A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

space-charge

Paper Title Other Keywords Page
MOPEA066 Recent Progress of MeV Ultrafast Electron Diffraction at Tsinghua University electron, laser, gun, collimation 229
 
  • R.K. Li, H. Chen, Q. Du, T. Du, Y.-C. Du, Hua, J.F. Hua, W.-H. Huang, X. H. Lu, J. Shi, C.-X. Tang, H. S. Xu, L.X. Yan
    TUB, Beijing
 
 

Recent years have witnessed rapid advances of MeV ultrafast electron diffraction (UED), in which high quality, ultrashort, MeV electron pulses from a photocathode RF gun are employed as probes for ultrafast structural dynamics. We've built a prototype MeV UED system at the Accelerator Laboratory of Tsinghua University, optimized the the electron pulse parameters as well as hardware performances, and achieved high quality single-shot diffraction patterns. Moreover, MeV UED can be operated in a so-called 'continuously time-resolved (CTR)' mode, in which an RF deflecting cavity streaks the electron pulse thus each diffraction pattern constitutes an 'atomic movie'. We report our experimental progress on MeV UED in this paper.

 
MOPEC046 Modelling of the EMMA ns-FFAG Injection Line using GPT injection, quadrupole, emittance, electron 561
 
  • R.T.P. D'Arcy
    UCL, London
  • D.J. Holder, B.D. Muratori
    Cockcroft Institute, Warrington, Cheshire
  • J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

EMMA (Electron Machine with Many Applications) is a prototype non-scaling Fixed Field Alternating Gradient (NS-FFAG) accelerator presently under construction at Daresbury Laboratory, UK. The energy recovery linac ALICE will serve as an injector for EMMA within the energy range of 10 to 20 MeV. The injection line consists of a symmetric 30° dogleg to extract the beam from ALICE, a matching section and a tomography section for transverse emittance measurements. This is followed by a transport section to the injection point of the EMMA ring. Commissioning of the EMMA injection line started in early 2010. A number of different injection energy and bunch charge regimes are planned; for some of the regimes the effects of space charge will be significant. It is therefore necessary to model the electron beam transport in this line using a code capable of both calculating the effect of, and compensating for, space charge. Therefore the General Particle Tracer (GPT) code has been used. A range of injection beam parameters have been modelled for comparison with experimental results.

 
MOPEC047 High Current Proton FFAG Accelerators emittance, beam-losses, lattice, proton 564
 
  • R.J. Barlow, A.M. Toader, S.C. Tygier
    UMAN, Manchester
 
 

Accelerator Driven Subcritical Reactors require a high currents of energetic protons. We compute the limits imposed by space charge, and explore what can be achieved using various proposed FFAG lattices. Limitations due to beam losses and reliability are also discussed

 
MOPEC068 High Intensity Beam Operations in the J-PARC 3-GeV RCS injection, beam-losses, linac, emittance 624
 
  • H. Hotchi, H. Harada, P.K. Saha, Y. Shobuda, F. Tamura, K. Yamamoto, M. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • Y. Irie
    KEK, Ibaraki
 
 

We have recently demonstrated 300-kW output in the J-PARC 3-GeV RCS. In this paper we will discuss beam dynamics issues in such a high intensity beam operation together with the corresponding beam simulation results.

 
MOPD016 Injection Upgrades for the ISIS Synchrotron injection, controls, linac, beam-losses 705
 
  • J.W.G. Thomason, D.J. Adams, D.J.S. Findlay, I.S.K. Gardner, S.J.S. Jago, B. Jones, A.P. Letchford, R.J. Mathieson, S.J. Payne, B.G. Pine, A. Seville, H. V. Smith, C.M. Warsop, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J. Pasternak
    STFC/RAL, Chilton, Didcot, Oxon
  • C.R. Prior, G.H. Rees
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
 

The ISIS Facility based at the Rutherford Appleton Laboratory in the UK is the world's most productive spallation neutron source. Presently it runs at beam powers of 0.2 MW, with RF upgrades in place to supply increased powers for the new Second Target Station. Increasing injection energy into the synchrotron beyond the existing 70 MeV level has significant potential to increase intensity as a result of reduced space charge. This paper outlines studies for this upgrade option, which include magnet and power supply upgrades to achieve a practical injection system, management of increased injection region activation levels due to higher energy un-stripped particles and ensuring the modified longitudinal and transverse beam dynamics during injection and acceleration are possible with low loss at higher intensity levels.

 
MOPD102 Space Charge Analysis on the Multi-wire Proportional Chamber for the High Rate Incident Beams ion, electron, cathode, injection 942
 
  • K. Katagiri, T. Furukawa, K. Noda, E. Takeshita
    NIRS, Chiba-shi
 
 

For the beam profile diagnosis of heavy ion cancer therapy in HIMAC (Heavy Ion Medical Accelerator in Chiba), a MWPC (Multi-Wire Proportional Counter) detector is employed as a beam profile monitor. Due to the high rate beams (~ 108 pps), a gain reduction of output signals, which is caused by space charge effects, have been observed in the scanning beam experiments at HIMAC. In order to reduce the gain reduction by optimizing the parameters of MWPCs including anode radius, and distance between electrodes, a numerical calculation code was developed by employing two-dimensional fluid model. In order to understand the relations between the gain reduction and space charge distribution, the temporal evolution of the ion/electron distribution were calculated for several hundredμseconds, which is significantly longer than the time period required for ions to travel between the electrodes. The output signal was also evaluated by the current flux into the anode and compared with that obtained by the beam experiment at HIMAC. The dependence of the gain reduction on the MWPC parameters was analyzed from these calculation results.

