A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

kicker

Paper Title Other Keywords Page
MOPEB003 Design and Performance of Printed Circuit Steering Magnets for the FLASH Injector dipole, gun, quadrupole, multipole 277
 
  • K. Flöttmann
    DESY, Hamburg
 
 

Printed circuit boards offer a simple method for the design of hysteresis free, compact air coil magnets. The emphasis for the steering magnets developed for the FLASH injector is placed on a high integrated field strength for a short magnetic length to cope with space limitations in the injector beam line. The possibility to combine a pair of orthogonal steerers at the same longitudinal position has been realized by two layers of printed circuit boards. Design principles and magnetic measurements will be discussed.

 
MOPEC007 Operational Experience during the LHC Injection Tests injection, ion, quadrupole, optics 468
 
  • K. Fuchsberger, R. Alemany-Fernandez, G. Arduini, R.W. Assmann, R. Bailey, O.S. Brüning, B. Goddard, V. Kain, M. Lamont, A. Macpherson, M. Meddahi, G. Papotti, M. Pojer, L. Ponce, S. Redaelli, M. Solfaroli Camillocci, W. Venturini Delsolaro, J. Wenninger
    CERN, Geneva
 
 

Following the LHC injection tests of 2008, two injection tests took place in October and November 2009 as preparation for the LHC restart on November 20, 2009. During these injection tests beam was injected through the TI2 transfer line into sector 23 of ring 1 and through TI8 into the sectors 78, 67 and 56 of ring 2. The beam time was dedicated to injection steering, optics measurements and debugging of all the systems involved. Because many potential problems were sorted out in advance, these tests contributed to the rapid progress after the restart. This paper describes the experiences and issues encountered during these tests as well as related measurement results.

 
MOPEC009 LHC Abort Gap Monitoring and Cleaning proton, synchrotron, simulation, injection 474
 
  • M. Meddahi, S. Bart Pedersen, A. Boccardi, A.C. Butterworth, B. Goddard, G.H. Hemelsoet, W. Höfle, D. Jacquet, M. Jaussi, V. Kain, T. Lefèvre, E.N. Shaposhnikova, J.A. Uythoven, D. Valuch
    CERN, Geneva
  • A.S. Fisher
    SLAC, Menlo Park, California
  • E. Gianfelice-Wendt
    Fermilab, Batavia
 
 

Unbunched beam is a potentially serious issue in the LHC as it may quench the superconducting magnets during a beam abort. Unbunched particles, either not captured by the RF system at injection or leaking out of the RF bucket, will be removed by using the existing damper kickers to excite resonantly the particles in the abort gap. Following beam simulations, a strategy for cleaning the abort gap at different energies was proposed. The plans for the commissioning of the beam abort gap cleaning are described, and the first results from the beam commissioning are presented.

 
MOPEC015 Single-pass Beam Measurements for the Verification of the LHC Magnetic Model sextupole, quadrupole, octupole, optics 489
 
  • F. Zimmermann, M. Giovannozzi, S. Redaelli, Y. Sun, R. Tomás, W. Venturini Delsolaro
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
 
 

During the 2009 LHC injection tests, the polarities and effects of specific quadrupole and higher-order magnetic circuits were investigated. A set of magnet circuits had been selected for detailed investigation based on a number of criteria. On or off-momentum difference trajectories launched via appropriate orbit correctors for varying strength settings of the magnet circuits under study - e.g. main, trim and skew quadrupoles; sextupole families and spool piece correctors; skew sextupoles, octupoles - were compared with predictions from various optics models. These comparisons allowed confirming or updating the relative polarity conventions used in the optics model and the accelerator control system, as well as verifying the correct powering and assignment of magnet families. Results from measurements in several LHC sectors are presented.

 
MOPEC038 Commissioning of FFAG Accelerator at Kyushu University alignment, cyclotron, extraction, pick-up 543
 
  • T. Fujinaka, T. Matsunaga, S. Mochizuki, H. Takase
    Kyushu University, Center for Accelerator and Beam Applied Science, Fukuoka
  • H. Arima, T. Hasuo, N. Ikeda, K. Ishibashi, T. Korenaga, K. Maehata, N. Shigyo, Y. Uozumi, G. Wakabayashi, Y. Yonemura
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka
  • K. Fujita, T. Morikawa, T. Noro, T. Wakasa
    Kyushu University, Fukuoka
  • Y. Mori
    KURRI, Osaka
  • H. Nakayama, A. Takagi
    KEK, Ibaraki
  • T. Tomimasu
    SAGA, Tosu
 
 

150 MeV FFAG accelerator is under construction at Center for Accelerator and Beam Applied Science on Ito Campus to promote activities in all related scientific, medical, engineering and educational field at Kyushu University. In this paper, status of the development of hardware and the results of the beam commissioning of the injector are described.

 
MOPEC048 Beam Extraction of PAMELA NS-FFAG septum, extraction, proton, beam-transport 567
 
  • T. Yokoi, K.J. Peach, H. Witte
    JAI, Oxford
 
 

PAMELA (Particle Accelerator for MEdicaL Application) aims to design a particle therapy facility using Non-scaling FFAG (Fixed Field Alternating Gradient) accelerator. In the beam extraction in PAMELA, the biggest challenge is the flexible energy variability, which is desirable for better dose field formation. The feature is a unique feature of PAMELA for a fixed field accelerator. To realize energy variable beam extraction, PAMELA employs vertical extraction using large a aperture kicker magnet. In the paper, the detail of the extraction scheme, hardware specifications are discussed.

 
MOPEC050 Injection and Extraction System for the KEK Digital Accelerator vacuum, septum, acceleration, ion 570
 
  • T. Adachi, T. Kawakubo
    KEK, Ibaraki
  • T. Yoshii
    Nagaoka University of Technology, Nagaoka, Niigata
 
 

New acceleration system using an induction cell has been developed at KEK by using KEK 12-GeV PS*. We call an accelerator using the induction acceleration system "Digital Accelerator". The PS-Booster is now being renovated as the first Digital Accelerator (DA) by introducing the induction acceleration instead of rf**. Argon ion beam from the ECR ion source is injected to the DA by an electrostatic beam kicker. Another electrostatic device with the same structure is used for chopping the beam before injection. The accelerated beam is extracted by the existing extraction system, which comprises bump, septum and kicker magnets. Since these magnets are installed in a vacuum chamber, vacuum pressure deteriorates due to outgas from them. In order to reduce a beam loss in the DA ring, the pressure level is crucial especially for an ion beam. Therefore, we decided to put the septum magnet outside the vacuum chamber and insert a vacuum duct in the gap, since it dominantly contributes to the vacuum pressure more than the other magnets. This paper describes the electrostatic beam chopper, injection kicker and septum magnet containing the vacuum duct for the KEK DA and beam dynamics.


*K. Takayama, Phys. Rev. Lett. 98, 054801 (2007)
**K. Takayama, "KEK Digital Accelerator for Material and Biological Sciences", T. Iwashita, "Induction Acceleration System", in this conference

 
MOPD003 Engineering Status of SIS100 dipole, quadrupole, extraction, vacuum 672
 
  • P.J. Spiller, U. Blell, L.H.J. Bozyk, H. Eickhoff, E.S. Fischer, E. Floch, F. Hagenbuck, M. Kauschke, A. Krämer, J.P. Meier, C. Mühle, N. Pyka, S. Ratschow, H. Reich-Sprenger, P. Schnitzer, J. Stadlmann, St. Wilfert
    GSI, Darmstadt
 
 

The engineering design, including the specifications for the accelerator components of the FAIR synchrotron SIS100 has been summarized in the Technical Design Report. The final stage of technical planning shall approach production readiness for the major technical systems in 2010. Significant progress has been achieved in the design of the cryomagnetic system with its main dipole and quadrupole modules, enabling the production of the first pre-series dipole magnet. Slight modifications of the lattice have been implemented to equalize most of the cryostat interconnections, leading to a simplified design and installation effort, and a reduced variety of components and spar parts. The new parallel tunnel allows optimal short interconnections between the supply units and power converters and the accelerator components. The status of the engineering design of SIS100 will be reported.

 
MOPD014 Single-batch Filling of the CERN PS for LHC-type Beams booster, injection, emittance, extraction 699
 
  • S. Hancock, C. Carli, J.F. Comblin, A. Findlay, K. Hanke, B. Mikulec
    CERN, Geneva
 
 

Since the CERN PS Booster cannot simultaneously provide the beam brightness and intensity required, the nominal (25ns bunch spacing) proton beam for the LHC involves double-batch filling of the PS machine. Linac 4, which is under construction, will eventually remove this restriction. In the meantime, the request for 50 and 75ns bunch spacings to mitigate electron cloud effects has lowered the intensity demand such that the Booster can meet this in a single batch without compromising beam brightness. Single-batch transfer means providing two bunches from each of three Booster rings and, in turn, that the bunch spacing is modified by the addition of an h=1 rf component to the h=2 in the Booster in order to fit the h=7 rf buckets waiting in the PS (whilst leaving one bucket empty for kicker purposes). Following the first experiments performed in 2008, the rf manipulations in the Booster have been refined and those in the PS have been modified to cope with single-batch beams. This latest work is presented for both the 50 and 75ns variants.

