A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

synchrotron-radiation

Paper Title Other Keywords Page
MOPEA030 Material Recognition System using 950 keV X-band Linac with Dual Energy X-ray Scintillator Array linac, target, radiation, synchrotron 130
 
  • K. Lee, S. Hirai, M. Uesaka, T. Yamamoto
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken
  • E. Hashimoto
    JAEA, Ibaraki-ken
  • T. Natsui
    UTNL, Ibaraki
 
 

Dual energy X-ray system using high energy X-ray from linear accelerator (Linac) applies two times X-ray irradiation which have different energy spectrum each other in many cases. Two different X-rays yield two tomography images which is analyzed through numerical calculation with pixel values for material recognition of a object. However if the X-ray generation is not stable, the results of numerical calculation shows irregular tendency during the inspection. We propose the scintillator array in detection part, because two tomography images are obtained by just one irradiation. That leads to the time saving during inspection and the cost down for additional facilities. The optimal condition is researched to increase the ability of material recognition in interesting materials designing the detector with CsI and CdWO4 scintillators. We focus on the discrimination between heavy materials and light materials with the system in the research. X-ray source is 950 keV X-band Linac we developed for industrial application, which produce pulsed X-ray, 10 pps with around 400 mA beam current.

 
MOPEB006 Design Study of Combined Function Type Magnets for HiSOR-II quadrupole, synchrotron, radiation, dipole 286
 
  • S. Hanada
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
  • A. Miyamoto, S. Sasaki
    HSRC, Higashi-Hiroshima
 
 

The HiSOR-II is a storage ring planned as a successive machine of HiSOR, a present ring at Hiroshima Synchrotron Radiation Center. This accelerator has the circumference equal to or less than 50 m, and it has the emittance about 14 nm-rad and aims at the beam energy of 700 MeV. In the HiSOR-II project, we decided to adopt electromagnets with combined function. This type magnet has an advantage for constructing a small storage ring by reducing the total number of magnet, though it has a difficulty for the independent tuning of multipole field components. In addition, we decided to share a single return yoke between a bending magnet and adjacent quadrupole magnets. In this paper, we discuss about a possible magnetic interference between a bending magnet and a quadrupole magnet. Calculation is made with magnetic field simulation cord RADIA to analyze interference effect and examine the possibility of adoption to HiSOR-II storage ring. Also, we perform the tracking simulation of the beam with the mapping data of a magnetic field provided by this three-dimensional magnetic field analysis. By the simulation, the dynamic aperture is determined.

 
MOPEB021 Measurement of Field Inaccuracy and Shim Simulation of a 130-Pole Superconducting Undolator undulator, simulation, synchrotron, radiation 322
 
  • J.C. Jan, C.-H. Chang, C.-S. Hwang, F.-Y. Lin
    NSRRC, Hsinchu
 
 

A magnet array of superconducting undulator SU15, with 130 poles and length 0.98 m, was constructed, and the field measurement and training are also performed at National Synchrotron Radiation Research Center (NSRRC). The NbTi wires were excited to 1.36 T @ 497 A after 28 times quench. A cryogenic Hall probe (length 2500 mm) was used to characterize the distribution of the magnetic field of magnet arrays in the 5.6-mm magnetic gap. The measurement region of the cryogenic Hall probe is greater than 1200 mm in the vertical dewar. The length shrinkage or expansion of the Hall probe depends on the thermal variation at both ends of the Hall probe. The length of the Hall probe will be evaluated in the field measurement region. The reproducibility of the measurement system was verified in the same experiment. A field shimming method involving a trim iron piece was used to correct for deviations of the magnetic field. This paper discusses the measurement accuracy in the cryogenic Hall probe system and presents results of the field shimming.

