A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

laser

Paper Title Other Keywords Page
MOYAMH01 The First Angstrom X-Ray Free-Electron Laser undulator, electron, linac, photon 11
 
  • J.N. Galayda
    SLAC, Menlo Park, California
 
 

The Linac Coherent Light Source free-electron laser was commissioned on 10 April 2009. The facility has begun operating for atomic/molecular/optical science experiments. Commissioning results have been presented*. Performance of the facility in its first user run (1 October - 21 December) and current machine development activities will be presented.


*P. Emma, et al., "Lasing and saturation of the LCLS and future development", Proceedings of the 2009 Free Electron Laser Conference, 23-28 August 2009, Liverpool, UK

 

slides icon

Slides

 
MOOCRA03 Femtosecond Synchronization of Laser Systems for the LCLS cavity, electron, controls, linac 58
 
  • J.M. Byrd, L.R. Doolittle, G. Huang, J.W. Staples, R.B. Wilcox
    LBNL, Berkeley, California
  • J. Arthur, J.C. Frisch, W.E. White
    SLAC, Menlo Park, California
 
 

The scientific potential of femtosecond x-ray pulses at linac-driven FELs such as the LCLS is tremendous. Time-resolved pump-probe experiments require a measure of the relative arrival time of each x-ray pulse with respect to the experimental pump laser. In order to achieve this, precise synchronization is required between the arrival time diagnostic and the laser which are often separated by hundreds of meters. We describe an optical timing system based on stabilized fiber links which has been developed for the LCLS to provide this synchronization. Preliminary results show stability of the timing distribution at the sub-10 fsec level and overall synchronization of the x-rays and pump laser of less than 40 fsec. We present details of the implementation and LCLS and potential for future development.

 

slides icon

Slides

 
MOPEA001 Production and Characterisation of Inverse Compton Scattering X-rays with a 17 MeV Electron Beam photon, electron, scattering, background 61
 
  • A.S. Chauchat, JP. Brasile
    THALES, Colombes
  • A. Binet, V. Le Flanchec, J-P. Nègre
    CEA, Arpajon
  • J.-M. Ortega
    CLIO/ELISE/LCP, Orsay
 
 

Inverse Compton scattering is a well-known process to produce X-rays. Thanks to recent progress in accelerators and laser field, such sources have been developed worldwide. The ELSA linear electron accelerator (CEA DAM DIF, Arpajon, France) just developed its own source. The 17 MeV electron beam interacts with a 532 nm laser to provide a pulsed 10 keV X-ray source. The X-ray beam profile is observed on radio-luminescent imaging plates. In order to increase the signal to noise ratio of this X-ray source, laser developments are in progress.

 
MOPEA010 Beam Measurement Experiment of X-band Linac for Compton Scattering X-ray Generation gun, cathode, electron, linac 82
 
  • T. Natsui
    UTNL, Ibaraki
  • K. Lee, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken
  • A. Mori
    University of Tokyo, Tokyo
  • F. Sakamoto
    Akita National College of Technology, Akita
 
 

We are developing an X-band linac system for monochromatic X-rays source. The monochromatic X-ray is obtained by Compton scattering. Our system has an X-band (11.424 GHz) 3.5-cell thermionic cathode RF gun, traversing wave accelerating tube and a Q-switch Nd:YAG laser with a wavelength of 532 nm. We adopt a laser pulse circulation system. The RF gun can generate multi-bunch electron beam. We aim to generate 1 μs maximum energy electron beam and collide it to circulated laser pulse. I will present a current status of beam measurement of this linac.

 
MOPEA013 Laser-driven Proton Accelerator for Medical Application proton, ion, target, beam-transport 88
 
  • M. Nishiuchi, P.R. Bolton, T. Hori, K. Kondo, A.S. Pirozhkov, A. Sagisaka, H. Sakaki, A. Yogo
    JAEA, Ibaraki-ken
  • Y. Iseki, T. Yoshiyuki
    Toshiba, Tokyo
  • S. Kanazawa, H. Kiriyama, M. Mori, K. Ogura, S. Orimo
    JAEA/Kansai, Kyoto
  • A. Noda, H. Souda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • T. Shirai
    NIRS, Chiba-shi
 
 

The interaction between the high intensity laser and the solid target produces a strong electrostatic proton acceleration field (1 TV/m) with extraordinary small size, contributing to downsizing of the particle accelerator. The proton beam exhibits significant features. having very small source size(~10 um), short pulse duration (~ps) and very low transverse emittance. However it is a diverging beam (half angle of ~10 deg) with wide energy spread of ~100 %. Because of these peculiar characteristics the proton beam attracts many fields for applications including medical applications. To preserve these peculiar characteristics, which are not possessed by those beams from the conventional accelerators, towards the irradiation points, we need to establish a peculiar beam transport line. As the first step, here we report the demonstration of the proto-type laser-driven proton medical accelerator beam line in which we combine the laser-driven proton source with the beam transport technique already established in the conventional accelerator for the purpose of comparison between the data and the particle transport simulation code, PARMILA*.


*Harunori Takeda, 2005, Parmila LANL (LA-UR-98-4478).

 
MOPEA014 DNA Double-Strand Break Induction in A549 Cells with a Single-Bunch Beam of Laser-Accelerated Protons proton, target, ion, vacuum 91
 
  • A. Yogo
    JAEA, Ibaraki-ken
 
 

We report the demonstrated irradiation effect of laser-accelerated protons on human cancer cells. In-vitro (living) A549 cells are irradiated with a proton beam having a single bunch duration of 20 ns and a beam flux of ~1014cm−2s−1*. The dynamics differ by seven orders of magnitude to the case of a typical Ion Beam Therapy (IBT) operation with a synchrotron: 0.4 s in bunch duration and ~107cm−2s−1 in beam flux. We have measured the yield of DNA double-strand break with phosphorylated histone H2AX immunostaining method and estimated Relative Biological Effectiveness (RBE) of the laser-accelerated protons.


* A. Yogo et al., Appl. Phys. Lett. 94, 181502 (2009).

 
MOPEA015 Calculation of Radiation Shielding for Laser-driven Hadron Beams Therapeutic Instrument ion, radiation, proton, electron 94
 
  • H. Sakaki, P.R. Bolton, T. Hori, K. Kondo, M. Nishiuchi, F. Saito, H. Takahashi, M. Ueno, A. Yogo
    JAEA, Kyoto
  • H. Iwase
    KEK, Ibaraki
  • K. Niita
    RIST, Ibaraki
 
 

The concept of a compact ion particle accelerator has become attractive in view of recent progress in laser-driven hadrons acceleration. The Photo Medical Research Centre (PMRC) of JAEA was established to address the challenge of laser-driven ion accelerator development for hadrons therapeutic. In the development of the instrument, it is necessary to do the bench-mark of the amount of the different types of radiation by the simulation code for shielding. The Monte Carlo Particle and Heavy Ion Transport code (PHITS) was used for bench-mark the dose on laser-shot radiations of short duration. The code predicts reasonably well the observed total dose as measured with a glass dosimeter in the laser-driven radiations.

 
MOPEA035 Pulse Radiolysis with Supercontinuum Probe Generated by PCF electron, radiation, gun, cathode 145
 
  • Y. Hosaka, R. Betto, A. Fujita, K. Sakaue, M. Washio
    RISE, Tokyo
  • S. Kashiwagi
    ISIR, Osaka
  • R. Kuroda
    AIST, Tsukuba, Ibaraki
  • K. Ushida
    RIKEN, Saitama
 
 

We have been studying a pump-probe pulse radiolysis as an application of the S-band photo cathode RF-Gun. Pump-probe spectroscopy is well-known method of pulse radiolysis measurement. We had used 5MeV electron beam obtained from the photo cathode RF-Gun as a pump beam, and used the white light emitted from Xe flash lamp or generated by self-phase modulation in the water cell as a probe light. However, the white probe light with high intensity, good stability and broad spectrum is a key issue for pump-probe pulse radiolysis. Supercontinuum light with photonic crystal fiber (PCF) is a new technique of white light generation. Short pulse laser through PCF spreads its spectrum by nonlinear optical effect. Supercontinuum light has very continuous spectrum, and it is studied for various applications recently. For applying supercontinuum light as a probe of pulse radiolysis experiment, we have generated a supercontinuum radiation with 7 picoseconds pulse width IR (1064nm) laser and PCF, and measured its properties. The experimental results of supercontinuum generation and design of a supercontinuum based pulse radiolysis system will be presented.

 
MOPEA036 Design of High Brightness Light Source based on Laser-Compton Undulator for EUV Lithography Mask Inspection cavity, electron, gun, brightness 148
 
  • K. Sakaue, A. Endo, M. Washio
    RISE, Tokyo
 
 

We will present a design of high brightness light source for EUV lithography mask inspection. The required system parameters are minimum brightness of 2500W/mm2/Sr at 13.5nm/2% bandwidth. Our design consists of super-conducting DC RF-gun as a radiator and 10.74nm CO2 laser stacked in an optical cavity as a laser undulator. Recent achievements of each component technologies, which is 1.3GHz SC-RF-gun, 10kW average power short pulse CO2 laser, and laser storage optical super-cavity, indicate the feasibility of producing required brightness based on laser Compton undulator. Design parameters of high brightness EUV source, the technological gap of the present component technologies and required further developments will be resented at the conference.

 
MOPEA038 Gamma-Ray Source for Nuclear Resonance Fluorescence Based on Compton Storage Ring electron, storage-ring, lattice, cavity 154
 
  • P. Gladkikh, E.V. Bulyak, V.A. Skomorokhov
    NSC/KIPT, Kharkov
  • T. Omori, J. Urakawa
    KEK, Ibaraki
 
 

Nuclear resonance fluorescence (NRF) is the one of the most promising methods of the nuclear waste management and of the modern technologies of the nonproliferation of nuclear weapons. There are a few proposals of the usage of NRF *,**. Yet linac and energy recovery linac are suggested as the electron source for the Compton scattering (CS) of the laser photons. The storage ring is capable to produce sufficiently higher beam intensity and is more effective since the electrons interact with the laser pulse many times. The storage ring with the electron energy from 240 to 530 MeV is proposed for the CS of 1.16 eV laser photons in the report. Maximal energy of the scattered gamma rays lies within range from 1 MeV to 5 MeV. It allows detecting of practically any isotope in analyzed objects. The specificity of the proposed storage ring is usage of the crab-crossing of the electron and laser beams. Due to crab-crossing we expect to obtain the gamma beam intensity approximately 5*1013 gammas/s for laser flash energy 5 mJ stored in the optical cavity. Both electron beam and gamma beam parameters are studied analytically and by simulation of the CS in the designed ring lattice.


* J. Pruet et al. Detecting clandestine material with nuclear resonance fluorescence. J. Appl. Phys., 99, 123102-1-11 (2006).
** R. Hajima et al. J. Nucl. Sci. Tech., vol. 45, pp. 441-451, 2008.

 
MOPEA052 Sub-micrometer Resolution Transverse Electron Beam Size Measurement System based on Optical Transition Radiation electron, target, quadrupole, radiation 193
 
  • A.S. Aryshev, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • S.T. Boogert, V. Karataev
    JAI, Egham, Surrey
  • D.F. Howell
    OXFORDphysics, Oxford, Oxon
 
 

Optical Transition Radiation (OTR) appearing when a charged particle crosses a boundary between two media with different dielectric properties has widely been used as a tool for transverse profile measurements of charged particle beams in various facilities worldwide. The resolution of the conventional monitors is defined by so-called Point Spread Function (PSF) dimension - the source distribution generated by a single electron and projected by an optical system onto a screen. In our experiment we managed to create a system which can practically measure the PSF distribution. We demonstrated that is it is non-uniform. In this paper we represent the development of a novel sub-micrometer electron beam profile monitor based on the measurements of the PSF structure. The visibility of the structure is sensitive to micrometer electron beam dimensions. In this report we shall represent the recent experimental results. The future plans on the optimization of the monitor will also be presented.

 
MOPEA058 Measurement of the Parametric X-rays with the Rocking Curve Method electron, plasma, photon, microtron 208
 
  • Y. Hayashi, S.V. Bulanov, T. Homma, M. Kando, K. Kawase, H. Kotaki
    JAEA, Kyoto
 
 

Parametric X-ray generation is one of the ways to obtain a monochromatic X-ray. The X-ray is generated through the interaction between high energy electrons and a crystal. The relationship between an X-ray wavelength and an angle of emission is followed by the Bragg condition. Therefore the monochromatic energy of the X-ray can be varied continuously by rotating the crystal. This tunability of X-ray wavelength is suitable for various applications. Usually a single photon counting method is utilized for measuring of the parametric X-rays. Although this method has an advantage to obtain clear energy spectrum, it takes long time. Here, we have measured 10 keV parametric X-rays with applying a rocking curve method. In this scheme, a large number of parametric X-rays are detected simultaneously. This enables us to find and tune the parametric X-ray quickly. As a result, we could find the sharp peak from this method with the Microtron accelerator (150MeV, 20 - 30 pC) at JAEA and a Si crystal. Since the peak angle is consistent to the Bragg condition for the 10 keV parametric X-ray generation, we think 10 keV photons have been generated through the parametric X-ray mechanism.

 
MOPEA059 Laser Acceleration of Negative Ions by Coulomb Implosion Mechanism ion, plasma, target, acceleration 211
 
  • T. Nakamura, S.V. Bulanov, H. Daido, T. Esirkepov, A. Faenov, Y. Fukuda, Y. Hayashi, T.K. Kameshima, M. Kando, T. Pikuz, A.S. Pirozhkov, M. Tampo, A. Yogo
    JAEA/Kansai, Kyoto
 
 

Intense laser pulse is utilized to generate compact sources of electrons, ions, x-rays, neutrons. Recently, high energy negative ions are also observed in experiments using cluster or gas target*. To explain the acceleration of negative ions from laser-generated plasmas, we proposed Coulomb implosion mechanism**. When clusters or underdense plasmas are irradiated by an intense laser pulse, positive ions are accelerated inside the clusters or in the self-focusing channel by the Coulomb explosion. This could lead to the acceleration of negative ions towards target center. The maximum energy of negative ions is typically several times lower than that of positive ions. A theoretical description and corresponding Particle-in-Cell simulations of Coulomb implosion mechanism are presented. We show the evidence of the negative ion acceleration observed in our experiments using high intensity laser pulse and the cluster-gas targets.


* S.Ter-Avetisyan et al., J. Phys. B 37 (2004) 3633.
** T.Nakamura et al., Phys. Plasmas 16 (2009) 113106.

 
MOPEA062 Development of Advanced Quantum Radiation Source based on S-band Compact Electron Linac electron, radiation, linac, photon 220
 
  • R. Kuroda, H. Ikeura-Sekiguchi, M. Koike, H. Ogawa, N. Sei, H. Toyokawa, K. Yamada, M.Y. Yasumoto
    AIST, Tsukuba, Ibaraki
 
 

Advanced quantum radiation sources such as a laser Compton scattering X-ray source and a coherent THz radiation source have been developed based on an S-band compact electron linac at AIST in Japan. The laser Compton scattering X-ray source using a TW Ti:Sa laser can generate a hard X-ray pulse which has variable energy of 12 keV - 40 keV with narrow bandwidth by changing electron energy and collision angle for medical and biological applications. The coherent THz radiation source based on the electron linac has been also developed instead of a conventional laser based THz source. The designed THz pulse has high peak power more than 1 kW in frequency range between 0.1 - 2 THz. The THz pulse will be generated with coherent radiation such as synchrotron radiation and transition radiation using an ultra-short electron bunch with bunch length of less than 0.5 ps (rms). The coherent synchrotron radiation in the THz region has been already generated and it will be applied to the THz time domain spectroscopy (TDS). In this work shop, we will report present status of our advanced quantum radiation sources.

 
MOPEA066 Recent Progress of MeV Ultrafast Electron Diffraction at Tsinghua University electron, gun, space-charge, collimation 229
 
  • R.K. Li, H. Chen, Q. Du, T. Du, Y.-C. Du, Hua, J.F. Hua, W.-H. Huang, X. H. Lu, J. Shi, C.-X. Tang, H. S. Xu, L.X. Yan
    TUB, Beijing
 
 

Recent years have witnessed rapid advances of MeV ultrafast electron diffraction (UED), in which high quality, ultrashort, MeV electron pulses from a photocathode RF gun are employed as probes for ultrafast structural dynamics. We've built a prototype MeV UED system at the Accelerator Laboratory of Tsinghua University, optimized the the electron pulse parameters as well as hardware performances, and achieved high quality single-shot diffraction patterns. Moreover, MeV UED can be operated in a so-called 'continuously time-resolved (CTR)' mode, in which an RF deflecting cavity streaks the electron pulse thus each diffraction pattern constitutes an 'atomic movie'. We report our experimental progress on MeV UED in this paper.

 
MOPEA081 A Semi-analytical Algorithm for Modelling Compton Gamma-ray beams electron, scattering, photon, collimation 265
 
  • C. Sun, Y.K. Wu
    FEL/Duke University, Durham, North Carolina
 
 

Compton scattering of a laser beam with a relativistic electron beam has been used to generate an intense, highly polarized, and nearly monoenergetic gamma-ray beam at several facilities. The ability of predicting the spatial and spectral distributions of a Compton gamma-ray beam is crucial for the optimization of the operation of a Compton light source as well as for the applications utilizing the Compton beam. Based upon the Lorentz invariant Compton scattering cross section, we have derived an analytical formula to study the Compton scattering process. Using this formula, we have developed an integration code to produce the smooth results for the spatial and spectral distributions of the Compton beam. This code has been characterized at the High Intensity Gamma-ray Source (HIGS) facility at Duke University for varying electron and laser beam parameters as well as different gamma-ray beam collimation conditions.

 
MOPEA084 Timestamping for Relativistic Electron Diffraction gun, electron, feedback, cathode 271
 
  • C.M. Scoby, M.S. Gutierrez, J.T. Moody, P. Musumeci, M.T. Westfall
    UCLA, Los Angeles, California
 
 

High brightness ultrashort electron beams have been produced at the UCLA Pegasus photoinjector lab for use in time-resolved electron diffraction applications. Beams have been generated with high enough brightness to obtain single shot diffraction patterns of thin solid targets. These beams contain a few pC at 3.5 MeV in a 200 fs pulse. Pump-probe experiments on thin metal foils have already shown promising results on picosecond time scales*. Current research focuses on materials with processes that are observable on the sub-100 fs scale. To overcome rf jitter and synchronization problems, electro-optic sampling is used as a single shot time-of-arrival diagnostic** to help reconstruct the melting "movie."


*P. Musumeci, et al., Rev. Sci. Instrum. 80, 013302 (2009)
**C. Scoby, et al., PR-ST Beams and Accel. 13 (2010)

 
MOPEC028 Recent Triplet Vibration Studies in RHIC quadrupole, damping, feedback, interaction-region 516
 
  • P. Thieberger, R. Bonati, G.F. Corbin, J.P. Cozzolino, A.K. Jain, G.T. McIntyre, M.G. Minty, C. Montag, J.F. Muratore, C. Schultheiss, S. Seberg, J.E. Tuozzolo
    BNL, Upton, Long Island, New York
 
 

We report on recent developments for mitigating vibrations of the quadrupole magnets near the interaction regions of the Relativistic Heavy Ion Collider (RHIC). High precision accelerometers, geophones, and a laser vibrometer were installed around one of the two interaction points to characterize the frequencies of the mechanical motion. In addition actuators were mounted directly on the quadrupole cryostats. Using as input the locally measured motion, dynamic damping of the mechanical vibrations has been demonstrated. In this report we present these measurements and measurements of the beam response. Future options for compensating the vibrations are discussed.

 
MOPD023 DITANET - Investigations into Accelerator Beam Diagnostics diagnostics, electron, ion, target 726
 
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire
  • C.P. Welsch
    The University of Liverpool, Liverpool
 
 

The Marie Curie Initial Training Network DITANET covers the development of advanced beam diagnostic methods for a wide range of existing or future accelerators, both for electrons and ions. The network brings together research centres like CERN or DESY, Universities, and private companies. DITANET currently has 27 partners from Europe and the USA and is committed to training young researchers in this field, performing cutting edge research in beam instrumentation, and exploiting synergies within this community. This contribution presents an overview of the research outcomes within the first two years of DITANET and summarizes the network's training activities.


on behalf of the DITANET Consortium.

