A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

background

Paper Title Other Keywords Page
MOPEA001 Production and Characterisation of Inverse Compton Scattering X-rays with a 17 MeV Electron Beam laser, photon, electron, scattering 61
 
  • A.S. Chauchat, JP. Brasile
    THALES, Colombes
  • A. Binet, V. Le Flanchec, J-P. Nègre
    CEA, Arpajon
  • J.-M. Ortega
    CLIO/ELISE/LCP, Orsay
 
 

Inverse Compton scattering is a well-known process to produce X-rays. Thanks to recent progress in accelerators and laser field, such sources have been developed worldwide. The ELSA linear electron accelerator (CEA DAM DIF, Arpajon, France) just developed its own source. The 17 MeV electron beam interacts with a 532 nm laser to provide a pulsed 10 keV X-ray source. The X-ray beam profile is observed on radio-luminescent imaging plates. In order to increase the signal to noise ratio of this X-ray source, laser developments are in progress.

 
MOPEA045 Positron Production for a Compact Tunable Intense Gamma Ray Source target, positron, electron, neutron 175
 
  • C. Y. Yoshikawa, R.J. Abrams, A. Afanasev, C.M. Ankenbrandt, K.B. Beard
    Muons, Inc, Batavia
  • D.V. Neuffer
    Fermilab, Batavia
 
 

A compact tunable gamma ray source has many potential uses in medical and industrial applications. One novel scheme to produce an intense beam of gammas relies on the ability to create a high flux of positrons. We present various positron production methods that are compatible with this approach for producing the intense beam of gammas.

 
MOPEA064 Accelerator Mass Spectrometry at the Tsukuba 12 MV Pelletron Tandem Accelerator ion, tandem-accelerator, ion-source, target 223
 
  • K. Sasa, N. Kinoshita, Y. Nagashima, K. Sueki, T. Takahashi, Y. Tosaki
    UTTAC, Tsukuba, Ibaraki
  • K. Bessho, H. Matsumura
    KEK, Ibaraki
  • Y. Matsushi
    University of Tokyo, Research Center for Nuclear Science and Technology, Tokyo
 
 

Accelerator Mass Spectrometry (AMS) is a highly sensitive mass spectrometric method for measuring rare isotopes. The technique is mainly applied in chronology, earth and environmental sciences to date samples using long-lived radioisotopes. With a multi-nuclide AMS system on the 12 MV Pelletron tandem accelerator at the University of Tsukuba (Tsukuba AMS system), we are able to measure environmental levels of long-lived radioisotopes of C-14, Al-26, Cl-36, Ca-41 and I-129 by employing a molecular pilot beam method. The high terminal voltage of 12 MV is an advantage for AMS to detect heavy radioisotopes. The principle of AMS and applications with the Tsukuba AMS system will be reported in this paper.

 
MOPEA077 Material Studies for the ISIS Muon Target target, proton, neutron, beam-losses 253
 
  • A. Bungau, R. Cywinski
    University of Huddersfield, Huddersfield
  • C. Bungau
    Manchester University, Manchester
  • P.J.C. King, J.S. Lord
    STFC/RAL, Chilton, Didcot, Oxon
 
 

The ISIS neutron spallation source uses a separate muon target 20 m upstream of the neutron target for MuSR research. Because ISIS is primarily a neutron source, it imposes restrictions upon the muon target, which normally are not present at other muon facilities like PSI or TRIUMF. In particular it is not possible to use thicker targets and higher energy proton drivers because of the loss of neutrons and the increased background at neutron instruments. In this paper we investigate possible material choices for the ISIS muon target for increased muon yield.

 
MOPEB057 Roebel Cable for High-field Low-loss Accelerator Magnets superconductivity, status, superconducting-magnet, magnet-design 397
 
  • M. Turenne, R.P. Johnson
    Muons, Inc, Batavia
  • F. Hunte, J. Schwartz
    North Carolina State University, Raleigh, North Carolina
  • H. Song
    NHMFL, Tallahassee, Florida
 
 

High field accelerator magnets are needed for high energy physics applications. Superconducting materials able to reach these fields with low losses are required, and YBCO Roebel cable is being developed to address this issue. Characterization of commercially available Roebel cables for high field low temperature superconducting magnets is needed. YBCO Roebel cable with low AC losses is being developed and has limited commercial availability. Its behavior is not fully understood, however, especially in liquid helium and at high magnetic fields. YBCO Roebel cable will be acquired from a commercial vendor and characterized at cryogenic temperatures, in varying magnetic fields, and different strain configurations. A comprehensive behavior analysis will be performed, including operational and fatigue limits. Characterization of YBCO Roebel cable at low temperatures will be performed, including determination of the current flow path in steady-state and during quench using magneto-optical imaging, investigation of the effects of strand insulation, and examination of the mechanical and quench behavior at 4.2 K, 77 K, and varying magnetic fields.