 
MOPD079 A Novel Synchrotron Radiation Interferometer for the Australian Synchrotron synchrotron, coupling, radiation, photon 879
 
  • K.P. Wootton
    Monash University, Faculty of Science, Victoria
  • M.J. Boland
    ASCo, Clayton, Victoria
 
 

A new arrangement for the synchrotron radiation interferometer was proposed - as far as is known, it is unique in the world. The Young's-type interferometer is composed of two independent and optically identical paths, each with a single slit on a motorised translating stage. These two single slit patterns are interfered to produce a double slit diffraction pattern. This arrangement permits rapid scanning of the profile of fringe visibility as a function of slit separation. The interferometer was used on two beamlines at the Australian Synchrotron, the optical diagnostic and infrared beamlines. The interferometer was used to measure the coherence of the photon beam created by the electron beam source, for normal and low emittance couplings. A large change in fringe visibility was observed, proving the experimental arrangement. The interferometer was validated in the measurement of the width of a hard-edged single slit, akin to Thompson and Wolf's diffractometer. Optical simulations and measurements inform proposed modifications to the optical diagnostic beamline, so as to implement the interferometer as a regular diagnostic tool.

 
MOPE009 Improvement of the Resolution of SR Interferometer at KEK-ATF Damping Ring emittance, damping, optics, synchrotron 972
 
  • T. Naito, T.M. Mitsuhashi
    KEK, Ibaraki
 
 

Some of the improvement were done for an SR interferometer with the Herschelian reflective optics*. Previously, the measured vertical beam size was limited to around 5μm with a double slit separation of 40mm and wavelength of 400nm at the ATF damping ring. Double slit separation was mainly limited to the effective aperture of the optical path between the source point and interferometer. This time, we re-aligned the optical path, and as a result, the effective aperture was increased. Using this re-alignment we can have a double slit separation of up to 60mm. To reduce air turbulence, the optical path was covered with a tight air duct. After these improvements were made, we succeeded in measuring a vertical beam size of 3.4μm with double slit separation of 60mm and wavelength of 550nm, which corresponds to 5pm of the vertical emittance assuming 3m of the beta function.


* T. Naito et. al. "Very Small Beam Size Measurement by Reflective SR Interferometer at KEK-ATF", Proc. of EPAC06, pp2772-2274.

 
MOPE016 Beam Monitor System for Central Japan Synchrotron Radiation Research Facility synchrotron, betatron, radiation, booster 993
 
  • M. Hosaka, Y. Furui, H. Morimoto, A. Nagatani, K. Takami, Y. Takashima, N. Yamamoto
    Nagoya University, Nagoya
  • M. Adachi, M. Katoh, H. Zen
    UVSOR, Okazaki
  • T. Tanikawa
    Sokendai - Okazaki, Okazaki, Aichi
 
 

Central Japan Synchrotron Radiation Research Facility which provides synchrotron radiation for a large community of users is under construction in the Aichi prefecture, Japan. The light source accelerator complex consists of a linac, a booster synchrotron and a storage ring. We have developed beam monitor systems which play important role especially in the commissioning stage of the accelerators. An RF knockout system to observe betatron tune of the electron beam in the booster synchrotron and the storage ring has been designed. We paid special attention in an RF source fed to a shaker to realize efficient measurement of the tune of electron beam during acceleration. We made a test experiment using electron beam of a booster synchrotron of the UVSOR facility. We have also developed a BPM system which enables a single path beam monitoring. The signal processing is based on a fast digital oscilloscope and a simple preprocessor circuit which was developed to improve position resolution. The performance was evaluated using an injection beam pulse to the storage ring of the UVSOR.