 
MOPD056 The Mechanical Engineering Design of the FETS RFQ rfq, vacuum, ion, alignment 810
 
  • P. Savage, S.M.H. Alsari, S. Jolly
    Imperial College of Science and Technology, Department of Physics, London
  • S.R. Lawrie, A.P. Letchford, P. Wise
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
 
 

This paper will present the mechanical engineering design for a 324 MHz 4-vane RFQ, which has been developed for the Front End Test Stand (FETS) project based at the Rutherford Appleton Laboratory (RAL) in the UK. The design criteria will be discussed along with particular design features of the RFQ including the tuners, vacuum ports, main body cooling pocket design and the support / alignment structure. Different techniques for creating the RF and vacuum seal between major and minor vanes are also discussed.

 
MOPD071 Horizontal-Vertical Coupling for Three Dimensional Laser Cooling* solenoid, betatron, coupling, ion 855
 
  • T. Hiromasa, M. Nakao, A. Noda, H. Souda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • K. Jimbo
    Kyoto IAE, Kyoto
  • T. Shirai
    NIRS, Chiba-shi
 
 

In order to achieve three dimensional crystal beam, laser cooling forces are required not only in the longitudinal direction, but also in the transverse directions. With the resonance coupling method*, transverse temperature is transmitted into longitudinal direction, and we have already demonstrated horizontal laser cooling experimentally **. In the present paper, we describe an approach to extend this result to three dimensional cooling. The vertical cooling requires that the horizontal oscillation couples with the vertical oscillation. For achieving horizontal-vertical coupling, a solenoid in electron beam cooling apparatus is utilized with an experiment (Qx=2.07,Qy=1.07). For various solenoidal magnetic fields from 0 to 40Gauss, horizontal and vertical betatron tunes are measured by beam transfer function. For a certain region of the solenoidal magnetic field, these tunes are mixed up each other. By optimization of such a coupling, we aim to proceed to three dimensional laser cooling.


* H. Okamoto Phys. Rev. E 50, 4982 (1994)
** H. Souda et.al.,contribution to this conference

 
MOPD072 Optical Measurement of Transverse Laser Cooling with Synchro-Betatron Coupling* ion, coupling, betatron, synchrotron 858
 
  • M. Nakao, T. Hiromasa, A. Noda, H. Souda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • M. Grieser
    MPI-K, Heidelberg
  • K. Jimbo
    Kyoto IAE, Kyoto
  • H. Okamoto
    HU/AdSM, Higashi-Hiroshima
  • T. Shirai
    NIRS, Chiba-shi
  • A.V. Smirnov
    JINR, Dubna, Moscow Region
 
 

Experiments of transverse laser cooling for 24Mg+ beam have been performed at the small ion storage and cooler ring, S-LSR. It is predicted that the longitudinal cooling force is transmitted to the horizontal direction with synchro-betatron coupling at the resonant condition*. The laser system consists of a 532nm pumping laser, a ring dye laser with variable wavelength around 560nm, and a frequency doubler. The horizontal beam size and the longitudinal momentum spread were optically measured by a CCD and a PAT (Post Acceleration Tube) respectively**, ***. The CCD measures the beam size by observing spontaneous emission from the beam and records in sequence of 100ms time windows the development of the beam profile. The time variation of the beam size after beam injection indicates the transverse cooling time. The initial horizontal beam size, which was about 1mm, was decreased by 0.13mm in 1.5s. The longitudinal momentum spread measured by PAT is increased at the resonant condition. This suggests transverse temperature was transferred to longitudinal direction by synchro-betatron coupling. Both measurements denote the horizontal cooling occurred only in the resonant condition ****.


* H. Okamoto, Phys. Rev. {E50}, 4982 (1994)
** M. Tanabe et. al, Appl. Phys. Express 1 (2008) 028001
*** T. Ishikawa Master Thesis, Kyoto Univ.(2008)
**** H. Souda et. al., contribution to IPAC10.

 
MOPD073 Transverse Laser Cooling by Synchro-betatron Coupling coupling, betatron, synchrotron, resonance 861
 
  • H. Souda, T. Hiromasa, M. Nakao, A. Noda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • M. Grieser
    MPI-K, Heidelberg
  • K. Jimbo
    Kyoto IAE, Kyoto
  • H. Okamoto
    HU/AdSM, Higashi-Hiroshima
  • T. Shirai
    NIRS, Chiba-shi
  • A.V. Smirnov
    JINR, Dubna, Moscow Region
 
 

Transverse laser cooling with the use of a synchro-betatron coupling is experimentally demonstrated at the ion storage/cooler ring S-LSR. Bunched 40keV 24Mg+ beams are cooled by a co-propagating laser with a wavelength of 280nm. Synchrotron oscillation and horizontal betatron oscillation are coupled by an RF drifttube at a finite dispersive section (D = 1.1m) in order to transmit longitudinal cooling force to the horizontal degree of freedom*. Time evolution of horizontal beam size during laser cooling was measured by a CCD camera**. Horizontal beam sizes were reduced by 0.13mm within 1.5s after injection when the tune values satisfy a difference resonance condition, νs - νh = integer, at the operating tunes of (νh, νv, νs)=(2.067, 1.104, 0.067) and (2.058, 1.101, 0.058). Without resonance condition, the size reduction was negligibly small. The momentum spread was 1.7x10-4 on the resonance otherwise 1.2x10-4. These results show that the horizontal heats are transferred to the longitudinal direction through the synchro-betatron coupling with the resonance condition and are cooled down by a usual longitudinal bunched beam laser cooling.


* H. Okamoto, Phys. Rev. E 50, 4982 (1994).
** M. Nakao et. al., contribution to this conference.

 
MOPD091 Femtosecond Temporal Overlap of Injected Electron Beam and EUV Pulse at sFLASH electron, undulator, radiation, polarization 915
 
  • R. Tarkeshian, A. Azima, J. Bödewadt, H. Delsim-Hashemi, V. Miltchev, J. Roßbach, J. Rönsch-Schulenburg
    Uni HH, Hamburg
  • R. Ischebeck
    PSI, Villigen
  • B. Mukherjee
    Westdeutsches Protonentherapiezentrum, Essen
  • E. Saldin, H. Schlarb, S. Schreiber
    DESY, Hamburg
 
 

sFLASH is a seeded FEL experiment at DESY, which uses a 38nm high harmonic gain (HHG)-based XUV-beam laser in tandem with FLASH electron bunches at the entrance of a 10m variable-gap undulator. The temporal overlap between the electron and HHG beams is critical to the seeding process. Use of a 3rd harmonic accelerating module provides a high current electron beam (at the kA level) with ~ 600fs FWHM bunch duration. The length of the HHG laser pulse will be ~30fs FWHM. The desired overlap is achieved in steps. First is the synchronization of the HHG drive laser (Ti: Sapphire, 800nm) and the incoherent spontaneous radiation from an upstream undulator. Next, the IFEL-modulated electron bunch will pass through a dispersive section, producing a density modulation in the beam. This in turn yields emission of coherent radiation from a downstream undulator or transition radiation screen when the longitudinal overlap of the two beams is achieved. The coherently enhanced light emitted will be then spectrally analyzed. The experimental layout, simulation results of generation and transport of both light pulses, and preliminary measurements are presented.

 
MOPE006 Feasibility Study of Radial EO-Sampling Monitor to Measure 3D Bunch Charge Distributions electron, polarization, FEL, alignment 963
 
  • H. Tomizawa, H. Dewa, H. Hanaki, S. Matsubara, A. Mizuno, T. Taniuchi, K. Yanagida
    JASRI/SPring-8, Hyogo-ken
  • T. Ishikawa, N. Kumagai
    RIKEN/SPring-8, Hyogo
  • K. Lee, A. Maekawa, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken
 
 

We are developing a single-shot and non-destructive 3D bunch charge distribution (BCD) monitor based on Electro-Optical (EO) sampling with a manner of spectral decoding for XFEL/SPring-8. For fine beam tuning, 3D-BCD is often required to measure in real-time. The main function of this bunch monitor can be divided into longitudinal and transverse detection. For the transverse detection, eight EO-crystals surround the beam axis azimuthally, and a linear-chirped probe laser pulse with a hollow shape passes thorough the crystal. The polarization axis of the probe laser should be radially distributed as well as the Coulomb field of the electron bunches. Since the signal intensity encoded at each crystal depends on the strength of the Coulomb field at each point, we can detect the transverse BCD. In the longitudinal detection, we utilize a broadband square spectrum (> 400 nm at 800 nm of a central wavelength) so that the temporal resolution is < 30 fs if the pulse width of probe laser is 500 fs. In order to achieve 30-fs temporal resolution, we use an organic EO material, DAST crystal, which is transparent up to 30 THz. We report the first experimental results of this 3D-BCD monitor.

 
MOPE022 Development of Shintake Beam Size Monitor for ATF2 target, background, optics, alignment 1011
 
  • Y. Kamiya
    ICEPP, Tokyo
  • S. Araki, T. Okugi, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • S. Komamiya, M. Oroku, T.S. Suehara, Y. Yamaguchi, T. Yamanaka
    University of Tokyo, Tokyo
 
 

In this paper, we describe a system design and current status of Shintake beam size monitor. Shintake monitor is a laser-based beam diagnostics tool, which provides a non-invasive measurement of transverse beam sizes. The interaction target probing the electron beam is interference fringes build up by the two coherent lasers that have narrow bandwidth and long coherent length. A scale of the target structure corresponds to approximately one fourth of the laser wave length, and the smallest measurable size reaches down to several tens of nanometers. The monitor we described here is installed at the virtual interaction point of the ATF2 beam line, which is built to confirm the proposed final focus system for Future Linear Colliders. We adopt second harmonics of Nd:YAG laser of 532 nm wavelength, and phase stabilization feedback system to allow to measure the designed beam size of about 37 nm. To widen a measurable range up to about 5 microns (wire scanner's range), we also prepare three crossing modes that change an effective wavelength for the fringes. The monitor is used to measure a focus size during the tuning process. The system is based on the Shintake monitor for FFTB.

 
MOPE023 Evaluation of Expected Performance of Shintake Beam Size Monitor for ATF2 electron, polarization, background, alignment 1014
 
  • Y. Yamaguchi, S. Komamiya, M. Oroku, T.S. Suehara, T. Yamanaka
    University of Tokyo, Tokyo
  • S. Araki, T. Okugi, T. Tauchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • Y. Kamiya
    ICEPP, Tokyo
 
 

ATF2 is the final focus test facility for ILC to realize and demonstrate nanometer focusing. One of the goals of the ATF2 is a demonstration of a compact final focus system based on the local chromaticity correction. A designed beam size at the focal point is to be 37 nm in vertical. To achieve the goal, a beam size monitor capable of nanometer beam size measurement is inevitably needed. Shintake monitor satisfies the demands, and is installed at the virtual interaction point of the ATF2. Shintake monitor is a beam size monitor which uses laser interference fringe pattern to measure beam size. The beam test for the Shintake monitor was successful in measurement of signal modulation with the laser interference fringe pattern in November 2009. In April 2010, beam size of less than 1 micron was achieved. We have studied the error sources, and evaluated the total error to be less than 10% for 1 minute measurement. This paper is about the evaluation of the Shintake monitor performance by analyzing beam tests data. Most systematic error sources are well understood, so that we can estimate accuracy of beam size measurement when the beam size reaches 37nm.

 
MOPE069 A 2-D Laser-wire Scanner at PETRA-III positron, electron, controls, photon 1137
 
  • T. Aumeyr, G.A. Blair, S.T. Boogert, G.E. Boorman, A. Bosco
    JAI, Egham, Surrey
  • K. Balewski, E. Elsen, V. Gharibyan, G. Kube, S. Schreiber, K. Wittenburg
    DESY, Hamburg
 
 

The PETRA-III Laser-wire, a Compton scattering beam size measurement system at DESY, uses an automated mirror to scan a Q-switched laser across the electron beam and is developed from the system previously operated at PETRA-II. This paper reports on recent upgrades of the optics, vacuum vessel and data acquisition. First beam profile measurements are also presented.

 
MOPE072 Electron Beam Quality Measurements on the ALPHA-X Laser-plasma Wakefield Accelerator electron, emittance, plasma, quadrupole 1146
 
  • G.H. Welsh, M.P. Anania, C. Aniculaesei, E. Brunetti, R.T.L. Burgess, S. Cipiccia, D. Clark, B. Ersfeld, M.R. Islam, R.C. Issac, D.A. Jaroszynski, G.G. Manahan, T. McCanny, G. Raj, A. J. W. Reitsma, R.P. Shanks, G. Vieux, S.M. Wiggins
    USTRAT/SUPA, Glasgow
  • W.A. Gillespie
    University of Dundee, Nethergate, Dundee, Scotland
  • M.J. Loos, S.B. van der Geer
    TUE, Eindhoven
  • A. MacLeod
    UAD, Dundee
 
 

The Advanced Laser-Plasma High-Energy Accelerators towards X-rays (ALPHA-X) programme at the University of Strathclyde is developing laser-plasma wakefield accelerators to produce high energy, ultra-short duration electron bunches as drivers of radiation sources. Coherent emission will be produced in a free-electron laser by focussing the electron bunches into an undulator. To achieve net gain, a high peak current, low energy spread and low emittance are required. A high intensity ultra-short pulse from a 30 TW Ti:sapphire laser is focussed into a helium gas jet to produce femtosecond duration electron bunches in the range of 80 - 200 MeV. Beam transport is monitored using a series of Lanex screens positioned along the beam line. We present measurements of the electron beam energy spread as low as 0.7% (at 90 MeV) obtained using a high resolution magnetic dipole spectrometer. We also present pepper-pot measurements of the normalised transverse emittance of the order of 1 pi mm mrad. With further acceleration to 1 GeV, the beam parameters indicate the feasibility of a compact X-ray FEL with a suitable undulator.

 
MOPE078 Transverse Emittance Measurement at High Energy using Long Pepper-pot electron, emittance, simulation, plasma 1161
 
  • N. Delerue
    JAI, Oxford
 
 

Although the pepper-pot method has been used for decades at low energy to measure the transverse emittance of particles sources, it has only been extended to high energy very recently. We report on some of the recent measurements done at high energy (several hundred MeVs) and discuss the practical consideration of such measurements. We show demonstrate that an extended pepper-pot does not significantly affect the phase space of the beam and thus provides a valid transverse emittance measurement.

 
MOPE079 The MICE PID Detector System positron, emittance, solenoid, electron 1164
 
  • M.A. Rayner
    OXFORDphysics, Oxford, Oxon
  • M. Bonesini
    INFN MIB, MILANO
 
 

The international Muon Ionization Cooling Experiment (MICE) will carry out a systematic investigations of ionization cooling of a muon beam. As the emittance measurement will be done on a particle-by-particle basis, a sophisticated beam instrumentation is needed to measure particle coordinates and timing vs RF. A PID system based on three time-of-flight detectors, two Aerogel Cerenkov counters and a KLOE-like calorimeter has been constructed in order to keep beam contamination (e, π) well below 1 %. The MICE TOF system will measure timing with a resolution better than 60 ps per plane, in a harsh environment due to high particle rates, fringe magnetic fields and RF backgrounds. Performances in beam of all detectors will be shown, as also future upgrades.

 
MOPE092 Ultrashort Bunch Length Diagnostic with Sub-femtosecond Resolution undulator, diagnostics, cavity, electron 1200
 
  • G. Andonian
    RadiaBeam, Marina del Rey
  • G. Andonian, E. Hemsing, P. Musumeci, J.B. Rosenzweig, S. Tochitsky
    UCLA, Los Angeles, California
 
 

For successful operation and beam characterization, fourth generation light sources require the observation of sub-picosecond bunches with femtosecond resolution. In this paper, we report on the design and development of a novel technique to achieve sub-femtosecond temporal resolution of high brightness bunches. The technique involves the coupling of the electron beam to a high power laser in an undulator field, which is optimized to maximize the angular deviation of the bunch. The beam angular components are imaged on a distant screen yielding a sweep across angles in one dimension. The addition of an x-band deflecting cavity downstream of the undulator creates another sweep of the beam, in the perpendicular dimension. The temporal resolution of the bunch is dependent on the seed laser wavelength and the spatial resolution of the screen. Initial calculations show that for a CO2 laser (T~30fs) and a phosphor screen (~50micron spatial resolution), the longitudinal resolution is approximately l/200 of the laser wavelength, or ~150 attoseconds.

 
MOPE093 A High Resolution Transverse Diagnostic based on Fiber Optics radiation, diagnostics, electron, photon 1203
 
  • R.B. Agustsson, G. Andonian, A.Y. Murokh, R. Tikhoplav
    RadiaBeam, Marina del Rey
  • D.L. Griscom
    NRL, Washington D.C.
 
 

A beam profile monitor utilizing the technological advances in fiber optic manufacturing to obtain micron level resolution is under development at RadiaBeam Technologies. This fiber-optic profiling device would provide a lost cost, turn-key solution with nominal operational supervision and requires minimal beamline real estate. We are currently studying and attempting to mitigate the technical challenges faced by a fiber optic based diagnostic system with a focus on radiation damage to the fibers and its effect on signal integrity. Preliminary irradiation studies and conceptual operation of the system are presented.

 
MOPE095 A 10 MHz Pulsed Laser Wire Scanner for Energy Recovery Linacs electron, diagnostics, photon, linac 1209
 
  • A.Y. Murokh, M. Ruelas, R. Tikhoplav
    RadiaBeam, Marina del Rey
  • D.M. Gassner, E. Pozdeyev
    BNL, Upton, Long Island, New York
 
 

For high average current electron accelerators, such as Energy Recovery Linacs (ERL), the characterization of basic electron beam properties requires non-interceptive diagnostics. One promising non-destructive approach for a high average current beam diagnostic is the laser wire scanner (LWS). RadiaBeam Technologies is developing an inexpensive, stand-alone laser wire scanner system specifically adapted to ERL parameters. The proposed system utilizes distinctive features of ERL beams, such as a relatively long bunch length and ultra-high repetition rate, to maximize photon count while using off the shelf laser technology. The RadiaBeam LWS prototype presently under development will be installed and commissioned at the Brookhaven National Laboratory (BNL) ERL facility. This system's design and projected performance are discussed herein.

 
MOPE096 Progress Report on the Development of the Real Time Interferometer for Bunch Length Determination radiation, optics, diagnostics, synchrotron 1212
 
  • G. Andonian, A.Y. Murokh, A.G. Ovodenko, M. Ruelas, R. Tikhoplav
    RadiaBeam, Marina del Rey
  • D. Dooley
    Spectrum Detector, Lake Oswego, Oregon
  • U. Happek
    UGA, Athens, Georgia
  • S. Reiche
    PSI, Villigen
 
 

This paper reports on the progress of the development of a bunch length diagnostic for high brightness beams. The diagnostic, termed the real time interferometer, is a single shot, autocorrelator that outputs the interferogram of coherent radiation emitted from compressed, high-brightness beams. The device uses all-reflective terahertz optics as well as a highly sensitive pyroelectric-based detector array. For initial testing, coherent transition radiation is used, however, the diagnostic can be used in a non-destructive manner if coherent edge or synchrotron radiation is employed. Current research includes diagnostic design and preliminary tests conducted at the BNL Accelerator Test Facility.

 
MOPE100 The Straightness Monitor System at ATF2 linear-collider, collider, target, feedback 1218
 
  • M.D. Hildreth
    University of Notre Dame, Notre Dame
  • A.S. Aryshev
    Royal Holloway, University of London, Surrey
  • S.T. Boogert
    JAI, Egham, Surrey
  • Y. Honda, T. Tauchi, N. Terunuma
    KEK, Ibaraki
  • G.R. White
    SLAC, Menlo Park, California
 
 

The demonstration of the stability of the position of the focused beam is a primary goal of the ATF2 project. We have installed a laser interferometer system that will eventually correct the measurement of high-precision Beam Position Monitors used in the ATF2 Final Focus Steering Feedback for mechanical motion or vibrations. Here, we describe the installed system and present preliminary data on the short- and long-term mechanical stability of the BPM system.

