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Abstract 
Charged-particle motion is studied in the self-electric 

and self-magnetic fields of a well-matched, intense 
charged-particle beam and an applied periodic solenoidal 
magnetic focusing field. The beam is assumed to be in a 
state of adiabatic thermal equilibrium. The phase space is 
analyzed and compared with that of the well-known 
Kapchinskij-Vladimirskij (KV)-type beam equilibrium. It 
is found that the widths of nonlinear resonances in the 
adiabatic thermal beam equilibrium are narrower than 
those in the KV-type beam equilibrium. Numerical 
evidence is presented, indicating the absence of chaotic 
particle motion in the adiabatic thermal beam equilibrium. 

INTRODUCTION 
Several kinetic equilibria have been discovered for 

periodically focused intense charged-particle beams. 
Well-known equilibria for periodically focused intense 
beams include the Kapchinskij-Vladmirskij (KV) 
equilibrium in an alternating-gradient (AG) quadrupole 
magnetic focusing field [1,2]  and the periodically 
focused rigid-rotor Vlasov equilibrium of the KV type in 
a periodic solenoidal magnetic focusing field [3,4]. Both 
of these beam equilibria [1-4] have a singular 
( −δ function) distribution in the four-dimensional phase 
space. Such a −δ function distribution gives a uniform 
density profile across the beam in the transverse 
directions, and a transverse temperature profile which 
peaks on axis and decreases quadratically to zero on the 
edge of the beam. Because of the singularity in the 
distribution functions, these beam equilibria are not likely 
to occur in real physical systems and cannot provide 
realistic models for theoretical and experimental studies 
and simulations except in the zero-temperature limit. For 
example, the KV equilibrium model cannot be used to 
explain the beam tails in the radial distributions observed 
in recent high-intensity beam experiments [5]. Recently, 
adiabatic thermal beam equilibria have been discovered in 
a periodic solenoidal magnetic focusing field [6-8] and an 
AG quadrupole magnetic focusing field [8,9]. The 
measured density distribution [5] matches that of the 
adiabatic thermal beam equilibrium in a spatially varying 
solenoidal magnetic focusing field [6,8].  

There have been many studies of charged-particle 
dynamics in the KV-type equilibria [10-14]. These studies 
have shown that the phase space for the KV-type 
equilibria exhibits rich nonlinear resonances and chaotic 
seas for charged particles outside the beam envelope 
[10,11]. If charged particles cross the beam envelope due 
to perturbations, they may enter chaotic seas to form a 
beam halo or cause beam losses [12-14].  

THEORY AND SIMULATION 
We study charged-particle dynamics in the adiabatic 

thermal equilibrium of an intense charged-particle beam 
propagating with constant axial velocity zbcêβ  in the 
periodic solenoidal magnetic focusing field  
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where zs =  is the axial coordinate, ( ) ( )sBSsB zz =+  is 
the axial magnetic field, S  is the fundamental periodicity 
length of the focusing field, and c  is the speed of light in 
vacuum. The adiabatic thermal beam equilibrium has 
been derived under the paraxial approximation with the 
following assumptions: 1) Srbrms << , where brmsr  is the 

RMS beam radius and 2) 1/ 23 <<bbβγν , where 
22 / mcNq b=ν  is the Budker parameter of the beam,  q  

and m  are the particle charge and rest mass, respectively, 

( ) rdrsrnN bb π2,
0∫
∞

= = const is the number of particles 

per unit axial length, and 2/12 )1( −−= bb βγ  is the 
relativistic mass factor.  

In the adiabatic thermal beam equilibrium [6-8], the 
beam density distribution is given by 
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and the self-electric potential ),( srφ  is determined by the 
Poisson equation 
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and the free-space boundary conditions. In Eqs. (2) and 

(3), C  is a constant determined by ( ) rdrsrnN bb π2,
0∫
∞

= , 
2232 /2 cmNqK bbb βγ≡  is the generalized beam perveance, 

[ ] 2/1222 2/)( cmrsTk bbbrmsBth βγε ⊥=  is the RMS thermal 
emittance in the Larmor frame, ϕϕ sincos~ yxx −=  and 

ϕϕ cossin~ yxy +=  where ∫=
s

z dss
0

)(κϕ , )(sT⊥  is the 

Kelvin temperature of the beam, Bk  is the Boltzmann  
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Figure 1: Plots of a) normalized density ( )0,0/ KVb nn  and 

b) normalized radial self-electric field bthr qNKES 2/12/3 4/ ε  

versus normalized radius Sr thε4/  in the KV-type beam 
equilibrium (dashed curve) and the adiabatic thermal 
beam equilibrium (solid curve) at 0=s  for the same 
choice of system parameters as in Fig. 1. Here, ( )0,0KVn  
is the density of the KV-type beam equilibrium at 0=s  
and 0=r . 