 
MOPEC001 Numerical Analysis of Machine Background in the LHCb Experiment for the Early and Nominal Operation of LHC proton, simulation, betatron, optics 450
 
  • M.H. Lieng
    UNIDO, Dortmund
  • R. Appleby, G. Corti
    CERN, Geneva
  • V. Talanov
    IHEP Protvino, Protvino, Moscow Region
 
 

We consider the formation of machine background induced by proton losses in the long straight section of the LHCb experiment at LHC. Both sources showering from the tertiary collimators located in the LHCb insertion region as well as local beam-gas interaction are taken into account. We present the procedure for, and results of, numerical studies of such background for various conditions. The expected impact on the experiment and signal characteristics are also discussed.

 
MOPEC021 First Results from the LHC Luminosity Monitors luminosity, radiation, monitoring, simulation 501
 
  • A. Ratti, H.S. Matis, W.C. Turner
    LBNL, Berkeley, California
  • E. Bravin, S.M. White
    CERN, Geneva
  • R. Miyamoto
    BNL, Upton, Long Island, New York
 
 

The Luminosity Monitor for the LHC is ready for operation during the planned 2009-2010 run. The device designed for the high luminosity regions is a gas ionization chamber, that is designed with the ability to resolve bunch by bunch luminosity as well as survive extreme levels of radiation. The devices are installed at the zero degree collision angle in the TAN absorbers ±140m from the IP and monitor showers produced by high energy neutrons from the IP. They are used in real time as a collider operations tool for optimizing the luminosity at ATLAS and CMS. A photo-multiplier based system is used at low luminosities and also available. We will present early test results, noise and background studies and correlation between the gas ionization and the PMT. Comparison with ongoing modeling efforts will be included.

 
MOPEC035 Optimizing the Beam-beam Alignment in an Electron Lens using Bremsstrahlung photon, electron, proton, luminosity 537
 
  • C. Montag, W. Fischer, D.M. Gassner, P. Thieberger
    BNL, Upton, Long Island, New York
  • E. Haug
    University of Tuebingen, Tuebingen
 
 

Installation of electron lenses for the purpose of head-on beam-beam compensation is foreseen at RHIC. To optimize the relative alignment of the electron lens beam with the circulating proton (or ion) beam, photon detectors will be installed to measure the bremsstrahlung generated by momentum transfer from protons to electrons. We present the detector layout and simulations of the bremsstrahlung signal as function of beam offset and crossing angle.

 
MOPD040 Secondary Particles in the Acceleration Stage of High Current, High Voltage Neutral Beam Injectors: the Case of the Injectors of the Thermonuclear Fusion Experiment ITER electron, ion, simulation, plasma 771
 
  • G. Serianni, P. Agostinetti, V. Antoni, G. Chitarin, E. Gazza, N. Marconato, N. Pilan, P. Veltri
    Consorzio RFX, Associazione Euratom-ENEA sulla Fusione, Padova
  • M. Cavenago
    INFN/LNL, Legnaro (PD)
  • G. Fubiani
    GREPHE/LAPLACE, Toulouse
 
 

The thermonuclear fusion experiment ITER, requires 33 MW of auxiliary heating power from two Neutral Beam Injectors (NBI), each of them providing 40 A of negative deuterium ions. The EU activities oriented to the realisation of the electrostatic accelerator comprise the construction in Padova of SPIDER, a facility devoted to the optimisation of the beam source. SPIDER parameters are: 100 keV acceleration, 40/60 A (deuterium/hydrogen) current. For the optimised SPIDER accelerator the present contribution provides a characterisation of secondary particles, which include electrons produced by impact of ions on grid surfaces, stripped from negative ions inside the accelerator, and produced by ionisation of the background gas, and the corresponding positive ions. Currents and heat deposited on the various grids and spatial distribution by secondaries will be described. It is found that most of the heat loads on the accelerator grids is due to electrons; moreover the features of secondaries exiting the accelerator and back-streaming towards the source will be presented. The results will be compared with old investigations concerning the NBI 1 MeV accelerator.

 
MOPD088 Resolution Studies of Inorganic Scintillation Screens for High Energy and High Brilliance Electron Beams electron, diagnostics, simulation, lattice 906
 
  • G. Kube, C. Behrens
    DESY, Hamburg
  • W. Lauth
    IKP, Mainz
 
 

Luminescent screens are widely used for particle beam diagnostics, especially in transverse profile measurements at hadron machines and low energy electron machines where the intensity of optical transition radiation (OTR) is rather low. The experience from modern linac based light sources showed that OTR diagnostics might fail even for high energetic electron beams because of coherence effects in the OTR emission process. An alternative way to overcome this limitation is to use luminescent screens, especially inorganic scintillators. However, there is only little information about scintillator properties for applications with high energetic electrons. Therefore a test experiment has been performed at the 855 MeV beam of the Mainz Microtron MAMI (University of Mainz, Germany) in order to study the spatial resolution. The results of this experiment will be presented and discussed in view of scintillator material properties and observation geometry.