 
MOPE101 Parasitic Profile Measurement of 1 MW Neutron Production Beam at SNS Superconducting Linac neutron, ion, electron, cryomodule 1221
 
  • Y. Liu, A.V. Aleksandrov, C.D. Long
    ORNL, Oak Ridge, Tennessee
  • C.C. Peters
    ORNL RAD, Oak Ridge, Tennessee
 
 

A laser wire system* has been developed in the Spallation Neutron Source (SNS) superconducting linac (SCL). The SNS laser wire system is the world largest of its kind with a capability of measuring profiles of an operational hydrogen ion (H-) beam at each of the 23 cryomodule stations along the SCL by using a single light source. Presently 9 laser wire stations have been commissioned that measure profiles of the H- beam at energy levels from 200 MeV to 1 GeV. The laser wire diagnostics has no moving parts inside the beam pipe and can be run parasitically on a neutron production H- beam. This talk reports our recent study of the laser wire profile measurement performance. Parasitic profile measurements have been conducted at multiple locations of SCL on an operational one-megawatt neutron production beam that SNS recently achieved as a new world record. We will describe experimental investigations of the laser wire system performance including the stability and repeatability of the measurement and the influence of the laser parameters. We will also discuss novel beam diagnostics capabilities at the SNS SCL by using the laser wire system.


* Liu et al., "Laser wire beam profile monitor in the SNS superconducting linac," Nucl. Instr. and Meth. A, to appear.

 
TUOARA01 FLASH Upgrade electron, FEL, linac, gun 1290
 
  • K. Honkavaara, B. Faatz, J. Feldhaus, S. Schreiber, R. Treusch
    DESY, Hamburg
  • J. Roßbach
    Uni HH, Hamburg
 
 

The free-electron laser user facility FLASH at DESY, Germany has been upgraded. The upgrade started in autumn 2009 after almost 2 years of a very successful second user period. The beam energy is increased to 1.2 GeV by installing a 7th superconducting accelerating module. The new module is a prototype for the European XFEL. Among many other upgrades, 3rd harmonic superconducting RF cavities are installed in the injector. The main purpose is to flatten and - to a certain extend - to shape the longitudinal electron beam phase space improving the dynamics behavior of the beam. The seeding experiment sFLASH is being commissioned, an important step forward to establish seeded FEL radiation for user experiments. After the ongoing commissioning, the 3rd user period will start this summer. In many aspects FLASH will be an FEL with a new quality of performance: a wavelength approaching the carbon edge and the water window, tunable pulse width, and with thousands of pulses per second. This report summarizes the recently finished upgrade of FLASH and reports on the results of the ongoing commissioning and the expected performance as a free electron laser user facility.

 

slides icon

Slides

 
TUOARA02 The FERMI@Elettra Commissioning linac, gun, optics, emittance 1293
 
  • G. Penco, E. Allaria, L. Badano, S. Bassanese, M. Bossi, D. Castronovo, G. Ciani, S. Cleva, P. Craievich, M.B. Danailov, R. De Monte, G. De Ninno, A.A. Demidovich, S. Di Mitri, M. Ferianis, O. Ferrando, S. Ferry, L. Froehlich, G. Gaio, R. Ivanov, M. Lonza, A.A. Lutman, S.V. Milton, M. Petronio, M. Predonzani, F. Rossi, L. Rumiz, C. Scafuri, G. Scalamera, P. Sigalotti, S. Spampinati, C. Spezzani, M. Trovò, M. Veronese
    ELETTRA, Basovizza
  • L. Pavlovič
    Uni LJ, Ljubljana
 
 

The FERMI@Elettra injector, comprised of a high-gradient, s-band, photo-cathode rf gun, the PC gun driven laser, the first two accelerating sections, controls, and suite of diagnostics has been commissioned in 2009. The electron beam has been characterized in terms of charge, energy, energy spread and transverse emittance, and results are provided in this paper. In early 2010 linac commissioning up to 250MeV continued, and by using the RF deflecting cavity, the slice parameters of the beam have been measured. Moreover, studies on the laser pulse shaping and the relative optimization of the longitudinal ramp profile required by the nominal bunch configuration are presented in this paper.

 

slides icon

Slides

 
TUOARA03 Characterization of the THz Source at SPARC radiation, electron, linac, vacuum 1296
 
  • E. Chiadroni, F. A. Anelli, M. Bellaveglia, M. Boscolo, M. Castellano, L. Cultrera, G. Di Pirro, M. Ferrario, L. Ficcadenti, D. Filippetto, S. Fioravanti, G. Gatti, E. Pace, R.S. Sorchetti, C. Vaccarezza
    INFN/LNF, Frascati (Roma)
  • A. Bacci, A.R. Rossi
    Istituto Nazionale di Fisica Nucleare, Milano
  • P. Calvani, S. Lupi, D. Nicoletti
    Università di Roma I La Sapienza, Roma
  • L. Catani, B. Marchetti
    INFN-Roma II, Roma
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma
  • O. Limaj
    University of Rome La Sapienza, Rome
  • A. Mostacci
    Rome University La Sapienza, Roma
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
 
 

The region of the spectrum from 0.3 to 5 THz is of great interest for several experiments in different areas of research. A THz radiation source can be produced at SPARC as coherent transition radiation emitted by either a compressed or longitudinally modulated beam intercepting a metal foil placed at 45° with respect to the beam propagation. Results on the characterization of the THz source at SPARC are described in the paper.

 

slides icon

Slides

 
TUPEA015 Focusing of Ultrashort Electron Bunch for Femtosecond Inverse Compton Scattering X-Ray Source electron, linac, photon, focusing 1357
 
  • N.Y. Huang, S.S. Yang
    NTHU, Hsinchu
  • H. Hama
    Tohoku University, School of Scinece, Sendai
  • W.K. Lau
    NSRRC, Hsinchu
 
 

Design of an intense but tightly focused ultrashort electron beam for production of sub-hundred femtosecond x-ray pulses that based on head-on inverse Compton scattering (ICS) has been studied. The three dimensional (3D) space charge dynamics has been tracked and optimized throughout the whole beamline. It is found that the focusing ultrashort electron pulses as short as 67 fs can be produced by compressing the energy-chirped beam from a thermionic cathode rf gun with an alpha magnet and linac operating at injection phase near zero crossing. This multi-bunch electron beam has an intensity of 30 pC per bunch and is accelerated to 27 MeV with an S-band linac structure. The compressed electron beam is focused to 64 μm for scattering with an 800 nm, 3.75 mJ laser in the laser-beam interaction chamber. With this method, total peak flux of back-scattered x-ray photons exceeds 1018 photons/sec is achievable with the shortest wavelength of 0.7 Å.

 
TUPEA030 Transmission of Reference RF Signals Through Optical Fiber at XFEL/SPring-8 klystron, factory, LLRF, resonance 1390
 
  • T. Ohshima, N. Hosoda, H. Maesaka, S. Matsubara, Y. Otake
    RIKEN/SPring-8, Hyogo
 
 

The pulse width of an X-ray laser at XFEL/SPring-8 is several tens femto-seconds, which requires reference rf signals to have the same time-stability. The reference signals with a low phase-noise oscillator are sent to instruments in 19" racks developed along an accelerator by an optical fiber system. The temperature drift of the fiber makes phase shifts of the reference signals. Therefore, the fiber is put in a thermal-insulated duct. By feeding temperature-controlled water (26.1 ± 0.1 deg. C) in a pipe attached to the duct, the fiber temperature was kept to be 26.2 ± 0.08 deg. C at the ambient temperature change of 29.1 ± 1.7 deg. C. From this temperature controllability, the phase shifts of the signals through a 400 m fiber of a thermal coefficient of 5 ps/km/K are 160 fs. Further reduction of the shifts is required and will be achieved by a fiber-length feedback control in a future plan. Vibration of the fiber also degrades the quality of the signals. The fiber is embedded on a vibration buffer material. A test to evaluate the effect of the vibration to the transmitted signal phase was carried out. The test result will be also shown in this paper.

 
TUPEA031 Synchronization and Control System for Tsinghua Thomson Scattering X-ray Source electron, controls, scattering, cavity 1393
 
  • D. Qiang, Y.-C. Du, W.-H. Huang, C.-X. Tang, L.X. Yan
    TUB, Beijing
 
 

The Tsinghua Thomson scattering X-ray source (TTX) has a strict laser-electron synchronization requirement and a comprehensive system structure including dual high-power laser system, RF system and beam diagnostic instruments, etc. Recently, a synchronization and control system is developed to meet these requirements, which includes a laser-RF synchronizer with 100fs time jitter, a FPGA based event generator for laser and RF systems with 250ps time resolution, and an EPICS based control system for system integration and remote monitor and control. The electron bunch arrival time jitter is carefully measured and analyzed with the help of a RF deflecting cavity. This paper reports the development status, technical implementation, and measurement results of the synchronization and control system.

 
TUPEA033 Stable Transmission of RF Signals on Optical Fiber Links controls, FEL, radio-frequency, optics 1399
 
  • J.M. Byrd, L.R. Doolittle, G. Huang, J.W. Staples, R.B. Wilcox
    LBNL, Berkeley, California
 
 

Stabilized optical fiber links have been under development for several years for high precision transmission of timing signals for remote synchronization of accelerator and laser systems. In our approach, a master clock signal is modulated on an optical carrier over a fiber link. The optical carrier is also used as the reference in a heterodyne interferometer which is used to precisely measure variations, mainly thermal, in the fiber length. The measured variations are used to correct the phase of the transmitted clock signal. We present experimental results showing sub-10 fsec relative stability of a 200 m link a sub-20 fsec stability of a 2.2 km link.

 
TUPEA034 Laser Recycler Using An Asymmetrical Con-focal Cavity cavity, ion, optics, beam-losses 1402
 
  • I. Yamane
    KEK, Ibaraki
  • M. Nakamura, H. Okuno
    RIKEN Nishina Center, Wako
 
 

An asymmetrical con-focal cavity is composed of tow concave mirrors with different focal length, placed face to face, and their axes and focal points coincide. When a laser beam is injected in parallel with the mirror axis, from backward of and just outside of the mirror with the smaller focal length, the laser beam is trapped in the cavity and repeats reflection by mirrors. Then, the beam reflected by the mirror with the larger focal length passes every time the focal point and the period by which pulses return to the focal point is constant. Therefore, if the repetition period of the injected laser pulse is equal to the repetition period in the cavity, all laser pulses comes to the focal point at the same time and the beam intensity is stacked up. Calculation on the performance of an asymmetrical con-focal cavity shows that a laser pulse can be recycled more than a few tens turns and the beam intensity can be stacked to more than a few tens times of the original beam intensity when the laser beam is a Gaussian beam and the reflectance of the mirrors is 100%. Results of calculation is examined using a He-Ne laser and a pair of high reflection mirrors.

 
TUPEA035 Drive Laser and Optical Transport Line for Photoinjector cathode, gun, FEL, cavity 1405
 
  • Z.G. He, Q.K. Jia, X.E. Wang
    USTC/NSRL, Hefei, Anhui
 
 

A Photo-Cathode RF Gun is under development at NSRL. In this paper, the drive laser system is introduced and performance parameters are presented. We adopt a BNL type gun with laser illuminating the cathode at oblique incidence. To orrect 'time slew' and 'elliptical spot' problems arisen on the cathode, an adjustable optical transport line is designed.

 
TUPEA036 Laser Systems for Inverse Compton Scattering Gamma-ray Source for Photofission recirculation, scattering, electron, injection 1408
 
  • I. Jovanovic, Y. Yin
    Purdue University, West Lafayette, Indiana
  • S. Boucher, R. Tikhoplav
    RadiaBeam, Marina del Rey
  • G. Travish
    UCLA, Los Angeles, California
 
 

One approach for detecting special nuclear material (SNM) at a distance is to use highly penetrating gamma-rays (>6 MeV) to produce photofission. We are investigating inverse gamma-ray sources (IGS), based on inverse Compton scattering (ICS) of a laser pulse on a relativistic electron bunch. Nearly monochromatic gamma rays with high brightness, very small source size and divergence can be produced in IGS. For the interaction drive laser recirculation it is necessary to meet the repetition rate requirements. Three implementations of laser recirculation are proposed for the interaction drive laser, which can significantly reduce the requirements on the interaction drive laser average power. It is found that the recently demonstrated recirculation injection by nonlinear gating (RING) technique offers unique advantages for beam recirculation in IGS.

 
TUPEA041 Drift Calibration Techniques for Future FELs cavity, injection, electron, free-electron-laser 1419
 
  • F. Ludwig, C. Gerth, K.E. Hacker, M. Hoffmann, G. Moeller, P. Morozov, Ch. Schmidt
    DESY, Hamburg
  • W. Jalmuzna
    TUL-DMCS, Łódź
 
 

Future FELs (Free-Electron-Lasers) requires a precise detection of the cavity field in the injector section with a resolution of much less than 0.01 deg in phase and 0.01% in amplitude for a cavity operation frequency at 1.3GHz. Long-term stable SASE (Self Amplified Spontaneous Emission) operation mainly suffers from injector accelerator components and the stability of the reference distribution. Especially thermal instabilities of the distributed cavity field detectors, probe pickup cables and their mechanical vibrations influence the energy stability dramatically on a scale of 0.1%, a scale which is 10 times worse than required. To eliminate the long-term amplitude and phase changes, we injected a reference signal prior to the arrival of the cavity field signal. This enabled pulse-to-pulse calibration which compensated for the drifts of the field detectors. We demonstrated a dramatic phase and amplitude stability improvement from the ps-range to the 0.008 deg (peak-to-peak) range in phase and 0.02% (peak-to-peak) in amplitude; this represents an improvement in drifts by a factor of about 100. The injected calibration was successfully employed during FLASH operation.

 
TUPEA078 Electron Injection into a Cyclic Accelerator using Laser Wakefield Acceleration injection, electron, kicker, scattering 1503
 
  • Ya.V. Getmanov, O.A. Shevchenko
    BINP SB RAS, Novosibirsk
  • N. Vinokurov
    NSU, Novosibirsk
 
 

We consider a technique for electron injection into a cyclic accelerator using the laser wakefield acceleration (LWFA) technique. Accelerators with this type of injector can be used for different purposes due to lower size, cost and low radiation hazard. To use the LWFA technique it is necessary to create a small gas cloud inside the accelerator vacuum chamber. But it leads to the increase of particle losses due to scattering on residual gas atoms. Therefore we propose to use magnesium as evaporated gas because of its high absorbability ' its atoms stick to walls at the first contact. We presented estimations of the LWFA-based injection system parameters, including maximum stored current. The proposed technique looks very prospective for compact accelerators and storage rings.

 
TUPEB025 Polarimetery for SuperB electron, polarization, photon, luminosity 1575
 
  • M.K. Sullivan, R.C. Field, K. C. Moffeit, Y. Nosochkov, U. Wienands, W. Wittmer, M. Woods
    SLAC, Menlo Park, California
 
 

We present a conceptual design for a polarimeter based on Compton scattering of laser light on the electron beam for the Super-B accelerator proposed for Frascati, Italy. The accelerator design has polarized electrons in the low-energy ring (4.18 GeV). We want to measure the polarization of every bunch every few seconds using a laser with 119 Mhz repetition rate. The spin rotator section has a second point between the solenoids and interaction point where the polarization is nearly longitudinal with helicity opposite to that found at the interaction point. We plan to use this point to measure the polarization as the possible location near the interaction point has too much background from the collision. We show the area in the accelerator where the polarimeter would be installed and describe the laser as well as the detectors for the Compton scattered electrons and photons.

 
TUPEC003 The ELBE Accelerator Facility Starts Operation with the Superconducting RF Gun gun, SRF, cavity, emittance 1710
 
  • R. Xiang, A. Arnold, H. Büttig, D. Janssen, M. Justus, U. Lehnert, P. Michel, P. Murcek, A. Schamlott, Ch. Schneider, R. Schurig, F. Staufenbiel, J. Teichert
    FZD, Dresden
  • T. Kamps, J. Rudolph, M. Schenk
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
  • G. Klemz, I. Will
    MBI, Berlin
 
 

As the first superconducting rf photo-injector (SRF gun) in practice, the FZD 3+1/2 cell SRF gun is successfully connected to the superconducting linac ELBE. This setting will improve the beam quality for ELBE users. It is the first example for an accelerator facility fully based on superconducting RF technology. For high average power FEL and ERL sources, the combination of SRF linac and SRF gun provides a new chance to produce beams of high average current and low emittance with relative low power consumption. The main parameters achieved from the present SRF gun are the final electron energy of 3 MeV, 16 μA average current, and rms transverse normalized emittances of 3 mm mrad at 77 pC bunch charge. A modified 3+1/2 cell niobium cavity has been fabricated and tested, which will increase the rf gradient in the gun and thus better the beam parameters further. In this paper the status of the integration of the SRF gun with the ELBE linac will be presented, and the latest results of the beam experiments will be discussed.

 
TUPEC015 High Gradient Electrodes for a Diode - RF Electron Gun cathode, electron, emittance, gun 1743
 
  • C.H. Gough, S. Ivkovic, F. Le Pimpec, M. Paraliev
    PSI, Villigen
 
 

As part of the SwissFEL project at Paul Scherrer Institute, an electron gun test stand has been built and operated. The goal is to achieve an exceptionally low emittance beam with a charge of 200pC for XFEL application. The electron gun consists of a High Gradient (HG) pulsed diode followed by an RF acceleration structure. The diode has an adjustable gap and the cathode is pulsed at up to 500 kV. The electrons were extracted either from a near-flat cathode surface or a dedicated photo-source recessed in a hollow cathode surface. For the diode electrtodes, many metals, geometries and surface treatments were studied for their HG and photo emission suitability. Polished metal electrodes, single tips, field emitter arrays and electrodes coated with different Diamond Like Carbon (DLC) types were tested. In particular, we found that DLC coating had useful properties. Surface electric fields over 250MV/m (350 ~ 400kV, in pulsed mode) with negligible parasitic electron emission were achieved; when UV laser illumination was applied to DLC electrodes, it was possible to extract electron bunches of over 60pC at gradients up to 150MV/m.

 
TUPEC018 Gallium Arsenide Preparation and QE Lifetime Studies using the ALICE Photocathode Preparation Facility electron, vacuum, cathode, gun 1752
 
  • N. Chanlek, R.M. Jones
    UMAN, Manchester
  • J.D. Herbert, L.B. Jones, K.J. Middleman, B.L. Militsyn
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

Gallium Arsenide (GaAs) photocathodes have in recent year been widely used and have become the focus for use in modern accelerators and light sources such as the Accelerators and Lasers in Combined Experiments (ALICE) and the International Linear Collider (ILC). Once activated to a Negative Electron Affinity (NEA) state and illuminated by a laser, these materials can be used as a high-brightness source of both polarised and un-polarised electrons. This work presents an effective preparation procedure including heat cleaning, atomic hydrogen cleaning and the activation process for NEA GaAs photocathode. The stability of quantum efficiency (QE) and lifetime of NEA GaAs photocathode have been studied in the load-lock and photocathode preparation system for the ALICE photo- electron gun which has a base pressure in the order of 10-11 mbar. These studies are also supported with experimental evidence from surface science techniques such as Photoelectron Spectroscopy (XPS) and Low Energy Electron Diffraction (LEED) to demonstrate the processes at the atomic level.

 
TUPEC023 Quantum Efficiency, Temporal Response and Lifetime of GaAs cathode in SRF Electron Gun electron, gun, cathode, SRF 1764
 
  • E. Wang, I. Ben-Zvi, A. Burrill, J. Kewisch, T. Rao, Q. Wu
    BNL, Upton, Long Island, New York
  • D. Holmes
    AES, Medford, NY
  • E. Wang
    PKU/IHIP, Beijing
 
 

RF electron guns with strained super lattice GaAs cathodes can produce higher brightness and lower emittance polarized electron beams, due to the higher field gradient at the cathode surface compared with DC guns. The vacuum in the gun must be better than 10-11 torr to obtain a sufficient cathode life time with high quantum efficiency (QE). Such high vacuum cannot be obtained easily in a normal conducting RF gun. We report on an experiment with a superconducting RF (SRF) gun, which can maintain a vacuum of nearly 10-12 torr because of cryo-pumping at the temperature of 4.2K . The GaAs cathode was activated by Cs'O treatment with a QE of 3% and exhibits a long lifetime in a preparation chamber. This cathode will be used in a 1.3 GHz - cell SRF gun to measure the destruction of the QE by ion and electron back-bombardment.

