A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

radio-frequency

Paper Title Other Keywords Page
MOPEC004 First LHC Shutdown: Coordination and Schedule Issues vacuum, cryogenics, controls, instrumentation 459
 
  • K. Foraz, J. Coupard, S. Grillot
    CERN, Geneva
 
 

The first LHC shut-down started in fall 2008, just after the incident on the 19th of September 2008. In addition to the typical work of a shut-down, a large number of interventions, related to the 'consolidation after the incident' were performed in the LHC loop. Moreover the amount of work increased during the shut-down, following the recommendations and conclusions of the different working groups in charge of the safety of the personnel and of the machine. This paper will give an overview of the work performed, the organization of the coordination, emphasizing the new safety risks (electrical and cryogenic), and how the interventions were implemented in order to ensure both the safety of personnel and a minimized time window.

 
MOPEC076 Integrated Design Method and Beam Dynamics Simulations for the FETS Radio Frequency Quadrupole rfq, simulation, controls, quadrupole 645
 
  • S. Jolly, M.J. Easton
    Imperial College of Science and Technology, Department of Physics, London
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
 
 

A 4m-long, 324MHz four-vane RFQ, consisting of four coupled sections, is currently being designed for the Front End Test Stand (FETS) at RAL in the UK. A novel design method, integrating the CAD and electromagnetic design of the RFQ with beam dynamics simulations, is being used to optimise the design of the RFQ. Basic RFQ parameters are produced with the RFQSIM code. A full CAD model of the RFQ vane tips is produced in Autodesk Inventor, based upon these parameters. This model is then imported into a field mapping code to produce a simulation of the electrostatic field around the vane tips. This field map is then used to model the beam dynamics within the RFQ using General Particle Tracer (GPT). Previous studies have been carried out using field mapping in CST EM Studio. A more advanced technique using Comsol Multiphysics and Matlab, that more tightly integrates the CAD modelling, field mapping and beam dynamics simulations, is described. Results using this new method are presented and compared to the previous optimisation process using field maps from CST.

 
MOPEC079 A Tuning System for the FETS RFQ rfq, feedback, controls, status 651
 
  • S.M.H. Alsari, J.K. Pozimski, P. Savage, O. Zorba
    Imperial College of Science and Technology, Department of Physics, London
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
 
 

The Front End Test Stand (FETS) is an experiment based at the Rutherford Appleton Laboratory (RAL) in the UK. The test stand is being constructed in collaboration between STFC, Imperial College London, ASTeC, the University of Warwick and the Universidad del Pais Vasco. This experiment will design, build and test the first stages necessary to produce a very high quality, chopped H- ion beam as required for the next generation of high power proton accelerators (HPPAs). HPPAs with beam powers in the megawatt range have many possible applications including drivers for spallation neutron sources, neutrino factories, accelerator driven sub-critical systems, waste transmuters and tritium production facilities. An automatic tuning system has been developed for the main 324MHz 4-vane RFQ accelerator and has been tested to fine tune the changes in the resonant frequency of a 324MHz 4-vane cold model RFQ, which been designed as part of the development of the test stand. This paper will present the electronics design of the automated tuning system along with the mechanical tuner structure. The design concepts will be discussed. Furthermore, results of the RF tuning would be presented.

 
TUPEA033 Stable Transmission of RF Signals on Optical Fiber Links laser, controls, FEL, optics 1399
 
  • J.M. Byrd, L.R. Doolittle, G. Huang, J.W. Staples, R.B. Wilcox
    LBNL, Berkeley, California
 
 

Stabilized optical fiber links have been under development for several years for high precision transmission of timing signals for remote synchronization of accelerator and laser systems. In our approach, a master clock signal is modulated on an optical carrier over a fiber link. The optical carrier is also used as the reference in a heterodyne interferometer which is used to precisely measure variations, mainly thermal, in the fiber length. The measured variations are used to correct the phase of the transmitted clock signal. We present experimental results showing sub-10 fsec relative stability of a 200 m link a sub-20 fsec stability of a 2.2 km link.

 
WEPEC023 Surface Study on Niobium Stain after Electro-polishing for Super-conducting RF Cavity niobium, cavity, ion, electron 2941
 
  • M. Nishiwaki, H. Hayano, S. Kato, T. Saeki, M. Sawabe
    KEK, Ibaraki
  • P.V. Tyagi
    Sokendai, Ibaraki
 
 

In development of superconducting radio-frequency niobium cavities, there are problems in low performances of electro-polished (EP) cavities with a fresh EP solution due to stains on the surfaces with discoloration. Although the stain problems have been known from the past researches, the detailed study with surface analysis has not been carried out. In this study, the stains on the niobium surfaces were observed with x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy and scanning electron microscope. According to results of XPS, there are some differences in atomic components at the stained and non-stained surfaces, ex, a little amount of fluorine and no metal oxide were found only at the stained surface. In this article, we will describe the detail of the XPS results.