 
MOPE032 Application of the Gige Vision Digital Camera for Beam Diagnostics in HLS emittance, diagnostics, synchrotron, radiation 1041
 
  • L.L. Tang, L.M. Gu, P. Lu, T.J. Ma, B. Sun, J.G. Wang, X.H. Wang
    USTC/NSRL, Hefei, Anhui
 
 

GigE Vision (Gigabit Ethernet vision standard) is a new interface standard for the latest vision of cameras with higher performance compared to analogue vision standard and other digital vision standard. In recent years, the market of industrial vision components is evolving towards GigE Vision. This paper presents applications of digital camera comply with GigE Vision standard for the measurement of beam profile and emittance at the storage ring of HLS (Hefei Light Source). These cameras provide low distortion for image transmission over long distance with high image rate. Using the image of beam profile transmitted by GigE Vision digital camera, we calculated the horizontal and vertical center positions, and then we calibrated these center positions by BPM (Beam Position Monitor) system. According to the result of calibration and the pixel size of CCD sensor, transverse sizes of beam profile were calculated, further more the transverse emittance and coupling factor were calculated as well.

 
MOPE047 Photon Beam Position Measurements using CVD Diamond based Beam Position Sensor and Libera Photon at Swiss Light Source photon, synchrotron, instrumentation, radiation 1077
 
  • P. Leban, D.T. Tinta
    I-Tech, Solkan
  • C. Pradervand
    PSI, Villigen
 
 

Measurements were performed at the Swiss Light Source on the beamline X06SA using a four-quadrant CVD diamond sensor which was connected to Libera Photon, a new photon BPM device from Instrumentation Technologies. The outputs of the sensor are 4 current signals in the nA range and are directly connected to the measuring unit without any pre-amplifiers. External bias voltage was applied, although the Libera Photon can supply internal bias voltage. Measurements consisted of: scanning the measurement range, frequency analysis of the beam movement and analysis of the photon beam flux influence on the measured position. The Sensor was mounted on a motorized XY stepper motor stage. Acquired data consisted of raw signal amplitudes and processed positions. Acquisitions were taken at 10 kHz and 10 Hz rate.

 
MOPE055 Design for a Longitudinal Density Monitor for the LHC photon, synchrotron, proton, ion 1098
 
  • A. Jeff, S. Bart Pedersen, A. Boccardi, E. Bravin, T. Lefèvre, A. Rabiller, F. Roncarolo
    CERN, Geneva
  • A.S. Fisher
    SLAC, Menlo Park, California
  • C.P. Welsch
    The University of Liverpool, Liverpool
 
 

Synchrotron radiation is currently used on LHC for beam imaging and for monitoring the proton population in the 3 microsecond abort gap. In addition to these existing detectors, a study has been initiated to provide longitudinal density profiles of the LHC beams with a high dynamic range and a 50ps time resolution. This would allow for the precise measurement both of the bunch shape and the number of particles in the bunch tail or drifting into ghost bunches. A solution is proposed based on counting synchrotron light photons with two fast avalanche photo‐diodes (APD) operated in Geiger mode. One is free‐running but heavily attenuated and can be used to measure the core of the bunch. The other is much more sensitive, for the measurement of the bunch tails, but must be gated off during the passage of the core of the bunch to prevent the detector from saturating. An algorithm is then applied to combine the two measurements and correct for the detector dead time, after pulsing and pile‐up effects. Initial results from laboratory testing of this system are described in this paper.

 
MOPE057 First Beam Measurements with the LHC Synchrotron Light Monitors synchrotron, undulator, injection, radiation 1104
 
  • T. Lefèvre, E. Bravin, G. Burtin, A. Guerrero, A. Jeff, A. Rabiller, F. Roncarolo
    CERN, Geneva
  • A.S. Fisher
    SLAC, Menlo Park, California
 
 

On the Large Hadron Collider (LHC), the continuous monitoring of the transverse sizes of the beams relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 3 TeV), while edge and centre radiation from a beam separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the performance of the imaging system in terms of spatial resolution, and comments on the light intensity obtained and the cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

 
MOPE081 Performance of a Streak Camera using Reflective Input Optics optics, synchrotron, photon, radiation 1170
 
  • C.A. Thomas, G. Rehm
    Diamond, Oxfordshire
  • I.P.S. Martin
    JAI, Oxford
 
 