 
TUPEC028 Microbunching Instability Effect Studies and Laser Heater Optimization for the SPARX FEL Accelerator undulator, FEL, electron, emittance 1779
 
  • C. Vaccarezza, E. Chiadroni, M. Ferrario
    INFN/LNF, Frascati (Roma)
  • G. Dattoli, L. Giannessi, M. Quattromini, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • M. Migliorati
    Rome University La Sapienza, Roma
  • M. Venturini
    LBNL, Berkeley, California
 
 

The effects of microbunching instability for the SPARX accelerator have been analyzed by means of different numerical simulation codes and analytical approach. The laser heater counteracting action has been also addressed in order to optimize the parameters of the compression system, either hybrid RF plus magnetic chicane or only magnetic, and possibly enhance the FEL performance.

 
TUPEC054 Modeling Nanometer Structured Laser Induced Field Emission electron, cathode, resonance, emittance 1844
 
  • B.S.C. Oswald, S. Tsujino
    PSI, Villigen
  • P. Leidenberger
    IFH, Zurich
 
 

Laser induced field emission has become an enabling technology for building ultra-low emittance electron sources for particle accelerators, such as the x-ray free-electron laser (SwissFEL) under development at the Paul Scherrer Institut (PSI). One approach consists of a sharp pyramidal tip with lateral dimensions of a few nanometers, illuminated by a laser to increase the extracted electron current. Another approaches uses conventional cathodes. In both cases, there are structural details on the nanometer scale, that determine the interaction between the laser and the cathode and thus directly the quantum efficiency of the emitter. We use a 3-d full-wave finite element time domain electromagnetic approach* to understand the nano-optical interaction between structure and laser pulse. For example, the lightning rod effect of sharp tips enhances the electric field in the vicinity. Also, optical antenna concepts have been proposed to enhance the electric field at the field emitter's tip so that higher currents can be extracted. We use dispersive material models for the metals in the optical region of the electromagnetic spectrum.


*Benedikt Oswald and Patrick Leidenberger, Journal of Computational and Theoretical Nanoscience, Vol 6(3), 2009, pp. 784-794. doi 10.1166/jctn.2009.1109

 
TUPEC055 Computation of Electromagnetic Modes in the Transverse Deflecting Cavity cavity, emittance, simulation, free-electron-laser 1847
 
  • H. Guo
    PSI-LRF, Villigen, PSI
  • A. Adelmann, A. Falone, C. Kraus, B.S.C. Oswald
    PSI, Villigen
  • P. Arbenz
    ETH, Zurich
 
 

The X-ray Free Electron Laser (SwissFEL) under development at the Paul Scherrer Institut (PSI) will employ a special type of a deflecting cavity, LOLA*, for beam diagnostics. Since this cavity's design breaks the symmetry, a complete 3-dimensional eigenmodal analysis is indispensable. The 3-dimensional eigenmodal solver femaxx employs the finite element method and has been developed in a collaboration between PSI and the Swiss Federal Institute of Technology Zurich (ETH). The femaxx code uses the graphical frontend program heronion for the application of boundary conditions, including symmetry, and generates a tetrahedral mesh. We use femaxx to analyze the existing LOLA cavity design**, compute electromagnetic eigenmodes with their corresponding eigenfrequencies, and associated performance figures. Since these are large computational problems femaxx has been optimized for distributed memory parallel compute clusters. For the further usage in the beam dynamics code OPAL we sample the eigenmodal fields on a 3-dimensional Cartesian grid.


* A. Falone, et al: RF deflector for bunch length measurement at low energy at PSI. Proceedings of PAC2009.
** P. Arbenz et al., Parallel Computing, 32: 157-165 (2006).

 
TUPEC064 Full Electromagnetic Simulation of Coherent Synchrotron Radiation via the Lorentz-Boosted Frame Approach dipole, simulation, electron, radiation 1874
 
  • J.-L. Vay, E. Cormier-Michel, W.M. Fawley, C.G.R. Geddes
    LBNL, Berkeley, California
 
 

Numerical simulation of some systems containing charged particles with highly relativistic directed motion can be speeded up dramatically by choice of the proper Lorentz-boosted frame*. Orders of magnitude speedup has been demonstrated for simulations from first principles of laser-plasma accelerator, free electron laser, and particle beams interacting with electron clouds. We summarize the technique and the most recent examples. We then address the application of the Lorentz-boosted frame approach to coherent synchrotron radiation (CSR), which can be strongly present in bunch compressor chicanes. CSR is particularly relevant to the next generation of x-ray light sources and difficult to simulate in the lab frame because of the large ratio of scale lengths. It can increase both the incoherent and coherent longitudinal energy spread, effects that often lead to an increase in transverse emittance. We use the WARP code** to simulate CSR emission around dipole simple bends. We present some scaling arguments for the possible computational speed up factor in the boosted frame and initial 3D simulation results for some standard CSR test cases.


* J.-L. Vay, Phys. Rev. Lett. 98 (2007) 130405
** D.P. Grote, A. Friedman, J.-L. Vay, and I. Haber, AIP Conf. Proc. 749 (2005), 55.

 
TUPEC069 VizSchema - a Unified Visualization of Computational Accelerator Physics Data simulation, plasma, controls, cavity 1880
 
  • S.G. Shasharina, D. Alexander, J.R. Cary, M.A. Durant, S.E. Kruger, S.A. Veitzer
    Tech-X, Boulder, Colorado
 
 

Data organization of simulations outputs differs from application to application. This makes development of uniform visualization and analysis tools difficult and impedes comparison of simulation results. VizSchema is an effort to standardize metadata of HDF5 format so that the subsets of data needed to visualize physics can be identified and interpreted by visualization tools. Based on this standard, we developed a powerful VisIt-based visualization tool. It allows a uniform approach for 3D visualization of large data of various kinds (fields, particles, meshes) from the COMPASS suite for SRF cavities and laser-plasma acceleration. In addition, we developed a specialized graphical interface to streamline visualization of VORPAL outputs and submit remote VORPAL runs. In this paper we will describe our approach and show some visualizations results.

 
TUPD089 Status and Future Plan of the Accelerator for Laser Undulator Compact X-ray Source (LUCX) gun, cavity, electron, emittance 2111
 
  • M.K. Fukuda, S. Araki, A.S. Aryshev, Y. Honda, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • A. Deshpande
    Sokendai, Ibaraki
  • K. Sakaue, M. Washio
    RISE, Tokyo
  • N. Sasao
    Okayama University, Okayama
 
 

We have developed a compact X-ray source based on inverse Compton scattering of an electron beam and a laser pulse, which is stacked in an optical super-cavity, at LUCX accelerator in KEK. The accelerator consists of a photo-cathode rf-gun and an S-band accelerating tube and produces the multi-bunch electron beam with 100 bunches, 0.5nC bunch charge and 40MeV beam energy. It is planned to upgrade the accelerator and the super-cavity in order to increase the number of X-rays. A new RF gun with high mode separation and high Q value and a new klystron for the gun will be installed to provide good compensation with a high-intensity multi-bunch electron beam. A new optical super-cavity consisting of 4 mirrors is also being developed to increase the stacking power in the cavity and to reduce the laser size at the focal point. The first targets are to produce a multi-bunch electron beam with 1000 bunches, 0.5 nC bunch charge and 5 MeV beam energy in low energy mode and 100bunches, 2 nC and 40 MeV in high energy mode to generate X-rays by inverse Compton scattering. In this paper, the status and future plan of the accelerator will be reported.

 
TUPD091 Generation of Ultra-Short Gamma-ray Pulses by Laser Compton Scattering in an Electron Storage Ring electron, storage-ring, photon, scattering 2117
 
  • Y. Taira, M. Hosaka, K. Soda, Y. Takashima, N. Yamamoto
    Nagoya University, Nagoya
  • M. Adachi, M. Katoh, H. Zen
    UVSOR, Okazaki
  • T. Tanikawa
    Sokendai - Okazaki, Okazaki, Aichi
 
 

We are developing an ultra-short gamma ray pulse source based on laser Compton scattering technology at the 750 MeV electron storage ring UVSOR-II. Ultra-short gamma ray pulses can be generated by injecting femtosecond laser pulses into the electron beam circulating in an electron storage ring from the direction perpendicular to the orbital plane. The energy, intensity, and pulse width of the gamma rays have been estimated to be 6.6 MeV, 2.4× 106 photons s-1, and 150 fs, respectively, for the case of UVSOR-II with a commercially available femtosecond laser. These parameters can be tuned by changing the incident angle of the laser to the electron beam, electron energy, and the size of the laser. A preliminary head-on collision experiment was carried out. The measured spectral shape agreed well with simulation including the detector response calculated by the EGS5 code*, which implied the generation of gamma rays by laser Compton scattering and the validity of the estimation of the gamma ray intensity in the case of 90-degree collisions.


* H. Hirayama et al., SLAC-R-730, (2005).

 
TUPD092 Coherent Hard X-ray Free-electron Laser based on Echo-enabled Staged Harmonic Generation Scheme FEL, radiation, bunching, electron 2120
 
  • C. Feng, Z.T. Zhao
    SINAP, Shanghai
 
 

A novel approach to producing coherent hard x-ray based on the echo-enabled staged harmonic generation (EESHG) scheme is proposed. This scheme is not a simple cascaded EEHG, but consists of an EEHG, a beam shifter and a conventional HGHG like configuration, which also works in the EEHG principle. In the first stage, all over the whole electron beam is energy modulated by a laser beam in the first modulator and then converts into separate energy bands by a very strong dispersion section. In the second modulator, the seed laser is adjusted so that only the tail half part of the e-beam is energy modulated, then this beam is sent through the second dispersion section which converts the energy modulated part into a density modulation. The radiation from the first stage serves as the seed laser of the second stage, the beam shifter is so tuned that the head part of the electron beam can exactly interact with the radiation from the first stage in the modulator of the second stage, so the total harmonic number will be hundreds. It is possible to do the proof-of-principle experiment of EESHG on the SDUV-FEL.

 
TUPD093 Beam Dynamics in Compton Storage Rings with Laser Cooling electron, emittance, photon, synchrotron 2123
 
  • E.V. Bulyak, P. Gladkikh
    NSC/KIPT, Kharkov
  • T. Omori, J. Urakawa
    KEK, Ibaraki
  • L. Rinolfi
    CERN, Geneva
 
 

Compton sources are capable to produce intense beams of gamma-rays necessary for numerous applications, e.g. production of polarized positrons for ILC/CLIC projects, nuclear waste monitoring. These sources need high current of electron beams of GeV energy. Storage rings are able to accumulate a high average current and keep it circulating for a long time. The dynamics of circulating bunches is affected by large recoils due to emission of energetic photons. We report results of both an analytical study and a simulation on the dynamics of electron bunches circulating in storage rings and interacting with the laser pulses. The steady-state transverse emittances and energy spread, and dependence of these parameters on the laser pulse power and dimensions at the collision point were derived analytically and simulated. It is shown that the transverse and longitudinal dimensions of bunches are dependent on the power of laser pulses and on their dimensions as well. Conditions of the laser cooling were found, under which the electron bunches shrink due to scattering off the laser pulses. The beam behavior in rings with the longitudinal strong focusing lattices is discussed.

 
TUPD097 Laser Technology for Precision Monoenergetic Gamma-ray Source R&D at LLNL photon, linac, electron, recirculation 2126
 
  • M. Shverdin, F. Albert, S.G. Anderson, C.P.J. Barty, A.J. Bayramian, M. Betts, T.S. Chu, C.A. Ebbers, D.J. Gibson, F.V. Hartemann, R.A. Marsh, D.P. McNabb, M. J. Messerly, H.H. Phan, M.A. Prantil, C. Siders, S.S.Q. Wu
    LLNL, Livermore, California
 
 

Generation of mono-energetic, high brightness gamma-rays requires state of the art lasers to both produce a low emittance electron beam in the linac and high intensity, narrow linewidth laser photons for scattering with the relativistic electrons. Here, we overview the laser systems for the 3rd generation Monoenergetic Gamma-ray Source (MEGa-ray) currently under construction at Lawrence Livermore National Lab. We also describe a method for increasing the efficiency of laser Compton scattering through laser pulse recirculation. The fiber-based photoinjector laser will produce 50 uJ temporally and spatially shaped UV pulses at 120 Hz to generate a low emmittance electron beam in the X-band RF photoinjector. The interaction laser generates high intensity photons that focus into the interaction region and scatter off the accelerated electrons. This system utilizes chirped pulse amplification and commercial diode pumped solid state Nd:YAG amplifiers to produce 0.5 J, 10 ps, 120 Hz pulses at 1064 nm and up to 0.2 J after frequency doubling. A single passively mode-locked Ytterbium fiber oscillator seeds both laser systems and provides a timing synch with the linac.

 
TUPD098 Overview of Mono-energetic Gamma-ray Sources & Applications electron, scattering, brightness, photon 2129
 
  • F.V. Hartemann, F. Albert, S.G. Anderson, C.P.J. Barty, A.J. Bayramian, T.S. Chu, R.R. Cross, C.A. Ebbers, D.J. Gibson, R.A. Marsh, D.P. McNabb, M. J. Messerly, M. Shverdin, C. Siders
    LLNL, Livermore, California
  • E.N. Jongewaard, T.O. Raubenheimer, S.G. Tantawi, A.E. Vlieks
    SLAC, Menlo Park, California
  • V. A. Semenov
    UCB, Berkeley, California
 
 

Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via chirped-pulse amplification (CPA). A precision, tunable Mono-Energetic Gamma-ray (MEGa-ray) source driven by a compact, high-gradient X-band linac is currently under development and construction at LLNL. High-brightness, relativistic electron bunches produced by an X-band linac designed in collaboration with SLAC will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable γ-rays in the 0.5-2.5 MeV photon energy range via Compton scattering. This MEGa-ray source will be used to excite nuclear resonance fluorescence in various isotopes. Applications include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status are presented, along with important applications, including nuclear resonance fluorescence, photo-fission, and medical imaging.

 
TUPD100 Electron Transport and Emission in Diamond electron, cathode, ion, vacuum 2132
 
  • J. Smedley, I. Ben-Zvi, X. Chang, P.D. Johnson, J. Rameau, T. Rao, Q. Wu
    BNL, Upton, Long Island, New York
  • J. Bohon
    Case Western Reserve University, Center for Synchrotron Biosciences, Upton, New York
  • E.M. Muller
    Stony Brook University, Stony Brook
 
 

The diamond amplified photocathode has the potential to dramatically increase the average current available from photoinjectors, perhaps to the amphere-class performance necessary for flux-competitive fourth-generation light sources. Electron emission from a diamond amplifier has been observed from hydrogen-terminated diamond, using both photons and electrons to generate carriers. The diamond electron amplifier has been demonstrated, with an emission gain of 40. Very high average current densities (>10 A/cm2) have been transported through the diamond using x-ray generated carriers. The device relies on high-purity intrinsic diamond with low crystalline defect density, as well as a negative electron affinity achieved by hydrogen termination. The effects of diamond purity and crystalline defects on charge transport in the material, and emission from the diamond surface have been studied using a number of techniques and the process is now well understood. The electron affinity of diamond has been measured to be -1.1 eV; the fraction of the electrons produced in the material which are emitted from the surface has also been measured.

 
TUPD104 Development of an Yb-doped Fiber Laser System for an ERL Photocathode Gun gun, cavity, electron, polarization 2141
 
  • I. Ito, N. Nakamura
    ISSP/SRL, Chiba
  • Y. Honda
    KEK, Ibaraki
  • Y. Kobayashi, K. Torizuka, D. Yoshitomi
    AIST, Tsukuba
 
 

We are developing an Yb fiber laser system that drives an ERL photocathode gun. An Yb fiber laser is expected to have both high stability and high output power required for the drive laser of an ERL photocathode gun. First we started to develop an Yb fiber laser oscillator with a high repetition rate up to 1.3 GHz that is the RF frequency of a superconducting accelerating cavity and then a 30W preamplifier using an Yb doped photonic crystal fiber. We report our recent progress in this development.

 
TUPE004 FEL User Facility FLASH FEL, radiation, electron, photon 2149
 
  • S. Schreiber, B. Faatz, J. Feldhaus, K. Honkavaara, R. Treusch
    DESY, Hamburg
 
 

The free-electron laser facility FLASH at DESY, Germany finished its second user period scheduled from November 2007 to August 2009. More than 300 days have been devoted for user operation, a large part of beamtime has been allocated for machine studies for further developments, including beamtime for XFEL and ILC R&D. FLASH provides trains of fully coherent 10 to 50 femtosecond long laser pulses in the wavelength range from 40 nm to 6.8 nm. The SASE radiation contains also higher harmonics; several experiments have successfully used the third and fifth harmonics. The smallest wavelength used was 1.59 nm. We will give a summary of the experience from two years of user operation at FLASH.

 
TUPE005 FLASH II: a Seeded Future at FLASH undulator, radiation, electron, FEL 2152
 
  • B. Faatz, N. Baboi, V. Balandin, W. Decking, S. Düsterer, J. Feldhaus, N. Golubeva, T. Laarmann, T. Limberg, D. Nölle, E. Plönjes, H. Schlarb, S. Schreiber, F. Tavella, K.I. Tiedtke, R. Treusch
    DESY, Hamburg
  • J. Bahrdt, R. Follath, M. Gensch, K. Holldack, A. Meseck, R. Mitzner
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
  • M. Drescher, V. Miltchev, J. Roßbach
    Uni HH, Hamburg
 
 

FLASH has been a user facility since 2005, delivering radiation in the wavelength range between 7 and 47 nm using the SASE principle. In order to increase user beam time and improve the radiation properties delivered to users, a major extension of the user facility called FLASH II has been proposed by DESY in collaboration with the HZB, which is a seeded FEL over the parameter range of FLASH. As logical continuation, the HHG development program started with sFLASH, will result in direct seeding. Because in the foreseeable future there will probably not be HHG seed lasers available at high repetition rates down to wavelengths of 4 nm, a cascaded HGHG scheme will be used to produce short wavelengths. After a first design report, the project now enters its preparation phase until the decision for funding will be taken. During this time, the FLASH beam parameters after the present upgrade 2009/2010 will be characterized and the present design will be re-evaluated and adjusted. In addition, complete start-to-end simulations will complete the simulations which have been performed so far, including a complete design of the extraction area.

 
TUPE006 Photocathode Performance At FLASH cathode, gun, electron, vacuum 2155
 
  • S. Lederer, S. Schreiber
    DESY, Hamburg
  • P.M. Michelato, L. Monaco, D. Sertore
    INFN/LASA, Segrate (MI)
 
 

Caesium telluride photocathodes are used as laser driven electron sources at the Free-Electron-Laser Hamburg, FLASH, and will be used at the European XFEL. One concern of the operation of photocathodes in these user facilities is the degradation of the quantum efficiency during operation. After improving vacuum conditions and removing contaminants, the cathode life time increased from a couple of weeks to several months. In this contribution we report on long time operation of Cs2Te cathodes in terms of QE measurements and investigations on the homogeneity of the electron emission. Another concern of electron guns operated with long RF-pulses (0.8 ms at FLASH) is the generation of dark current either from the cathode or from the gun body. During the last years a constant high amount of dark current, emitted from the gun body itself, was observed at FLASH. Caused by that during the shut-down 2009/2010 the RF-gun at FLASH, operated more than five years, was replaced. The improved dark current situation with the new RF-gun is presented in terms of dark current measurements under different operational conditions.

 
TUPE007 High Repetition Rate Seeding of a Free-Electron Laser at DESY Hamburg FEL, electron, linac, undulator 2158
 
  • A. Willner, S. Düsterer, B. Faatz, J. Feldhaus, H. Schlarb, S. Schreiber, F. Tavella
    DESY, Hamburg
  • S. Hädrich, J. Limpert, J. Rothhardt, E. Seise, A. Tünnermann
    Friedrich Schiller Universität, Jena
  • J. Roßbach
    Uni HH, Hamburg
 
 

The performance of fourth generation light sources is of interest in many fields in nature science. Different seeding schemes for FELs are under investigation to improve timing stability, pulse shape and spectrum of the amplified XUV or X-ray pulses. One of the most promising schemes is direct seeding by high-harmonic generation (HHG) in gas. A seeded free electron laser with a tuneable wavelength range from 10 to 40nm and a bunch frequency of up to 100 kHz (1 MHz upgraded), as proposed for FLASH II (collaboration HZB/DESY), makes high demands on the HHG seed source concerning conversion efficiency and stability. However, the most challenging task is the conception of a laser system with a repetition rate of 100 kHz (1 MHz upgraded). The key parameters for this laser amplifier system are pulse energies of 1-2mJ and sub-10fs pulse duration. We report on the development status of the required laser system for the seed source and give an overview of first concepts for the HHG target setup which can comply with the requirements of a new seeded FEL at DESY.