 
MOPE015 Application of a Single-Wire Proportional Counter to the Beam Loss Monitoring at J-PARC MR beam-losses, ion, septum, monitoring 990
 
  • K. Satou, T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken
  • H. Harada, K. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
 

A single-wire proportional counter which has the maximum gain of 6·104 is used as a beam loss monitor (p-BLM), thus low-level beam loss can be monitored. However, it involves gain reduction problem by the space charge effect. It is essential to estimate the space charge effect to utilize a proportional counter for beam loss monitoring. The calibration procedure is discussed for the p-BLMs for 3-50BT and MR. Measurements of residual dose were made and some nuclei were identified. Radiation from the short-life nucleus, Fe53 (T1/2=8.51m), may be a good index to predict a residual dose after a long term beam operation.

 
TUYMH01 Review of Beam Dynamics Issues in MW Class Ion Linacs linac, ion, focusing, cavity 1246
 
  • R.D. Duperrier
    CEA, Gif-sur-Yvette
 
 

An important issue for the new high power class ion linac projects is the preservation of the beam quality through the acceleration in the linac. An extremely low fraction of the beam (from 10-4 down to 10-7) is sufficient to complicate the hands on maintenance in such accelerator. This paper reviews the theory and the codes for the design and simulation of MW ion linacs. Basics rules for the definition of their architecture and the results applied to existing machines and projects are covered.

 

slides icon

Slides

 
TUYMH03 Developing Peta-Scalable Algorithms for Beam Dynamic Simulations simulation, damping, plasma, proton 1256
 
  • J. Xu, P.F. Fisher, M. Min, B. Mustapha, J.A. Nolen, P.N. Ostroumov
    ANL, Argonne
 
 

Peta-scalable software packages for beam dynamic simulations are being developed and used at the Argonne Leadership Computing Facility. The standard Particle-In-Cell (PIC) method and direct Vlasov solvers in 4 dimensions have been developed and benchmarked with respect to each other. Both of them have been successfully run on 32 thousands processors on BG/P at Argonne National Laboratory. Challenges and prospects of developing Vlasov solvers in higher dimensions will be discussed. Several scalable Poisson solvers have been developed and incorporated with these software packages. Domain decomposition method has been used for the parallelization. In the future developments, these algorithms will be applied to hundreds of thousands processors for peta-scale computing. These software packages have been applied for the design of accelerators, and some large scale simulations will be shown and discussed.

 

slides icon

Slides

 
TUYRA03 Production of a 1.3 MW Proton Beam at PSI cyclotron, target, proton, extraction 1309
 
  • M. Seidel, S.R.A. Adam, A. Adelmann, C. Baumgarten, R. Dölling, H. Fitze, A. Fuchs, J. Grillenberger, M. Humbel, D.C. Kiselev, A.C. Mezger, D. Reggiani, M. Schneider, H. Zhang
    PSI, Villigen
  • Y.J. Bi, J.J. Yang, T.J. Zhang
    CIAE, Beijing
 
 

With an average beam power of 1.3MW the PSI proton accelerator facility is presently at the worldwide forefront of high intensity accelerators. This talk describes critical aspects and recent improvements related to generation and transport of the high intensity beam in a cyclotron based facility. The installation of new accelerating resonators in the second of two cyclotrons led to a significant improvement in view of beam intensity but also the reliability of the facility. Besides the overall performance and further upgrade plans the discussed topics include: space charge dominated beam dynamics, beam loss handling, activation and specialized technical interlock systems.

 

slides icon

Slides

 
TUPEA006 Mismatch Induced Oscillations of Space Charge Dominated Beams in a Uniform Focusing Channel electron, plasma, solenoid, focusing 1336
 
  • H. Higaki, S. Fujimoto, K. Fukata
    Hiroshima University, Higashi-Hiroshima
  • J. Aoki
    Osaka University, Graduate School of Science, Osaka
  • K. Ito, M. Kuriki, H. Okamoto
    HU/AdSM, Higashi-Hiroshima
 
 

Space charge effects due to the strong Coulomb interactions expected in high intensity accelerator beams result in undesirable beam degradation and radio-activation of the vacuum tubes through halo formations. Various space charge effects have been studied intensively with particle simulations. This is partly because the analytical formulation of the nonlinear evolution in high intensity beams is not possible in general cases. And the systematic study of space charge effects with the real accelerators is not feasible. Although the development of computation environment is outstanding, some approximations are still necessary so far. Thus, it was proposed to use solenoid traps and linear Paul traps for investigating some properties of space charge dominated beams. The key idea is that the charged particles in these traps are physically equivalent with a beam in a FODO lattice. Some experimental results have been reported with the use of Paul traps. Here, a solenoid trap with a beam imaging system composed of a charge coupled device camera and a phosphor screen was employed to study the mismatch induced oscillations of a space charge dominated beams.

 
TUPEA008 An Ultra-low Emittance Design for Energy Recovery Linac (ERL) Injector emittance, cavity, gun, electron 1342
 
  • J. Yamazaki, A. Enomoto, Y. Kamiya
    KEK, Ibaraki
 
 

One of the most important issues for ERL injectors is to generate electron beams with ultra-low emittance and to accelerate the beams through the injector without emittance growth. For this purpose, we have developed an efficient simulation code to investigate the mechanism of emittance growth due to space charge effect and to exploit its suppression method. In this code, the longitudinal motion is treated by the one-dimensional difference equations for macro-particles, while the radial motion is solved by the envelope equations for the pieces of sliced bunch. We find that the total emittance takes a minimum when all ellipses of sliced envelope have the same direction on the a-a' plane, where a is the amplitude of sliced envelope and a' its derivative along the longitudinal direction. The parameters of a 5 MeV injector were optimized by this code, assuming that the voltage of the DC electron gun is 330 kV and the initial particle distribution at the exit of the gun has a uniform ellipse. Even for such a low voltage gun, we obtained a minimum value of the rms normalized emittance, 0.10 mm, and the rms bunch length, 0.83 mm, the values of which were calculated by using PARMELA.