Electron bunch profile and length measurement from large bandwidth synchrotron radiation with a streak camera can be strongly limited by the chirp introduced by the length of material present in the input refractive optics of streak cameras. Elimination of the chirp can be done either by filtering the bandwidth of the synchrotron radiation pulses, by measuring time resolved spectra with the streak camera, or by replacing the front optics lenses by focussing mirrors. The first solution reduces the power available, thus limiting measurements to minimum bunch current that can be too high to assess the 'zero' current bunch length. The second elegant solution allows measurement of the bunch length with the whole bandwidth and available power but with loss of the second sweep axis in the camera, so that no beam dynamics can be observed. In order to prevent any pulse chirp, keep all the available power and capability of beam dynamics observation, we designed a new input optics exclusively with mirrors. We present here our design and the results of the system with our streak camera, measuring 2ps bunch in the new Diamond low-alpha lattice.

 
MOPE097 Characterization of Slow Orbit Motion in the SPEAR3 photon, storage-ring, synchrotron, electron 1215
 
  • N. Sunilkumar
    USC, Los Angeles, California
  • G.L. Gassner, J.A. Safranek, Y.T. Yan
    SLAC, Menlo Park, California
 
 

SPEAR3 is a third-generation synchrotron light source storage ring. The beam stability requirements are ~10% of the beam size, which is about 1 micron in the vertical plane. Hydrostatic level system (HLS) measurements show that the height of the SPEAR3 tunnel floor varies by tens of microns daily. We present analysis of the HLS data, including accounting for common-mode tidal motion. We discuss the results of experiments done to determine the primary driving source of ground motion. We painted the accelerator tunnel walls white; we temporarily installed Mylar over the asphalt in the center of the accelerator; and we put Mylar over a section of the tunnel walls.

 
TUPEA032 A New Timing System: the Real-time Synchronized Data Bus controls, linac, feedback, synchrotron 1396
 
  • M. Liu, D.K. Liu, C.X. Yin, L.Y. Zhao
    SINAP, Shanghai
 
 

Currently, the real-time data transfer system is widely implemented in the accelerator control system. If timing system and real-time data transfer system could be combined into one uniform system, it would be convenient to build distributed feedback system, fast interlock system and so on. So, a new timing system, the real-time synchronized data bus is developed to realize this idea. The architecture of the system and the hardware prototype design are introduced in the paper. The data exchange mechanism and system specification, including timing trigger synchronization accuracy, timing jitter relative to RF clock, data transfer rate and latency are described in detail. Redundant topology structure and fiber length compensation are specially considered. In the end, the results of testing in lab are presented.

 
TUPEA079 Design of TPS Crotch Absorber vacuum, synchrotron, radiation, storage-ring 1506
 
  • I.C. Sheng, J.-R. Chen, Y.T. Cheng, G.-Y. Hsiung, C.K. Kuan, C.Y. Yang
    NSRRC, Hsinchu
 
 

The Taiwan Photon Source (TPS) is a third generation synchrotron accelerator which the designed energy will be 3 GeV whereas the current is 500mA. The role of crotch absorber is designed to protect downstream UHV vacuum chamber. It is is the only mask component to absorb large amount of synchrotron radiation (bending magnet) in the storage ring. Crotch absorber is installed from transverse direction of the bending chamber to intercept the power. Two bent OFHC copper tubes are vacuum brazed on the copper mask. A 30 degree groove is machined to face bending magnet fan. The reason is not only to dissipate the heat but also to limit back scattering to the rest of chambers. Top and bottom of the absorber are bolted with beryllium copper springs; they will provide extra support for the absorber after it is installed in the Aluminum chamber. Three thermocouples will be embedded inside of the mask to monitor the temperature gradient. Final prototype of the crotch absorber with thermal analysis, design and machined parts are also presented in this paper.