 
TUPE009 Status of sFLASH, the Seeding Experiment at FLASH undulator, FEL, radiation, electron 2161
 
  • H. Delsim-Hashemi, A. Azima, J. Bödewadt, F. Curbis, M. Drescher, Th. Maltezopoulos, V. Miltchev, M. Mittenzwey, J. Roßbach, J. Rönsch-Schulenburg, R. Tarkeshian, M. Wieland
    Uni HH, Hamburg
  • S. Bajt, K. Honkavaara, T. Laarmann, H. Schlarb
    DESY, Hamburg
  • R. Ischebeck
    PSI, Villigen
  • S. Khan
    DELTA, Dortmund
  • A. Meseck
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

Recently, the free-electron laser in Hamburg (FLASH) at DESY has been upgraded considerably. Besides increasing the maximum energy to about 1.2 GeV and installation of a third harmonic rf cavity linearizing the longitudinal phase space distribution of the electron bunch, an FEL seeding experiment at wavelengths of about 35 nm has been installed. The goal is to establish direct FEL seeding employing coherent VUV pulses produced from a powerful drive laser by high-harmonic generation (HHG) in a gas cell. The project, called sFLASH, includes generation of the required HHG pulses, transporting it to the undulator entrance of a newly installed FEL-amplifier, controlling spatial, temporal and energy overlap with the electron bunches and setting up a pump-probe pilot experiment. Sophisticated diagnostics is installed to characterize both HHG and seeded FEL pulses, both in time and frequency domain. Compared to SASE-FEL pulses, almost perfect longitudinal coherence and improved synchronization possibilities for the user experiments are expected. In this paper the status of the experiment is presented.

 
TUPE010 Status of the Photo Injector Test Facility at DESY, Zeuthen Site (PITZ) cavity, emittance, gun, booster 2164
 
  • G. Asova, J.W. Bähr, C.H. Boulware, A. Donat, U. Gensch, H.-J. Grabosch, L. Hakobyan, H. Henschel, M. Hänel, Ye. Ivanisenko, L. Jachmann, M.A. Khojoyan, W. Köhler, G. Koss, M. Krasilnikov, A. Kretzschmann, H. Leich, H.L. Luedecke, J. Meissner, B. Petrosyan, M. Pohl, S. Riemann, S. Rimjaem, M. Sachwitz, B. Schoeneich, J. Schultze, A. Shapovalov, R. Spesyvtsev, L. Staykov, F. Stephan, F. Tonisch, G. Trowitzsch, G. Vashchenko, L.V. Vu, T. Walter, S. Weisse, R.W. Wenndorff, M. Winde
    DESY Zeuthen, Zeuthen
  • K. Flöttmann, S. Lederer, S. Schreiber
    DESY, Hamburg
  • D.J. Holder, B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Richter
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin
  • J. Rönsch-Schulenburg
    Uni HH, Hamburg
 
 

The PITZ facility is established for the development and testing of electron sources for FELs like FLASH and the European XFEL. The facility has been upgraded during the shutdown starting in summer 2007 to extend the capability of the facility to produce and characterize low emittance electron beams. The upgraded setup mainly includes a photo cathode L-band RF gun with solenoid magnets for space charge compensation, a post acceleration booster cavity and several diagnostic systems. The diagnostic systems consist of charge and beam profile monitors, emittance measurement systems and spectrometers with related diagnostics in dispersive arms after the gun and the booster cavities. RF gun operation with an accelerating gradient of 60 MV/m at the cathode is realized with this setup. A new photo cathode laser system with broader spectral bandwidth was installed for optimizing the temporal distribution of the laser pulses regarding to electron beam properties. Experimental results with this setup demonstrated very high electron beam quality as required for the photoinjector source of the European XFEL. In this contribution, the PITZ facility setup in year 2008-2009 will be presented.


*for the PITZ Collaboration

 
TUPE011 Generating Low Transverse Emittance Beams for Linac Based Light Sources at PITZ emittance, gun, electron, cavity 2167
 
  • S. Rimjaem, J.W. Bähr, H.-J. Grabosch, M. Hänel, Ye. Ivanisenko, G. Klemz, M. Krasilnikov, M. Mahgoub, M. Otevrel, B. Petrosyan, S. Riemann, J. Rönsch-Schulenburg, R. Spesyvtsev, F. Stephan
    DESY Zeuthen, Zeuthen
  • G. Asova, L. Staykov
    INRNE, Sofia
  • K. Flöttmann, S. Lederer, S. Schreiber
    DESY, Hamburg
  • L. Hakobyan, M.A. Khojoyan
    YerPhI, Yerevan
  • M.A. Nozdrin
    JINR, Dubna, Moscow Region
  • B.D. O'Shea
    UCLA, Los Angeles, California
  • R. Richter
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin
  • A. Shapovalov
    MEPhI, Moscow
  • G. Vashchenko
    NSC/KIPT, Kharkov
  • I. Will
    MBI, Berlin
 
 

At the Photo Injector Test facility at DESY, Zeuthen site (PITZ), high brightness electron sources for linac based Free Electron Lasers (FELs), like FLASH and the European XFEL are developed and characterized. The electrons are generated via the photoeffect at a cesium telluride (Cs2Te) cathode and are accelerated by a 1.6-cell L-band RF-gun cavity with an accelerating gradient at the cathode of about 60 MV/m. The profile of the cathode laser pulse has been optimized yielding small emittances using laser pulse shaping methods. The transverse projected emittance is measured by a single slit scan technique. The measurement program in the last run period at PITZ concentrated on emittance measurements for the nominal 1 nC beam and emittance optimization for lower bunch charges. The recent results show that normalized projected emittances of about 1 mm-mrad for 1 nC charge and below 0.5 mm-mrad for 250 pC bunch charges can be realized at PITZ. The facility setup and measurement results including the uncertainty of the measured values will be reported and discussed in this contribution.

 
TUPE012 Stability analysis of Free-Electron Laser Resonators cavity, FEL, simulation, coupling 2170
 
  • S.A. Samant
    CBS, Mumbai
  • S. Krishnagopal
    BARC, Mumbai
 
 

The stability of free-electron laser (FEL) resonators differs from that of resonators of conventional lasers, because of the nature of the FEL interaction. Therefore the stability diagram is modified, and near-concentric configurations are preferred to near-confocal. We study the stability of FEL resonators (especially for g1 =/ g2) using simulations, as well as using a simple thin-lens model, and show that the near-concentric configuration is indeed preferable, while the confocal configuration becomes unstable. Also, since FELs can be widely tuned in wavelength, we investigate the stability of the resonator as a function of the wavelength.

 
TUPE018 Requirements for FEL Commissioning at FERMI electron, FEL, undulator, emittance 2176
 
  • E. Allaria, G. Penco, C. Spezzani
    ELETTRA, Basovizza
  • G. De Ninno
    University of Nova Gorica, Nova Gorica
 
 

The commissioning of the first stage (FEL-1) of FERMI@Elettra has started in the summer 2009. During the first year of operation, the efforts will mainly concentrate on the optimization of the gun performance, as well as on electron-beam acceleration and transport through the LINAC. By fall 2010, it is planned to generate out of the LINAC an electron beam that may be injected into the FEL-1 undulator chain and used to get the first FEL light. In this paper, we present the requirements for FEL-1 commissioning, both in terms of hardware and electron beam properties.

 
TUPE019 Integration of Elegant Tracking Code into the Tango Server-based High Level Software of FERMI@elettra for Optics Measurements and Modeling optics, quadrupole, controls, linac 2179
 
  • C. Scafuri, S. Di Mitri, G. Penco
    ELETTRA, Basovizza
 
 

The electron beam transverse emittance and Twiss parameters have been measured during the commissioning of FERMI@elettra. Matching of the beam optics to the lattice transverse acceptance and beam transport was performed by means of the elegant particle tracking code; this was integrated with the Tango-server based high level software of FERMI@elettra. Matlab scripts were used as an intermediate layer between the code and the server to automate the matching procedure. The software environment, the experimental results and the comparison with the model are described in this paper.

 
TUPE021 Electron Beam Conditioning with IR/UV Laser on the Cathode electron, cathode, radiation, FEL 2182
 
  • G. Gatti, M. Bellaveglia, E. Chiadroni, L. Cultrera, M. Ferrario, D. Filippetto, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Bacci, A.R. Rossi
    Istituto Nazionale di Fisica Nucleare, Milano
  • P. Musumeci
    UCLA, Los Angeles
  • H. Tomizawa
    JASRI/SPring-8, Hyogo-ken
 
 

Shining a photocathode at the same time with an UV laser able to extract electrons and an IR laser properly tuned could influence the way the electron beam is generated. Such a process is under investigation at SPARC, through direct measurements, as much as through computer codes assessment studies.

 
TUPE024 Construction of a Timing and Low-level RF System for XFEL/SPring-8 LLRF, klystron, cavity, electron 2191
 
  • N. Hosoda, H. Maesaka, S. Matsubara, T. Ohshima, Y. Otake, K. Tamasaku
    RIKEN/SPring-8, Hyogo
  • M. Musha
    University of electro-communications, Tokyo
 
 

The intensity of SASE generated by undulators is sensitive to the peak intensity fluctuation of an electron bunch. The bunch is formed by velocity bunching in an injector and magnetic bunching in bunch compressors (BC). The peak intensity is sensitive to rf phase and amplitude of off-crest acceleration at injector cavities and 5712 MHz cavities before the BCs. Thus, demanded stabilities of the rf phase and amplitude for stable SASE generation are very tight. These are 0.6 degree (p-p) and 0.06 % (p-p) at the 5712 MHz cavities, respectively. We are constructing a low-level rf (LLRF) system comprising a master oscillator, an optical rf signal transmission system, and a digital rf control system using IQ modulator/demodulator to drive klystrons. To realize the demands, much attention was paid to temperature stabilization for the system. A water-cooled 19-inch rack and a water-cooled cable ducts are employed for almost all part of the system. Temperature stability of the rack was 0.4 K (p-p) even though outside was 4 K (p-p). The phase and amplitude stabilities of the LLRF modules were measured to be 0.30 degree (p-p) and 0.56 % (p-p). These stabilities are sufficient for our demands.

 
TUPE026 Classical and Quantum Mechanical Analyses on Electromagnetic Wave Emissions in the Planar Cherenkov Free Electron Laser electron, coupling, damping, free-electron-laser 2197
 
  • H. Fares, Y. Kuwamura, M. Yamada
    Kanazawa University, Kanazawa
 
 

In the Cherenkov free electron laser, the interacted electron with the electromagnetic (EM) wave can be represented as a point particle or as a spatially spreading electron wave in the classical or quantum mechanical framework, respectively. In our previous theoretical analysis for the optical region, the electron is described by a plane wave with finite spreading length. This electron wave model was successfully implied for the optical region whereas the spreading length of the electron wave is greater than the wavelength of the optical wave. In this work, when the EM wavelength is sufficiently greater than the spreading length of the electron wave, such as in the microwave region, the electron is assumed to be a spatially localized point particle. This classical analysis is performed using same parameters used in the quantum electron wave model, such as a coupling coefficient between the electron beam and the EM field and the electron relaxation time. Also, we present analytical expressions to describe the stimulated and spontaneous emissions. We show that the classical treatment is consistent with the quantum analysis applied in the optical regime.

 
TUPE028 Status of the MIR FEL Facility in Kyoto University FEL, undulator, gun, electron 2203
 
  • T. Kii, M. A. Bakr, Y.W. Choi, R. Kinjo, K. Masuda, H. Ohgaki, T. Sonobe, M. Takasaki, S. Ueda, K. Yoshida
    Kyoto IAE, Kyoto
 
 

A mid-infrared free electron laser (MIR FEL) facility has been constructed for the basic research on energy materials in the Institute of Advanced Energy, Kyoto University. The MIR FEL saturation at 13.2 μm was observed in May 2008, and the construction of the FEL delivery system from accelerator room to the optical diagnostic station and experimental stations has been finished in Dec. 2009. In the conference, optical properties of the MIR FEL and research program using MIR-FEL will be introduced.

 
TUPE029 Spectral Measurement of VUV CHG at UVSOR-II FEL, electron, cavity, vacuum 2206
 
  • T. Tanikawa
    Sokendai - Okazaki, Okazaki, Aichi
  • M. Adachi, M. Katoh, J. Yamazaki, H. Zen
    UVSOR, Okazaki
  • M. Hosaka, Y. Taira, N. Yamamoto
    Nagoya University, Nagoya
 
 

Light source technologies based on laser seeding are under development at the UVSOR-II electron storage ring. In the past experiments, we have succeeded in generating coherent DUV (Deep Ultra-Violet) harmonics with various polarizations. A spectrum measurement experiment of CHG (Coherent Harmonic Generation) was carried out by using a spectrometer of from visible to DUV range. In order to diagnose spectra of shorter-wavelength CHG, a spectrometer for VUV (Vacuum Ultra-Violet) has been constructed and the VUV CHG was measured. In addition, we try to use a seeding light source based on not only fundamental of Ti: Sapphire laser and the harmonics generated from non-linear crystals but also HHG (High Harmonic Generation) in a gas for the CHG experiment. Now the HHG system is under development. In this presentation, we introduce the VUV spectral measurement system and the HHG system and also report about comparison between the results of the current CHG experiments and design studies of numerical calculation for them.

 
TUPE030 High Power Terahertz FEL at ISIR, Osaka University FEL, electron, wiggler, linac 2209
 
  • R. Kato, K. Furuhashi, G. Isoyama, S. Kashiwagi, M. Morio, S. Suemine, N. Sugimoto, Y. Terasawa
    ISIR, Osaka
  • K. Tsuchiya, S. Yamamoto
    KEK, Ibaraki
 
 

We have been developing a Terahertz free electron laser (FEL) based on the 40 MeV, 1.3 GHz L-band electron linac at the Institute of Scientific and Industrial Research (ISIR), Osaka University. After the FEL lasing at the wavelength of 70 um (4.3 THz)*, next targets of the FEL development are to extend the available laser wavelength, to increase the FEL power, and to evaluate characteristics of FEL. Since the lowest energy of the linac was restricted by a fixed-ratio power divider between the acceleration tube and the buncher, we have prepared the new one with a different ratio to extend the wavelength longer side. As a result, the wavelength region is able to be extended to 25 - 147 um (12.5 - 2 THz). The maximum output energy of the FEL macropulse so far obtained is 3.6 mJ at 66 um. The peak macropulse power available to user experiments is estimated to be 1 kW or less, given that the pulse duration is 3 us. Three users groups have begun experiments using the FEL. We will report these recent activities on the Terahertz FEL.


* G. Isoyama, R. Kato, S. Kashiwagi, T. Igo, Y. Morio, Infrared Physics & Technology 51 (2008) 371-374.

 
TUPE034 Design of FEL by the EEHG Scheme at Tsinghua University radiation, electron, simulation, bunching 2218
 
  • X.L. Xu, C.-X. Tang, Q.Z. Xing
    TUB, Beijing
 
 

Tsinghua University Thomson X-ray source ( TTX ) has been proposed at Tsinghua University. With the nominal electron beam parameters ( beam energy of 50MeV, slice energy spread of 5keV, peak current of 600A, rms normalized emittance of 2 mm mrad ) of the TTX linac , the design of Free Electron Laser ( FEL ) by the Echo-Enabled Harmonic Generation ( EEHG ) scheme is presented in this paper. High harmonics of the seeding laser is generated by the EEHG scheme. Parameters of the undulators and seeding lasers are optimized. Simulation results using the GENESIS code are also presented in this paper.

 
TUPE036 The Parameter Study for the Enhanced High Gain Harmonic Generation Scheme electron, undulator, radiation, FEL 2221
 
  • Q.K. Jia, H. Geng, H.T. Li
    USTC/NSRL, Hefei, Anhui
 
 

An easy-to-implement scheme called Enhanced High Gain Harmonic Generation has been proposed and shown to be able to significantly enhance the performance of traditional HGHG-FEL. In this paper we investigate the effects of the system parameters in EHGHG scheme, such as the electron energy tuning, the energy spread, the dispersive strength, amount of the phase shift, and the power of seed laser. The numerical results are presented, and shown that: the EHGHG scheme has acceptable the parameters tolerance requirements and is not more or even less sensitive to the system parameters than that of the existing scheme.

 
TUPE039 Parameter Study for FEL Project at INFLPR FEL, radiation, electron, linac 2227
 
  • F. Scarlat, E.S. Badita, M. Dumitrascu, R.D. Minea, E. Mitru, A.M. Scarisoreanu, E. Sima
    INFLPR, Bucharest - Magurele
  • V.G. Cimpoca, C. Oros, I. Popescu
    Valahia University, Faculty of Sciences, Targoviste
  • M.R. Leonovici
    Bucharest University, Faculty of Physics, Bucharest-Magurele
 
 

This paper is a presentation of a parameter study for FEL Project at INFLPR considering recent advances of technologies in the domain of accelerators, lasers, undulators and seeded operation with HHG which in their turn allow the construction of a national user facility based on an intense FEL at VUV wavelengths. The calculations also considered the possibilities for the facility to be upgraded for EUV regime, in a second stage. In the first stage, results were obtained for the FEL subsystem parameters starting from the 1 GeV beam electron energy, a 500 A electron current, a single stage HGHG FEL and VUV regime. Also, the status of the project is briefly sketched herein. On behalf of the RO FEL Design Team.

 
TUPE042 Results of the PSI Diode-RF Gun Test Stand Operation emittance, cathode, electron, gun 2233
 
  • F. Le Pimpec, B. Beutner, H.-H. Braun, R. Ganter, C.H. Gough, C.P. Hauri, R. Ischebeck, S. Ivkovic, K.B. Li, M. Paraliev, M. Pedrozzi, T. Schietinger, B. Steffen, A. Trisorio
    PSI, Villigen
 
 

In the framework of the SwissFEL project, an alternative electron source to an RF photo-gun was investigated. It consists of a high voltage (up to 500 kV), high gradient pulsed diode system followed by single stage RF acceleration at 1.5 GHz. The electrons are produced from photo-cathodes or from field emitter arrays. The final goal of this accelerator is to produce a 200 pC electron beam with a projected normalized emittance below 0.4 mm.mrad and a bunch length of less than 10 ps. We present comparisons between beam dynamic simulations and measurements, as well as thermal emittance and quantum efficiency (QE) measurements obtained by producing photo-electrons from various metal cathodes.

 
TUPE043 THz-pulse-train photoinjector electron, bunching, beat-wave, acceleration 2236
 
  • C.H. Chen, K.Y. Huang, Y.-C. Huang
    NTHU, Hsinchu
  • W.K. Lau, A.P. Lee
    NSRRC, Hsinchu
 
 

A THz-pulse-train photoinjector is under construction at the High-energy OPtics and Electronics (HOPE) Lab. at National Tsinghua University, Taiwan. This photoinjector is believed to be useful for generating high-power THz radiation, as well as for driving or loading a plasma-wave accelerator. A THz laser beat wave with full tunability in its beat frequency is employed to induce the emission of the THz electron pulses from the photoinjector. We show in our study that such a photoinjector is capable of generating periodically bunched MeV electrons with a bunching factor larger than 0.1 at THz frequencies for a total amount of 1nC charges in a 10-ps time duration. We will also present a driver laser technology that can tune the electron bunch frequency with ease and help the growth of the high harmonics in the bunching spectrum of accelerated electrons. Experimental progress on this photoinjector will be reported in the conference. The authors gratefully acknowledge funding supports from National Scienc Council under Contract NSC 97-2112-M-007-018 -MY2, National Synchrotron Radiation Research Center under Project 955LRF01N, and National Tsinghua University under Project 98N2534·101.