 
TUPEA011 Neutralized Ion Beam Dynamics Study in UNDULAC-E ion, emittance, undulator, simulation 1345
 
  • A.V. Voronkov, E.S. Masunov, S.M. Polozov
    MEPhI, Moscow
 
 

The undulator linear accelerator using electrostatic undulator (UNDULAC-E) is suggested as an initial part of high intensity ion linac*. In UNDULAC ion beam accelerating and focusing are realized by of the combined field of two non-synchronous harmonics. Indeed, the main factor limiting beam intensity in ion accelerator is a space charge force. There exist, at least, two ways to increase ion beam intensity: to enlarge the beam cross section and to use the space charge neutralization. The ribbon ion beam dynamics in UNDULAC-E was discussed in**. Accelerating force value in UNDULAC is proportional to squared particle charge and oppositely charged ions with the identical charge-to-mass ratio can be accelerated simultaneously within the same bunch and the beam space charge neutralization can be realized. These methods will be studied analytically and verified by numerical simulation for UNDULAC-RF in this paper.


*E.S. Masunov, Sov. Phys. ' Tech. Phys., 1990, v. 35 (8), pp. 962-965. **Masunov, S.M. Polozov. NIM A, 558 (2006), pp. 184-187.

 
TUPEA021 Longitudinal Drift Compression of Intense Charged Particle Beams ion, emittance, plasma, target 1372
 
  • E. Startsev, R.C. Davidson
    PPPL, Princeton, New Jersey
 
 

To achieve high focal spot intensities in ion-beam-driven high energy density physics and heavy ion fusion applications, the ion beam must be compressed longitudinally by factors of ten to one hundred before it is focused onto the target. The longitudinal compression is achieved by imposing an initial velocity profile tilt on the drifting beam, and allowing the beam to compress longitudinally until the space-charge force or the internal thermal pressure stops the longitudinal compression of the charge bunch. In this paper, the problem of longitudinal drift compression of intense charged particle beams is analyzed analytically and numerically for the two important cases corresponding to a cold beam, and a pressure-dominated beam, using a one-dimensional warm-fluid model describing the longitudinal beam dynamics. The hodograph transformation is used to transform the nonlinear fluid equations into a single, second-order, linear partial differential equation (PDE). The general solution of this equation describing the intense beam system with stagnation point is analyzed and illustrated with several examples.

 
TUPEC010 Development of a Thermionic RF Gun for Coherent THz Source at Tohoku University cathode, gun, simulation, cavity 1731
 
  • F. Hinode, H. Hama, M. Kawai, F. Miyahara, T. Muto, K. Nanbu, H. Oohara, Y. Tanaka
    Tohoku University, School of Scinece, Sendai
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai
 
 

A test accelerator for the coherent terahertz source (t-ACTS) has been under development at Laboratory of Nuclear Science, Tohoku University*. Intense coherent terahertz radiation will be generated by the very short electron bunch less than 100 fs using a thermionic RF gun (ITC RF-gun). ITC RF-gun is designed to have two cells uncoupled with each other, so that it can be operated at various combinations of different rf-power level and phase difference so as to optimize the longitudinal phase space distribution of the electron beam for bunch compression**. The gun employs single-crystal LaB6 cathode with small diameter of 1.8 mm to obtain a very small initial emittance with sufficiently high current density. The RF gun has been already manufactured and the measurement of RF characteristics is now in progress. We will present the results of low-power measurement and also discuss the effect of the cathode misalignment on the beam parameters such as transverse emittance and longitudinal phase space distribution.


* H. Hama et al., New J. Phys. 8 (2006) 292.
** H. Hama et al., Nucl. Instr. and Meth., A 528, (2004) 371.

 
TUPEC027 Microbunching and RF Compression simulation, FEL, electron, impedance 1776
 
  • M. Migliorati
    Rome University La Sapienza, Roma
  • M. Ferrario, C. Vaccarezza
    INFN/LNF, Frascati (Roma)
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • M. Venturini
    LBNL, Berkeley, California
 
 

Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

 
TUPEC049 Efficient 3D Space Charge Calculations with Adaptive Discretization based on Multigrid simulation, gun, cathode, brightness 1832
 
  • G. Pöplau, U. van Rienen
    Rostock University, Faculty of Computer Science and Electrical Engineering, Rostock
 
 

Precise and fast 3D space-charge calculations for bunches of charged particles are still of growing importance in recent accelerator designs. Whereas an adaptive discretization of a bunch is often required for efficient space charge calculations in practice, such a technique is not implemented in many computer codes. For instance, the FFT Poisson solver that is often applied allows only an equidistant mesh. An adaptive discretization following the particle density distribution is implemented in the GPT tracking code (General Particle Tracer, Pulsar Physics) together with a multigrid Poisson solver. The disadvantage of this approach is that jumps in the distribution of particles are not taken into account and the hierarchical construction of meshes in multigrid can not be used. In this paper we present an approach to an adaptive discretization which is based on the multigrid technique. The goal is that the error estimator needed for the adaptive distribution of mesh lines can be calculated directly from the multigrid procedure. The algorithm will be investigated for several particle distributions and compared to that adaptive discretization method implemented in GPT.

 
TUPEC053 Hellweg 2D Code for Electron Dynamics Simulations simulation, electron, beam-loading, linac 1841
 
  • S.V. Kutsaev
    MEPhI, Moscow
 
 

This paper introduces "Hellweg 2D" code, a special tool for electron dynamics simulation in waveguide accelerating structure. The underlying theory of this software is based on the numerical solutions of differential equations of particle motion. The effects considered in this code include beam loading, space charge forces, external focusing magnetic field. "Hellweg 2D" is capable to deal with multisectional accelerators. Along with a manual input of electrodynamical parameters of the cells, for disk-loaded structures they can be calculated automatically with a help of experimental data tables. In order to obtain the maximum capture in the buncher section, the optimizer of phase velocity and electric field strength functions is developed. The comparison of U-1-M buncher beam dynamics simulations via "Hellweg 2D" and experimental data is provided.