 
MOPD077 Progress on Analytical Modeling of Coherent Electron Cooling electron, FEL, ion, plasma 873
 
  • G. Wang, M. Blaskiewicz, V. Litvinenko
    BNL, Upton, Long Island, New York
 
 

We report recent progresses on analytical studies of Coherent Electron Cooling. The phase space electron beam distribution obtained from the 1D FEL amplifier is applied to an infinite electron plasma model and the electron density evolution inside the kicker is derived. We also investigate the velocity modulation in the modulator and obtain a closed form solution for the current density evolution for infinite homogeneous electron plasma.

 
MOPD085 Measurement and Correction of the Longitudinal and Transversal Tunes during the Fast Energy Ramp at ELSA betatron, electron, synchrotron, acceleration 897
 
  • M. Eberhardt, F. Frommberger, W. Hillert, A. Roth
    ELSA, Bonn
 
 

At the electron stretcher accelerator ELSA of Bonn University, an external beam of either unpolarized or polarized electrons is supplied to hadron physics experiments. In order to correct dynamic effects caused by eddy currents induced during the fast energy ramp, the transversal tunes have to be measured in situ with high precision. These measurements are based on the excitation of coherent betatron oscillations generated by a pulsed kicker magnet. Horizontal oscillations were excited using one of the injection kicker magnets. Since its installation in 2009 a newly designed kicker magnet enables measurements in the vertical plane as well. Betatron oscillation frequencies were derived from a fast Fourier transform of the demodulated BPM signals, showing a well pronounced peak at the tune frequency. Using this technique, tune shifts were measured and corrected successfully on the fast energy ramp. Measurement and correction of coherent synchrotron oscillations are feasible as well, utilizing a quite similar technique. Coherent synchrotron oscillations are excited by a phase jump of the acceleration voltage using an electrical phase shifter in the reference RF signal path.

 
MOPD087 Error Emittance and Error Twiss Functions in the Problem of Reconstruction of Difference Orbit Parameters by Usage of BPM's with Finite Resolution emittance, feedback, betatron, FEL 903
 
  • V. Balandin, W. Decking, N. Golubeva
    DESY, Hamburg
 
 

The problem of errors, arising due to finite BPM resolution in the reconstructed orbit parameters, is one of the standard problems of the accelerator physics. Even so for the case of uncoupled motion the covariance matrix of reconstruction errors can be calculated "by hand", the usage of the obtained solution, as a tool for designing of a "good measurement system", is not straightforward. A better understanding of this problem is still desirable. We make a step in this direction by introducing dynamics into this problem, which seems to be static. We consider a virtual beam obtained as a result of the application of a reconstruction procedure to ‘‘all possible values'' of BPM reading errors. This beam propagates along the beam line according to the same rules as any real beam and has all beam dynamical characteristics, such as emittances, dispersions, betatron functions, and all these values describe the properties of the BPM measurement system. As an application we formulate requirements for the BPM measurement system of high-energy intra-bunch-train feedback system of the European XFEL Facility in terms of the introduced concepts of error emittance and error Twiss parameters.

 
MOPE013 Measurements of Proton Beam Extinction at J-PARC proton, linac, acceleration, synchrotron 984
 
  • K. Yoshimura, Y. Hashimoto, Y. Hori, Y. Igarashi, S. Mihara, H. Nishiguchi, Y. Sato, M. Shimamoto, Y. Takeda, M. Uota
    KEK, Ibaraki
  • M. Aoki, N. Nakadozono, T. Tachimoto
    Osaka University, Osaka
 
 

Proton beam extinction, defined as a residual to primary ratio of beam intensity, is one of the most important parameters to realize the future muon electron conversion experiment (COMET) proposed at J-PARC. To achieve the required extinction level of 10-9, we started measuring beam extinction at main ring (MR) as the first step. The newly developed beam monitor was installed into the abort beam line and the first measurement was successfully performed by using the fast-extracted MR beam. We found that empty RF buckets of RCS, in which all protons were considered to be swept away by a RF chopper before injection to RCS,, contained about 10-5 of the main beam pulse due to chopper inefficiency. We are now developing a new beam monitor with improved performance for further studies at the abort line. In addition, we have started new measurements at the different stage of proton acceleration, i.e. at Linac, 3-50 BT line, and the main ring. In this paper, we present recent results and future prospect of beam extinction measurements.

 
MOPE031 Control and Analysis System for Digital Feedback in HLS feedback, controls, injection, dynamic-aperture 1038
 
  • M. Meng, Y.B. Chen, J.H. Wang, Y.L. Yang, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui
 
 

In HLS we employ the TED FPGA based processor for digital feedback system. To make feedback system work better and more easily, we developed the control and analysis system based on matlab chiefly. The system do jobs as following: sampling data online and finishing its analysis; calculating fir filter parameters and generating .csv(format for FPGA) file to get the best gain and phase flexibly according to different beam working point; simulating the beam changes in different feedback gain and other stations to check whether the system work properly.

 
MOPE082 Off-the-shelf EPICS Instrumentation for Remote Waveform Monitoring & Analysis EPICS, controls, monitoring, instrumentation 1173
 
  • L. Shaw, C.D. Ziomek
    ZTEC Instruments, Albuquerque
 
 

Off-the-shelf instruments based on the LAN eXtensions for Instrumentation (LXI) standard that include embedded EPICS input/output controllers (IOCs) are an ideal solution for many particle accelerator applications. These applications require responsive remote control and real-time waveform monitoring for critical accelerator systems including machine protection, beam position monitoring and others. These instruments have the same feature sets and powerful analysis capabilities that today's high-end benchtop instruments have. With an embedded EPICS controller, the instruments easily integrate into the EPICS environment without the need for EPICS drivers or external controllers. They can be controlled and monitored by EPICS applications such as EDM and MEDM. These EPICS oscilloscopes and digitizers perform advanced real-time waveform math and analysis using on-board FPGAs and DSP. The paper will detail how ZTEC Instruments' EPICS oscilloscopes are being used at facilities around the world for real-time control and monitoring via EPICS.

 
MOPE084 Tune Evaluation from Phased BPM Turn-by-turn Data booster, betatron, controls, feedback 1179
 
  • Y. Alexahin, E. Gianfelice-Wendt, W.L. Marsh
    Fermilab, Batavia
 
 

In fast ramping synchrotrons, like the Fermilab Booster, the usual methods for evaluating the betatron tunes from the spectrum of turn-by-turn data may fail due to fast decoherence of particle motion or rapid tune changes, in addition to the BPM noise. We propose a technique based on phasing of the signals from different BPMs. Although the number of the Fermilab Booster BPMs is limited to 48 per plane, this method allows to detect the beam tunes in conditions where the other algorithms were unsuccessful. In this paper we describe the method and its implementation in the Fermilab Booster control system. Results of measurements are also presented.

 
TUOCMH03 Initial Experience with the Machine Protection System for LHC beam-losses, interlocks, injection, dumping 1277
 
  • R. Schmidt, R.W. Assmann, B. Dehning, M. FERRO-LUZZI, B. Goddard, M. Lamont, A.P. Siemko, J.A. Uythoven, J. Wenninger, M. Zerlauth
    CERN, Geneva
 
 

Nominal beam parameters at 7TeV/c will only be reached after some years of operation, with each proton beam having a stored energy of 360MJ. However, a small fraction of this energy is sufficient to damage accelerator equipment or experiments in case of uncontrolled beam loss. The correct functioning of the machine protection systems is vital during the different operational phases already for initial operation. When operating the complex magnet system, with and without beam, safe operation relies on the protection and interlock systems for the superconducting circuits. For safe injection and transfer of beam from SPS to LHC, transfer line parameters are monitored, beam absorbers must be in the correct position and the LHC must be ready to accept beam. At the end of a fill and in case of failures beams must be properly extracted onto the dump blocks, for some failures within less than few hundred microseconds. Safe operation requires many systems: beam dumping system, beam interlocks, beam instrumentation, equipment monitoring, collimators and absorbers, etc. We describe the commissioning of the LHC machine protection system and the experience during the initial operation.

 

slides icon

Slides

 
TUPEA023 The Design of Beam Abort System for the Super KEKB quadrupole, power-supply, extraction, emittance 1378
 
  • T. Mimashi, N. Iida, M. Kikuchi
    KEK, Ibaraki
  • K. Abe, S. Abe
    Hitachi Haramachi Electronics Co. Ltd., Hitachishi, Ibaraki
  • K. Iwamoto
    KFG, NEUSS
  • Y. Makino, T. Ozawa
    Kikusui Chemical Industries Co. Ltd, Kagamihara Shiga
  • A. Sasagawa
    KYOCERA Corporation, Higashiomi-city, Shiga
  • A. Tokuchi
    Pulsed Power Japan Laboratory Ltd., Kusatsu-shi Shiga
 
 

New beam abort system designed for KEKB upgrade, consists of horizontal and vertical kicker magnets, pulsed quadrupole magnets, a Lambertoson septum magnet and a beam dump. Water-cooling ceramic chambers are used for the kicker and pulsed quadrupole magnets. At the KEKB upgrade project, the beam abort gap is required to be less than 200 nsec. The beam currents are increased and their emittance is supposed to be much smaller than KEKB. In order to avoid melting the extraction Ti window, the pulsed quadrupole magnets will be installed. They enlarge the beam cross section at the extract window. The components for the SuperKEKB abort system are developed. The compact water-cooling ceramic chambers are developed to reduce the gap of kicker magnets and bore radius of the pulsed quadrupole magnets. The power supply for the kicker magnet is also developed to satisfy the 200 nsec rise time requirement.