 
TUPEC084 New Particle-in-cell Code for Numerical Simulation of Coherent Synchrotron Radiation simulation, electron, synchrotron, lattice 1913
 
  • B. Terzić
    CASA, newport news
  • R. Li
    JLAB, Newport News, Virginia
 
 

We present early stage of a new code for self-consistent, 2D simulations of beam dynamics affected by CSR. The code is of the particle-in-cell variety: the beam bunch is sampled by macroparticles, which are deposited on the grid; the corresponding forces on the grid are then computed using retarded potentials according to causality, and interpolated so as to advance the particles in time. The retarded potentials are evaluated by integrating over the 2D path history of the bunch, with the charge and current density at the retarded time obtained from interpolation of the particle distributions recorded at discrete timesteps. The code is benchmarked against analytical results obtained for a rigid-line bunch. We also outline the features and applications which are currently being developed.

 
TUPD005 Analysis of THz spectra and bunch deformation caused by CSR at ANKA radiation, synchrotron, electron, impedance 1925
 
  • M. Klein, N. Hiller, P.F. Tavares
    KIT, Karlsruhe
  • A.-S. Müller, K.G. Sonnad
    FZK, Karlsruhe
 
 

The ANKA light source is regularly operated with a low momentum compaction factor lattice where short bunches are created for the generation of coherent synchrotron radiation (CSR). Short bunches with high electron density can generate strong self fields which act back on the bunch. This can lead to bunch shape deformation and a microbunching instability which were studied theoretically for the ANKA low alpha parameters (Klein et al. PAC 09). We extended these studies to a comparison of calculated electron distributions and bunch profiles measured with a streak camera. The Haissinski equation was solved for the CSR impedance to obtain a prediction for the distortion of the bunches for different bunch lengths and bunch currents. The comparison shows that the theory predicts a much stronger deformation caused by CSR than the streak camera observes. However, high frequency components of measured FTIR spectra show a clear indication for strong deformation or small

 
WEIRA01 Experience of Academia-industry Collaboration on Accelerator Projects in Asia radiation, synchrotron, neutron, cavity 2444
 
  • A. Yamamoto
    KEK, Ibaraki
 
 

Japan has a long history of academia-industry collaboration on accelerator technology development. A recent example is superconducting cavity manufacture for the linear collider as well as a number of collaboration in superconducting magnets for circular colliders and physics experiments. Experience with Academia-industry Collaboration on Accelerator Projects in Japan and global Asia will be presented.

 

slides icon

Slides

 
WEPEA021 Observation of Bursting Behavior Using Multiturn Measurements at ANKA radiation, synchrotron, single-bunch, electron 2526
 
  • V. Judin, S. Hillenbrand, N. Hiller, A. Hofmann, E. Huttel, M. Klein, S. Marsching, A.-S. Müller, N.J. Smale, K.G. Sonnad, P.F. Tavares
    KIT, Karlsruhe
  • H.W. Huebers
    Technische Universität Berlin, Berlin
  • A. Semenov
    DLR, Berlin
 
 

Since a few years CSR-Radiation created in low alpha mode is provided by the ANKA light source of the KIT*. Depending on the bunch current, the radiation is emitted in bursts of high intensity. These bursts display a time evolution which can be observed only on long time scales with respect to the revolution period. The intensity of the emitted radiation during a burst is significantly increased w.r.t. steady state emission. Some users of the THz radiation don't require particularly constant emission characteristics and could profit from the higher intensity. A better understanding of the long term behaviour of those bursts could help to improve the conditions for those users. We have investigated THz radiation in multiturn mode with a hot electron bolometer. Its time response of 165ps allowed us to resolve the signals of individual bunches. Using a 6GHz LeCroy oscilloscope for data acquisition, we were able to save up to 1.6ms long signal sequences at a sampling rate of 20GS/s. This amount of data corresponds to over 4000 bunch revolutions and allows turn-by-turn signal tracking of desired bunches. In single bunch mode we are able to take segmented data to avoid a huge overhead.