 
TUPEC063 Particle Tracking in Matter-dominated Beam Lines simulation, collider, polarization, factory 1871
 
  • T.J. Roberts, K.B. Beard
    Muons, Inc, Batavia
  • S. Ahmed, D. Huang, D.M. Kaplan, L.K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois
 
 

The G4beamline program* is a useful and steadily improving tool to quickly and easily model beam lines and experimental equipment without user programming. It has both graphical and command-line user interfaces. Unlike most accelerator physics codes, it easily handles a wide range of materials and fields, being particularly well suited for the study of muon and neutrino facilities. As it is based on the Geant4 toolkit**, G4beamline includes most of what is known about the interactions of particles with matter. We are continuing the development of G4beamline to facilitate its use by a larger set of beam line and accelerator developers. A major new feature is the calculation of space-charge effects. G4beamline is open source and freely available at: http://g4beamline.muonsinc.com


* http://g4beamline.muonsinc.com
** http://geant4.cern.ch

 
TUPEC081 Simulations and Measurements of Beam Breakup in Dielectric Wakefield Structures wakefield, simulation, controls, focusing 1904
 
  • A. Kanareykin, C.-J. Jing, A.L. Kustov, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio
  • A. Altmark
    LETI, Saint-Petersburg
  • W. Gai, J.G. Power
    ANL, Argonne
 
 

Beam breakup (BBU) effects resulting from parasitic wakefields are a serious limitation to the performance of dielectric structure based accelerators. We report here on numerical studies and experimental investigations of BBU and its mitigation. An experimental program is underway at the Argonne Wakefield Accelerator facility that will focus on BBU measurements in dielectric wakefield devices. We examine the use of external FODO channels for control of the beam in the presence of strong transverse wakefields. We present calculations based on a particle-Green's function beam dynamics code (BBU-3000) that we are developing. We will report on new features of the code including the ability to treat space charge. The BBU code is being incorporated into a software  framework that will significantly increase its utility (Beam Dynamics Simulation Platform). The platform is based on the very flexible Boinc software environment developed originally at Berkeley for the SETI@home project. The package can handle both task farming on a heterogeneous cluster of networked computers and computing on a local grid. User access to the platform is through a web browser.

 
TUPD002 Simulation and Observation of the Space Charge Induced Multi-Stream Instability of LinacμBunches in the SIS18 Synchrotron injection, simulation, ion, linac 1916
 
  • S. Appel, T. Weiland
    TEMF, TU Darmstadt, Darmstadt
  • O. Boine-Frankenheim
    GSI, Darmstadt
 
 

For the future operation as an injector for the FAIR project the SIS18 synchrotron has to deliver intense and high quality ion bunches with high repetition rate. One requirement is that the initial momentum spread of the injected coasting beam should not exceed the limit set by the SIS18 rf bucket area. Also the Schottky spectrum should be used to routinely measure the momentum spread and revolution frequency directly after injection. During the transverse multi-turn injection the SIS18 is filled withμbunches from the UNILAC linac at 36 MHz. For low beam intensities theμbunches debunch within a few turns and form a coasting beam with a Gaussian-like momentum spread distribution. With increasing intensity we observe persistent current fluctuations and an accompanying pseudo-Schottky spectrum. We will explain that the multi-stream instability of theμbunch filaments is responsible for the turbulent current spectrum that can be observed a few 100 turns after injection. The current spectrum observed in the SIS18 and the results from a longitudinal simulation code will compared to an analytical model of the multi-stream instability induced by the space charge impedance.

 
TUPD004 Linear Coupling with Space Charge in SIS18 quadrupole, coupling, emittance, injection 1922
 
  • W.M. Daqa
    IAP, Frankfurt am Main
  • O. Boine-Frankenheim, I. Hofmann, V. Kornilov, J. Struckmeier
    GSI, Darmstadt
 
 

For high current synchrotrons and for the SIS18 operation as booster of the projected SIS100 it is important to improve the multi-turn injection efficiency. This can be achieved by coupling the transverse planes with skew quadrupoles, which can move the particles away from the septum. Linear betatron coupling by skew quadrupole components in SIS18 including space charge effect was studied in an experiment using different diagnostic methods during the crossing of the difference coupling resonance. The beam loss was measured using a fast current transformer, the transverse emittance exchange was observed using a residual gas monitor and the coupled tunes were obtained from the Schottky noise spectrum. We compared the experimental results with simulation using PARMTRA which is a code developed at GSI.

 
TUPD007 Peculiar Variations in Bunch Length Observed at KEKB cavity, impedance, electron, luminosity 1931
 
  • T. Ieiri
    KEK, Ibaraki
 
 

KEKB, an asymmetric electron/positron double-ring collider, utilizes the crab cavity to perform the head-on collision at the interaction point. We observed peculiar phenomena at the transition from the collision to non-collision, where the bunch length slightly changed, even though the beam current and the RF related parameters were almost constant. We also observed that the transverse beam size of both beams changed at the transition. An experimental study was carried out to investigate whether the bunch length would change or not, when the vertical beam size was intentionally changed. The bunch length was measured using a monitor based on the beam spectrum with a resolution of 0.01 mm. We found that the bunch length slightly changed together with the vertical beam size under non-colliding condition. We expect that the change in the bunch length is not caused by the colliding effects, but is related to the longitudinal space charge transformed from the transverse plane. Since the longitudinal space charge effect is negligible for the relativistic beams, some tilting effect of a bunch is suspected.

