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Abstract

Lattice correction based on orbit responses to dipole cor-
rectors and orbit correction based on orbit responses to
field gradient variations in quads were successfully imple-
mented on VEPP-2000 [1] for the flat-beam lattice. The
round-beam lattice involves strong coupling of vertical and
horizontal motions that require a full-coupling analysis in
the orbit response technique. Programs used were modi-
fied to treat this task. Also, automation and speed enhance-
ments were done that enable a routine use of this technique
at VEPP-2000. New experimental results from VEPP-2000
are presented.

ORBIT CORRECTION

Introduction

The main task of the orbit correction in the VEPP-2000
is to shift the closed orbit as close to magnetic axes of el-
ements as possible. After achieved the best orbit, one can
store ideal positions of the beam at locations of the PBMs
and use them for future orbit corrections.

The beam position monitoring system on VEPP-2000
consists of 16 CCD cameras and 4 picups [2]. CCD cam-
eras are distorted from time to time, so to use them for
direct orbit correction calibration should be performed on
time. Orbit correction system of VEPP-2000 [3] consists
of 20 horizontal correctors and 16 vertical correctors.

Orbit offset measurement

The first orbit correction (OC) method that was inte-
grated in the control system [4] of VEPP-2000 was OC
relative to the magnetic centers of the quadrupoles.

If a particle has an offset in the quadrupole lens δ�l =
(δx, δy), then changing the gradient in this lens by δG will
shift the closed orbit (CO) the same way as a dipole correc-
tor with field δ �H = (δxδG, δyδG).

One can construct the response vectors δ �Xexp,i, by
changing gradients in the lenses one by one and measuring
the orbit shifts on BPMs. If the structure of the accelera-
tor, is known then respective theoretical response vectors
δ �Xmod,i for dipole correctors in tested lenses can be calcu-
lated. To find absolute shifts �Xerr,i of lenses relative to the
ideal closed orbit, one should minimize the functional:

F (λi) = ( �Xmod,inλi − �Xexp,in)
2 → min (1)
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Here �Xmod,in and �Xexp,in are measured and modeled
response vectors normalized by the measurement preci-
sion σin (i is lens’ number, n is BPM’s number):

�Xmod,in =
{

δxmod,i1

σi1
, . . . ,

δxmod,iN

σiN

}

�Xexp,in =
{

δxexp,i1

σi1
, . . . ,

δxexp,iN

σiN

} (2)

The functional (1) has a minimum if:

λmin,i =
( �Xmod,i · �Xexp,i)

�X 2
mod,i

(3)

Now the absolute coordinates of the beam in the lenses can
be obtained from the following formulas:

δxerr,i =
δHy,iλmin,i

δGi
, δyerr,i =

δHx,iλmin,i

δGi
(4)

To measure the accuracy of obtained displacements one
can use functional (1). If the minimal value of this func-
tional is Fmin,i = F (λmin,i) = ( �X 2

exp,i−( �Xmod,i · �Xexp,i)),
then let the accuracy δλi of λmin,i be defined by condition
F (λmin,i ± δλi) = 2Fmin,i. Then:

δλi =
�X 2
exp,i − ( �Xmod,i · �Xexp,i)

�X 2
mod,i

(5)

Errors in the determined orbit can be obtained by combin-
ing (4) and (5).

For some elements, such as long solenoids of the final
focus at VEPP-2000, it is necessary to know detailed infor-
mation about orbit displacement relative to the magnetic
axis of the element.

Consider element A that has small displacement de-
scribed by the vector �St

A = (xA, x
′
A, yA, y

′
A, 0, 0). Here

(xA, yA) is the displacement of the magnetic axis of A at
its start, and (x′

A, y
′
A) describes the tilt of the element. To

get coordinates of the particles with zero initial condition
after passing A, several steps should be done. First, before
entering A, one should transit from the laboratory reference
frame to the one where A is undistorted, then pass the el-
ement and, finally, switch back to the laboratory reference
frame:

δVA = MA(−SA) + LASA, (6)

whereLA is the transport matrix of a gap with length equiv-
alent to the length of A. The closed orbit distortion at the
exit point of A is δVCO,A = (I − T )−1δVA, where T is
the turn matrix with start at the end of the element A.
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Shift SA of element A will cause the orbit displacements
Xi in the ith BPM:

Xi = M(p)SA, (7)

where M(p) is response matrix of the CO for shift SA, that
depends on parameters p of the element A. The response
of the CO on variation Δp will be:

ΔXi = (M(p+Δp)−M(p))SA = ΔM(p)SA, (8)

If the responses of the CO on variation Δp is measured
and matrix M(p) is known from a theoretical model, then
the hypothetical shift of the element can be obtained by
inversion of rectangular matrix ΔM(p) with help of the
SVD method:

SA = (ΔM(p))
−1
SV D ΔXi, (9)

The CO shift δVCO from SA at the start of element A
can be calculated to get the relative orbit displacement in
A:

VCOrel.A = δVCO − SA. (10)

CO shifts in elements are generated by all imperfections
of the accelerator. The shift calculated with eq.(9) does not
describes real displacement of the element and is calculated
for supplementary purposes.