* KIT - Karlsruhe Institute for Technology

 
WEPEA030 Improved Stability of the Radiation Intensity at the NewSUBARU Synchrotron Radiation Facility radiation, electron, synchrotron, storage-ring 2549
 
  • S. Hashimoto, S. Miyamoto
    NewSUBARU/SPring-8, Laboratory of Advanced Science and Technology for Industry (LASTI), Hyogo
  • K. Kawata, Y. Minagawa, T. Shinomoto
    JASRI/SPring-8, Hyogo-ken
 
 

The periodic fluctuations and drifts in the radiation intensity have been observed at the NewSUBARU synchrotron radiation facility. To clarify the cause of this problem we have measured temperatures of air, cooling water, equipments and building with the network-distributed data logger. And we found that temperature fluctuations in both air in the shielded tunnel and the cooling water mainly affect the stabilities of electron beam orbit and optical axis. To maintain a constant temperature, the large doors for carrying equipment at the experimental hall were covered with insulated curtains, and we optimized PID parameters of temperature controllers for air and water. As results, the periodic fluctuations almost disappeared, but some drifts were still remained, which are due to slow variations of equipment temperature. By realizing the automatic COD correction, the drift in electron beam position could be suppressed and the fluctuations of radiation intensity observed at beam-lines became smaller than they used to be. For further stabilization, we recently introduced a XBPM upstream in a beamline to measure the vertical position of radiation axis precisely.

 
WEPEA036 Accelerators of the Central Japan Synchrotron Radiation Research Facility Project storage-ring, synchrotron, radiation, booster 2567
 
  • N. Yamamoto, M. Hosaka, H. Morimoto, K. Takami, Y. Takashima
    Nagoya University, Nagoya
  • Y. Hori
    KEK, Ibaraki
  • M. Katoh
    UVSOR, Okazaki
  • S. Koda
    SAGA, Tosu
  • S. Sasaki
    JASRI/SPring-8, Hyogo-ken
 
 

Central Japan Synchrotron Radiation (SR) Research Facility is under construction in the Aichi area, and the service will start from FY2012. Aichi Science & Technology Foundation is responsible for the operation and management, and Nagoya University SR Research Center is responsible to run the facility and support the users technically and scientifically. The accelerators consists of an injector linac, a booster synchrotron and an 1.2 GeV electron storage ring with the circumference of 72 m. To save construction expenses, the 50 MeV linac and the booster with the circumference of 48 m are built at inside of the storage ring. The beam current and natural emittance of the storage ring are 300 mA and 53 nmrad. The magnetic lattice consists of four triple bend cells and four straight sections 4 m long. The bending magnets at the centers of the cells are 5 T superbends and the critical energy of the SR is 4.8 keV. More than ten hard X-ray beam-line can be constructed. One variable polarization undulator will be installed in the first phase. The electron beam will be injected from the booster with the full energy and the top-up operation will be introduced as early as possible.

 
WEPEB064 Electricity Generation from Scattered Secondary Particles Induced by Synchrotron Radiation radiation, vacuum, synchrotron, beam-losses 2839
 
  • Y. Shimosaki, K. Kobayashi
    JASRI/SPring-8, Hyogo-ken
 
 

Electricity generation from scattered secondary particles has been examined for a kind of energy-recovery by using a beam loss monitor at the SPring-8 storage ring, in which PIN photodiodes are utilized without a reversed bias voltage in similar to a solar cell. The system and results will be reported.

 
WEPD008 Development of a Short Period High field APPLE-II Undulator at SOLEIL undulator, radiation, polarization, synchrotron 3099
 
  • C.A. Kitegi, F. Briquez, M.-E. Couprie, T.K. El Ajjouri, J.-M. Filhol, K. Tavakoli, J. Vétéran
    SOLEIL, Gif-sur-Yvette
 
 

At SOLEIL, the production of high brilliant photon beams with adjustable polarization is achieved by means of Advanced Planar Polarized Light Emitter-II (APPLE-II) undulators. The HU36 is a short period high field APPLE-II type undulator with 36 mm period and 0.8 T peak field at a minimum gap of 11 mm. The HU36 circularly polarized radiation ranges from 2 keV to 5 keV, while the planar one extends up to 10 keV. High harmonic radiation (up to the 13th) is required to reach such high energy; therefore a small RMS phase error is needed. To enable closing the gap at 11 mm, the HU36 is planned to be installed in a short section where the large horizontal beta function imposes constraining tolerances on the integrated field errors. However at low period and high field, the magnet holders, commonly used at SOLEIL to maintain magnets on the girders, experience mechanical deformation due to the large magnetic forces. This results in the variation of field integrals when the shift between girders is changed. Solutions to minimize these errors are discussed and finally the HU36 magnetic performances are reviewed.