 
TUPE045 The Status of TAC IR FEL & Bremsstrahlung Project FEL, electron, undulator, gun 2242
 
  • A. Aksoy, O. Yavas
    Ankara University, Faculty of Engineering, Tandogan, Ankara
  • H. Aksakal
    N.U, Nigde
  • P. Arikan
    Gazi University, Faculty of Arts and Sciences, Teknikokullar, Ankara
  • H. Duran Yildiz
    Dumlupinar University, Faculty of Science and Arts, Kutahya
  • Z. Nergiz, K. Zengin
    Ankara University, Faculty of Sciences, Tandogan/Ankara
  • S. Ozkorucuklu
    SDU, Isparta
  • I. Tapan
    UU, Bursa
 
 

Turkish Accelerator Center Infrared Free Electron Laser and Bremsstrahlung (TAC IR FEL&Brems.) project aims to produce cw mode FEL in 2.5-250 microns range and to produce bremsstrahlung photons using 15-40 MeV electron beam. The project is supported by State Planning Organization (SPO) of Turkey and is proceeded with inter university collaboration under the coordination of Ankara University. This facility is now called Turkish Accelerator and Radiation Laboratory at Ankara (TARLA) since its building located at Golbasi town 30 km south of Ankara, Turkey It is proposed that the facility will consist of 300 keV thermionic DC gun, two superconducting RF module and two optical resonator systems with 25 and 90 mm period lengths. In this study, the status and road map of the project is presented including some technical details on accelerator and FEL. In addition the research potential of facility is summarized.

 
TUPE047 Possible Way of Tandem Free Electron Laser Realization on Channeling Relativistic Particles radiation, FEL, electron, positron 2248
 
  • M.V. Vysotskyy, V.I. Vysotskii
    National Taras Shevchenko University of Kyiv, Radiophysical Faculty, Kiev
 
 

In the report the possibilities of FEL optimization and creation of tandem laser are considered. One of the optimal ways of coherent hard radiation generation is connected with the creation of FEL on channeling relativistic particles in perfect crystals [1]. The main role in solution of such problem plays the full Doppler effect [2]. The possibility of creation of tandem FEL, where one particle can radiate multiple times on one transition, is predicted for the first time. For such laser the intensive process of consecutive generation of two types of photons with different frequencies on the same radiating transition is possible and this double photon generation leads to the restoration of the initial state of quantum system. This effect allows to predict the possibility of multiple repeat of radiation cycle. The pumping source for such laser is the kinetic energy of moving particles. In such systems there is no need for inversion and absorption on radiation frequency is totally absent. The main problem of realization of tandem FEL is connected with the need of mediums with positive susceptibility in high frequency range, possible ways to solve this problem are also regarded.


1. Vysotskii V.I., Kuzmin R.N. Gamma-Ray Lasers, MSU Publ. House, Moscow, 1989.
2. Vysotskyy M.V., Vysotskii V.I. // Nuclear Instr. and Methods in Physics Research B, 2006, V. 252, P. 75-80

 
TUPE054 Short Pulse Options for the UK's New Light Source Project electron, FEL, radiation, undulator 2266
 
  • I.P.S. Martin
    Diamond, Oxfordshire
  • R. Bartolini, I.P.S. Martin
    JAI, Oxford
  • D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

The New Light Source project aims to construct a suite of seeded free-electron lasers driven by a 2.25GeV cw super conducting linac. As part of the upgrade path, a number of options are being considered for generating ultra short (<1fs) soft x-ray pulses, with low-charge 'single-spike' operation and bunch slicing like approaches of particular interest, including as a possible extension to echo-enhanced harmonic generation. In this paper we present the status of this work, including recent results from fully start to end simulations.

 
TUPE055 Progress with the Design of the UK's New Light Source Facility FEL, linac, gun, radiation 2269
 
  • R.P. Walker
    Diamond, Oxfordshire
 
 

Considerable progress has been made in recent months with the design of the UK's proposed New Light Source facility. This includes further optimisation of the injector, linac and FEL performance and operating parameters, and full start-to-end tolerance and jitter studies. More detailed engineering considerations for key components such as the cw linac cryomodules, undulator and vacuum chamber have been undertaken, as well as overall layout and outline design of the buildings. In this report we summarise progress in all these areas, the current status and future plans for the project.


* on behalf of the NLS project team.

 
TUPE058 Energy Spread Issue in Laser Undulator based XFELs undulator, electron, FEL, storage-ring 2272
 
  • Y. Kim, Y.C. Jing, S.-Y. Lee, P.E. Sokol
    IUCF, Bloomington, Indiana
 
 

At the Indiana University Cyclotron Facility (IUCF), we are developing a new XFEL concept, which is based on the Compton scattering and the laser undulator instead of the conventional magnetic undulator. Since the period of the laser undulator is only about 500 nm, the coherent hard X-rays can be generated by using a compact electron accelerator with a beam energy of about 50 MeV. In this paper, we report an estimation of the energy spread growths due to the Compton scattering itself and their impacts on the XFEL lasing in the laser undulator based XFEL concept.

 
TUPE060 Study of FEL Mirror Degradation at the Duke FEL and HIGS Facility FEL, cavity, wiggler, radiation 2275
 
  • S.F. Mikhailov, J.Y. Li, V. Popov, Y.K. Wu
    FEL/Duke University, Durham, North Carolina
 
 

The Duke FEL and High Intensity Gamma-ray Source (HIγS) are operated with a wide range of electron beam energies (0.24 - 1.2 GeV) and photon beam wavelengths (190 - 1060 nm). Currently, the HIγS provides users with the gamma beams in the energy range from 1 to about 65 MeV, with a near future extension to about 100 MeV. The maximum total gamma-flux produced at the HIγS facility is up to 1010 gammas per second. Production of high level gamma-ray flux, requiring a very high average FEL intra-cavity power and high electron beam current, can cause significant degradation of the FEL mirrors. To ensure the predictability and stability of the HIγS operation for user research program, we have developed a comprehensive program to continuously monitor the performance of the FEL mirrors. This program has enabled us to use a particular set of FEL mirrors for a few hundreds hours of high gamma-flux operation with predictable performance. In this work, we discuss sources and consequences of the mirror degradation for a variety of wavelengths and present our estimates of the mirror life time as a function of the FEL wavelength, gamma-ray polarization, and total gamma-flux.

 
TUPE063 Generation of Optical Orbital Angular Momentum in a Free-electron Laser bunching, electron, FEL, undulator 2278
 
  • E. Hemsing, A. Marinelli, J.B. Rosenzweig
    UCLA, Los Angeles
 
 

A simple scheme to generate intense light with orbital angular momentum in an FEL is described. The light is generated from a helically pre-bunched beam created in an upstream modulator. The beam energy is tuned to maximize gain in the higher-order mode which reaches saturation well before the spontaneous modes driven by noise are amplified.

 
TUPE065 Surface Characterization of the LCLS RF Gun Cathode cathode, gun, electron, photon 2284
 
  • A. Brachmann, F.-J. Decker, Y.T. Ding, D. Dowell, P. Emma, J.C. Frisch, A. Gilevich, G.R. Hays, P. Hering, Z. Huang, R.H. Iverson, H. Loos, A. Miahnahri, D. Nordlund, H.-D. Nuhn, P.A. Pianetta, J.L. Turner, J.J. Welch, W.E. White, J. Wu, D. Xiang
    SLAC, Menlo Park, California
 
 

Surface characterization of the LCLS RF gun cathode A. Brachmann On behalf of the LCLS commissioning team The first copper cathode installed in the LCLS RF gun was used during LCLS commissioning for more than a year. However, after high charge operation (~ 500 pC), the cathode showed a decline of quantum efficiency due to surface contamination caused by residual ionized gas species present in the vacuum system. We report results of SEM, XPS and XAS studies that were carried out on this cathode after it was removed from the gun. X-ray absorption and X-ray photoelectron spectroscopy reveal surface contamination by various hydrocarbon compounds. In addition we report on the performance of the second installed cathode with emphasis on the spatial distribution of electron emission.

 
TUPE066 Femtosecond Operation of the LCLS for User Experiments cavity, electron, FEL, emittance 2287
 
  • J.C. Frisch, C. Bostedt, J.D. Bozek, A. Brachmann, R.N. Coffee, F.-J. Decker, Y.T. Ding, D. Dowell, P. Emma, A. Gilevich, G. Haller, G.R. Hays, P. Hering, B.L. Hill, Z. Huang, R.H. Iverson, E.P. Kanter, B. Kraessig, H. Loos, A. Miahnahri, H.-D. Nuhn, A. Perazzo, M. Petree, D.F. Ratner, T.J. Smith, S.H. Southworth, J.L. Turner, J.J. Welch, W.E. White, J. Wu, L. Young
    SLAC, Menlo Park, California
  • R.B. Wilcox
    LBNL, Berkeley, California
 
 

In addition to its normal operation at 250pC, the LCLS has operated with 20pC bunches delivering X-ray beams to users with energies between 800eV and 2 keV and with bunch lengths below 10 fs FWHM. A bunch arrival time monitor and timing transmission system provide users with sub 100 fs synchronization between a laser and the X-rays for pump / probe experiments. We describe the performance and operational experience of the LCLS for short bunch experiments.

 
TUPE069 A Proof-of-principle Echo-enabled Harmonic Generation FEL Experiment at SLAC radiation, undulator, emittance, dipole 2293
 
  • M.P. Dunning, E.R. Colby, Y.T. Ding, J.T. Frederico, A. Gilevich, C. Hast, R.K. Jobe, D.J. McCormick, J. Nelson, T.O. Raubenheimer, K. Soong, G.V. Stupakov, Z.M. Szalata, D.R. Walz, S.P. Weathersby, M. Woodley, D. Xiang
    SLAC, Menlo Park, California
  • J.N. Corlett, G. Penn, S. Prestemon, J. Qiang, D. Schlueter, M. Venturini, W. Wan
    LBNL, Berkeley, California
  • P.L. Pernet
    EPFL, Lausanne
 
 

In this paper we describe the technical design of an on-going proof-of-principle echo-enabled harmonic generation (EEHG) FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment was designed through late 2009 and built and installed between October 2009 and January 2010. We present the design considerations, the technical realization and the expected performances of the EEHG experiment.

 
TUPE072 Preliminary results of the echo-seeding experiment ECHO-7 at SLAC radiation, electron, undulator, simulation 2299
 
  • D. Xiang, E.R. Colby, Y.T. Ding, M.P. Dunning, J.T. Frederico, A. Gilevich, C. Hast, R.K. Jobe, D.J. McCormick, J. Nelson, T.O. Raubenheimer, K. Soong, G.V. Stupakov, Z.M. Szalata, D.R. Walz, S.P. Weathersby, M. Woodley
    SLAC, Menlo Park, California
  • J.N. Corlett, G. Penn, S. Prestemon, J. Qiang, D. Schlueter, M. Venturini, W. Wan
    LBNL, Berkeley, California
  • P.L. Pernet
    EPFL, Lausanne
 
 

ECHO-7 is a proof-of-principle echo-enabled harmonic generation* FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment aims to generate coherent radiation at 318 nm and 227 nm, which is the 5th and 7th harmonic of the infrared seed laser. In this paper we present the preliminary results from the commissioning run of the completed experimental setup which started in April 2010.


* G. Stupakov, PRL, 102, 074801 (2009); D. Xiang and G. Stupakov, PRST-AB, 12, 030702 (2009).

 
TUPE074 The JLAMP VUV/Soft x-ray User Facility at Jefferson Laboratory FEL, electron, linac, wiggler 2302
 
  • F.E. Hannon, S.V. Benson, D. Douglas, P. Evtushenko, J.G. Gubeli, K. Jordan, J.M. Klopf, G. Neil, M.D. Shinn, C. Tennant, G.P. Williams, S. Zhang
    JLAB, Newport News, Virginia
 
 

Jefferson Lab (JLab) is proposing JLAMP (JLab AMPlifier), a 4th generation light source covering the 10-100 eV range in the fundamental mode with harmonics stretching towards the oxygen k-edge. The new photon science user facility will feature a two-pass superconducting linac to accelerate the electron beam to 600MeV at repetition rates of 4.68MHz continuous wave. The average brightness from a seeded amplifier free electron laser (FEL) will substantially exceed existing light sources in this device's wavelength range, extended by harmonics towards 2 nm. Multiple photon sources will be made available for pump-probe dynamical studies. The status of the machine design and technical challenges associated with the development of the JLAMP are presented here.

 
TUPE080 Study of High Harmonic Generation at Synchrotron SOLEIL using an Echo Enabling Technique electron, radiation, synchrotron, storage-ring 2308
 
  • C. Evain, M.-E. Couprie, J.-M. Filhol, M. Labat, A. Nadji
    SOLEIL, Gif-sur-Yvette
  • A. Zholents
    ANL, Argonne
 
 

SOLEIL is presently installing a laser bunch slicing set-up to produce ultra-short X-ray pulses. We propose a method to generate coherent synchrotron radiation at high harmonics in a storage ring using an echo scheme. Like in the method proposed recently for free electron lasers, the echo scheme uses two modulators and two dispersive sections. We show that this can be done at the synchrotron SOLEIL by adapting the classical slicing scheme. In the present study at SOLEIL, the two laser/electrons interactions are planned to occur in two out of vacuum wigglers of period 150 mm, and the high harmonic radiation will be emitted in an APPLE-II type undulator with a period of 44mm or 80 mm in the beamline TEMPO or with a period of 52 mm in the beamline DEIMOS.

 
TUPE082 Advanced Beam Dynamics Experiments with the SPARC High Brightness Photoinjector emittance, injection, electron, linac 2311
 
  • M. Ferrario, D. Alesini, F. A. Anelli, M. Bellaveglia, M. Boscolo, L. Cacciotti, M. Castellano, E. Chiadroni, L. Cultrera, G. Di Pirro, L. Ficcadenti, D. Filippetto, S. Fioravanti, A. Gallo, G. Gatti, A. Mostacci, E. Pace, R.S. Sorchetti, C. Vaccarezza
    INFN/LNF, Frascati (Roma)
  • A. Bacci, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano
  • A. Cianchi, B. Marchetti
    INFN-Roma II, Roma
  • L. Giannessi, A. Petralia, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • O. Limaj
    University of Rome La Sapienza, Rome
  • M. Moreno, M. Serluca
    INFN-Roma, Roma
  • J.B. Rosenzweig
    UCLA, Los Angeles, California
  • H. Tomizawa
    JASRI/SPring-8, Hyogo-ken
  • C. Vicario
    PSI, Villigen
 
 

The primary goal of the SPARC project is the commissioning of the SASE FEL operating at 500 nm driven by a 150-200 MeV high brightness photoinjector. Additional experiments are foreseen also in the HHG Seeded configuration at 266, 160 and 114 nm. A second beam line hosting a THz source has been recently commissioned. The recent successful operation of the SPARC injector in the Velocity Bunching (VB) mode has opened new perspectives to conduct advanced beam dynamics experiments with ultra-short electron pulses able to extend the THz spectrum and to drive the FEL in the SASE Single Spike mode. Moreover a new technique called Laser Comb, able to generate a train of short pulses with high repetition rate, as the one required to drive coherent plasma wake field excitation, has been tested in the VB configuration. The energy/density modulation produced by an infrared laser pulse interacting with the electron beam near the cathode has been also investigated. In this paper we report the experimental results obtained so far and the comparison with simulations.

 
TUPE086 A Study of Lifetime of NEA-GaAs Photocathode at Various Temperatures cathode, electron, vacuum, dipole 2323
 
  • H. Iijima, D. Kubo, M. Kuriki, Y. Masumoto, C. Shonaka
    HU/AdSM, Higashi-Hiroshima
 
 

We report that a lifetime of GaAs photocathode activated the surface to negative electron affinity (NEA) at various temperatures. An electron source with the NEA-GaAs photocathode is an important device for high-average-current electron accelerators, such as a next-generation light source based on an energy recovery linac, in which a high power laser is illuminated to the photocathode for generation of the electron beam of 100mA. For example, the laser power of 15W should be needed for the quantum efficiency of 1% and the wavelength of 800nm. Consequently the high power laser causes to rise the GaAs temperature. The degradation of photo emission from the cathode is enhanced by a thermal desorption of Cs due to the temperature rise, even if the beam is not extracted. We have measured the cathode lifetime at various temperatures between room temperature and 100 C.

 
TUPE087 Development of a Photocathode Test Bench using a Cryo-pump and a NEG Pump vacuum, cathode, electron, ion 2326
 
  • D. Kubo, H. Iijima, K. Ito, M. Kuriki, Y. Masumoto, C. Shonaka
    HU/AdSM, Higashi-Hiroshima
  • N. Nishimori
    JAEA/ERL, Ibaraki
  • M. Yamamoto
    KEK, Ibaraki
 
 

A NEA-GaAs photocathode is an important component for the next generation light source based on the ERL. Although the NEA-GaAs cathode has high quantum efficiency, deterioration of the NEA surface becomes serious with a high current operation. Therefore improvement of a vacuum in the cathode chamber is essential to get a long lifetime of the NEA-GaAs cathode. We are developing a photocathode test bench consisting of titanium (TP340) chamber, whose outgas rate is 1/1000 smaller than one of a SUS chamber, a cryo-pump (4000l/s) and a NEG pump (1900l/s). We report mainly the vacuum performance of the system.

 
TUPE090 Progress in Construction of Gun Test Facility for Compact ERL gun, cathode, cavity, vacuum 2335
 
  • T. Miyajima, K. Haga, K. Harada, T. Honda, Y. Honda, Y. Kobayashi, T.M. Mitsuhashi, S. Nagahashi, E. Nakamura, S. Nozawa, T. Ozaki, S. Sakanaka, K. Satoh, M. Shimada, T. Takahashi, R. Takai, M. Tobiyama, T. Uchiyama, A. Ueda, M. Yamamoto
    KEK, Ibaraki
  • S. Matsuba
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
  • T. Muto
    Tohoku University, School of Scinece, Sendai
 
 

Compact ERL (cERL) is a test accelerator to establish accelerator technologies for GeV-class synchrotron light source based on ERL (Energy Recovery Linac), and will be constructed in KEK. It consists of an injector with photo cathode 500 kV DC gun, a merger section, super conducting RF cavities for acceleration and energy recovery, return loops, and a beam dump. To operate and test the photo cathode gun before installing it in the cERL injector, Gun Test Facility is constructing in KEK, AR south experimental hall. The Gun Test Facility has two photo cathode guns, 200 kV gun developed by Nagoya University and new 500 kV gun which is being developed, laser system to be emitted electrons from photo cathode surface, beam transport lines, and a beam diagnostics system. The diagnostics system consists of a double slit emittance measurement system, beam position monitors, transverse profile monitors, and a deflecting cavity to measure the bunch length and the longitudinal profile. In this presentation, the progress in the construction of the Gun Test Facility and the beam dynamics simulation will be presented.

 
TUPE091 Recent Progress in the Energy Recovery Linac Project in Japan gun, linac, cavity, emittance 2338
 
  • S. Sakanaka, M. Akemoto, T. Aoto, D.A. Arakawa, S. Asaoka, A. Enomoto, S. Fukuda, K. Furukawa, T. Furuya, K. Haga, K. Hara, K. Harada, T. Honda, Y. Honda, H. Honma, T. Honma, K. Hosoyama, M. Isawa, E. Kako, T. Kasuga, H. Katagiri, H. Kawata, Y. Kobayashi, Y. Kojima, T. Matsumoto, H. Matsushita, S. Michizono, T.M. Mitsuhashi, T. Miura, T. Miyajima, H. Miyauchi, S. Nagahashi, H. Nakai, H. Nakajima, E. Nakamura, K. Nakanishi, K. Nakao, T. Nogami, S. Noguchi, S. Nozawa, T. Obina, S. Ohsawa, T. Ozaki, C.O. Pak, H. Sakai, H. Sasaki, Y. Sato, K. Satoh, M. Satoh, T. Shidara, M. Shimada, T. Shioya, T. Shishido, T. Suwada, M. Tadano, T. Takahashi, R. Takai, T. Takenaka, Y. Tanimoto, M. Tobiyama, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, K. Watanabe, M. Yamamoto, S. Yamamoto, Y. Yamamoto, Y. Yano, M. Yoshida
    KEK, Ibaraki
  • M. Adachi, M. Katoh, H. Zen
    UVSOR, Okazaki
  • R. Hajima, R. Nagai, N. Nishimori, M. Sawamura
    JAEA/ERL, Ibaraki
  • H. Hanaki
    JASRI/SPring-8, Hyogo-ken
  • H. Iijima, M. Kuriki
    HU/AdSM, Higashi-Hiroshima
  • I. Ito, H. Kudoh, N. Nakamura, S. Shibuya, K. Shinoe, H. Takaki
    ISSP/SRL, Chiba
  • H. Kurisu
    Yamaguchi University, Ube-Shi
  • M. Kuwahara, T. Nakanishi, S. Okumi
    Nagoya University, Nagoya
  • S. Matsuba
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
  • T. Muto
    Tohoku University, School of Scinece, Sendai
  • K. Torizuka, D. Yoshitomi
    AIST, Tsukuba
 
 

Future synchrotron light source using a 5-GeV-class energy recovery linac (ERL) is under proposal by our Japanese collaboration team, and we are conducting active R&D efforts for that. We are developing super-brilliant DC photocathode guns, two types of cryomodules for both injector and main superconducting linacs, 1.3 GHz high CW-power rf sources, and other important components. We are also constructing a compact ERL for demonstrating the recirculation of low-emittance, high-current beams using those key components. We present our recent progress in this project.