Figure 1 shows reconstructed orbit offsets inside the
solenoids of final focuses of the VEPP-2000 relative to
its magnetic axes. Solenoids xS1 and xS2 are two coils
of one solenoid and should be coaxial. Strong forces and
some manufacturing faults probably caused asynchronisms
of the measured shifts. Coherent shifts of the orbit in the
solenoids are result of the intended bump that minimizes
the background in the detectors.
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Figure 1: Example of the relative orbit measurement.

Orbit correction

To correct displacements of the closed orbit X i, one
should calculate the response matrix Mij that contains re-
sponses of the closed orbit for unit current variation in each

Table 1: Adjustment of the correctors

before after after
optimization optimization tuning

∑
corrs

I/Ncorrs 0.52 A 0.22 A 0.28 A

corrector from the selected group. Afterward, one should
find the currents Ij that will minimize ‖F‖:

Fi =
Xi

σi
− Mij

σi
Ij ; σ2

i = σ2
stat,i + σ2

syst,i. (11)

The software used at VEPP-2000 to optimize the cor-
rectors involves a method that uses SVD decomposition to
invert the rectangular matrix:

Ij =

(
Mij

σi

)−1

SVD

Xi

σi
. (12)

Uncertainties in the theoretical model cause the errors in
correction of the orbit, so several iterations are commonly
needed to get the corrected orbit.

Orbit correction results

Figure 2 shows the improvement of the closed orbit po-
sition relative to the magnet centers of quadrupoles.
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Figure 2: Example of orbit correction.

Optimization of the orbit correctors strengths

Sometimes a situation occurs when some correctors
work against others, so that their strengthes are not ide-
ally selected for current orbit configuration. Special soft-
ware was developed at VEPP-2000 to help easily adjust
correctors’ strengths. First the program collects informa-
tion about selected correctors and calculates orbit distortion
that they generate:

Xdist =
∑
corrs

Xi = McorrIcorr,i (13)
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Then, the software calculates optimal strengthes of the cor-
rectors that will generate distortion that has acceptable de-
viation from the initial one.

Ioptimal,i = (Mcorr)
−1
SVD Xdist

ΔXCO = Mcorr (Icorr,i − Ioptimal,i)
(14)

An operator can control the difference between the closed
orbit before and after the adjustment, by tuning the amount
of singular values used to calculate (Mcorr)

−1
SVD . After the

adjustment, additional orbit tuning should be done because
of the deviations between the model and the real structure
of the ring. Table 1 shows the result of the described pro-
cedure.

LATTICE CORRECTION

Introduction

One of the main problems during commissioning and
running the circular accelerator is determining and elimi-
nating the errors of the optical parameters in the real lattice.
To correct the lattice of VEPP-2000, a program was written
to implement algorithms discussed in [5, 6]. The main idea
of the correction method is to minimize χ2 by varying a set
of parameters:

χ2 =
∑
i,j

(Mmod,ij −Mmes,ij)
2

σ2
ij

=
∑
i,j

V 2
k(i,j) (15)

where Mexp,ij and Mmod,ij are experimental and theoret-
ical closed orbit responses on variation of j-th corrector at
i-th BPM; σij – precision of corresponding measurement.

The main feature of the written code is the usage of
6-d formalism for calculation of the theoretical responses
on dipole correctors. In this formalism vector X t =
(x, px/p0, y, py/p0, cΔt,Δp/p0) is used for particle dis-
placements and momenta.

Results

The software ”sixdsimulation” was upgraded to perform
the automated lattice correction procedure. Interaction
with operator is organized through the sequence of dialogs.
One iteration of the lattice correction takes about 60 min-
utes. Measurement of the orbit response matrix on dipole
correctors, tunes and dispersion takes about 50 minutes.
About 10 minutes is needed to get through the dialogs and
adjust parameters of the correction.

Table 2 and figure 3 illustrate successful correction of
the severe distortion of the lattice of VEPP-2000.

There is a strong degradation of the magnets at higher
energies at VEPP-2000 due to the saturation of the iron
poles of magnetic elements. This phenomenon results in
unacceptably large distortions of lattice functions formed
by theoretically calculated currents. Lattice correction pro-
cedures are performed at each level of energy that is used
to accumulate luminosity.
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Figure 3: Example of lattice correction.

Table 2: Averaged errors of currents in quadrupoles in four
consequent iterations.

Iteration 1 2 3 4

100×
∑

ΔIquad/Iquad
Nquads

6.17 3.24 0.85 0.24
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