 
MOPD099 High Brightness Beam Measurement Techniques and Analysis at SPARC emittance, quadrupole, bunching, brightness 939
 
  • D. Filippetto, M. Bellaveglia, E. Chiadroni, A. Gallo, B. Marchetti
    INFN/LNF, Frascati (Roma)
  • A. Cianchi
    INFN-Roma II, Roma
  • A. Mostacci
    Rome University La Sapienza, Roma
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
 
 

Ultra-short electron bunch production is attractive for a large number of applications ranging from short wavelength free electron lasers (FEL), THz radiation production, linear colliders and plasma wake field accelerators. SPARC is a test facility able to accelerate high brightness beam from RF guns up to 150 MeV allowing a wide range of beam physics experiments. Those experiments require detailed beam measurements and careful data analysis. In this paper we discuss the techniques currently used in our machine; by combining quadrupoles, RF deflector, spectrometer dipole and reliable data analysis codes, we manage to characterize the 6D phase space and the beam slice properties. We focus on the ongoing studies on the emittance compensation in the velocity bunching regime.

 
MOPE003 Development of a Multi-stripline Beam Position Monitor for a Wide Flat Beam of XFEL/SPring-8 cavity, electron, simulation, coupling 954
 
  • H. Maesaka, S.I. Inoue, S. Matsubara, Y. Otake
    RIKEN/SPring-8, Hyogo
 
 

The x-ray FEL facility at SPring-8 produces a very short-bunch beam by using bunch compressors (BC) consisting of magnetic chicanes. Since the bunch compression ratio is strongly depends on the beam energy and the energy chirp, we need to monitor the energy from the beam position at the dispersive part of the BC with a 0.1% resolution. However, a beam profile at the dispersive part is horizontally flat and wide, maximally 50 mm, due to the large energy chirp of the beam. Therefore, we designed a multi-stripline beam position monitor. This monitor has a flat rectangular duct with a 70 mm width and a 10 mm height. Six stripline electrodes at individual intervals of 10 mm are equipped on each of the top and the bottom surface. Due to the small height of the monitor, each electrode is sensitive to the electron position within 10 mm in the horizontal. Therefore, the monitor provides a rough charge profile and the beam position which is calculated from the gravity center of the signals. We prepared a prototype of the monitor and tested it at the SCSS test accelerator. We confirmed that the position sensitivity was better than 0.1 mm, which corresponds to 0.1 % energy resolution.

 
MOPE021 Operational Performance of Wire Scanner Monitor in J-PARC Linac linac, electron, ion, beam-transport 1008
 
  • A. Miura
    JAEA/J-PARC, Tokai-mura
  • H. Akikawa, M. Ikegami
    KEK, Ibaraki
  • H. Sako
    JAEA, Ibaraki-ken
 
 

A wire scanner monitor (WSM) is one of essential measurement devices for beam commissioning of current accelerators. J-PARC Linac also employs a number of WSMs for transverse beam profile. The transverse matching is performed based on the measured beam width. In addition, we have tried to measure halo component with the BSMs. In this paper, we present the experimental results obtained in a beam study to characterize the operational performance of the WSM.

 
MOPE022 Development of Shintake Beam Size Monitor for ATF2 laser, target, optics, alignment 1011
 
  • Y. Kamiya
    ICEPP, Tokyo
  • S. Araki, T. Okugi, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • S. Komamiya, M. Oroku, T.S. Suehara, Y. Yamaguchi, T. Yamanaka
    University of Tokyo, Tokyo
 
 

In this paper, we describe a system design and current status of Shintake beam size monitor. Shintake monitor is a laser-based beam diagnostics tool, which provides a non-invasive measurement of transverse beam sizes. The interaction target probing the electron beam is interference fringes build up by the two coherent lasers that have narrow bandwidth and long coherent length. A scale of the target structure corresponds to approximately one fourth of the laser wave length, and the smallest measurable size reaches down to several tens of nanometers. The monitor we described here is installed at the virtual interaction point of the ATF2 beam line, which is built to confirm the proposed final focus system for Future Linear Colliders. We adopt second harmonics of Nd:YAG laser of 532 nm wavelength, and phase stabilization feedback system to allow to measure the designed beam size of about 37 nm. To widen a measurable range up to about 5 microns (wire scanner's range), we also prepare three crossing modes that change an effective wavelength for the fringes. The monitor is used to measure a focus size during the tuning process. The system is based on the Shintake monitor for FFTB.