 
TUPE095 First Results from III-V Photocathode Preparation Facility for the ALICE ERL Photoinjector gun, vacuum, electron, FEL 2347
 
  • B.L. Militsyn, B.D. Fell, L.B. Jones, J.W. McKenzie, K.J. Middleman
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • I. Burrows, R.J. Cash
    STFC/DL, Daresbury, Warrington, Cheshire
  • H.E. Scheibler, A.S. Terekhov
    ISP, Novosibirsk
 
 

ALICE is an Energy Recovery Linac built at STFC Daresbury Laboratory to investigate the process of energy recovery. The project is an accelerator research facility intended to develop the technology and expertise required to build a New Light Source (NLS) in the UK based on a suite of Free-Electron Lasers. Currently the ALICE gun accommodates only a single photocathode at any one time, and the system must be vented to atmospheric pressure for photocathode replacement. To meet the stringent vacuum demands for good photocathode lifetime, the system then requires baking for up to three weeks. A new load-lock cathode preparation system has been designed as an upgrade to the ALICE gun. The load-lock can accommodate up to six photocathodes, and permits rapid transfer of photocathodes between the load-lock activation chamber and the gun, thus maintaining the vacuum. The photocathode preparation facility was successfully commissioned in spring 2009, and has since permitted a quantum yield of 15% to be achieved at a wavelength of 635 nm. Presently, a new gun vessel and photocathode transport system is under manufacture, with a view to this being fully-installed on ALICE in Spring 2012.

 
TUPE096 Recent Developments on ALICE (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory linac, cavity, radiation, LLRF 2350
 
  • Y.M. Saveliev, R. Bate, R.K. Buckley, S.R. Buckley, J.A. Clarke, P.A. Corlett, D.J. Dunning, A.R. Goulden, S.F. Hill, F. Jackson, S.P. Jamison, J.K. Jones, L.B. Jones, S. Leonard, P.A. McIntosh, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, A.J. Moss, B.D. Muratori, J.F. Orrett, S.M. Pattalwar, P.J. Phillips, D.J. Scott, E.A. Seddon, B.J.A. Shepherd, S.L. Smith, N. Thompson, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Harrison, D.J. Holder, G.M. Holder, A.L. Schofield, P. Weightman, R.L. Williams
    The University of Liverpool, Liverpool
  • D. Laundy
    STFC/DL, Daresbury, Warrington, Cheshire
  • T. Powers
    JLAB, Newport News, Virginia
  • G. Priebe, M. Surman
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
 
 

Progress made in ALICE (Accelerators and Lasers In Combined Experiments) commissioning and a summary of the latest experimental results are presented in this paper. After an extensive work on beam loading effects in SC RF linac (booster) and linac cavities conditioning, ALICE can now operate in full energy recovery mode at the bunch charge of 40pC, the beam energy of 30MeV and train lengths of up to 100us. This improved operation of the machine resulted in generation of coherently enhanced broadband THz radiation with the energy of several tens of uJ per pulse and in successful demonstration of the Compton Backscattering x-ray source experiment. The next steps in the ALICE scientific programme are commissioning of the IR FEL and start of the research on the first non-scaling FFAG accelerator EMMA. Results from both projects will be also reported.

 
WEZMH01 Beam Diagnostics with Synchrotron Radiation in Light Sources photon, emittance, diagnostics, instrumentation 2392
 
  • S. Takano
    JASRI/SPring-8, Hyogo-ken
 
 

This presentation will cover the topics of synchrotron radiation monitors for light sources, including transverse beam profile measurement, longitudinal bunch profile measurement, and bunch purity measurement. It will also cover developments of beam diagnostics based on observation of x-rays from a dedicated insertion device.

 

slides icon

Slides

 
WEZMH02 Instrumentation for the ATF2 Facility cavity, feedback, emittance, extraction 2397
 
  • N. Terunuma
    KEK, Ibaraki
 
 

This presentation will cover the development of the tuning methods, beam stabilization and reliability, and instrumentation including laser wires, high resolution BPMs and fast feedback, to achieve the beam of a few nano meters size required for the ILC final focus.

 

slides icon

Slides

 
WEOCMH02 Recent Developments of the Beam Arrival Time Monitor with Femtosecond Resolution at FLASH pick-up, electron, controls, FEL 2405
 
  • M.K. Bock, M. Felber, P. Gessler, K.E. Hacker, F. Ludwig, H. Schlarb, B. Schmidt, J. Zemella
    DESY, Hamburg
  • F. Löhl
    CLASSE, Ithaca, New York
  • S. Schulz, L.-G. Wißmann
    Uni HH, Hamburg
 
 

At FLASH an optical synchronisation system with femtosecond stability is now being installed and commissioned. The system is based on pulses from a passively modelocked fibre laser which are distributed in length-stabilised fibres to various end-stations. Several modifications and improvements with respect to the original layout, especially concerning permanent operation and reliability, are already incorporated at this stage. The electron bunch arrival-time monitors (BAM), based on electro-optical modulation, are an integral part of the system. Built on the experiences with first prototypes, the most recent version of the BAM, installed prior to the first bunch compressor, includes essential changes affecting the optical layout, the mechanical and thermal stability as well as the electronics for read-out and controls. The revised BAM showed improved performance and will be complemented by a second congenerous BAM after the first bunch compressor during the present FLASH upgrade. The experiences with installation as well as the scope of improvements as to simplification and long-term stability will be presented.

 

slides icon

Slides

 
WEOCMH03 Bunch Length Measurements with Laser/SR Cross-Correlation photon, synchrotron, storage-ring, optics 2408
 
  • A. Miller, D.R. Daranciang, A. Lindenberg
    Stanford University, Stanford, California
  • W.J. Corbett, A.S. Fisher, J.J. Goodfellow, X. Huang, W.Y. Mok, J.A. Safranek, H. Wen
    SLAC, Menlo Park, California
 
 

By operating SPEAR3 in the quasi-isochronous (low-alpha) mode, one can produce synchrotron radiation with pulse durations of order 1ps. Applications include pump-probe x-ray science and the production of THz radiation. Measurements of short pulse lengths are difficult, however, because the light intensity is low and streak camera resolution is of order 2ps. Bunch arrival time and timing jitter are also important factors. In order to further quantify the pulse length and timing system performance, a 5MHz, 50fs mode-locked laser was used to cross-correlate with the visible SR beam in a BBO crystal. The 800nm laser pulse was delayed with a precision mechanical stage and the product SHG radiation detected with a photodiode / lock-in amplifier using the ring frequency as reference. In this paper we report on the experimental setup, preliminary pulse length measurements and prospects for further improvement.

 

slides icon

Slides

 
WEXRA02 Echo-Enabled Harmonic Generation bunching, undulator, FEL, radiation 2416
 
  • G.V. Stupakov
    SLAC, Menlo Park, California
 
 

Recently a new concept*, ** for FEL seeding has been proposed that should allow generation of much higher harmonics of the laser modulation than previously envisioned. The Echo-enabled Harmonic Generation (EEHG) FEL uses two modulators in combination with two dispersion sections to generate in the beam a high-harmonic density modulation starting with a relatively small initial energy modulation of the beam. The EEHG seeding technique makes feasible a one stage seeding of soft x-ray FELs. An experimental installation is now being constructed at SLAC to demonstrate the EEHG in the NLCTA facility.


*G. Stupakov, PRL, 102, 074801 (2009).
**D. Xiang and G. Stupakov, PRSTAB, 030702 (2009).

 

slides icon

Slides

 
WEOARA03 Novosibirsk Free Electron Laser Facility: Two-orbit ERL with Two FELs FEL, electron, undulator, cavity 2427
 
  • N. Vinokurov, E.N. Dementyev, B.A. Dovzhenko, Ya.V. Getmanov, E.I. Kolobanov, V.V. Kubarev, G.N. Kulipanov, L.E. Medvedev, S.V. Miginsky, L.A. Mironenko, V. Ovchar, K.V. Palagin, B.Z. Persov, V.M. Popik, T.V. Salikova, M.A. Scheglov, S.S. Serednyakov, O.A. Shevchenko, A.N. Skrinsky, V.G. Tcheskidov, Y.F. Tokarev, P. Vobly, N.S. Zaigraeva
    BINP SB RAS, Novosibirsk
  • B.A. Knyazev, N. Vinokurov
    NSU, Novosibirsk
 
 

The Novosibirsk ERL has rather complicated magnetic system. One orbit (11-MeV) for terahertz FEL lies in the vertical plane. Other four orbits lie in the horizontal plane. The beam is directed to these orbits by switching on of two round magnets. In this case electrons pass through RF cavities four times, obtaining 40-MeV. At the 4th orbit the beam is used in FEL, and then is decelerated four times. At the 2nd orbit (20 MeV) we have a bypass with another FEL. When bypass magnets are switched on, the beam passes through this FEL. The length of bypass is chosen to provide the delay necessary to realize deceleration at the3rd pass through accelerating cavities. In 2008 two of four horizontal orbits were assembled and commissioned. The electron beam was accelerated twice and then decelerated down to low injection energy. First multi-orbit ERL operation was demonstrated successfully. In 2009 the first lasing at the second FEL, installed on the bypass of the second track, was achieved. The wavelength tunability range is 40 - 80 micron. Energy recovery of a high energy spread used electron beam was optimized. Third and fourth orbit assembly is in progress.

 

slides icon

Slides

 
WEPEA012 Status of the SOLEIL Femtosecond X-ray Source electron, wiggler, radiation, storage-ring 2499
 
  • A. Nadji, F. Briquez, M.-E. Couprie, J.-C. Denard, J.-M. Filhol, C. Herbeaux, Ph. Hollander, M. Labat, J.-F. Lamarre, C. Laulhe, V. Leroux, O. Marcouillé, J.L. Marlats, T. Moreno, P. Morin, P. Prigent, S. Ravy, F. Sirotti
    SOLEIL, Gif-sur-Yvette
  • J. Luning
    UPMC, Paris
  • M. Meyer
    LIXAM, Orsay
 
 

An electron bunch slicing set-up is being installed on the SOLEIL storage ring, based on Zholents and Zolotorev method [1]. This will provide 100 fs long X-ray pulses with reasonable flux to two existing beamlines, working with soft X-rays (TEMPO) and hard X-rays (CRISTAL). The parameters of the laser system and of the wiggler modulator, and the optimisation of the laser focusing optics and beam path, from the laser hutch in the experimental hall to the inside of the storage ring tunnel have been finalised. The construction work will start early 2010, including the ordering of the laser, the construction of the laser hutch, the construction of the wiggler, the installation of a new modified vacuum dipole chamber by which the laser will enter into the ring, and the modifications of some components in the beamlines front-ends to provide the best possible separation of the sliced X-Ray. In this paper, we will report on the status of the installation of the set-up and the expected performances including laser-electron interaction efficiency, halo background effect and the possible operation filling patterns.

 
WEPEA037 Study of the Coherent Terahertz Radiation by Laser Bunch Slicing at UVSOR-II Electron Storage Ring electron, radiation, storage-ring, undulator 2570
 
  • N. Yamamoto, M. Hosaka, Y. Taira, Y. Takashima
    Nagoya University, Nagoya
  • M. Adachi, M. Katoh, S.I. Kimura, H. Zen
    UVSOR, Okazaki
  • M. Shimada
    KEK, Ibaraki
  • T. Takahashi
    KURRI, Osaka
  • T. Tanikawa
    Sokendai - Okazaki, Okazaki, Aichi
 
 

Terahertz (THz) coherent synchrotron radiation (CSR) is emitted not only from shorter electron bunches compared with the radiation wavelength but also from electron bunches withμstructures. Formation ofμstructures at sub picosecond scale in electron bunches by a laser slicing technique is experimentally studied through observation of THz CSR. The properties of the THz CSR such as intensity or spectrum depend strongly on the shape and amplitude of theμstructure created in the electron bunches. To study in detail the formation ofμstructure in electron bunches using the laser slicing technique, we have performed experiments at the UVSOR-II electron storage ring. THz CSR, which contains information on theμstructure, was observed under various laser conditions. The THz CSR spectrum was found to depend strongly on the intensity and the pulse width of the laser. The results agreed qualitatively with a numerical calculation. It was suggested that the evolution of theμstructure during CSR emission is important under some experimental conditions.

 
WEPEA038 Present Status and Upgrade Plan on Coherent Light Source Developments at UVSOR-II FEL, electron, storage-ring, undulator 2573
 
  • M. Adachi, K. Hayashi, M. Katoh, S.I. Kimura, J. Yamazaki, H. Zen
    UVSOR, Okazaki
  • M. Hosaka, Y. Taira, Y. Takashima, N. Yamamoto
    Nagoya University, Nagoya
  • T. Takahashi
    KURRI, Osaka
  • T. Tanikawa
    Sokendai - Okazaki, Okazaki, Aichi
 
 

UVSOR, a 750 MeV synchrotron light source of 53m circumference had been operated for more than 20 years. After a major upgrade in 2003, this machine was renamed to UVSOR-II. The ring is now routinely operated with low emittance of 27 nm-rad and with four undulators. By utilizing a part of the existing FEL system and an ultra-short laser system, coherent synchrotron radiation in THz range and coherent harmonic generation in VUV range have been extensively studied under international collaborations. Based on results obtained from previous coherent light source developments, a new five-year research program on the coherent light source developments has been started from FY2008, which includes creation of a new 4-m long straight section by moving the injection point, upgrades of the undulator and the laser system and construction of dedicated beam-lines for these coherent light sources. Present status and upgrade plan on these coherent light sources at UVSOR-II will be presented at the conference.

 
WEPEA040 Progress and Status of Synchrotron Radiation Facility SAGA Light Source wiggler, storage-ring, undulator, linac 2579
 
  • S. Koda, Y. Iwasaki, T. Kaneyasu, Y. Takabayashi
    SAGA, Tosu
 
 

Saga Light Source (SAGA-LS) is a synchrotron radiation facility with a 255 MeV linac and a 1.4 GeV storage ring. The spectral range covers from VUV to hard X ray region of about 23 keV. Improvement and development of the accelerator have been achieved from official opening of the facility. Stored current of the storage ring has been increased from 100 mA to 300 mA in these three years. An APPLE-2 undulator was developed and installed to a long straight section LS3. A field correction system for the undulator was developed to compensate precisely betatron tune shift, dipole kick and skew quadrupole. A superconducting wiggler is under construction. The peak field and critical energy are 4 T and 5.2 keV, respectively. The wiggler will provide synchrotron radiation in the 20-40 keV range. The wiggler consists of a superconducting main pole and two normal conducting side poles. The main pole is directly cooled by a small GM cryocooler and liquid helium is not used. In addition, laser Compton scattering experiment is under progress. A port to introduce CO2 laser light was installed as a beam line BL1. First gamma ray was observed in December 2009.

 
WEPEA061 Comparative Analysis of Compton Scattering Cross Section Derived with Classical Electrodynamics and with use of Quantum Approach electron, scattering, radiation, photon 2627
 
  • I.V. Drebot, Yu.N. Grigor'ev, A.Y. Zelinsky
    NSC/KIPT, Kharkov
 
 

In the paper the expression for cross section of Compton scattering derived with classical electrodynamics approach is presented. The comparative analysis of the Compton cross section value calculated with the presented expression and with expression derived with quantum approach was carried out for the case of head on collision and low photon beam intensity. Results of the analysis show the good agreement of both approaches. It proves legitimacy of classical electromagnetic approach use for analysis of particle beam dynamics and estimation of generated x-ray beam parameters in laser electron storage rings.

 
WEPEA067 Design Studies for a VUV-Soft X-ray FEL Facility at LBNL FEL, electron, gun, brightness 2639
 
  • J.N. Corlett, K.M. Baptiste, J.M. Byrd, P. Denes, R.W. Falcone, J. Feng, J. Kirz, D. Li, H.A. Padmore, C. F. Papadopoulos, G. Penn, J. Qiang, D. Robin, R.D. Ryne, F. Sannibale, R.W. Schoenlein, J.W. Staples, C. Steier, T. Vecchione, M. Venturini, W. Wan, R.P. Wells, R.B. Wilcox, J.S. Wurtele, A. Zholents
    LBNL, Berkeley, California
  • A.E. Charman, E. Kur
    UCB, Berkeley, California
 
 

Recent reports have identified the scientific requirements for a future soft x-ray light source and a high-repetition-rate FEL facility responsive to them is being studied at LBNL. The facility is based on a CW superconducting linear accelerator with beam supplied by a high-brightness, high-repetition-rate photocathode electron gun, and on an array of FELs to which the beam is distributed, each operating at high repetition rate and with even pulse spacing. Dependent on the experimental requirements, the individual FELs may be configured for either SASE, HGHG, EEHG, or oscillator mode of operation, and will produce high peak and average brightness x-rays with a flexible pulse format ranging from sub-femtoseconds to hundreds of femtoseconds. We are developing a design concept for a 10‐beamline, coherent, soft x‐ray FEL array powered by a 2.5 GeV superconducting accelerator operating with a 1 MHz bunch repetition rate. Electron bunches are fanned out through a spreader, distributing beams to an array of 10 independently configurable FEL beamlines with nominal bunch rates up to 100 kHz. Additionally, one beamline could be configured to operate at higher repetition rate.

 
WEPEB033 Beam-based Feedbacks for the FERMI@Elettra Free Electron Laser feedback, controls, electron, linac 2758
 
  • M. Lonza, S. Cleva, S. Di Mitri, O. Ferrando, G. Gaio, A.A. Lutman, G. Penco, L. Pivetta, G. Scalamera
    ELETTRA, Basovizza
 
 

FERMI@Elettra is a new 4th-generation light source based on a single pass free electron laser. It consists of a 1.5-GeV normal-conducting linac working at 50 Hz repetition rate and two chains of undulators where the photon beams are produced with a seeded laser multistage mechanism. A number of control loops, some of them working on a shot by shot basis, are required to stabilize the crucial parameters of the beams. For this purpose, a generalized real-time framework integrated in the control system has been designed to flexibly and easily implement feedback loops using several monitoring and control variables. The paper discusses the requirements of the control loops and the implementation of the feedback framework. The first closed loop results and the experience gained in the operation of the feedbacks during the first phase of the machine commissioning will also be presented.

 
WEPEB056 Experiments on Laser-Based Alignment at the KEKB Injector Linac alignment, linac, vacuum, injection 2818
 
  • M. Satoh, E. Kadokura, T. Suwada
    KEK, Ibaraki
 
 

A new laser-based alignment system is under development in order to precisely align accelerator components along an ideal straight line at the KEKB injector linac. The new alignment system is strongly required in order to stably accelerate high-brightness electron and positron beams with high bunch charges and also to keep the beam stability with higher quality towards the next generation of B-factories. A new laser optics with Airy pattern (so-called Airy beam) has been developed and the laser propagation characteristics in vacuum has been systematically investigated at a 82-m-long straight section of a beam line of the injector linac. The laser-based alignment measurement based on the new laser optics has been carried out with a measurement resolution of ±0.1 mm level by using a previously-used laser detection system. The experimental results are reported along with the basic design of the new laser-based alignment system.