constant, and the  RMS beam envelope 
)()( Ssrsr brmsbrms +=  solves the beam envelope equation  
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where 22)()( cmsqBs bbzz βγκ ≡  and 

( )2~
2 /1 rmsxthb εεω −=  with rmsx~ε  being  the RMS 

emittance in the x~ -direction.  
Figure 1 shows a) density bn  and b) radial self-electric 

field rE  for the KV-type and adiabatic thermal beam 
equilibria at 0=s  for the choice of system parameters 
corresponding to ( ) ( ) ( )[ ]SssS z /2cos13/2 0

2/1 πσκ += , 
0.74/ =thSK ε , 0=bω , and °= 800σ . For 0=bω , 

rmsxth ~εε =  and the KV-type and adiabatic thermal beam 
equilibria have the same RMS beam envelopes. While the  

 

 

Figure 2: Poincare surface-of-section maps of charged-
particle trajectories in a) KV-type beam equilibrium and 
b) adiabatic thermal beam equilibrium for 0=θP  and the 
same choice of system parameters as in Fig. 1. Here, the 
normalized radial momentum is ( ) dsdrS th /4/ 2/1ε  and the 

normalized radius is Sr thε4/ . 

 
self-electric fields of the two beams are similar, there is 
an important difference:  the electric field near the 
normalized radius 0.24/ ≈Sr thε  has a smooth 
transition from negative to positive slope for the adiabatic 
thermal beam equilibrium, whereas its radial derivative is 
discontinuous for the KV-type beam equilibrium.  

The radial equation of motion of a charged particle in 
the cylindrical coordinates is  
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where the canonical angular momentum θP  is conserved. 
 Figure 2 shows a comparison between the Poincare 

surface-of-section maps of charged-particle trajectories in 
a) KV-type beam equilibrium and b) adiabatic thermal 
beam equilibrium for the choice of system parameters 
corresponding to ( ) ( ) ( )[ ]SssS z /2cos13/2 0

2/1 πσκ += , 
0=θP , °= 800σ , 0=bω , and 0.74/ =thSK ε . They are 
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Figure 3: Close ups of Poincare surface-of-section maps 
of charged-particle trajectories for the two cases shown in 
Fig. 2. 

 
generated by plotting ( )rPr,  as a trajectory arrives at the 
lattice points 0/ =Ss , 1, 2…, 2000. For these 
parameters, the density for the KV-type beam equilibrium 
drops abruptly at 0.24/ ≈Sr thε , whereas the density 
for the adiabatic thermal beam equilibrium falls from its 
flat top value to almost zero between 6.14/ ≅Sr thε  and 
2.4. 

For 0.24/ <Sr thε , the phase space is regular in both 
the KV-type and adiabatic thermal beam equilibria, and 
the action of a charged particle in the KV-type beam is 
larger than that in the adiabatic thermal beam, as shown in 
Fig. 2. In the region 4.24/2 ≤≤ Sr thε , however, there 
are striking differences between the KV-type and 
adiabatic thermal beam equilibria, as shown in Fig. 3. 
Comparing Fig. 4(a) with Fig. 4(b), there are two 
important differences to note. First, there are chaotic seas 
in the phase space of the KV-type beam, whereas chaotic 
motion is almost absent in the phase space of the 
adiabatic thermal beam equilibrium. Second, the widths 
of the nonlinear resonances in the adiabatic thermal beam 
equilibrium are narrower than those in the KV-type beam 
equilibrium. 

CONCLUSION 
We analyzed charged-particle motion in the self-electric 
and self-magnetic fields of a well-matched, intense 
charged-particle beam in a period solenoidal magnetic 
focusing field. We assumed that the beam is in the state of 
adiabatic thermal equilibrium. We compared the phase 
space of the adiabatic thermal beam equilibrium with that 
of a corresponding KV-type beam equilibrium. We found 
that the widths of some of the nonlinear resonances in the 
adiabatic thermal beam equilibrium are narrower than 
those in the KV-type beam equilibrium.  We presented 
numerical evidence for the absence of chaotic particle 
motion in the adiabatic thermal beam equilibrium in a 
periodic solenoidal magnetic focusing field.  
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