 
MOPE023 Evaluation of Expected Performance of Shintake Beam Size Monitor for ATF2 laser, electron, polarization, alignment 1014
 
  • Y. Yamaguchi, S. Komamiya, M. Oroku, T.S. Suehara, T. Yamanaka
    University of Tokyo, Tokyo
  • S. Araki, T. Okugi, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • Y. Kamiya
    ICEPP, Tokyo
 
 

ATF2 is the final focus test facility for ILC to realize and demonstrate nanometer focusing. One of the goals of the ATF2 is a demonstration of a compact final focus system based on the local chromaticity correction. A designed beam size at the focal point is to be 37 nm in vertical. To achieve the goal, a beam size monitor capable of nanometer beam size measurement is inevitably needed. Shintake monitor satisfies the demands, and is installed at the virtual interaction point of the ATF2. Shintake monitor is a beam size monitor which uses laser interference fringe pattern to measure beam size. The beam test for the Shintake monitor was successful in measurement of signal modulation with the laser interference fringe pattern in November 2009. In April 2010, beam size of less than 1 micron was achieved. We have studied the error sources, and evaluated the total error to be less than 10% for 1 minute measurement. This paper is about the evaluation of the Shintake monitor performance by analyzing beam tests data. Most systematic error sources are well understood, so that we can estimate accuracy of beam size measurement when the beam size reaches 37nm.

 
MOPE024 Development of Radiation Registant Optics System for High Intensity Proton Beamline at the J-PARC optics, radiation, proton, target 1017
 
  • A. Toyoda, A. Agari, E. Hirose, M. Ieiri, Y. Katoh, A. Kiyomichi, M. Minakawa, T.M. Mitsuhashi, R. Muto, M. Naruki, Y. Sato, S. Sawada, Y. Suzuki, H. Takahashi, M. Takasaki, K.H. Tanaka, H. Watanabe, Y. Yamanoi
    KEK, Tsukuba
  • H. Noumi
    RCNP, Osaka
 
 

Optical beam measurement such as OTR(Optical Transition Radiation), ODR(Optical Diffraction Radiation), gas Cerenkov, and so on is a powerful tool to observe a two-dimensional information of high intensity beam profile, so that this method is widely used at various electron and hadron accelerators. However, high radiation field to damage an optical system gradually becomes a major issue with increasing the beam intensity to explore new physics. Our present effort is devoted to develop a high efficient optical system to resist such high radiation field. We newly designed an optical system composed of two spherical mirrors which do not have any lenses vulnerable to radiation. Detailed optics design and a result of optical performance test will be presented. Also we will report a result of a beam test experiment of this optics system combined with an OTR screen performed at high intensity proton extraction beamline of the J-PARC.

 
MOPE037 Measurement of Beam Size at Pohang Light Source radiation, synchrotron, optics, ion 1056
 
  • J.Y. Ryu, E.-S. Kim, H.D. Kim, H.K. Park
    KNU, Deagu
  • J.G. Hwang
    Kyungpook National University, Daegu
  • C. Kim
    PAL, Pohang, Kyungbuk
 
 

The synchrotron-radiation interferometer was employed for the beam size measurement of electron beam circulating in the storage ring at 2.5 GeV Pohang Light Source. We measured the beam sizes in both vertical and horizontal directions as function of stored beam current. In this presentation, we will discuss the interferometer system, analysis method for the measurement and the measured results. We also compared the measured beam sizes with predicted values from the lattice parameters in the ring.

 
MOPE044 Particle Energy Determination Technique Based on Waveguide Mode Frequency Measurement radiation, plasma, diagnostics 1071
 
  • A.V. Tyukhtin, E.G. Doil'nitsina
    Saint-Petersburg State University, Saint-Petersburg
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
 
 

We consider the particles energy measurement method offered in our papers (footnotes). It is based on measurement of the modes frequencies in waveguide loaded with certain material. For this method, the modes frequencies must depend on the particles energy strong enough. Here we discuss the problem of selection of materials for this technique. It is shown that high precision of energy measurement can be reached by use of the system of specific parallel conductors. The approximate analytical approach for obtaining effective permittivity of such structure is developed. It is shown that selection of parameters of the structure allows ruling an effective permittivity characterized by both frequency dispersion and spatial one. The structure is simple enough for production. It allows measuring the particles energy for different predetermined ranges. The other ways of realization of the method are discussed as well. One of them consists in use of thin layer of ordinary dielectric. Selection of the layer thickness and dielectric constant allows obtaining strong enough dependence of frequency on Lorentz-factor in the relatively wide range.


A.V. Tyukhtin, S.P. Antipov, A. Kanareykin, P. Schoessow, PAC07, p.4156;
A.V. Tyukhtin, EPAC08, p.1302;
A.V. Tyukhtin, Technical Physics Letters, v.34, p.884 (2008), v.35, p.263 (2009).

