we present a linear collider concept based on drive beam generation from an RF photoinjector, and employing dielectric structures for power extraction and acceleration. The collider is based on a modular design with each module providing 100 GeV net acceleration. A high current drive beam is produced using a low frequency RF gun (~ 1GHz), and subsequently accelerated to ~1 GeV using conventional standing wave cavities. High frequency (20 GHz) RF power, extracted from the drive beam using a low impedance dielectric structure, is used to power the main linacs, which are based on high impedance high gradient dielectric loaded accelerating structures. We envision this scheme will produce high gradients (300 MeV/m), leading to a very compact design. The modularity of the design will allow a staged construction that will enable extension to multi-TeV energies.

 
WEPE041 A Superconducting Magnet Upgrade of the ATF2 Final Focus quadrupole, laser, sextupole, collider 3440
 
  • B. Parker, M. Anerella, J. Escallier, P. He, A.K. Jain, A. Marone, P. Wanderer, K.-C. Wu
    BNL, Upton, Long Island, New York
  • P. Bambade
    LAL, Orsay
  • B. Bolzon, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • P.A. Coe, D. Urner
    OXFORDphysics, Oxford, Oxon
  • C. Hauviller, E. Marin, R. Tomás, F. Zimmermann
    CERN, Geneva
  • N. Kimura, K. Kubo, T. Kume, S. Kuroda, T. Okugi, T. Tauchi, N. Terunuma, T. Tomaru, K. Tsuchiya, J. Urakawa, A. Yamamoto
    KEK, Ibaraki
  • A. Seryi, C.M. Spencer, G.R. White
    SLAC, Menlo Park, California
 
 

The KEK ATF2 facility, with a well instrumented beam line and Final Focus (FF), is a proving ground for linear collider (LC) technology to demonstrate the extreme beam demagnification and spot stability needed for a LC FF*. ATF2 uses water cooled magnets but the baseline ILC calls for a superconducting FF**. Thus we plan to replace some ATF2 FF magnets with superconducting ones made via direct wind construction as planned for the ILC. With no cryogenic supply at ATF2, we look to cool magnets and current leads with a few cryocoolers. ATF2 FF coil winding is underway at BNL and production warm magnetic measurements indicate good field quality. Having FF magnets with larger aperture and better field quality than present FF might allow reducing the beta function at the FF for study of focusing regimes relevant to CLIC. Our ATF2 magnet cryostat will have laser view ports for cold mass movement measurement and FF support and stabilization requirements under study. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC R&D prototype at BNL. We want to be able to predict LC FF performance with confidence.


* ATF2 proposal, volumes 1 and 2 at http://lcdev.kek.jp/ILC-AsiaWG/WG4notes/atf2/proposal/index.html
** International Linear Collider Reference Design Report, ILC-REPORT-2007-001, August 2007.

 
THOAMH02 High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL wakefield, acceleration, simulation, radiation 3605
 
  • J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
  • M.J. Hogan
    SLAC, Menlo Park, California
  • P. Muggli
    USC, Los Angeles, California
 
 

Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal of demonstrating >GeV acceleration in ~33 cm DWA tubes. In the nearer term before FACET's commissioning, we are planning measurements at the BNL ATF, in which we drive ~50-200 MV/m fields with single pulses or pulse trains. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for high efficiency operatio with pulse trains.

 

slides icon

Slides

 
THPEA013 Advances in X-band TW Accelerator Structures Operating in the 100 MV/m Regime damping, acceleration, collider, HOM 3702
 
  • T. Higo, Y. Higashi, S. Matsumoto, K. Yokoyama
    KEK, Ibaraki
  • C. Adolphsen, V.A. Dolgashev, A. Jensen, L. Laurent, S.G. Tantawi, F. Wang, J.W. Wang
    SLAC, Menlo Park, California
  • S. Döbert, A. Grudiev, G. Riddone, W. Wuensch, R. Zennaro
    CERN, Geneva
 
 

A CERN-SLAC-KEK collaboration on high gradient X-band accelerator structure development for CLIC has been ongoing for three years. The major outcome has been the demonstration of stable 100 MV/m gradient operation of a number of CLIC prototype structures. These structures were fabricated basically using the technology developed from 1994 to 2004 for the GLC/NLC linear collider initiative. One goal has been to refine the essential parameters and fabrication procedures needed to realize such high gradient routinely. Another goal has been to develop structures with stronger dipole mode damping than those for GLC/NLC. The latter requires that surface temperature rise during the pulses be higher, which may increase the breakdown rate. Structures with heavy damping will be tested in late 2009/early 2010, and this paper will present these results together with some of the earlier results from non-damped structures and structures built with a quadrant geometry.

 
FRXCMH01 Towards CLIC Feasibility collider, acceleration, alignment, luminosity 4769
 
  • J.-P. Delahaye
    CERN, Geneva
 
 

The CLIC study is a site independent study exploring technological developments to extend linear colliders into the Multi-TeV colliding beam energy range at reasonable cost and power consumption. A conceptual design report (CDR) of an electron-positron Compact LInear Collider (CLIC) with a 3 TeV center-of-mass collision energy is presently being prepared including results of 25 years of R&D to address the feasibility of its novel and promising technology, especially in an ambitious Test Facility, CTF3. The R&D is performed by a multi-lateral CLIC/CTF3 collaboration strong of 37 volunteer institutes from 19 countries from which the outstanding work and results are reported.

 

slides icon

Slides