 
TUPD010 Simulation of Longitudinal Emittance Control in J-PARC RCS emittance, extraction, simulation, beam-loading 1940
 
  • M. Yamamoto, M. Nomura, A. Schnase, T. Shimada, H. Suzuki, F. Tamura
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • E. Ezura, K. Hara, K. Hasegawa, C. Ohmori, M. Tada, A. Takagi, K. Takata, M. Yoshii
    KEK, Ibaraki
 
 

The Longitudinal emittance in J-PARC RCS should be controlled to accelerate a high intensity proton beam with minimal beam loss. In order to study and minimize the beam loss during acceleration, the optimized way to add the 2nd higher harmonic rf has been calculated by a particle tracking code. Furthermore, the bunch shape at RCS extraction should be controlled and optimized for the MR injection. For this purpose, the optimum RCS acceleration pattern has been calculated. We describe the simulation results and the comparison with the beam test.

 
TUPD014 Simulations of Space Charge Effects in Low Energy Electrostatic Storage Rings storage-ring, ion, simulation, dynamic-aperture 1952
 
  • A.I. Papash
    MPI-K, Heidelberg
  • O.E. Gorda
    GSI, Darmstadt
  • A.I. Papash
    JINR, Dubna, Moscow Region
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire
 
 

Electrostatic storage rings have proven to be invaluable tools for atomic and molecular physics. Due to the mass independence of the electrostatic rigidity, these machines are able to store a wide range of different particles, from light ions to heavy singly charged bio-molecules. However, earlier measurements showed strong space charge limitations; probably linked to non-linear fields that cannot be completely avoided in such machines. The nature of these effects is not fully understood. In this contribution, we present the results from simulating an electrostatic storage ring under consideration of non-linear fields as well as space charge effects using the computer code SCALA.

 
TUPD015 Accurate Simulation of the Electron Cloud in the Fermilab Main Injector with VORPAL electron, simulation, proton, dipole 1955
 
  • P. Lebrun, P. Spentzouris
    Fermilab, Batavia
  • J.R. Cary
    CIPS, Boulder, Colorado
  • P. Stolz, S.A. Veitzer
    Tech-X, Boulder, Colorado
 
 

Precision simulations of the electron cloud at the Fermilab Main Injector have been studied using the plasma simulation code VORPAL. Fully 3D and self consistent solutions that includes Yee-type E.M. field maps generated by the cloud and the proton bunches have been obtained, as well detailed distributions of the 6D phase space occupied by the electrons. We plan to include such maps in the ongoing simulation of the space charge effects in the Main Injector. Simulations of the response of retarded field analyzers and microwave transmission experiments are ongoing.

 
TUPD020 Studies of Space Charge Effects in the Proposed CERN PS2 emittance, synchrotron, lattice, simulation 1964
 
  • J. Qiang, R.D. Ryne
    LBNL, Berkeley, California
  • R. De Maria
    BNL, Upton, Long Island, New York
  • A. Macridin, P. Spentzouris
    Fermilab, Batavia
  • Y. Papaphilippou
    CERN, Geneva
  • U. Wienands
    SLAC, Menlo Park, California
 
 

A new proton synchrotron, the PS2, is under design study to replace the the current proton synchrotron at CERN for the LHC upgrade. Nonlinear space charge effects could cause significant beam emittance growth and particle losses and limit the performance of the PS2. In this paper, we report on studies of the potential space-charge effects at the PS2 using three-dimensional self-consistent macroparticle tracking codes, IMPACT, MaryLie/IMPACT, and Synergia. We will present initial benchmark results among these codes. Effects of space-charge on the emittance growth, especially due to synchrotron coupling, and the aperture sizes will also be discussed.

 
TUPD021 Method to Extract Transfer Maps in the Presence of Space Charge in Charged Particle Beams lattice, resonance, electron, multipole 1967
 
  • E.W. Nissen, B. Erdelyi
    Northern Illinois University, DeKalb, Illinois
  • S.L. Manikonda
    ANL, Argonne
 
 

This research involves a method for combining the intricate diagnostic tools for calculating quantities of interest such as tunes, dispersion and resonances from the single particle map of the system, with an accurate approximation of space charge effects on the beam. The space charge calculation involves a novel method of potential integration which allows for rapid Taylor expansion around singularities. This will allow for an accurate computation of space charge induced tune shifts and resonances, as well as allowing for experimental setups to discriminate between space charge caused issues, and lattice caused issues. The code used was COSY Infinity 9.0 which uses Differential Algebras to determine numerical derivatives to arbitrary order, and Normal Form methods to extract information from the map. The effects of space charge are added to the map using Strang splitting. External confounding factors such as the earths magnetic field are also addressed.

 
TUPD029 Coherent Instability Thresholds and Dynamic Aperture with Octupoles and Nonlinear Space-Charge in the SIS100 Synchrotron octupole, lattice, simulation, impedance 1988
 
  • V. Kornilov, O. Boine-Frankenheim
    GSI, Darmstadt
  • V.V. Kapin
    ITEP, Moscow
 
 

Octupole magnets can be used as a passive cure against transverse collective instabilities. The octupole field creates a betatron frequency spread due to amplitude-dependent tune shift and thus enhances Landau damping. The drawback is the reduction of the dynamic aperture (DA). Ultimately, a balance between collective damping and DA must be found. Here we analyse the transverse coherent instability thresholds in SIS100 with octupoles and nonlinear space-charge taken into account. As the major impedance sources at low frequencies, the resistive wall and the kickers are considered. A coasting beam is assumed, which results in a conservative stability estimation. On the other hand, we simulate the DA of the SIS100 lattice using the MADX code, with systematic multipole errors, random multipole errors, and closed-orbit errors taken into account.

 
TUPD037 E-Cloud Map Formalism: an Analytical Expression for Quadratic Coefficient electron, simulation, site, radiation 2009
 
  • T. Demma
    INFN/LNF, Frascati (Roma)
  • S. Petracca, A. Stabile
    U. Sannio, Benevento
 
 

The bunch-to-bunch evolution of the electron cloud density can be modeled using a cubic map. The map approach has been proved reliable for RHIC* and LHC**. The coefficients that parameterize the map may be obtained by fitting from time consuming numerical simulations. In this communication we derive a simple approximate formula for the quadratic coefficient, which determines the saturation of the cloud due to space charge, in the electron cloud density map, under the assumptions of round chambers and free-field motion of the elctrons in the cloud. Results are compared with simulations for a wide range of parameters governing the evolution of the elctron cloud.