 
TUPEA078 Electron Injection into a Cyclic Accelerator using Laser Wakefield Acceleration injection, electron, laser, scattering 1503
 
  • Ya.V. Getmanov, O.A. Shevchenko
    BINP SB RAS, Novosibirsk
  • N. Vinokurov
    NSU, Novosibirsk
 
 

We consider a technique for electron injection into a cyclic accelerator using the laser wakefield acceleration (LWFA) technique. Accelerators with this type of injector can be used for different purposes due to lower size, cost and low radiation hazard. To use the LWFA technique it is necessary to create a small gas cloud inside the accelerator vacuum chamber. But it leads to the increase of particle losses due to scattering on residual gas atoms. Therefore we propose to use magnesium as evaporated gas because of its high absorbability ' its atoms stick to walls at the first contact. We presented estimations of the LWFA-based injection system parameters, including maximum stored current. The proposed technique looks very prospective for compact accelerators and storage rings.

 
TUPEB062 Beam Commissioning and Performance Characterisation of the LHC Beam Dump Kicker Systems extraction, dumping, beam-losses, injection 1659
 
  • J.A. Uythoven, E. Carlier, L. Ducimetière, B. Goddard, V. Kain, N. Magnin
    CERN, Geneva
 
 

The LHC beam dump system was commissioned with beam in 2009. This paper describes the operational experience with the kicker systems and the tests and measurements to qualify them for operation. The kicker performance was characterized with beam by measurements of the kicker waveforms using bunches extracted at different times along the kicker sweep. The kicker performance was also continuously monitored for each pulse with measurement and analysis of each kick pulse, allowing diagnostic of errors and of long-term drifts. The results are described and compared to the expectations.

 
TUPEB063 Performance Studies for Protection against Asynchronous Dumps in the LHC simulation, extraction, collimation, proton 1662
 
  • T. Kramer
    EBG MedAustron, Wr. Neustadt
  • W. Bartmann, C. Bracco, B. Goddard, M. Meddahi
    CERN, Geneva
 
 

The LHC beam dump system has to safely dispose all beams in a wide energy range of 450 GeV to 7 TeV. A 3 μs abort gap in the beam structure for the switch-on of the extraction kicker field ideally allows a loss free extraction under normal operating conditions. However, a low number of asynchronous beam aborts is to be expected from reliability calculations and from the first year's operational experience with the beam dump kickers. For such cases, MAD-X simulations including all optics and alignment errors have been performed to determine loss patterns around the LHC as a function of the position of the main protection elements in interaction region six. Special attention was paid to the beam load on the tungsten collimators which protect the triplets in the LHC experimental insertions, and the tracking results compared with semi-analytical numerical estimates. The simulations are also compared to the results of beam commissioning of these protection devices.

 
TUPEB066 Injection Beam Loss and Beam Quality Checks for the LHC injection, beam-losses, target, controls 1671
 
  • B. Goddard, V. Baggiolini, W. Bartmann, C. Bracco, L.N. Drosdal, E.B. Holzer, V. Kain, D. Khasbulatov, N. Magnin, M. Meddahi, A. Nordt, M. Sapinski
    CERN, Geneva
  • M. Vogt
    DESY, Hamburg
 
 

The quality of the injection into the LHC is monitored by a dedicated software system which acquires and analyses the pulse waveforms from the injection kickers, and measures key beam parameters and compares them with the nominal ones. The beam losses at injection are monitored on many critical devices in the injection regions, together with the longitudinal filling pattern and maximum trajectory offset on the first 100 turns. The paper describes the injection quality check system and the results from LHC beam commissioning, in particular the beam losses measured during injection at the various aperture limits. The results are extrapolated to full intensity and the consequences are discussed.

 
TUPEB067 Beam Commissioning of the Injection Protection Systems of the LHC injection, proton, beam-losses, extraction 1674
 
  • W. Bartmann, R.W. Assmann, C. Bracco, B. Dehning, B. Goddard, E.B. Holzer, V. Kain, M. Meddahi, A. Nordt, S. Redaelli, A. Rossi, M. Sapinski, D. Wollmann
    CERN, Geneva
 
 

The movable LHC injection protection devices in the SPS to LHC transfer lines and downstream of the injection kicker in the LHC were commissioned with low-intensity beam. The different beam-based alignment measurements used to determine the beam centre and size are described, together with the results of measurements of the transverse beam distribution at large amplitude. The system was set up with beam to its nominal settings and the protection level against various failures was determined by measuring the transmission and transverse distribution into the LHC as a function of oscillation amplitude. Beam losses levels for regular operation were also extrapolated. The results are compared with the expected device settings and protection level, and the implications for LHC operation discussed.

 
TUPEB079 BPM Design and Impedance Considerations for a Rotatable Collimator for the LHC Collimation Upgrade impedance, simulation, damping, resonance 1704
 
  • J.C. Smith, L. Keller, S.A. Lundgren, T.W. Markiewicz, A. Young
    SLAC, Menlo Park, California
 
 

The Phase II upgrade to the LHC collimation system calls for complementing the 30 high robust Phase I graphite secondary collimators with 30 high Z Phase II collimators. This paper reports on BPM and impedance considerations and measurements of the integrated BPMs in the prototype rotatable collimator to be installed in the Super Proton Synchrotron (SPS) at CERN. The BPMs are necessary to align the jaws with the beam. Without careful design the beam impedance can result in unacceptable heating of the chamber wall or beam instabilities. The impedance measurements involve utilizing both a single displaced wire and two wires excited in opposite phase to disentangle the driving and detuning transverse impedances. Trapped mode resonances and longitudinal impedance are to also be measured and compared with simulations. These measurements, when completed, will demonstrate the device is fully operational and has the impedance characteristics and BPM performance acceptable for installation in the SPS.

 
TUPEC030 Conceptual Design of Injection System for Hefei Light Source (HLS) Upgrade Project injection, simulation, radiation, synchrotron 1785
 
  • G. Feng, W. Fan, W.W. Gao, W. Li, L. Wang, S.C. Zhang
    USTC/NSRL, Hefei, Anhui
 
 

In order to obtain more straight sections for insertion devices and higher brilliance synchrotron radiation, an upgrade project of Hefei Light source (HLS) is undergoing. A new injection system has been designed to improve injection efficiency and keep the machine running stably. Four kickers will be used to generate a local injection bump. Effects of injection system to injecting beam and stored beam have been simulated considering errors. Finally, ELEGANT code was used to simulate the injection process with new designed bump system. The simulation results show that the injection efficiency would be higher than 99% and perturbation on stored beam would be small enough, which are benefit to full energy injection and top-up operation of HLS in the future.

 
TUPEC031 The Operation of Injection System in the SSRF injection, septum, storage-ring, vacuum 1788
 
  • M. Gu, Z.H. Chen, B. Liu, L. Ouyang, R. Wang, Y. Wu, Q. Yuan
    SINAP, Shanghai
 
 

The injection system composed of four kickers and two septa in the SSRF have been built and operated. The commissioning shows that fine injecting efficiency and smaller disturbance are carried out. The septum magnets are eddy current designs with a sheet of magnetic screening material around the stored electron beam to reduce the leakage field. The beam tube with RF finger flanges at each end is added to keep the continuity of impedance for the circulating beam. The pulser excite the septum with 60μsecond waveform of half sine-wave and 8kA peak current. Four identical kicker magnets provide the symmetric bump in 10 meter long straight sections. The excitation waveform is a 3.8μsecond half sine pulse up to 7 kA peak. The emphasis was on achieving the best possible tracking in time of the magnet field waveforms so that the residual closed orbit disturbance is minimized for top-up injection. The performance of the injection system with these pulsed magnets are described.

 
TUPEC034 Dual One-turn Coils for TLS Extraction Kicker Magnet power-supply, booster, extraction, injection 1796
 
  • K.L. Tsai, C.-T. Chen, Y.-S. Cheng, C.-S. Fann, K.T. Hsu, S.Y. Hsu, K.H. Hu, K.-K. Lin, C.Y. Wu
    NSRRC, Hsinchu
  • Y.-C. Liu
    National Tsing-Hua University, Hsinchu
 
 

The test results of a dual one-turn coils configuration for Taiwan Light Source (TLS) booster extraction kicker is presented in this report. The achieved capability of the test unit demonstrates that the rise-time of the kicker current pulse has been improved for beam extraction optimization. This improved performance is mainly accomplished by reducing the load inductance effectively with a dual one-turn coils configuration. The measured result of rise-time variation versus the corresponding load inductance change is briefly discussed.