 
WEPEC078 Plasma Treatment of Niobium SRF Cavity Surfaces cavity, plasma, SRF, niobium 3058
 
  • S. Popović, M. Rašković, J. Upadhyay, L. Vušković
    ODU, Norfolk, Virginia
  • H.L. Phillips, A-M. Valente-Feliciano
    JLAB, Newport News, Virginia
 
 

Plasma based surface modification provides an excellent opportunity to eliminate non-superconductive pollutants in the penetration depth region of the SRF cavity surface and to remove mechanically damaged surface layer improving surface roughness. We have demonstrated on flat samples that plasma etching in Ar/Cl2 of bulk Nb is a viable alternative surface preparation technique to BCP and EP methods, with comparable etching rates. The geometry of SRF cavities made of bulk Nb defines the use of asymmetric RF discharge configuration for plasma etching. In a specially designed single cell cavity with sample holders, discharge parameters are combined with etched surface diagnostics to obtain optimum combination of etching rates, roughness and homogeneity in a variety of discharge types, conditions, and sequences. The optimized experimental conditions will ultimately be applied to single cell SRF cavities.

 
WEPEC080 Progress of Bep Treatments on Nb at JLAB* cavity, SRF, superconductivity, monitoring 3064
 
  • A.T. Wu, S. Jin, R.A. Rimmer
    JLAB, Newport News, Virginia
  • X.Y. Lu, K. Zhao
    PKU/IHIP, Beijing
 
 

Recent experimental results have indicated that Buffered Electropolishing (BEP) is a promising candidate for the next generation of surface treatment technique for Nb superconducting radio frequency (SRF) cavities to be used in particle accelerators. In order to lay the foundation for using BEP as the next generation surface treatment technique for Nb SRF cavities, some fundamental aspects of BEP treatments for Nb have to be investigated. In this report, recent progress on BEP study at JLab is shown. Improvements on the existing vertical BEP are made to allow water cooling from outside of a Nb single cell cavity in addition to cooling provided by acid circulation so that the temperature of the cavity can be stable during processing. Some investigation on the electrolyte mixture was performed to check the aging effect of the electrolyte. It is shown that good polishing results can still be obtained on Nb at a current density of 171 mA/cm when the BEP electrolyte was at the stationary condition and was more than 1.5 years old.


* A.T. Wu et al, Proc. of 14th Conference on SRF, Germany, 2009, THPPO064. ** S. Jin et al, the same as 1, THPPO097.
*** F. Eozenou et al, the same as 1 THPPO068.

 
WEPEC081 Study of Low Temperature Baking Effect on Field Emission on Nb Samples Treated by BEP, EP, and BCP SRF, cavity, HOM, heavy-ion 3067
 
  • A.T. Wu, R.C. Ike, S. Jin, R.A. Rimmer
    JLAB, Newport News, Virginia
  • X.Y. Lu, K. Zhao
    PKU/IHIP, Beijing
  • L.C. Macintyre
    NSU, Newport News, Virginia
 
 

Field emission is still one of the major obstacles facing Nb superconducting radio frequency (SRF) community for allowing Nb SRF cavities to reach routinely accelerating gradient of 35 MV/m that is required for the international linear collider. Nowadays, the well know low temperature backing at 120 oC for 48 hours is a common procedure used in the SRF community to improve the high field Q slope. However, some cavity production data have showed that the low temperature baking may induce field emission for cavities treated by EP. On the other hand, an earlier study of field emission on Nb flat samples treated by BCP showed an opposite conclusion. In this presentation, the preliminary measurements of Nb flat samples treated by BEP, EP, and BCP via our unique home-made scanning field emission microscope before and after the low temperature baking are reported. Some correlations between surface smoothness and the number of the observed field emitters were found. The observed experimental results can be understood, at least partially, by a simple model that involves the change of the thickness of the pent-oxide layer on Nb surfaces.


* L.C. MacIntyre, R. Ike, and A.T. Wu, 2005, unpublished

 
THPEA001 Fabrication and Installation of Radio Frequency System for K500 Superconducting Cyclotron at Kolkata cavity, cyclotron, vacuum, site 3673
 
  • M. Ahammed, D. Adak, R.K. Bhandari, P. Bhattacharyya, J. Chaudhuri, M.K. Dey, A. Dutta Gupta, B. Hemram, B.C. Mandal, B. Manna, S. Murmu, H.K. Pandey, S. Saha, S. Sarkar, S.K. Singh, T. Viswanathan
    DAE/VECC, Calcutta
 
 

K500 Superconducting Cyclotron (SCC) is already commissioned successfully at VECC, Kolkata by accelerating Ne3+ internal beam with 70 nA beam current at 670 mm extraction radius. The Radio Frequency cavity of SCC is successfully operational since last two years. All these years were very challenging and worthy period from the point of view of gaining experience and knowledge by solving fabrication and assembly problems faced during construction of 10 m tall copper made coaxial RF cavities and tackling RF related commissioning problems. RF system operates within the frequency range of 9 to 27 MHz for generating maximum 100 kV DEE voltage. The construction of the RF system demands making of numerous critical soldering and brazing joints including joints between ceramic and copper along with maintaining close dimensional accuracies, assembly tolerances, mirror symmetricity, surface finish and utmost cleanliness. This paper presents the details of fabrication and installation procedures and their effects on the final performance of the cavities. It also highlights the problems faced during the commissioning process of the RF cavities.