* U.Iriso, S.Peggs, Phys. Rev.STAB 8, 024403, 2005.
** T.Demma, S.Petracca, G.Rumolo, F.Ruggiero, F.Zimmermann, Phys. Rev.STAB 10, 114401, 2007.

 
TUPD046 Effects of Direct Space Charge on the Transverse Mode Coupling Instability wakefield, simulation, coupling, synchrotron 2027
 
  • D. Quatraro, G. Rumolo
    CERN, Geneva
 
 

The effects of direct space charge forces on the Transverse Mode Coupling Instability (TMCI) are studied using numerical techniques. We have implemented a third order symplectic integrator for the equation of motion, taking into account non linear space charge forces coming from a Gaussian shaped bunch. We performed numerical simulation for the Super Proton Synchrotron (SPS) bunch at 26 GeV of kinetic energy, using either resistive wall or broad band transverse wake fields. In both cases the result of applying direct space charge, leads to an intensity threshold increase by almost 20% before the TMCI appears. Far above the TMCI intensity threshold, the growth rate is almost 10% higher if no space charge forces are applied.

 
TUPD047 Head Tail Instability Observations and Studies at the Proton Synchrotron Booster pick-up, impedance, synchrotron, injection 2030
 
  • D. Quatraro, A. Findlay, B. Mikulec, G. Rumolo
    CERN, Geneva
 
 

Since many years the Proton Synchrotron Booster (PSB) high intensity beams have shown head-tail instabilities in all of the four rings at around 100 ms after the injection. In this paper we present the latest observations together with the evaluation of the instability rise time and its dependence on the bunch intensity. The acquired head-tail modes and the growth rates are compared with HEADTAIL numerical simulations, which together with the Sacherer theory points at the resistive wall impedance as a possible source of the instability.

 
TUPD050 Impedances of an Infinitely Long and Axisymmetric Multilayer Beam Pipe: Matrix Formalism and Multimode Analysis impedance, electromagnetic-fields, vacuum 2039
 
  • N. Mounet
    EPFL, Lausanne
  • N. Mounet, E. Métral
    CERN, Geneva
 
 

Using B. Zotter's formalism, we present here a novel, efficient and exact matrix method for the field matching determination of the electromagnetic field components created by an offset point charge travelling at any speed in an infinitely long circular multilayer beam pipe. This method improves by a factor of more than one hundred the computational time with three layers and allows the computation for more layers than three. We also generalize our analysis to any azimuthal mode and finally perform the summation on all such modes in the impedance formulae. In particular the exact multimode direct space-charge impedances (both longitudinal and transverse) are given, as well as the wall impedances to any order of precision.

 
TUPD051 Generalized Form Factors for the Beam Coupling Impedances in a Flat Chamber impedance, vacuum, coupling, kicker 2042
 
  • N. Mounet
    EPFL, Lausanne
  • N. Mounet, E. Métral
    CERN, Geneva
 
 

The exact formalism from B. Zotter to compute beam coupling impedances has been fully developed only in the case of an infinitely long circular beam pipe. For other two dimensional geometries, some form factors are known only in the ultrarelativistic case and under certain assumptions of conductivity and frequency of the pipe material. We present here a new and exact formalism to compute the beam coupling impedances in the case of a collimator-like geometry where the jaws are made of two infinite plates of any linear material. It is shown that the impedances can be computed theoretically without any assumptions on the beam speed, material conductivity or frequency range. The final formula involves coefficients in the form of integrals that can be calculated numerically. This way we obtain new generalized form factors between the circular and the flat chamber cases, which eventually reduce to the so-called Yokoya factors under certain conditions.

 
TUPD053 The Six Electromagnetic Field Components at Low Frequency in an Axisymmetric Infinitely Thick Single-Layer Resistive Beam Pipe impedance, vacuum, electromagnetic-fields, coupling 2048
 
  • N. Mounet
    EPFL, Lausanne
  • N. Mounet, E. Métral
    CERN, Geneva
 
 

In this study B. Zotter's formalism is applied to a circular infinitely long beam pipe made of a conductor of infinite thickness where an offset point-charge travels at any given speed. Simple formulae are found for the impedances and electromagnetic fields both at intermediate frequencies (recovering Chao's results) and in the low frequency regime where the usual classic thick wall impedance formula does not apply anymore due to the large skin depth compared to the pipe radius.

 
TUPD103 Merger Considerations for BerlinPro dipole, emittance, linac, injection 2138
 
  • B.C. Kuske, M. Abo-Bakr, A.N. Matveenko
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

The Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB) proposes to construct an ERL test facility. To provide different operational modes for different scientific applications is one of the advantages of these new, linac-driven radiation sources. In contrast to the linear machine layouts of FELs, new challenges arise from incorporating the linac into a circular machine. One of them is the so called merger, a magnetic chicane that threads the low energy, low emittance, but high current bunch from the gun into the recirculator. The preservation of the ambitious gun parameters, the optimal collimation of dark current and flexibility to suit all user demands are the dominant design goals. Different design criteria and possible layouts are discussed and a preliminary merger design is proposed.

 
TUPE089 Preparation of Start-to-end Simulation for Compact ERL SRF, betatron, simulation, cavity 2332
 
  • T. Miyajima
    KEK, Ibaraki
  • J.G. Hwang
    Kyungpook National University, Daegu
  • E.-S. Kim
    KNU, Deagu
 
 

Start-to-end (S2E) simulation from electron gun to beam dump is required to estimate light source performance and beam loss, which are essential parts in synchrotron light source based on Energy Recovery Linacs (ERL). Since the beam energy is widely varied from eV to GeV order in the ERL, the S2E simulation have to include many effects, e.g., space charge (SC) effect, coherent synchrotron radiation (CSR), cathode model, wake function, ions and beam break up. In order to carry out the S2E simulation, the preparation of it using General Particle Tracer (GPT), which is a particle tracking code including SC routine, has been started for compact ERL (cERL) beamline. The cERL is a test accelerator to establish accelerator technologies for GeV-class synchrotron light source based on ERL, and consists of an injector with photo cathode DC gun, a merger section, SRF cavities for acceleration and energy recovery, return loops, and a beam dump. In this presentation, the result of the S2E simulation from gun to the middle of return loop with SC and CSR effects, and the results of bench marking for each part in cERL, e.g. injector, merger, SRF cavities and return loop section, are shown.