 
TUPEC045 Requirements on the Pulsed Magnets for the Best Injector Performance emittance, booster, ion, extraction 1823
 
  • T.V. Shaftan, A. Blednykh, Y. Kawashima, S. Krinsky, J. Rose, L.-H. Yu
    BNL, Upton, Long Island, New York
 
 

Booster extraction presents a number of problems that include strengths and waveforms of the pulsed magnets and design of the vacuum chamber. Instabilities in the booster extraction may compromise the extracted beam quality deteriorating value of high-performance injector design. Here we discuss requirements and tolerances for the extraction system components and methods of increasing its performance.

 
TUPEC048 Coupling Impedance Contribution of Ferrite Devices: Theory and Simulation impedance, coupling, wakefield, electromagnetic-fields 1829
 
  • L. Haenichen, W.F.O. Müller, T. Weiland
    TEMF, TU Darmstadt, Darmstadt
  • O. Boine-Frankenheim
    GSI, Darmstadt
 
 

Beam coupling impedances have been identified as an appropriate quantity to describe collective instabilities caused through beam-induced fields in heavy ion synchrotron accelerators such as the SIS-18 and the SIS-100 at the GSI facility. The impedance contributions caused by the multiple types of beamline components need to be determined to serve as input condition for later stability studies. This paper will discuss different approaches to calculate the Coupling Impedance contribution of ferrite devices, exploiting the abilities of both commercial codes such as CST STUDIO SUITEĀ® and specific extensions of this code to address kicker related problems in particular. Before addressing actual beamline devices, benchmark problems with cylindrical and rectangular geometry will be simulated and the results will be compared with the corresponding analytical formulations.

 
TUPEC082 SimTrack: A Simple C++ Library for Particle Tracking dipole, multipole, closed-orbit, coupling 1907
 
  • Y. Luo
    BNL, Upton, Long Island, New York
 
 

SimTrack is a simple C++ library designed for numeric particle tracking in high energy accelerators. It adopts a 4th order symplectic integrator for optical transportat in the magnetic elements. 4-D and 6-D weak-strong beam-beam treatments are included for beam-beam studies. It provides versatile functions to manage elements and lines. New type of elements can be easily created in the library. It calculates Twiss and coupling, fits tunes and chromaticities, and corrects closed orbits. During tracking, the parameters of elements can be changed or modulated on the fly.

 
TUPD044 Horizontal Impedance of the Kicker Magnet of RCS at J-PARC impedance, vacuum 2024
 
  • Y. Shobuda, J. Kamiya, M. Watanabe
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken
 
 

There is the famous formula of the horizontal impedance for the matched-traveling wave kicker. However, the real and the imaginary parts of the impedance do not satisfy the Hilbert transformations. On the other hand, the impedance measured by a loop method does not directly give the beam impedance. In this paper we theoretically derive the beam impedance and reproduce the impedance by using the estimated inductances of the kicker by the loop measurement.

 
TUPD051 Generalized Form Factors for the Beam Coupling Impedances in a Flat Chamber impedance, vacuum, coupling, space-charge 2042
 
  • N. Mounet
    EPFL, Lausanne
  • N. Mounet, E. Métral
    CERN, Geneva
 
 

The exact formalism from B. Zotter to compute beam coupling impedances has been fully developed only in the case of an infinitely long circular beam pipe. For other two dimensional geometries, some form factors are known only in the ultrarelativistic case and under certain assumptions of conductivity and frequency of the pipe material. We present here a new and exact formalism to compute the beam coupling impedances in the case of a collimator-like geometry where the jaws are made of two infinite plates of any linear material. It is shown that the impedances can be computed theoretically without any assumptions on the beam speed, material conductivity or frequency range. The final formula involves coefficients in the form of integrals that can be calculated numerically. This way we obtain new generalized form factors between the circular and the flat chamber cases, which eventually reduce to the so-called Yokoya factors under certain conditions.

 
TUPD052 Electromagnetic Simulations of Simple Models of Ferrite Loaded Kickers impedance, simulation, coupling, synchrotron 2045
 
  • C. Zannini, N. Mounet, E. Métral, G. Rumolo
    CERN, Geneva
  • B. Salvant, C. Zannini
    EPFL, Lausanne
 
 

The kickers are major contributors to the CERN SPS beam coupling impedance. As such, they may represent a limitation to increasing the SPS bunch current in the frame of an intensity upgrade of the LHC. In this paper, CST Particle Studio time domain electromagnetic simulations are performed to obtain the longitudinal and transverse impedances/wake potentials of simplified models of ferrite loaded kickers. The simulation results have been successfully compared with some existing analytical expressions. In the transverse plane, the dipolar and quadrupolar contributions to the wake potentials have been estimated from the results of these simulations. For some cases, simulations have also been benchmarked against measurements on PS kickers. It turns out that the large simulated quadrupolar contributions of these kickers could explain both the negative total (dipolar+quadrupolar) horizontal impedance observed in bench measurements and the positive horizontal tune shift measured with the SPS beam.

 
TUPD055 Quadrupolar Transverse Impedance of Simple Models of Kickers impedance, simulation, vacuum, coupling 2054
 
  • B. Salvant
    EPFL, Lausanne
  • N. Mounet, E. Métral, G. Rumolo, B. Salvant, C. Zannini
    CERN, Geneva
 
 

The SPS kickers are major contributors to the SPS transverse beam coupling impedance. The current "flat chamber" impedance model for a kicker is obtained by applying form factors to the theoretical impedance of an axisymmetric ferrite beam pipe. This model was believed to be acceptable for the vertical dipolar impedance, as two-wire measurements on SPS kickers revealed a satisfactory agreement. However, one-wire measurements on PS kickers suggested that this model underestimates the kickers' transverse quadrupolar (detuning) impedance. The longitudinal and transverse dipolar impedances of another kicker model that accounts for the metallic plates on each side of the ferrite were derived in the past by H. Tsutsui. The same formalism is used in this paper to derive the quadrupolar impedance. These formulae were then successfully benchmarked to electromagnetic simulations. Finally, simulating the interaction of an SPS bunch with the improved kickers' model results in a positive horizontal tune shift, which is very close to the tune shift measured with the SPS beam.

 
TUPD056 Update of the SPS Impedance Model impedance, cavity, simulation, resonance 2057
 
  • B. Salvant
    EPFL, Lausanne
  • G. Arduini, O.E. Berrig, F. Caspers, A. Grudiev, N. Mounet, E. Métral, G. Rumolo, B. Salvant, E.N. Shaposhnikova, C. Zannini
    CERN, Geneva
  • M. Migliorati, B. Spataro
    INFN/LNF, Frascati (Roma)
  • B. Zotter
    Honorary CERN Staff Member, Grand-Saconnex
 
 

The beam coupling impedance of the CERN SPS is expected to be one of the limitations to an intensity upgrade of the LHC complex. In order to be able to reduce the SPS impedance, its main contributors need to be identified. An impedance model for the SPS has been gathered from theoretical calculations, electromagnetic simulations and bench measurements of single SPS elements. The current model accounts for the longitudinal and transverse impedance of the kickers, the horizontal and vertical electrostatic beam position monitors, the RF cavities and the 6.7 km beam pipe. In order to assess the validity of this model, macroparticle simulations of a bunch interacting with this updated SPS impedance model are compared to measurements performed with the SPS beam.

 
WEOBMH02 Multi-bunch Beam Extraction using Strip-line Kicker at KEK-ATF extraction, linear-collider, collider, damping 2386
 
  • T. Naito, H. Hayano, K. Kubo, S. Kuroda, T. Okugi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
 
 

The beam extraction experiment using the strip-line kicker has been carried out at KEK-ATF. The specification of the International linear collider (ILC) is that the long bunch train (1320 - 5120 bunches), which has the bunch spacing of 189 - 480ns, is compressed to 3 or 6ns bunch spacing into the DR, and again decompressed from the DR. The kicker manipulates the changes of the bunch spacing. The kicker requires a fast rise/fall time (3 or 6ns) and a high repetition rate (3 or 6MHz). A multiple strip-line kicker system is the most promising candidate to realize the specification for the ILC*. The beam extraction experiment at KEK-ATF** using proto-type of the strip-line kicker was done by following parameters, up to 30 bunches of the multi-bunch in the DR, which has 5.6ns bunch spacing, are extracted bunch-by-bunch with 308ns interval to the extraction line. The stored multi-bunch was extracted successfully. The detail of the experiment and the result are reported.


* T. Naito et. al., Proc. of PAC07, pp2772-2274.
** T. Naito et. al., Proc. of EPAC08, pp601-603.

 

slides icon

Slides

 
WEPEA016 Frequency Maps at PETRA III dynamic-aperture, injection, wiggler, beam-losses 2511
 
  • A. Kling, K. Balewski
    DESY, Hamburg
 
 

PETRA III is a 3rd generation synchrotron radiation light source which started commissioning in April 2009. Recently, first frequency map measurements have been made using the turn-by-turn capabilities of the beam position monitors and horizontal as well as vertical kicker magnets. The results are in good agreement with expectations from tracking studies performed with SixTrack.