 
TUPEB019 Evaluation of the Detector BG for SuperKEKB vacuum, scattering, simulation, optics 1557
 
  • M. Iwasaki, Y. Funakoshi, J. Haba, N. Iida, K. Kanazawa, H. Koiso, Y. Ohnishi, K. Shibata, S. Tanaka, T. Tsuboyama, S. Uno, Y. Ushiroda
    KEK, Ibaraki
  • H. Aihara, C. Ng, S. Sugihara
    University of Tokyo, Tokyo
  • H. Nakano, H. Yamamoto
    Tohoku University, Graduate School of Science, Sendai
 
 

SuperKEKB is the upgrade plan of the current B-factory experiment with the KEKB accelerator at KEK. Its luminosity is designed to be 8x1035 /cm2/s (40 times higher than KEKB) and the integrated luminosity is expected to be 50 ab-1. In SuperKEKB, it is important to evaluate the beam induced BG and design the interaction region (IR) to assure the stable detector operation. To estimate the beam induced BG, we construct the beam-line simulation based on the GEANT4 simulation. In this paper, we report the BG evaluation and the IR design for SuperKEKB.

 
TUPEB023 High Gradient Final Focusing Quadrupole for a Muon Collider quadrupole, collider, shielding, focusing 1569
 
  • S.A. Kahn, G. Flanagan, R.P. Johnson
    Muons, Inc, Batavia
 
 

To achieve the high luminosity required for a muon collider strong quadrupole magnets will be needed for the final focus in the interaction region. These magnets will be located in regions with space constraints imposed both by the lattice and the collider detector. There are significant beam related backgrounds from muon decays and synchrotron radiation which create unwanted particles which can deposit significant energy in the magnets of the final focus region of the collider. This energy deposition results in the heating of the magnet which can cause it to quench. To mitigate the effects of heating from the energy deposition shielding will need to be included within the magnet forcing the aperture to be larger than desired and consequently reducing the gradient. We propose to use exotic high magnetization materials for pole tips to increase the quadrupole gradient.

 
TUPEB072 Beam-gas Loss Rates in the LHC proton, simulation, hadron, optics 1686
 
  • Y.I. Levinsen, R. Appleby, H. Burkhardt
    CERN, Geneva
 
 

We report on first observations and detailed simulations of beam gas rates in the LHC. For the simulations, a comprehensive tool has been set up to simulate in a few hours the expected beam gas losses when pressure maps, collimator settings, and/or beam optics changes. The simulation includes both elastic and inelastic scattering, with subsequent multiturn tracking of proton residues. This provides amongst others a more realistic collimator loss distributions from elastic interactions than what was previously available.

 
TUPEB073 Dependence of Background Rates on Beam Separation in the LHC luminosity, proton, simulation, insertion 1689
 
  • Y.I. Levinsen, R. Appleby, H. Burkhardt, S.M. White
    CERN, Geneva
 
 

Background and loss rates vary when beams are brought into collisions in the LHC and when the beam separation is varied during luminosity scans. We report on the first observations in the early LHC operation. The observed effects are analyzed and compared with models and simulation.

 
WEOBMH01 Operational Experiences Tuning the ATF2 Final Focus Optics Towards Obtaining a 37nm Electron Beam IP Spot Size optics, emittance, quadrupole, coupling 2383
 
  • G.R. White, A. Seryi, M. Woodley
    SLAC, Menlo Park, California
  • S. Bai
    IHEP Beijing, Beijing
  • P. Bambade, Y. Renier
    LAL, Orsay
  • B. Bolzon
    IN2P3-LAPP, Annecy-le-Vieux
  • Y. Kamiya
    ICEPP, Tokyo
  • S. Komamiya, M. Oroku, Y. Yamaguchi, T. Yamanaka
    University of Tokyo, Tokyo
  • K. Kubo, S. Kuroda, T. Okugi, T. Tauchi
    KEK, Ibaraki
  • E. Marin
    CERN, Geneva
 
 

The primary aim of the ATF2 research accelerator is to test a scaled version of the final focus optics planned for use in next-generation linear lepton colliders. ATF2 consists of a 1.3 GeV linac, damping ring providing low-emittance electron beams (<12pm in the vertical plane), extraction line and final focus optics. The design details of the final focus optics and implementation at ATF2 are presented elsewhere* . The ATF2 accelerator is currently being commissioned, with a staged approach to achieving the design IP spot size. It is expected that as we implement more demanding optics and reduce the vertical beta function at the IP, the tuning becomes more difficult and takes longer. We present here a description of the implementation of the overall tuning algorithm and describe operational experiences and performances


* Beam-Based Alignment, Tuning and Beam Dynamics Studies for the ATF2 Extraction Line and Final Focus System. Glen R. White , S. Molloy, M. Woodley, (SLAC). EPAC08-MOPP039, SLAC-PUB-13303.