 
WEYRA01 The FAIR Accelerators: Highlights and Challenges ion, beam-losses, heavy-ion, injection 2430
 
  • O. Boine-Frankenheim
    GSI, Darmstadt
 
 

The FAIR accelerator project at GSI should increase the intensity of primary proton and heavy ion beams by up to two orders of magnitude, relative to the existing GSI facility. In addition to the design of the new synchrotron SIS-100 and the storage rings, the intensity upgrade of the SIS-18 synchrotron plays a key role for the FAIR project. Recently a new record beam intensity for intermediate charge state uranium ions has been achieved in the SIS-18. Still several challenges related to beam intensity effects and phase space conservation have to be mastered in order to reach the beam parameters required for the injection into SIS-100. In SIS-100 beam loss control and machine protection are of major concern. Lost energetic heavy ions can cause a more severe damage of accelerator components than the corresponding amount of protons. Gradual beam loss of energetic ions is expected to occur in SIS-100 mainly during slow extraction of intense beams. Coherent transverse instabilities induced by the beam pipe impedance are a potential cause of fast beam loss and emittance increase. Cures and protection measures together with the result of simulation studies will be summarized.

 

slides icon

Slides

 
WEPEC082 Computational Modeling of Muons passing through Gas Pressured RF Cavities target, simulation, scattering, cavity 3070
 
  • A. Samolov, A.L. Godunov
    ODU, Norfolk, Virginia
 
 

Using high-pressure RF cavities for muon colliders would provide higher accelerating gradients, that is crucial for fast acceleration of short-living muons .This approach requires a good evaluation for mechanisms of muon - low-Z gas interaction, including such effects as multiple scattering and space charge effects. Most present simulation tools (GEANT4, G4MICE) for muon beams are based on single particle tracking, where collective effects are not taken into account. We use a modified molecular dynamic simulation technique to study effects of both multiple scattering and space charge screening by the gas on scattering, energy loss, and propagation of muons during both ionization cooling and acceleration.

 
THPPMH03 Four Decades of Colliders (from the ISR to LEP to the LHC) resonance, luminosity, emittance, collider 3663
 
  • S. Myers
    CERN, Geneva
 
 

I will briefly describe CERN's colliders starting with the ISR, going through LEP, and finishing with the LHC. The common threads will be discussed in terms of people and techniques. I will start by describing the incredible impact on accelerator physics of the almost forgotten, first ever hadron collider, the ISR. I will then present the construction and 12 years of operation of LEP. Finally I will also provide the first results of beam operation in the LHC as well as the plans for the near and far future.

 

slides icon

Slides

 
THPEB024 Design of the Medium Energy Beam Transport from High-voltage Terminal acceleration, emittance, ion, beam-transport 3939
 
  • Y. Sato, M.K. Fujimaki, N. Fukunishi, A. Goto, Y. Higurashi, E. Ikezawa, O. Kamigaito, M. Kase, T. Nakagawa, J. Ohnishi, H. Okuno, H. Watanabe, Y. Watanabe, S. Yokouchi
    RIKEN Nishina Center, Wako
 
 

The RI beam factory at RIKEN Nishina Center needs high intensity of uranium ion beams. We have used so far the RFQ pre-injector upstream of the linac system, in which the extraction voltage of the ECR ion source is as low as 5.7 kV for the uranium beam. However, for much higher intensity beams from a newly developed superconducting ECR ion source, such a low voltage was expected to significantly increase their emittance due to the space charge effect. To reduce this effect, we prepared a new pre-injector line of 127 kV for uranium beams by placing the ion source on a high-voltage terminal. In this paper we present the design of the 127 kV medium energy beam transport, MEBT, and show the measured results through the line.

 
THPEC029 Photocathode Femtosecond Electron Beam Applications: Femtosecond Pulse Radiolysis and Femtosecond Electron Diffraction electron, laser, gun, emittance 4113
 
  • J. Yang, K. Kan, T. Kondoh, Y. Murooka, N. Naruse, K. Tanimura, Y. Yoshida
    ISIR, Osaka
  • J. Urakawa
    KEK, Ibaraki
 
 

Both ultrafast time-resolved radiolysis and electron diffraction based on photocathode rf electron guns have been developed in Osaka University to reveal the hidden dynamics of intricate molecular and atomic processes in materials. One of the photocathode rf guns has been used successfully to produce a 100-fs high-brightness electron single bunch with a booster linear accelerator and a magnetic bunch compressor. The time resolution of 240 fs was achieved at the first time in the pulse radiolysis. Another photocathode rf gun, which produces directly a near-relativistic 100-fs electron beam, has been developed to construct femtosecond electron diffraction. The megavolt electron diffraction patterns have been observed. The dependences of the emittance, bunch length and energy spread on the radio-frequency (rf) and space charge effects in the rf gun were investigated.

 
THPD031 Development of Tomographic Reconstruction Methods for Studies of Transverse Phase Space in the EMMA FFAG Injection Line quadrupole, injection, simulation, betatron 4346
 
  • M.G. Ibison, K.M. Hock, D.J. Holder, M. Korostelev
    Cockcroft Institute, Warrington, Cheshire
 
 

We present a simulation study on the reconstruction of the phase space distribution of a beam in the EMMA injection line. The initial step has been to use a Gaussian beam to calculate the phase space distribution and the horizontal and vertical beam projections which would be expected at a screen. The projections obtained from a range of optical configurations are provided as input for reconstructing the phase space distribution using a standard tomography method. The result from the reconstruction can be compared with the known phase space distribution. By taking into account the limited range of quadrupole strengths available, we can determine how practical limitations may affect the reconstruction.