 
WEPEA017 Turn-by-turn Data Analysis for PETRA III resonance, betatron, optics, sextupole 2514
 
  • A. Kling, K. Balewski
    DESY, Hamburg
  • R. Bartolini
    JAI, Oxford
 
 

PETRA III is a 3rd generation synchrotron radiation light source which started commissioning in April 2009. Turn-by-turn capabilities are available for all 227 BPMs installed in the storage ring thus providing a powerful diagnostic tool for the characterization of the linear and nonlinear motion of the stored beam. We report on first results of beam dynamics studies using multiturn data acquired at PETRA III and first steps towards a calibration of the linear and nonlinear lattice model of the storage ring.

 
WEPEA031 Suppression of Horizontal Beam Oscillation by using Fast Kicker Magnet System in SPring-8 Storage Ring power-supply, injection, high-voltage, betatron 2552
 
  • C. Mitsuda, K. Fukami, K. Kobayashi, M. Oishi, Y. Okayasu, M. Shoji, K. Soutome, H. Yonehara
    JASRI/SPring-8, Hyogo-ken
  • T. Nakanishi
    SES, Hyogo-pref.
  • T. Ohshima
    RIKEN/SPring-8, Hyogo
 
 

In top-up operation at SPring-8 the horizontal beam oscillation had been excited because the injection bump orbit is not closed perfectly. For this problem, we had made an effort to reduce the residual beam oscillation by the improvement of bump magnet design, reducing the effect due to the nonlinearity of sextupole magnet and introducing pulsed corrector magnet, etc. By these improvements the average amplitude of residual oscillation has now been suppressed to the level of less than 0.1 mm. Still remaining relatively large residual oscillation comes from a non-similarity of a temporal shape of magnetic field of four bump magnets. We then started development fast kicker magnet system to give a counter kick to this part of residual beam oscillation. A key technology in this development is how to generate a large pulsed current in a short period to meet the oscillation characteristic. A newly developed fast pulsed power supply can generate a current of about 300 A, or corresponding magnetic field of 4.61 mT, with a pulse width of 1.2 us. Recently, we succeeded in the reduction of the horizontal beam oscillation at the timing of firing bump magnets by using this kicker system.

 
WEPEA066 The First Eighteen Months of Top-up at Diamond Light Source injection, storage-ring, resonance, insertion 2636
 
  • C. Christou, J.A. Dobbing, R.T. Fielder, I.P.S. Martin, S.J. Singleton
    Diamond, Oxfordshire
 
 

Diamond Light Source has delivered beam for users exclusively in top-up mode since the end of October 2008. In this mode, a small number of single bunches are injected into specific buckets of the storage ring every ten minutes in order to maintain a constant beam current and fill pattern. During top-up the storage ring current is held within a window of approximately 1.5mA around the target current, generally 250mA, for a variety of fill patterns, including a two-thirds storage ring fill and a hybrid fill in which an intense single bunch is added to the normal fill pattern. Top-up has run continuously for several days on many occasions, with injection efficiency into the storage ring of typically 60%-95% even with 10 in-vacuum insertion device in operation with a permitted minimum gap of 5 mm. The effect of insertion devices, pulsed magnet stability and storage ring beam optics on top-up reliability and performance is examined, and the development of tools for the control of top-up and storage ring fill is detailed.

 
WEPEA068 Pulsed Multipole Injection for the ALS Upgrade injection, lattice, multipole, sextupole 2642
 
  • D. Robin, G.C. Pappas, C. Sun
    LBNL, Berkeley, California
  • Z.K. Fisher
    MIT, Cambridge, Massachusetts
 
 

We have developed computer models for a pulsed-multipole magnet injection scheme for the Advanced Light Source (ALS) at Lawrence Berkeley National Lab. The multipole kicker injection scheme is further shown to be com- patible with the ALS in combination with a magnet lattice that has a low beta-function in the injection straight. Since traditional injection schemes are not compatible with such optimized low beta lattices, implementing the new injection scheme opens up several new possibilities. For instance, the adoption of a low beta lattice can greatly increase brightness due to the better matching of photon and electron beam emittances. This document explains the principles of the injection and the simulations we performed to show that the concept is sound.

 
WEPEA084 Study of Beam Emittance and Energy Spread Measurements Using SVD and Multiple Flags in the NSLS-II Booster Extraction Beamline optics, booster, emittance, extraction 2677
 
  • G.M. Wang, R.P. Fliller, W. Guo, R. Heese, T.V. Shaftan, L.-H. Yu
    BNL, Upton, Long Island, New York
  • Y.-C. Chao
    TRIUMF, Vancouver
 
 

The low beam emittance requirement in the NSLS-II storage ring imposes a very tight constraint on its acceptance. This requires the injected beam emittance to be very small, for which a reliable scheme of measurement to determine the phase space and momentum characteristics of the beam coming out the booster is necessary. The original scheme based on the booster-to-dump transport line was hampered by the difficulty in decoupling betatron oscillation from dispersion, due to high concentration of dipoles and limited number of quads after the booster. This paper will describe the alternative method being planned to use the booster extraction line to measure the beam emittance and energy spread, as well as the associated errors.

 
WEPEB020 Control of the Pulse Magnet Power Supply by EPICS IOC Embedded PLC EPICS, controls, power-supply, septum 2731
 
  • C.Y. Wu, J. Chen, Y.-S. Cheng, C.-S. Fann, K.T. Hsu, S.Y. Hsu, K.H. Hu, C.H. Kuo, D. Lee, K.-K. Lin
    NSRRC, Hsinchu
  • K. Furukawa, J.-I. Odagiri
    KEK, Ibaraki
 
 

The EPICS embedded programmable logic controller (PLC) has been developed based on F3RP61-2L, a CPU module of a FA-M3R series PLC running Linux OS. The EPICS IOC resided in F3RP61-2L module can access the registers of sequence CPU modules and I/O modules of the PLC. The embedded EPICS PLC was applied to control the prototype of pulse magnet power supply and support functionality testing remotely. The system comprises various input/output modules and a CPU module with built-in Ethernet interface. The control information (status of the power supply, ON, OFF, warn up, reset, read/write voltage, etc.) can be accessed remotely using EPICS client tools. The EDM is selected to develop the GUI for itself. Efforts are summarized in this report.

 
WEPEB032 Studies and Control of Coupled-bunch Instabilities at DELTA feedback, synchrotron, electron, damping 2755
 
  • S. Khan, J. Fürsch, P. Hartmann, T. Weis
    DELTA, Dortmund
  • D. Teytelman
    Dimtel, San Jose
 
 

DELTA is a 1.5-GeV synchrotron radiation source at the TU Dortmund University with 2 ns bunch spacing. At nominal operating currents, the beam exhibits significant longitudinal centroid motion due to coupled-bunch instabilities. Two techniques were successfully used at DELTA to damp such instabilities: RF phase modulation, which also improves the beam lifetime, and bunch-by-bunch feedback. Using diagnostic data from the bunch-by-bunch feedback system, modal spectra and growth rates of the longitudinal instabilities were characterized. We also present a preliminary characterization of transverse coupled-bunch oscillations observed at the highest beam currents.

 
WEPEB039 Simulation Study of Intra-train Feedback Systems for Nanometer Beam Stabilization at ATF2 extraction, feedback, simulation, controls 2773
 
  • J. Resta-López, R. Apsimon, P. Burrows, G.B. Christian, B. Constance
    JAI, Oxford
  • J. Alabau-Gonzalvo
    IFIC, Valencia
 
 

The commissioning of the ATF2 final focus test beam line facility is currently progressing towards the achievement of its first goal: to demonstrate a transverse beam size of about 40 nm at the focal point. In parallel, studies and R&D activities have already started towards the second goal of ATF2, which is the demonstration of nanometer level beam orbit stabilization. These two goals are important to achieve the luminosity required at future linear colliders. Beam-based intra-train feedback systems will play a crucial role in the stabilization of multi-bunch trains at such facilities. In this paper we present the design and simulation results of beam-based intra-train feedback systems at the ATF2: one system located in the extraction line at the entrance to the final focus, and another at the interaction point. The requirements and limitations of these systems are also discussed.

 
WEPEB044 Latest Beam Test Results from ATF2 with the Font ILC Prototype Intra-train Beam Feedback Systems feedback, linear-collider, extraction, collider 2788
 
  • P. Burrows, R. Apsimon, D.R. Bett, G.B. Christian, B. Constance, H. Dabiri Khah, C. Perry, J. Resta-López, C. Swinson
    JAI, Oxford
 
 

We present the design and beam test results of a prototype beam-based digital feedback system for the Interaction Point of the International Linear Collider. A custom analogue front-end signal processor, FPGA-based digital signal processing boards, and kicker drive amplifier have been designed, built, deployed and tested with beam in the extraction line of the KEK Accelerator Test Facility (ATF2). The system was used to provide orbit correction to the train of bunches extracted from the ATF damping ring. The latency was measured to be approximately 140 ns.