 
WEPD025 Theoretical Examination of Radiation Spectrum from the Quasi-periodic Undulator radiation, lattice, undulator, synchrotron 3144
 
  • S. Hirata
    Hiroshima University, Faculty of Science, Higashi-Hirosima
  • S. Sasaki
    HSRC, Higashi-Hiroshima
 
 

Different form conventional periodic undulators, the quasi-periodic undulator (QPU) can radiate irrational harmonics instead of rational harmonics. It suits with experiments that need highly monochromatic light after passing through the monochromator. For this reason, the QPU is used in many synchrotron radiation facilities all over the world. Recently, new type QPUs that generate radiation spectra different from those by conventional type QPU were proposed*,**. In principle, the shape of radiation spectrum from a new QPU is determined by magnetic field distribution having different quasi periodic pattern. However, calculated spectra using a realistic magnetic field are often different from those of theoretical expectation. In this paper, a detailed comparative study is conducted to examine why there are these differences, how to correct magnetic field to get predicted spectra that fit to the theory. In addition, a possibility of modifying the basis of theory is investigated. These results, new generation method of new quasi-periodicity, and magnetic field distribution to achieve the best performance are presented at the conference.


* S. Sasaki, Proceedings of PAC09, Vancouver, May, 2009.
** S. Sasaki, Proceedings of 6th Annual Meeting of Particle Accelerator Society of Japan (in Japanese).

 
WEPD044 Modelling Synchrotron Radiation from Realistic and Ideal Long Undulator Systems undulator, radiation, synchrotron, electron 3189
 
  • D. Newton
    The University of Liverpool, Liverpool
 
 

An analytic description of the synchrotron radiation from electrons with short-period helical trajectories is given by the Kincaid equation. A new code is under development which generates an analytical description of an arbitrary magnetic field, including non-linear and higher-order multipole (fringe field) components. The magnetic field map of a short-period undulator was modelled, using a 3-d finite element solver, and it's analytical field description has been used to compare the synchrotron radiation output from electrons with a 'realistic' trajectory in terms of the ideal analytic equations. The results demonstrate how small numerical inaccuracies in the particle tracking can lead to large inaccuracies in the calculated synchrotron output. The affects of the higher order field modes are studied which give additional insights into the radiation output from long undulator systems.

 
WEPD045 The Rapid Calculation of Synchrotron Radiation Output from Long Undulator Systems undulator, radiation, electron, synchrotron 3192
 
  • D. Newton
    The University of Liverpool, Liverpool
 
 

Recent designs for third generation light sources commonly call for undulator systems with a total length of several hundreds of metres. Calculating the synchrotron output from bunches of charged particles traversing such a system using numerical techniques takes an unfeasibly long time even on modern multi-node computer clusters. Analytical formulae (i.e. the Kincaid Equation) provide a more rapid solution for an idealised system but necessarily fail to produce the non-ideal response which is under investigation. A new code is described which generates an analytic description of an arbitrary magnetic field and uses differential algebra and Lie methods to describe the particle dynamics in terms of series of transfer maps. The synchrotron output can then be calculated using arbitrarily large step size with no loss of accuracy in the trajectory. The code is easily adapted to perform parallel calculations on multi-core machines. Examples of the radiation output from several long magnet systems are described and the performance is assessed.