*"EMMA: THE WORLD'S FIRST NON-SCALING FFAG," R. Edgecock, D. Kelliher, S. Machida, STFC/RAL, Didcot, UK et al. in Proceedings of EPAC08, Genoa, Italy

 
THPD041 Evolution of Electron Bunches in a Combined Quasi-static and Laser Electric Field electron, laser, radiation, cathode 4372
 
  • V.A. Papadichev
    LPI, Moscow
 
 

Short pulses of electrons of femtosecond and attosecond duration are necessary for numerous applications: studying fast processes in physics, chemistry, biology and medicine*. Previous calculations revealed that it is possible to obtain such short bunches by applying quasi-static electric voltage to a needle placed into a laser focus**,***. This paper presents results of computer simulation of the electron bunch evolution for various parameters of the problem (quasi-static and laser electric fields, radius of curvature of the needle, velocity of electron emission etc.). Simple model for analytical calculation of bunch evolution was elaborated to precisely assess its shortening in the case when one can neglect space-charge forces in the bunch. Influence of velocity dispersion in the bunch due to emission process is discussed and the way to optimize the bunching was proposed. Bunch dynamics accounting for space-charge forces was studied using analytical solution of equation of motion.


* P.Emma. Proc. EPAC04, p. 225, Lucerne, Suisse.
** V.A.Papadichev. Proc. EPAC08, p. 2812, Genoa, Italy.
*** V.A.Papadichev. Proc. EPAC08, p. 2815, Genoa, Italy.

 
THPE013 Invariants of Linear Equations of Motion emittance, damping, coupling, injection 4539
 
  • N.Yu. Kazarinov
    JINR, Dubna, Moscow Region
 
 

Courant-Snyder invariant and Root Mean Square (RMS) beam emittance are well-known invariants of linear equation of motion. They are connected with the second order moments of a beam distribution function. Other invariants of linear equations of motion generated by second and higher order moments are presented in this report.

 
THPE043 Demonstration of Transverse-to-longitudinal Emittance Exchange at the Fermilab Photoinjector emittance, cavity, simulation, diagnostics 4614
 
  • A.S. Johnson, H.T. Edwards, T.W. Koeth, A.H. Lumpkin, P. Piot, J. Ruan, J.K. Santucci, Y.-E. Sun, R. Thurman-Keup
    Fermilab, Batavia
 
 

Phase space manipulation techniques within two degrees of freedom are foreseen to enhance the performances of next generation accelerators such as high-energy physics colliders and accelerator based light sources. At the Fermilab A0 photoinjector, a proof-of-principle experiment to demonstrate the exchange of the transverse and longitudinal emittances is ongoing. The emittance exchange beamline consists of a 3.9 GHz normal conducting deflecting mode cavity flanked by two doglegs. Electron bunches with charges of 250 pC and energy of 14.3 MeV are routinely sent through the exchanger. In this paper, we report our latest results on the demonstration of emittance exchange obtained with significantly improved beam diagnostics. We also compare our experimental results with a simple numerical model.

 
THPE069 Simulation of Space Charge Effects in JPARC simulation, beam-losses, injection, emittance 4677
 
  • K. Ohmi, K. Fan, S. Igarashi, Y. Sato
    KEK, Ibaraki
  • H. Hotchi, Y. Shobuda
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
 
 

Nonlinear space charge interaction in high intensity proton rings causes beam loss, which limits the performance. Simulations based on particle in cell method has been performed for JPARC-Rapid Cycle Synchrotron and Main Ring. Beam loss estimation during acceleration and resonances analysis are discussed with various simulations using dynamic and frozen models.

 
THPE071 Space Charge Effect for Rotation of Longitudinal Phase Space in Alpha Magnet gun, electron, simulation, linac 4683
 
  • H. Hama
    Tohoku University, School of Scinece, Sendai
  • N.Y. Huang
    NTHU, Hsinchu
 
 

In compact linac system, alpha magnet seems to be a useful device to manipulate the longitudinal phase space. Particularly combined use with thermionic RF gun has been regarded as a convenient system for bunch compression. The alpha magnet simply acts to rotate the longitudinal phase space of the beam, besides energy selection by an aperture in it. However, by using the alpha magnet, if we like to produce high brilliant electron beam with considerable charge, space charge force has to be carefully taken into account to evaluate the beam property for not only the longitudinal but also the transverse. Since the both transverse motions and the longitudinal one are coupled with each other in the alpha magnet, it is mostly impossible to evaluate the space charge effect analytically. Meanwhile, because energies of the electrons from the thermionic RF gun are ranging from zero to the maximum, a conventional way to count Coulomb force in the rest frame may be not satisfactorily valid in numerical simulations. We will discuss space charge dominated phase spaces derived from 3-D tracking simulations* for the alpha magnet. *GPT (General Particle Tracer) and an FDTD code developed ourselves.

 
THPE081 First Results of Space Charge Simulations for the Novel Multi-turn Injection resonance, emittance, simulation, injection 4710
 
  • M. Giovannozzi, M. George
    CERN, Geneva
  • F. Franchi
    ESRF, Grenoble
 
 

Recently, a novel multi-turn injection technique was proposed. It is based on beam merging via resonance crossing. The various beamlets are successively injected and merged back by crossing a stable resonance generated by non-linear magnetic fields. Space charge is usually a crucial effect at injection in a circular machine and it could have an adverse impact on the phase space topology required for merging the various beamlets. Numerical simulations were performed to assess the stability of the merging process as a function of injected beam charge. The results are presented and discussed in this paper.