 
WEPEB045 The Beam-based Intra-train Feedback System of CLIC luminosity, feedback, simulation, quadrupole 2791
 
  • J. Resta-López, P. Burrows
    JAI, Oxford
 
 

The design luminosity of the future linear colliders requires transverse beam size at the nanometre level at the interaction point (IP), as well as stabilisation of the beams at the sub-nanometre level. Different imperfections, for example ground motion, can generate relative vertical offsets of the two colliding beams at the IP which significantly degrade the luminosity. In principle, a beam-based intra-train feedback system in the interaction region can correct the relative beam-beam offset and steer the beams back into collision. In addition, this feedback system might considerably help to relax the required tight stability tolerances of the final doublet magnets. For CLIC, with bunch separations of 0.5 ns and train length of 156 ns intra-train feedback corrections are specially challenging. In this paper we describe the design and simulation of an intra-train feedback system for CLIC. Results of luminosity performance simulation are presented and discussed.

 
WEPEB053 Experimental Tests of a Prototype System for Active Damping of the e-p Instability in the ORNL SNS Accumulator Ring feedback, damping, LLRF, pick-up 2809
 
  • R.A. Hardin
    ORNL RAD, Oak Ridge, Tennessee
  • V.V. Danilov, C. Deibele
    ORNL, Oak Ridge, Tennessee
 
 

The prototype of an analog transverse (vertical and horizontal) feedback system to actively damp the electron-proton (e-p) instability has been developed and tested on the ORNL Spallation Neutron Source (SNS). We will describe the principle components, system configuration, and review several experimental studies geared towards understanding the current performance and limitations of the system.

 
WEPEB071 The CLIC Machine Protection interlocks, linac, controls, linear-collider 2860
 
  • M. Jonker, E.B. Holzer, S. Mallows, D. Manglunki, G. Morpurgo, Th. Otto, M. Sapinski, F. Tecker, J.A. Uythoven
    CERN, Geneva
 
 

The proposed Compact Linear Collider (CLIC) is based on a two-beam acceleration scheme. The energy of high intensity, low energy drive beams is extracted and transferred to low intensity, high energy main beams. Direct ionization loss by the beam particles is the principal damage mechanism. The total charge gives a single drive beam-train a damage potential that is two orders of magnitude above the level causing structural damage in copper. For the main beam, it is the extreme charge density due to the microscopic beam size that gives it a damage potential of four orders of magnitude above the safe level. The machine protection system has to cope with a wide variety of failures, from real time failures (RF breakdowns, kickers misfiring), to slow equipment failures, to beam instabilities (caused by e.g. temperature drifts, slow ground motions). This paper discusses the baseline for the CLIC machine protection system which is based on passive, active and permit based protection. As the permit based protection depends on the measured performance of the previous pulse, the bootstrap procedure with safe beams and stepwise increase in beam intensities, is also discussed.

 
WEPD027 Tuning of the Fast Local Bump System for Helicity Switching at the Photon Factory controls, photon, factory, undulator 3150
 
  • K. Harada, Y. Kobayashi, T. Miyajima, S. Nagahashi, T. Obina, M. Shimada, R. Takai
    KEK, Ibaraki
  • S. Matsuba
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
 
 

The fast local bump system for the helicity switching of variably polarizing undulators has been developed at the Photon Factory ring. The system consists of two APPLE-II type variably polarizing undulators and five identical horizontal kicker magnets for local bump with four small corrector magnets to prevent the leakage of the bump. At present, one undulator and the local bump system with corrector magnets are installed. For beam test, the system was operated with frequency up to 50 Hz with feed forward correction. In this presentation, after brief description of the system configuration, the results of the test operation and fine tunings of the fast local bump system are shown.

 
WEPD086 Operation of Kicker System using Thyratron of the 3 GeV Rapid Cycling Synchrotron of J-PARC power-supply, proton, synchrotron, cathode 3296
 
  • M. Watanabe, J. Kamiya, K. Suganuma, T. Takayanagi, N. Tani, T. Togashi, T. Ueno, Y. Watanabe
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
 

3 GeV rapid cycling synchrotron (RCS) of J-PARC accelerates proton beams from the 181 MeV up to 3 GeV. The RCS injects the beam to the Main Ring and transports it to the muon production target and neutron production target in the Materials and Life Science Experimental Hall. Proton beams in the RCS are fast extracted by kicker magnets at the repetition rate of 25 Hz. The rise time of the magnetic field is approximately 260 ns due to the propagation time through the coaxial cable and the kicker magnet itself. The flat-top length of it is required to 840 ns in order to extract two beam bunches. Pulse forming lines (PFL) and thyratrons are used to make the rise time and the flat-top, at the maximum charging voltage of 80 kV. Two thyratrons, which is a CX1193C made by e2V Ltd., are used for a power supply. 16 thyratrons are used in the eight power supplies of the kicker system. Since thyratrons are gaseous discharge switching devices, they often make misfire or self-breakdown in several hours. In this paper, present status of operation and voltage adjustment method of the reservoir and cathode heater power supply of the thyratrons in the kicker system are described.

 
WEPD087 Design, Manufacturing and Testing of the CTF3 Tail Clipper Kicker simulation, vacuum, impedance, HOM 3299
 
  • I. Rodríguez, F. Toral
    CIEMAT, Madrid
  • M.J. Barnes, T. Fowler, G. Ravida
    CERN, Geneva
 
 

The goal of the present CLIC Test Facility (CTF3) is to demonstrate the technical feasibility of specific key issues of the CLIC scheme. The extracted drive beam from the combiner ring (CR), a pulse of 35 A magnitude and 140 ns duration, is sent to the new CLic EXperimental area (CLEX). A Tail Clipper (TC) kicker is required, in the CR to CLEX transfer line, to allow the duration of the beam pulse to be adjusted: the unwanted bunches are kicked into a collimator. The TC must have a fast field rise-time, of not more than 5 ns, in order to minimize uncontrolled beam loss. Striplines are used for the TC: to establish the required fields, the applied pulse wave front must fully propagate along the striplines. To reduce the wave front propagation time, the overall length of the stripline assembly is sub-divided into 4 sections. The TC has been designed with the aid of detailed numerical modelling: the stripline cross-section and coaxial-to-stripline transitions were carefully optimized using a 3D code. The results of simulations and the measured behaviour of the striplines are presented; in addition measured current pulses are shown.

 
WEPD088 Beam-Based Measurement of the Waveform of the LHC Injection Kickers injection, simulation, damping, emittance 3302
 
  • M.J. Barnes, L. Ducimetière, B. Goddard, C. Heßler, V. Mertens, J.A. Uythoven
    CERN, Geneva
 
 

Proton and ion beams will be injected into LHC at 450 GeV by two kicker magnet systems, producing magnetic field pulses of up to 7.8 μs flat top duration with rise and fall times of not more than 900 ns and 3 μs, respectively. Both systems are composed of four traveling wave kicker magnets, powered by pulse forming networks. One of the stringent design requirements of these systems is a field flat top and post pulse ripple of less than ±0.5 %. A carefully matched high bandwidth system is required to obtain the stringent pulse response. Screen conductors are placed in the aperture of the kicker magnet to provide a path for the image current of the, high intensity, LHC beam and screen the ferrite against Wake fields: these conductors affect the field pulse response. Recent injection tests provided the opportunity to directly measure the shape of the kick field pulse with high accuracy using a pilot beam. This paper details the measurements and compares the results with predictions and laboratory measurements.

 
WEPD089 CLIC Pre-Damping and Damping Ring Kickers: Initial Ideas to Achieve Stability Requirements impedance, damping, extraction, coupling 3305
 
  • M.J. Barnes, L. Ducimetière, J.A. Uythoven
    CERN, Geneva
 
 

The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity (1034 - 1035 cm2/s) and a nominal centre-of-mass energy of 3 TeV: CLIC would complement LHC physics in the multi-TeV range. The CLIC design relies on the presence of Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve the very low emittance, through synchrotron radiation, needed for the luminosity requirements of CLIC. In order to limit the beam emittance blow-up due to oscillations the combined flat-top ripple and droop of the field pulse, for the DR extraction kickers, must be less than 0.015%. In addition, the allowed beam coupling impedance for the kicker systems is also very low: a few Ohms longitudinally and a few MΩ/m transversally. This paper discusses initial ideas for achieving the extremely demanding requirements for the PDR and DR kickers.

 
WEPD091 The Kicker Systems for the PS Multi-turn Extraction extraction, impedance, vacuum, septum 3311
 
  • L. Sermeus, M.J. Barnes, T. Fowler
    CERN, Geneva
 
 

A five-turn continuous extraction is currently used to transfer the proton beam from the CERN PS to the SPS. This extraction uses an electrostatic septum to cut the filament beam into five slices, causing losses of about 15 %. These losses would be an even greater drawback when the beam intensity is further increased for the CERN Neutrinos to Gran Sasso facility. To overcome this, a Multi-Turn Extraction (MTE) has been implemented, in which the beam is separated, prior to extraction, into a central beam core and four islands. Each beamlet is extracted using a set of kickers and a magnetic septum. For the kickers two new pulse generators have been built, each containing a lumped element Pulse Forming Network (PFN) of 12.5 Ohms, 80 kV and 10.5 μs. For cost reasons existing 15 Ω transmission line kicker magnets are reused. The PFN characteristic impedance deliberately mismatches that of the magnets to allow a higher maximum kick. The PFN design has been optimised such that undesirable side-effects of the impedance mismatch on kick rise-time and flat-top remain within acceptable limits. The kicker systems put in place for the current first phase of MTE are presented.