 

slides icon

Slides

 
WEPEA022 Studies of Polarisaion of Coherent THz Edge Radiation at the ANKA Storage Ring radiation, synchrotron, storage-ring, electron 2529
 
  • A.-S. Müller, I. Birkel, M. Fitterer, S. Hillenbrand, N. Hiller, A. Hofmann, E. Huttel, K.S. Ilin, V. Judin, M. Klein, S. Marsching, Y.-L. Mathis, P. Rieger, M. Siegel, N.J. Smale, K.G. Sonnad, P.F. Tavares
    KIT, Karlsruhe
  • H.W. Huebers
    Technische Universität Berlin, Berlin
  • A. Semenov
    DLR, Berlin
 
 

In synchrotron radiation sources coherent radiation is emitted when the bunch length is comparable to or shorter than the wavelength of the emitted radiation. At the ANKA storage ring this radiation is observed as so-called edge radiation (emitted in the fringe field of a bending magnet). This radiation exhibits a radial polarisation pattern. The observed pattern, however, is influenced by the radiation transport in the beam line. A detector system based on a superconducting NbN ultra-fast bolometer with an intrinsic response time of about 100 ps as well as conventional Si bolometers were used to study the beam polarisaion. This paper reports the observations made during measurements.

 
WEPE019 The CLIC Post-Collision Line photon, luminosity, vacuum, dipole 3386
 
  • E. Gschwendtner, A. Apyan, K. Elsener, A. Sailer, J.A. Uythoven
    CERN, Geneva
  • R. Appleby, M.D. Salt
    UMAN, Manchester
  • A. Ferrari, V.G. Ziemann
    Uppsala University, Uppsala
 
 

The 1.5TeV CLIC beams, with a total power of 14MW per beam, are disrupted at the interaction point due to the very strong beam-beam effect. As a result, some 3.5MW reach the main dump in form of beamstrahlung photons. About 0.5MW of e+e- pairs with a very broad energy spectrum need to be disposed along the post-collision line. The conceptual design of this beam line will be presented. Emphasis will be on the optimization studies of the CLIC post-collision line design with respect to the energy deposition in windows, dumps and scrapers, on the design of the luminosity monitoring for a fast feedback to the beam steering and on the background conditions for the luminosity monitoring equipment.

 
WEPE020 Background at the Interaction Point from the CLIC Post-Collision Line photon, positron, neutron, electron 3389
 
  • E. Gschwendtner, K. Elsener
    CERN, Geneva
  • R. Appleby, M.D. Salt
    UMAN, Manchester
  • A. Apyan
    Fermilab, Batavia
  • A. Ferrari
    Uppsala University, Uppsala
 
 

The 1.5TeV CLIC beams, with a total power of 14MW per beam, are disrupted at the interaction point due to the very strong beam- beam effect. The resulting spent beam products are transported to suitable dumps by the post-IP beam line, which generates beam losses and causes the production of secondary cascades towards the interaction region. In this paper the electromagnetic background at the IP are presented, which were calculated using biased Monte Carlo techniques. Also, a first estimate is made of neutron back-shine from the main beam dump.

 
WEPE025 Beam-beam Background in CLIC in Presence of Imperfections luminosity, emittance, hadron, photon 3404
 
  • B. Dalena, D. Schulte
    CERN, Geneva
 
 

Beam-Beam background is one of the main issues of the CLIC MDI at 3 TeV CM. The background level have a significant impact on the interaction region design. This paper presents a study of the background expected rates versus luminosity according to different beam parameters and considering different machine conditions, using an integrated simulation of the Main LINAC and BDS sub-systems.

 
WEPE067 Beam-induced Electron Loading Effects in High Pressure Cavities for a Muon Collider cavity, electron, pick-up, collider 3497
 
  • M. Chung, A. Jansson, A.V. Tollestrup, K. Yonehara
    Fermilab, Batavia
  • Z. Insepov
    ANL, Argonne
 
 

Ionization cooling is a critical building block for the realization of a muon collider. To suppress breakdown in the presence of the external magnetic field, an idea of using an RF cavity filled with high pressure hydrogen gas is being considered for the cooling channel design. In the high pressure RF cavity, ionization energy loss and longitudinal momentum recovery can be achieved simultaneously. One possible problem expected in the high pressure RF cavity is, however, the dissipation of significant RF power through the electrons accumulated inside the cavity. The electrons are generated from the beam-induced ionization of the high pressure gas. To characterize this detrimental loading effect, we develop a simplified model that relates the electron density evolution and the observed pickup voltage signal in the cavity, with consideration of several key molecular processes such as the formation of the polyatomic molecules and ions, excitation, recombination and electron attachment. This model is expected to be compared with the actual beam test of the cavity in the MuCool Test Area (MTA) of Fermilab.