 
THPEA028 Prelimimary Study of the Higher-harmonic Cavity for the Upgrade Project of Hefei Light Source cavity, HOM, synchrotron, damping 3741
 
  • C.-F. Wu, H. Fan, W. Fan, G. Feng, W.W. Gao, K. Jin, W. Li, G. Liu, L. Wang, S.C. Zhang, Y. Zhao
    USTC/NSRL, Hefei, Anhui
  • R.A. Bosch
    UW-Madison/SRC, Madison, Wisconsin
 
 

A radio frequency system with a higher-harmonic cavity will be used to increase the beam lifetime and suppress coupled-bunch instabilities of the upgrade Hefei Light Source. In the paper, the simulated results confirm that tuning in the harmonic cavity may suppresses the parasitic coupled-bunch instabilities. The higher-harmonic cavity has been designed and the calculated optimum lifetime increase ratio is 2.58.

 
THPEA080 Application of Stain-less Steel, Copper Alloy and Aluminum Alloy MO (Matsumoto-Ohtsuka) -type Flanges to Accelerator Beam Pipes vacuum, impedance, positron, synchrotron 3855
 
  • Y. Suetsugu, M. Shirai
    KEK, Ibaraki
  • M. Ohtsuka
    OHTSUKA, Tsukuba-shi
 
 

The MO (Matsumoto-Ohtsuka) -type flange is suitable for connection flanges of beam pipes for accelerators. The flange uses a metal gasket that exactly fits the aperture of the beam pipe, and has a small beam impedance. The flange can be applied to a complicated aperture. We developed a stainless-steel MO-type flange for a copper beam pipe with antechambers. Several beam pipes were installed in the KEKB B-factory positron ring and were tested using beams. No serious problem was observed up to a beam current of 1600 mA (~10 nC/bunch and ~6 ns bunch spacing). Based on experiences in the stain-less steel case, a possibility of employing copper-alloy and aluminum-alloy MO-type flange has been experimentally studied. They can mitigate the heating problems found in the case of stainless-steel flanges, and simplify the manufacturing procedure of beam pipes made of copper or aluminum alloy. Copper-alloy (CrZrCu) flanges show a comparable vacuum sealing property to the stainless-steel one, and several beam pipes with this flange has been successfully installed in the KEKB. The R&D on aluminum-alloy (A2219 and A2024) flanges has recently started, and a promising result was obtained.

 
THPEB075 Numerical Simulation and Air Conditioning System Study for the Storage Ring of TLS controls, storage-ring, simulation, synchrotron 4041
 
  • J.-C. Chang, J.-R. Chen, Y.-C. Chung, C.Y. Liu, Z.-D. Tsai
    NSRRC, Hsinchu
  • M. Ke
    NTUT, Taipei
 
 

The stability of air temperature in the storage ring tunnel is one of the most critical factors. Therefore, a series of air conditioning system upgrade studies and projects have been conducted at the Taiwan Light Source (TLS). The global air temperature variation related to time in the storage ring tunnel has been controlled within ±0.1 degree C for years. This study is aimed at more precise temperature control. Some temperature control schemes are applied on this study. We also performed computational fluid dynamics (CFD) to simulate the flow field and the spatial temperature distribution in the storage ring tunnel.

 
THPEB076 Utility Cooling System Design for the Taiwan Photon Source controls, storage-ring, linac, synchrotron 4044
 
  • Z.-D. Tsai, J.-C. Chang, J.-R. Chen, Y.-C. Chung, J.-M. Lee, C.Y. Liu
    NSRRC, Hsinchu
 
 

National Synchrotron Radiation Research Center (NSRRC) in Taiwan has finished an open bid about utility system for Taiwan photon source (TPS). The detail design and criteria of the utility cooling system, including cooling water and air conditioning system, have also been considered and confirmed. From controls to facility, all devices were designed and optimized to meet critical requirements of high reliability and stability. Besides, the paper mainly focuses on thermal load evaluation and removes to achieve the best efficiency and performance of system. The brand new system structure and control strategy also be realized.