 
WEPD093 Upgrade of the Super Proton Synchrotron Vertical Beam Dump System impedance, simulation, coupling, synchrotron 3314
 
  • V. Senaj, L. Ducimetière, E. Vossenberg
    CERN, Geneva
 
 

The vertical beam dump system of the CERN Super Proton Synchrotron (SPS) uses two matched magnets with an impedance of 2 Ω and combined kick strength of 1.152 Tm at 60 kV supply voltage. For historical reasons the two magnets are powered from three 3 Ω pulse forming networks (PFN) through three thyratron-ignitron switches. Recently flashovers were observed at the entry of one of the magnets, which lead, because of the electrical coupling between the kickers, to a simultaneous breakdown of the pulse in both magnets. To improve the reliability an upgrade of the system was started. In a first step the radii of surfaces at the entry of the weak magnet were increased, and the PFN voltage was reduced by 4 %; the kick strength could be preserved by reducing the magnet termination resistance by 10 %. The PFNs were protected against negative voltage reflections and their last cells were optimised. In a second step the two magnets will be electrically separated and powered individually by new 2 Ω PFNs with semiconductor switches.

 
WEPD094 Performance of a PFN Kicker Power Supply for TPS Project booster, injection, extraction, power-supply 3317
 
  • K.L. Tsai, C.-T. Chen, Y.-S. Cheng, C.-S. Fann, K.T. Hsu, S.Y. Hsu, K.-K. Lin, K.-B. Liu
    NSRRC, Hsinchu
  • Y.-C. Liu
    National Tsing-Hua University, Hsinchu
 
 

A test unit of a pulse-forming-network (PFN) kicker power supply has been designed and fabricated for Taiwan Photon Source (TPS) beam injection/extraction of the booster ring. In order to fulfill the requirements, the performance of the designed unit has been bench tested and the results are examined for evaluation purpose. The pulse-to-pulse stability and the flattop specifications are specified according to the beam injection/extraction requirements. Effort has been made to enhance the rise/fall time of the delivered pulse current. The engineering evaluation and its possible application for beam diagnostics purpose are briefly discussed.

 
WEPD098 Fast Kickers for the Next Generation Light Source FEL, impedance, damping, linac 3329
 
  • G.C. Pappas
    LBNL, Berkeley, California
 
 

The Next Generation Light Source (NGLS) at Lawrence Berkeley Laboratory is a 2.4 GeV linear accelerator with up to ten FELs. Each of the FELs require a fast kicker, with the exception of the final one which can use a normal bend magnet. The requirements for the kickers are to deflect the linac beam by an angle of 3 mrad with a magnetic length of 2 m, and an aperture size of 17 by 17 mm. A strip line magnet with an impedance of 50 Ohms being feed from the opposite direction as the beam has been selected for prototyping. The modulator requirements to drive such a magnet are ±15 kV and ±300 A, with rise and fall times of 5 ns and a flat top of 10 ns. The pulse to pulse stability must be better than 0.01% of the peak value. The design of the modulator is an inductive adder with 20 cells, each driven by 12 power MOSFETs. This paper describes details of the design as well as present preliminary test data.

 
WEPE043 Study for a Racetrack FFAG based Muon Ring Cooler lattice, cavity, injection, emittance 3446
 
  • A. Sato
    Osaka University, Osaka
 
 

FFAG lattices with racetrack-shape has been studied to cool muon beams. The ring has straight sections with FFAG magnets, which makes enough space to install kicker magnets to inject and extract the muon beam. Wedge absorbers using superfluid helium and RF cavities are installed to the ring. This paper reports progress of the study.

 
WEPE056 Accelerator and Particle Physics Research for the Next Generation Muon to Electron Conversion Experiment - the PRISM Task Force injection, extraction, lattice, betatron 3473
 
  • J. Pasternak, L.J. Jenner, Y. Uchida
    Imperial College of Science and Technology, Department of Physics, London
  • R.J. Barlow
    UMAN, Manchester
  • K.M. Hock, B.D. Muratori
    Cockcroft Institute, Warrington, Cheshire
  • D.J. Kelliher, S. Machida, C.R. Prior
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • Y. Kuno, A. Sato
    Osaka University, Osaka
  • A. Kurup
    Fermilab, Batavia
  • J.-B. Lagrange, Y. Mori
    KURRI, Osaka
  • M. Lancaster
    UCL, London
  • S.A. Martin
    FZJ, Jülich
  • C. Ohmori
    KEK/JAEA, Ibaraki-Ken
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon
  • S.L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • H. Witte, T. Yokoi
    JAI, Oxford
 
 

The next generation of lepton flavour violation experiments will use high intensity and high quality muon beams. Such beams can be produced by sending a short proton pulse to the pion production target, capturing pions and performing RF phase rotation on the resulting muon beam in an FFAG ring, which was proposed for the PRISM project. A PRISM task force was created to address the accelerator and detector issues that need to be solved in order to realise the PRISM experiment. The parameters of the initial proton beam required and the PRISM experiment are reviewed. Alternative designs of the PRISM FFAG ring are presented and compared with the reference design. The ring injection/extraction system, matching with the solenoid channel and progress on the ring's main hardware systems like RF and kicker magnet are discussed. The activity on the simulation of a high sensitivity experiment and the impact on physics reach is described. The progress and future directions of the study are presented in this paper.

 
WEPE057 Injection/Extraction System of the Muon FFAG for the Neutrino Factory extraction, injection, septum, lattice 3476
 
  • J. Pasternak, M. Aslaninejad
    Imperial College of Science and Technology, Department of Physics, London
  • J.S. Berg
    BNL, Upton, Long Island, New York
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon
  • H. Witte
    JAI, Oxford
 
 

Nonscaling FFAG is required for the muon acceleration in the Neutrino Factory, which baseline design is under investigation in the International Design Study (IDS-NF). In order to inject/extract the muon beam with a very large emittance, several strong kickers with a very large aperture are required distributed in many lattice cells. Once the sufficient orbit separation is obtained by the kickers, the final degree of separation from the lattice is made by the septum, which needs to be superconducting. The geometry of the symmetric solutions allowing to inject/extract both signs of muons is presented. The preliminary design of the kicker and septum magnets is given.

 
THPEA052 Design of a Fast Extraction Kicker for the ALPHA Project impedance, simulation, vacuum, electron 3792
 
  • T.H. Luo, S.-Y. Lee
    IUCF, Bloomington, Indiana
 
 

In this report, we present our design of a fast extraction kicker for ALPHA. Due to the fast rise time and high voltage requirement, we choose the traveling wave kicker. Both 2D Posisson and 3D Microwave Studio simulation are carried out. Uniformity of electric field, energy transmission through the stripline structure and time response of the kicker are studied carefully. A prototype kicker will be built and tested soon.

 
THPEA081 Vacuum Surface Scrubbing by Proton Beam in J-PARC Main Ring vacuum, extraction, proton, acceleration 3858
 
  • M. Uota, Y. Hashimoto, Y. Hori, H. Matsumoto, Y. Saitoh, M. Shimamoto, M. Tomizawa, T. Toyama
    KEK, Ibaraki
 
 

In J-PARC 50GeV synchrotron ring, large vacuum pressure rises above 10-3 Pa are found at 30GeV acceleration final stage of intensity over 1013 protons per pulse in the chambers of the in-vacuum electrostatic septum magnet for the slow-extraction(SX), magnetic septum for SX, and the kicker magnet for the fast-extraction. This pressure rise depends on beam intensity and peak-current, and can be reduced by continuous beam operations, such as scrubbing with proton beam, secondary emission electrons and other cations of remaining gasses or desorptions.

 
THPEA084 Summary of Beam Vacuum Activities Held during the LHC 2008-2009 Shutdown vacuum, injection, cryogenics, pick-up 3864
 
  • V. Baglin, G. Bregliozzi, J.M. Jimenez
    CERN, Geneva
 
 

At the start of the CERN Large Hadron Collider (LHC) 2008-2009 shutdown, all the LHC experimental vacuum chambers were vented to neon atmosphere. They were later pumped down shortly before beam circulation. In parallel, 2.3 km of vacuum beam pipes with NEG coatings were vented to air and re-activated to allow the installation or repair of several components such as roman pots, kickers, collimators, rupture disks and masks and re-activated thereafter. Beside these standard operations, "fast exchanges" of vacuum components and endoscopies inside cryogenic beam vacuum chambers were performed. This paper presents a summary of all the activities held during this period and the achieved vacuum performances.