 
WEPE071 Integrated Low Beta Region Muon Collider Detector Design collider, electron, shielding, radiation 3506
 
  • M.A.C. Cummings
    Muons, Inc, Batavia
  • D. Hedin
    Northern Illinois University, DeKalb, Illinois
 
 

Muon Colliders produce high rates of unwanted particles near the beams in the detector regions. Previous designs have used massive shielding to reduce these backgrounds, at a cost of creating dead regions in the detectors. To optimize the physics from the experiments, new ways to instrument these regions are needed. Since the last study of a muon collider detector in the 1990s, new types of detectors, such as solid state photon sensors that are fine-grained, insensitive to magnetic fields, radiation-resistant, fast, and inexpensive have become available. These can be highly segmented to operate in the regions near the beams. We re-evaluate the detector design, based on new sensor technologies. Simulations that incorporate conditions in recent muon collider interaction region designs are used to revise muon collider detector parameters based on particle type and occupancy. Shielding schemes are studied for optimization. Novel schemes for the overall muon collider design, including "split-detectors", are considered.

 
THPEA079 Residual Gas Analysis and Electron Cloud Measurement of DLC and TiN Coated Chambers at KEKB LER electron, positron, proton, ion 3852
 
  • M. Nishiwaki, S. Kato
    KEK, Ibaraki
 
 

For future high-intensity positron or proton accelerators, beam instability caused by electron cloud is one of the most important problems. Some coatings on inner surface of beam chambers with materials having low secondary emission yields such as titanium nitride (TiN), non-evaporable getter and so on have represented good effects against the electron cloud instability. In this study, diamond like carbon (DLC) and TiN coated chambers, and a copper chamber without coating were installed to an arc section of KEKB LER to make comparisons of total pressure, residual gas components and electron cloud activity during the beam operation under the same condition. Residual gas observation for the DLC coating revealed much higher hydrogen gas desorption because a process gas including hydrogen was used for the film growth. No remarkable hydrocarbon gas desorption was found. On the other hand, a mass peak of amu=14, that is N+ was prominent in the TiN coating. The electron cloud activity in the DLC coating was lower than the TiN coating and the copper chamber.

 
THPEB011 Design and Test of 2-4MHz Sawtooth-wave Pre-buncher for 26MHz-RFQ bunching, simulation, ion, linac 3903
 
  • K. Niki, H. Ishiyama, I. Katayama, H. Miyatake, M. Okada, Y. Watanabe
    KEK, Ibaraki
  • S. Arai
    RIKEN Nishina Center, Wako
  • H. Makii
    JAEA, Ibaraki-ken
 
 

The measurement of 12C(alpha,gamma) reaction is planned at TRIAC(Tokai Radioactive Ion Accelerator Complex). An intense pulsed alpha beam with the width of less 10ns and the interval between 250ns and 500ns is required for this experiment. Because the Split Coaxial RFQ (SCRFQ), which is one of the TRIAC accelerators, has a radio frequency of 26MHz, the bunch interval becomes 38.5ns. In order to make the bunch interval of 250ns or more, the pre-buncher with a frequency of 2-4MHz, is considered to be installed upstream of the SCRFQ. It is designed as the pre-buncher has two gaps with non-Pi mode. In order to make the bunching beam profile like a pseudo sawtooth-wave, the RF voltage synthesized three harmonic frequencies is applied to these gaps. Consequently, the pre-buncher has a compact size and no leakage electric field outside gaps, and can keep the RF voltage low. Recently, the beam test of this pre-buncher with a case of 2MHz-RF and SCRFQ was performed by using 16O4+ and 12C3+ beams. The clear bunch structure with a interval of 500ns was obtained by the SSD set downstream of the SCRFQ. The results of the beam test are almost consistent with those of the beam simulation code.

 
THPEB012 Beam Test of Sawtooth-wave Pre-Buncher Coupled to a Multilayer Chopper bunching, target, beam-losses, ion 3906
 
  • M. Okada, H. Ishiyama, I. Katayama, H. Miyatake, K. Niki, Y. Watanabe
    KEK, Ibaraki
  • S. Arai
    RIKEN Nishina Center, Wako
  • H. Makii
    JAEA, Ibaraki-ken
 
 

In TRIAC (Tokai Radioactive Ion Accelerator Complex), intense bunched beams are planned for measurements of 12C(alpha, gamma) reactions. For 2-4MHz bunching to the 26MHz linac beams, sawtooth-wave pre-buncher has been developed. Since the wave applied to the pre-buncher is pseudo sawtooth shape synthesized from three sine waves, particles in out-of-bunch phase become backgrounds to the bunched beams. In order to remove them, a multilayer chopper has been newly installed upstream the pre-buncher. The multilayer chopper has 20 electrodes (40mm wide, 10mm long, and 0.1mm thick) piled up with gaps of 1.9mm in vertically to the beam direction. And a square-shape electric potential (100V maximum, 2-4 MHz) is applied to each electrodes alternately. The short gap makes it possible to realize sharp beam-chopping with relatively low electric potential and weak leakage electric field, although beam particles could be lost by 5% or more, since this chopper is set on the way of beams. As a result, the ratio of bunched particles to backgrounds has been improved from 3:1 to 99:1 by the chopper. High intensity beam test by 16O4+ beam will be also reported.