 
THPEB007 RF-knockout Extraction System for the CNAO Synchrotron extraction, synchrotron, simulation, ion 3891
 
  • N. Carmignani, C. Biscari, M. Serio
    INFN/LNF, Frascati (Roma)
  • G. Balbinot, E. Bressi, M. Caldara, M. Pullia
    CNAO Foundation, Milan
  • J. Bosser
    CERN, Geneva
  • G. Venchi
    University of Pavia, Pavia
 
 

The National Centre for Oncological Hadrontherapy (CNAO) is the first Italian centre for the treatment of patients affected by tumours with proton and carbon ions beams. Its status and commissioning results are presented in this conference in several papers. The synchrotron beam extraction is based on the use of a betatron core. The possibility of using the RF-knockout method as alternative system is being investigated, trying to optimise the performances with the already present hardware and minimum upgrades. A multiparticle tracking program has been written to simulate the beam dynamics during the extraction of the synchrotron, and to optimise the parameters of the radio frequency system. Two types of signals have been studied in order to obtain a constant spill with the minimum ripple: a carrier wave with a frequency and amplitude modulation, and a noise at a given range of frequencies modulated in amplitude. The results of the optimisation and the parameters of the proposed system are presented.

 
THPEB015 Beam Injection Tuning of the J-PARC Main Ring injection, closed-orbit, septum, beam-losses 3915
 
  • G.H. Wei
    KEK/JAEA, Ibaraki-Ken
  • A. Ando, Y. Hashimoto, T. Koseki, J. Takano
    J-PARC, KEK & JAEA, Ibaraki-ken
  • S. Igarashi, K. Ishii, M. Tomizawa, M. Uota
    KEK, Ibaraki
  • P.K. Saha, K. Satou, M.J. Shirakata
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
 

The beam commissioning of J-PARC (Japan Proton Accelerator Research Complex) MR (Main Ring) was started from May 2008 and is in progress. As usual, injection tuning is in the first stage and strongly related to other tuning items. Starting with design schemes, making adjustment due to leakage field influence from injection septum, doing envelope matching considering dilution of beam profile in Main Ring are reported in this paper. The 'Without bump' scheme was got on June 15th 2008, while 'With bump' scheme on February 15th 2009. Beam orbit betatron oscillation to the MR close orbit which cause by injection error is less than 1 mm both in horizontal and vertical direction. Meanwhile, Beam Optics matching for 3 GeV beam from 350BT to MR has been well done too, which is also very important.


* T. Koseki, Challenges and Solutions for J-PARC Commissioning and Early Operation, in these proceedings

 
THPEC043 Mechanical Design of Ceramic Beam Tube Braze Joints for NOvA Kicker Magnets vacuum, booster, extraction, injection 4155
 
  • C.R. Ader, R.E. Reilly, J.H. Wilson
    Fermilab, Batavia
 
 

The NOνA Experiment will construct a detector optimized for electron neutrino detection in the existing Neutrino at Main Injector (NuMI) beamline. The NuMI beamline is capable of operating at 400 kW of primary beam power and the upgrade will allow up to 700 kW. Ceramic beam tubes are utilized in numerous kicker magnets in different accelerator rings at Fermilab. Kovar flanges are brazed onto each beam tube end, since kovar and high alumina ceramic have similar expansion curves. The tube, kovar flange, end piece, and braze foil alloy brazing material are stacked in the furnace and then brazed. The most challenging aspect of fabricating kicker magnets in recent years have been making hermetic vacuum seals on the braze joints between the ceramic and flange. Numerous process variables can influence the robustness of conventional metal/ceramic brazing processes. The ceramic-filler metal interface is normally the weak layer when failure does not occur within the ceramic. Differences between active brazing filler metal and the moly-manganese process will be discussed along with the applicable results of these techniques used for Fermilab production kicker tubes.

 
THPEC090 The EMMA Non-scaling FFAG cavity, injection, extraction, diagnostics 4266
 
  • T.R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon
  • C.D. Beard, J.A. Clarke, S.A. Griffiths, C. Hill, S.P. Jamison, J.K. Jones, A. Kalinin, K.B. Marinov, N. Marks, P.A. McIntosh, B.D. Muratori, J.F. Orrett, Y.M. Saveliev, B.J.A. Shepherd, R.J. Smith, S.L. Smith, S.I. Tzenov, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • J.S. Berg
    BNL, Upton, Long Island, New York
  • N. Bliss, B.G. Martlew, C.J. White
    STFC/DL, Daresbury, Warrington, Cheshire
  • M.K. Craddock
    UBC & TRIUMF, Vancouver, British Columbia
  • J.L. Crisp, C. Johnstone
    Fermilab, Batavia
  • Y. Giboudot
    Brunel University, Middlesex
  • E. Keil
    CERN, Geneva
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • S.R. Koscielniak
    TRIUMF, Vancouver
  • F. Méot
    CEA, Gif-sur-Yvette
  • J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London
  • S.L. Sheehy, T. Yokoi
    JAI, Oxford
 
 

The Electron Model for Many Applications (EMMA) will be the World's first non-scaling FFAG and is under construction at the STFC Daresbury Laboratory in the UK. Construction is due for completion in March 2010 and will be followed by commissioning with beam and a detailed experimental programme to study the functioning of this type of accelerator. This paper will give an overview of the motivation for the project and describe the EMMA design and hardware. The first results from commissioning will be presented in a separate paper.

 
THPD028 Preparations for EMMA Commissioning injection, acceleration, simulation, septum 4337
 
  • B.D. Muratori, J.K. Jones, A. Kalinin, A.J. Moss, Y.M. Saveliev, R.J. Smith, S.L. Smith, S.I. Tzenov, A.E. Wheelhouse
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • G. Cox
    STFC/DL, Daresbury, Warrington, Cheshire
  • D.J. Holder
    Cockcroft Institute, Warrington, Cheshire
  • D.J. Kelliher, S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
 

The first results from commissioning EMMA - the Electron Model of Many Applications- are summarised in this paper. EMMA is a 10 to 20 MeV electron ring designed to test our understanding of beam dynamics in a relativistic linear non-scaling fixed field alternating gradient accelerator (FFAG). EMMA will be the world's first non-scaling FFAG and the paper will outline the characteristics of the beam injected in to the accelerator as well as summarising the results of the extensive EMMA systems commissioning. The paper will report on the results of simulations of this commissioning and on the progress made with beam commissioning.

 
THPE036 Tune Measurement in Non Scaling FFAG EMMA with Model Independent Analysis lattice, betatron, simulation, quadrupole 4596
 
  • Y. Giboudot
    Brunel University, Middlesex
  • I. Kirkman, A. Wolski
    The University of Liverpool, Liverpool
 
 

The Non Scaling Fixed Field Alternating Gradient (NS-FFAG) EMMA accelerator has a purely linear lattice and thus allows important tune variation. The crossing of resonances during acceleration is a key characteristic of the beam dynamics. An accurate measurement of the tune is therefore mandatory. However commonly used measurement techniques requires the beam to perform an important number of turns in the machine. Simulations have shown that fast decoherence of the beam requires the study of another measurement technique. The model independent analysis (MIA) has been investigated. The singular value decomposition (SVD) of a matrix composed of simulated BPMs reading of various bunches trajectories gives a description of the optics function at each Beam Position Monitor. Including misalignment errors and electronic noise, an accurate value of the tune has been derived from statistical treatment repeating this process few hundreds of time.


yoel.giboudot@stfc.ac.uk

 
THPE062 Tilted Sextupoles for Correction of Chromatic Aberrations in Beam Lines with Horizontal and Vertical Dispersions sextupole, septum, octupole, electron 4656
 
  • N. Golubeva, V. Balandin, W. Decking
    DESY, Hamburg
 
 

We consider a beam line, in which pure betatron oscillations are transversely uncoupled, but which has nonzero horizontal and vertical dispersions simultaneously. We show that transverse oscillations in such a beam line could be chromatically coupled if the horizontal dispersion is nonzero in the vertical bending magnets and vice versa. We also show that the ability of sextupoles to generate chromatic coupling terms depends on the relation between sextupole tilt angles and the direction of the dispersion vector at the sextupole locations. We discuss different approaches to the setup of sextupole tilt angles depending on chromatic aberrations taken for correction. As a practical application we consider the usage of tilted sextupoles in the design of the beam switchyard at the European XFEL Facility.

 
THPE089 Uses of Turn-by-turn Data from FPGA-based BPMs during Operation at the APS Storage Ring injection, betatron, simulation, synchrotron 4734
 
  • V. Sajaev
    ANL, Argonne
 
 

APS has started a program of upgrading old BPM electronics to new FPGA-based devices. We present here the use of such BPMs for online measurement of betatron tunes during topup operation. In topup injection, the stored beam is kicked and experiences betatron oscillations that can be used for online monitoring of the betatron tunes. Also, due to kicker waveform time dependence, different bunches experience kicks of different amplitude. By collecting data from different bunches one can also monitor tune shift with amplitude. In the case of APS, the matter is complicated by the very fast decoherence of oscillations. We describe methods used to derive tunes and present results of online monitoring.