 
THPEC037 Design of a Pulsed Flux Concentrator for the ILC Positron Source simulation, positron, target, optical-matching 4137
 
  • J. Gronberg, A. Abbott, C.G. Brown, J.B. Javedani, W.T. Piggott
    LLNL, Livermore, California
  • J.A. Clarke
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

The positron source at a future TeV scale electron linear collider will need to generate positrons at a rate two orders of magnitude larger than have been previously achieved. We report on a design of a 3.5 Tesla pulsed flux concentrator magnet which uses liquid nitrogen cooling of the flux concentrator plates to reduce the electrical resistance leading to reduced energy deposition and the ability to generate the required 1 ms pulse duration. This magnet can double the collection efficiency of positrons emitted from the target.

 
THPEC081 Upgrade of Radiation Shield for BT Collimators radiation, neutron, shielding, beam-transport 4246
 
  • M.J. Shirakata, T. Oogoe
    KEK, Ibaraki
 
 

The beam transport line between 3 GeV Rapid Cycling Synchrotron and Main Ring has a beam collimator system in order to improve the quality of injected beam in the main ring. The beam power deposited into the collimators is required to be increased for high intensity beam operation. The tolerance of existing radiation shield becomes insufficient, even though there is no heat problem. The gate-type shield system has been preparing in order to satisfy both the radiation shielding and feasibility of maintenance. The development of movable gate-type shield system is reported here, which fully covers more than 20 meters long collimator section.

 
THPEC087 Measurement of Nuclear Reaction Rates in Crystals using the CERN-SPS North Area Test Beams proton, simulation, collider, collimation 4258
 
  • W. Scandale, R. Losito
    CERN, Geneva
  • A.M. Taratin
    JINR, Dubna, Moscow Region
 
 

A number of tests were performed by the UA9 Collaboration* in the North area of the SPS in view of investigating crystal-particles interactions for future application in hadron colliders. The rate of nuclear reactions was measured with 400 GeV proton beams directed into a silicon bent crystal. In this way the background induced by the crystal itself either in amorphous or in channeling orientation was revealed. The results provide fundamental information to put in perspective the use of silicon crystals to assist halo collimation in hadron colliders, whilst minimizing the induced loss. Crystals made of Germanium were also investigated in view of the expected increase of the collimation efficiency respect to silicon. Finally, crystals were tested in axial orientation and with incoming particles of negative charge. The collected results are presented in details.


* http://greybook.cern.ch/programmes/experiments/UA9.html

 
THPD014 Muon Backgrounds in CLIC simulation, collimation, scattering, linac 4307
 
  • H. Burkhardt
    CERN, Geneva
  • G.A. Blair, L.C. Deacon
    Royal Holloway, University of London, Surrey
 
 

We report on a study of muon backgrounds in CLIC. For this we combined halo and tail generation using HTGEN with detailed tracking by BDSIM of impacting halo particles and resulting secondaries from the collimation spoilers to the detector.

 
THPD048 First High-gradient Tests of the Single-cell SC Cavity with the Feedback Waveguide cavity, feedback, accelerating-gradient, linac 4390
 
  • P.V. Avrakhov, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • M. Ge, I.G. Gonin, T.N. Khabiboulline, J.P. Ozelis, A.M. Rowe, N. Solyak, G. Wu, V.P. Yakovlev
    Fermilab, Batavia
  • J. Rathke
    AES, Medford, NY
 
 

Use of a superconducting travelling wave accelerating (STWA) structure with a small phase advance per cell rather than a standing wave structure may provide a significant increase in the accelerating gradient in the ILC linac. For the same surface electric and magnetic fields the STWA achieves an accelerating gradient 1.2 larger than TESLA-like standing wave cavities. In addition, the STWA allows longer acceleration cavities, reducing the number of gaps between them. However, the STWA structure requires a SC feedback waveguide to return the few hundreds of MW of circulating RF power from the structure output to the structure input. A test single-cell cavity with feedback was designed and manufactured to demonstrate the possibility of a proper processing to achieve a high accelerating gradient. The first results of high-gradient tests of a prototype 1.3 GHz single-cell cavity with feedback waveguide will be presented.

 
FRYMH03 The Pierre Auger Observatory: Cosmic Accelerators and the Most Energetic Particles in the Universe proton, acceleration, photon, site 4779
 
  • J. Bluemer
    KIT, Karlsruhe
  • J. Bluemer
    KCETA, Eggenstein-Leopoldshafen
 
 

Cosmic ray particles can produce extended air showers that have a total energy of more than 100 EeV, which is a hundred million times more than the TeV particles that we produce in accelerators. How do the cosmic accelerators work? Where are they and what are they accelerating? How do the supposedly extragalactic particles propagate to Earth? Do they offer a new kind of astronomy? The Pierre Auger Observatory is an international project dedicated to find answers to these - and many more - questions. The presentation reviews the goals, achievements and plans for a better understanding of ultra-high energy cosmic rays.

 

slides icon

Slides