 
WEPEB057 New Laser-Based Alignment System for the 500-m-long KEK Electron/Positron Injector Linac alignment, linac, positron, electron 2821
 
  • T. Suwada, M. Satoh
    KEK, Ibaraki
 
 

A new laser-based alignment system is under development at the KEKB injector linac. We are revisiting our alignment system because the previous alignment system has become obsolete. The new alignment system is again required to increase the stability of the electron- and positron-beam injection towards next-generation of B-factories. It is similar to the previous one, which comprises a laser-diode system and quadrant photodetectors installed in vacuum light pipes. A displacement of a girder unit of the accelerating structure can be precisely measured in the direction of the laser-ray trace, where the laser light must stably propagate up to 500-m-long downstream without any orbital and beam-size fluctuation. A novel approach in which a two-beam-interference laser-light propagates in the vacuum light pipe, has been designed to increase the alignment precision based on the quadrant photodetector measurement. The propagating laser spot sizes can be narrowed due to the two-beam interference over the Rayleigh-range limit. The design of the new laser-based alignment system is summarized along with some experimental results in this report.

 
WEPEB076 Precision Synchronization of the FLASH Photoinjector Laser gun, electron, feedback, controls 2875
 
  • S. Schulz, L.-G. Wißmann
    Uni HH, Hamburg
  • V. R. Arsov
    PSI, Villigen
  • M.K. Bock, M. Felber, P. Gessler, K.E. Hacker, F. Ludwig, H. Schlarb, B. Schmidt, J. Zemella
    DESY, Hamburg
 
 

After its upgrade, the free-electron laser in Hamburg (FLASH) will start operating with an exchanged RF-gun driven by an improved photoinjector laser. Since the SASE FEL process is very sensitive to the RF gun phase it is highly desirable to implement phase stabilization feedback, which, in turn, requires an arrival-time stabilization of the photoinjector laser pulses. In this paper we report on the synchronization of the photoinjector laser system to the optical timing reference using an optical cross-correlation scheme. This enables not only the measurement of the timing jitter, but also the stabilization using adaptive feed-forward algorithms acting on an EOM incorporated in the laser's pulse train oscillator. First results from the commissioning and future plans for a feedback system are discussed.

 
WEPEB080 Femtosecond Electro-Optical Synchronization System with Long-Term Phase Stability Results instrumentation, FEL, linac, controls 2881
 
  • J. Tratnik, B. Batagelj, L. Pavlovič, M. Vidmar
    University of Ljubljana, Faculty of Electrical Engineering, Ljubljana
  • P.L. Lemut, V. Poucki
    I-Tech, Solkan
 
 

The new generation of accelerators requires timing distribution and RF synchronization with femtosecond precision in terms of jitter and long-term stability. The proposed electro-optical synchronization system makes use of commercial telecom single-mode optical fibre operating at 1550 nm.. It operates on over 300 m distance. It consists of a transmitter, located near a low-jitter master oscillator, and receiver, located at the remote location. The field experiments have been done in the accelerator environment with the fibre pair in the tunnel. The prototype units were installed at the same location to make phase difference measurement simple. Temperature in various installation points, phase difference and both units internal operational parameters were continuously monitored and stored. Data was post-analysed and conclusions were used for hardware changes and mostly the long-term stability improvement. A dedicated phase detector was designed to monitor less than 20 fs changes. Results are showing 80 fs RMS and 30 fs stability over 20 and 8 hours respectively. The prototype is being redesigned for manufacturing with some new features for improved long-term stability.

 
WEPEC033 Repair Techniques of Superconducting Cavity for Improvement Cavity Performance at KEK-STF cavity, superconducting-cavity, accelerating-gradient, linear-collider 2965
 
  • K. Watanabe, H. Hayano, E. Kako, S. Noguchi, T. Shishido, Y. Yamamoto
    KEK, Ibaraki
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
 
 

The repair techniques of superconducting cavity is important to obtain better yield of accelerating gradient of superconducting 1.3 GHz 9-cell cavities. The techniques for repair of the cavity are combination of the optical inspection, make a replica of defect, the local grinding and the result of temperature mapping in vertical test. The pit type defect (size: 0.7 mm x 0.5 mm, depth: about 115 um) was found at the quench location of MHI-08 cavity at 16 MV/m by optical inspection after 1st vertical test at June 2009. The location of defect is boundary between EBW seam and heat affected zone at 172 degree of 2-cell equator. If a cause of field limitation for MHI-08 is really this pit type defect, then the cavity can repair to remove the defect by mechanical grinding method. The defect was removed completely by the special grinding machine. After grinding, Electric polishing process and optical inspection were carried out to check the surface condition at grinding area. The 2nd vertical test of MHI-08 was carried out at October 2009. The accelerating field was improved from 16 MV/m to 27 MV/m. The result of repair of MHI-08 will be reported in this paper.

 
WEPD012 Cryogenic Design of a PrFeB-Based Undulator undulator, cryogenics, radiation, electron 3111
 
  • J. Bahrdt, H.-J. Baecker, M. Dirsat, W. Frentrup, A. Gaupp, D. Pflückhahn, M. Scheer, B. Schulz
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
  • F.J. Grüner, R. Weingartner
    LMU, Garching
  • D. Just
    Technische Universität Berlin, Berlin
  • F.H. O'Shea
    UCLA, Los Angeles, California
 
 

In collaboration with the Ludwig-Maximilian-University Munich a cryogenic PrFeB- based undulator has been built. The 20-period device has a period length of 9mm and a fixed gap of 2.5mm. The undulator has recently been installed at the laser plasma accelerator at the Max-Planck-Institute for Quantenoptik. The operation of a small gap device at a high emittance electron beam requires stable magnetic material. A high coercivity is achieved with PrFeB- material which is cooled down to 50K. This temperature is 100K lower as compared to the temperature of a NdFeB-based cryogenic undulator. In this paper we present the mechanic and cryogenic design and compare the predictions with measured data. The results are extrapolated to a 2m-long variable gap undulator.

 
WEPD014 Undulators of the sFLASH Experiment undulator, FEL, electron, vacuum 3114
 
  • H. Delsim-Hashemi, J. Roßbach
    Uni HH, Hamburg
  • U. Englisch, T. Mueller, A. Schöps, M. Tischer, P.V. Vagin
    DESY, Hamburg
  • I. Vasserman
    ANL, Argonne
 
 

A seeded free-electron laser (FEL) experiment at VUV wavelengths, called sFLASH, is being prepared at the existing SASE FEL user facility FLASH. Seed pulses at wavelengths around 35 nm from high harmonic generation (HHG) will interact with the electron beam in sFLASH undulators upstream of the existing SASE undulator section. In this paper the tuning results and performance of the sFLASH undulators are presented.

 
WEPD019 Development of Instrumentation for Magnetic Field Measurements of 2m Long Superconducting Undulator Coils undulator, electron, vacuum, insertion 3129
 
  • A.W. Grau, T. Baumbach, S. Casalbuoni, S. Gerstl, M. Hagelstein, D. Saez de Jauregui
    Karlsruhe Institute of Technology (KIT), Karlsruhe
 
 

Precise measurements of the magnetic properties of conventional, i.e., permanent magnet based insertion devices has undergone tremendous improvements over the past 10 to 15 years and initiated a new era in synchrotron light sources worldwide. A similar breakthrough is now necessary in the field of superconducting insertion devices. In this contribution we describe the planned instrumentation to perform magnetic measurements of the local field, the field integrals and the multipole components of superconducting undulator coils in a cold invacuum (cryogen free) environment.

 
WEPD051 Ultrashort Electron Bunch Train Production by UV Laser Pulse Stacking electron, radiation, gun, cavity 3210
 
  • L.X. Yan, Q. Du, Y.-C. Du, Hua, J.F. Hua, W.-H. Huang, C. Liao, C.-X. Tang
    TUB, Beijing
 
 

Ultrashort relativistic electron beam can be applied to produce high power coherent THz radiation by mechanisms such as FEL, CSR, CTR et al. The THz modulated electron beams, or THz-repetition-rate ultrashort electron bunch trains exhibit further enhancement of coherent THz radiation. This article will report the experimental results on the ultrashort electron bunch train production by copper based photocathode RF gun via direct UV laser pulse stacking using birefringent α-BBO crystal serials at our laboratory. The temporal profile of the electron beam was measured by deflecting cavity. Space charge effect downstream the photocathode is simulated. This shaping method of laser pulse by α-BBO crystals can also be applied to form quasi flattop UV laser pulse for reducing the initial emittance of the electron beam from the photocathode RF gun.

 
WEPD052 Wavelength-tunable UV Laser for Electron Beam Generation with Low Intrinsic Emittance emittance, cathode, electron, photon 3213
 
  • C.P. Hauri, B. Beutner, H.-H. Braun, R. Ganter, C.H. Gough, R. Ischebeck, F. Le Pimpec, M. Paraliev, M. Pedrozzi, C. Ruchert, T. Schietinger, B. Steffen, A. Trisorio, C. Vicario
    PSI, Villigen
 
 

In the framework of the SwissFEL activities at PSI we developed a powerful UV laser system delivering wavelength-tunable pulses at a central wavelength varying from 260 to 283 nm. The laser system based on a ultra-stable frequency-trippled Ti:sapphire amplifier delivers mJ pulse energy within a duration of 1-10 ps with 1.5 nm spectral width. Temporal flattop pulses are achieved by direct UV shaping with a UV Dazzler and a prism-based stretcher. The system is used to explore thermal emittance and quantum efficiency dependence on photon energy from metallic photo-cathode (Cu and Mo). With pepperpot techniques we have measured the predicted theoretical limit for thermal emittance (0.4 mm.mrad / mm rms laser spot size at 283 nm and 0.6 mm.mrad / mm at 263 nm) for metallic photocathodes.

 
WEPD054 Novel Ultrafast Mid-IR Laser System FEL, wiggler, electron, linac 3216
 
  • R. Tikhoplav, A.Y. Murokh
    RadiaBeam, Santa Monica
  • I. Jovanovic
    Purdue University, West Lafayette, Indiana
 
 

Of particular interest to X-ray FEL light source facilities is Enhanced Self-Amplified Spontaneous Emission (ESASE) technique. Such a technique requires an ultrafast (20-50 fs) high peak power, high repetition rate reliable laser systems working in the mid-IR range of spectrum (2μm or more). The approach of this proposed work is to design a novel Ultrafast Mid-IR Laser System based on optical parametric chirped-pulse amplification (OPCPA). OPCPA is a technique ideally suited for production of ultrashort laser pulses at the center wavelength of 2 μm. Some of the key features of OPCPA are the wavelength agility, broad spectral bandwidth and negligible thermal load.

 
WEPD058 A High Power Fibre Laser for Electron Beam Emittance Measurements emittance, electron, diagnostics, extraction 3227
 
  • L. Corner, L.J. Nevay
    OXFORDphysics, Oxford, Oxon
  • L. Corner, R. Walczak
    JAI, Oxford
 
 

We present the results of the development of a high power fibre laser system for the laserwire project to measure very low emittance electron beams. We use the output of a commercial 1uJ, 6.49MHz laser system and amplify it in rod type photonic crystal fibre. This is a novel form of optical fibre which has a large core diameter (70um) but still supports only a single Gaussian spatial mode, essential for focusing the beam to the smallest spot size and achieving the highest resolution. We amplify the seed pulses in a burst mode suitable for use in a linear accelerator, which has the advantage of decreasing the pump power required and thus reducing the running cost and heat loading of the laser system. The amplified pulses have energies of ~ 100uJ in the near infrared and excellent beam quality, as specified in the original design, and are frequency converted to the green to give sub-micron spatial resolution.

 
WEPE018 ILC Siting in Russia, Dubna Region and ILC Related Activity at JINR site, collider, cryomodule, linear-collider 3383
 
  • G. Shirkov, Ju. Boudagov, Yu.N. Denisov, A. Dudarev, I.N. Meshkov, B.M. Sabirov, A.N. Sissakian, G.V. Trubnikov
    JINR, Dubna, Moscow Region
 
 

The investigations on ILC siting in the Dubna region and ILC technical activity at JINR are presented. International intergovernmental status of JINR, stable geological and plain relief conditions, comfortable location and well developed infrastructure create a set of advantages of the JINR site in the neighborhood of Dubna. The shallow layout of accelerator tunnel makes it possible to use a communication gallery at the surface instead of second one. This is an effective way of significant cost reduction of all conventional facilities and explicit labor of the project. The results of the preliminary geological engineering surveys along the supposed route of the ILC in Dubna area of Moscow region are presented.

 
WEPE035 Development of High Average Power Lasers for the Photon Collider cavity, photon, collider, coupling 3434
 
  • J. Gronberg, B. Stuart
    LLNL, Livermore, California
  • A. Seryi
    SLAC, Menlo Park, California
 
 

The realization of a photon collider option at a future TeV scale electron linear collider requires the generation of high average power picosecond laser pulses. Recirculating cavities have been proposed to reduce the amount of laser power that needs to be generated, however, these cavities impose stringent limits on the wavefront quality and stability of the laser architecture. We report on a design study of a high average power laser amplifier architecture which can produce the required laser time structure and stability to drive these recirculating cavities.

 
WEPE041 A Superconducting Magnet Upgrade of the ATF2 Final Focus quadrupole, sextupole, linear-collider, collider 3440
 
  • B. Parker, M. Anerella, J. Escallier, P. He, A.K. Jain, A. Marone, P. Wanderer, K.-C. Wu
    BNL, Upton, Long Island, New York
  • P. Bambade
    LAL, Orsay
  • B. Bolzon, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • P.A. Coe, D. Urner
    OXFORDphysics, Oxford, Oxon
  • C. Hauviller, E. Marin, R. Tomás, F. Zimmermann
    CERN, Geneva
  • N. Kimura, K. Kubo, T. Kume, S. Kuroda, T. Okugi, T. Tauchi, N. Terunuma, T. Tomaru, K. Tsuchiya, J. Urakawa, A. Yamamoto
    KEK, Ibaraki
  • A. Seryi, C.M. Spencer, G.R. White
    SLAC, Menlo Park, California
 
 

The KEK ATF2 facility, with a well instrumented beam line and Final Focus (FF), is a proving ground for linear collider (LC) technology to demonstrate the extreme beam demagnification and spot stability needed for a LC FF*. ATF2 uses water cooled magnets but the baseline ILC calls for a superconducting FF**. Thus we plan to replace some ATF2 FF magnets with superconducting ones made via direct wind construction as planned for the ILC. With no cryogenic supply at ATF2, we look to cool magnets and current leads with a few cryocoolers. ATF2 FF coil winding is underway at BNL and production warm magnetic measurements indicate good field quality. Having FF magnets with larger aperture and better field quality than present FF might allow reducing the beta function at the FF for study of focusing regimes relevant to CLIC. Our ATF2 magnet cryostat will have laser view ports for cold mass movement measurement and FF support and stabilization requirements under study. We plan to make stability measurements at BNL and KEK to relate ATF2 FF magnet performance to that of a full length ILC R&D prototype at BNL. We want to be able to predict LC FF performance with confidence.


* ATF2 proposal, volumes 1 and 2 at http://lcdev.kek.jp/ILC-AsiaWG/WG4notes/atf2/proposal/index.html
** International Linear Collider Reference Design Report, ILC-REPORT-2007-001, August 2007.

 
THOAMH03 Control and Pulsewidth-measurement of Laser Accelerated Electron Beams electron, plasma, controls, polarization 3608
 
  • H. Kotaki, S.V. Bulanov, Y. Hayashi, T. Homma, M. Kando, K. Kawase, J. Koga, M. Mori
    JAEA, Kyoto
 
 

Laser wakefield acceleration (LWFA) is regarded as a basis for the next-generation of charged particle accelerators. In experiments, it has been demonstrated that LWFA is capable of generating electron bunches with high quality: quasi-monoenergetic, low in emittance, and a very short duration of the order of ten femto-seconds. Such femtosecond bunches can be used to measure ultrafast phenomena. In applications of the laser accelerated electron beam, it is necessary to generate a stable electron beam and to control the electron beam. A 40 fs laser pulse with the energy of 200 mJ is focused onto a supersonic gas jet. We succeed to generate a stable electron beam by using a Nitrogen gas target. The profile of the electron beam can be manipulated by rotating the laser polarization. When we use a S-polarized laser pulse, a 20 MeV electron beam is observed with an oscillation in the image of the energy spectrum. From the oscillation, the pulse width of the electron beam is calculated to at most a few tens fs. The direction of the electron beam can be controlled by changing the gas-jet position. The self-injected electron beam can be controlled by the control of the laser and gas jet.

 

slides icon

Slides

 
THOBMH03 Coulomb Crystal Extraction from an Ion Trap for Application to Nano-beam Source ion, extraction, emittance, simulation 3622
 
  • K. Ito, H. Higaki, K. Izawa, H. Okamoto
    HU/AdSM, Higashi-Hiroshima
  • H. Takeuchi
    Hiroshima University, Faculty of Science, Higashi-Hirosima
 
 

An ion plasma confined in a compact trap system is Coulomb crystallized near the absolute zero temperature. The emittance of the crystallized ion plasma is close to the ultimate limit, far below those of any regular ion beams. This implies that, if we can somehow accelerate a crystal without serious heating, an ion beam of extremely low emittance becomes available*. Such ultra-low emittance beams, even if the current is low, can be used for diverse purposes including precise single ion implantation to various materials and for systematic studies of radiation damage effects on semiconductors and bio-molecules. We performed proof-of-principle experiments on the extraction of Coulomb crystals from a linear Paul trap system developed at Hiroshima University. A string crystal of 40Ca+ ions is produced with the Doppler laser cooling technique and then extracted by switching DC potentials on the trap electrodes. We demonstrate that it is possible to transport the ultra-low temperature ion chain keeping its ordered configuration.


* M. Kano et al., J. Phys. Soc. Jpn. 73, No.3, 760 (2004).

 

slides icon

Slides

 
THOBRA03 Observation of Transverse-Longitudinal Coupling Effect at UVSOR-II optics, electron, betatron, coupling 3650
 
  • M. Shimada
    KEK, Ibaraki
  • M. Adachi, M. Katoh, S.I. Kimura
    UVSOR, Okazaki
  • M. Hosaka, Y. Takashima, N. Yamamoto
    Nagoya University, Nagoya
  • T. Takahashi
    KURRI, Osaka
  • T. Tanikawa
    Sokendai - Okazaki, Okazaki, Aichi
 
 

It was theoretically predicted that, when the electron pulse length comes into the femto-second range, transverse motion of the electrons is strongly coupled with the longitudinal one and makes significant effect on the pulse shape. In the experiments, a fine dip structure was created on the electron bunches circulating in a storage ring by a so-called laser bunch slicing technique and then the evolution of the structure was measured through the spectrum of the coherent synchrotron radiation. When the ring was operated in a low-alpha mode, the shape of the dip structure was oscillating with the transverse betatron frequency, which clearly indicates the existence of the longitudinal-transverse coupling effect. This understanding will be crucially important for generation and transportation of ultra-short electron bunches in light sources or colliders for high energy physics. In this presentation, the dependency of the CSR signal intensity on the wavelength of the THz CSR and the electron beam current are also reported.

 

slides icon

Slides

 
THPEB028 A Doublet-based Injection-extraction Straight Section for PS2 injection, optics, extraction, quadrupole 3945
 
  • W. Bartmann, B. Goddard, C. Heßler
    CERN, Geneva
 
 

A new design of the injection-extraction straight section for PS2 has been made, motivated by problematic intersections of the PS2 transfer lines, potential gain in drift length for the beam transfer systems and reduction of the total straight section length. The new straight contains two injection systems with separate beam lines and three extraction systems to the SPS sharing a single beam line, together with an extracted "waste" beam from the H- injection with its line to a beam dump. A symmetric doublet structure was chosen, with a reduced number of cells and quadrupoles. The optics solutions are described and the matching and tuning flexibility investigated. The implications for the different injection and extraction systems and transfer lines will be discussed, together with the specific issues of integration into the overall lattice.

 
THPEC001 Optimization of Nonlinear Wakefield Amplitude in Laser Plasma Interaction plasma, wakefield, electron, simulation 4056
 
  • A.K. Upadhyay, P. Jha
    Lucknow University, Lucknow
  • S. Krishnagopal
    BARC, Mumbai
  • S.A. Samant, D. Sarkar
    CBS, Mumbai
 
 

Nonlinear, high-amplitude plasma waves are excited in the wake of an intense laser pulse propagating in a cold plasma, providing acceleration gradients up to GeV/m. Linear analytic analyses have shown that the wakefield amplitude is optimal for a certain ratio of the pulse length and plasma wavelength*,**. Here we present results of simulation studies to optimize the nonlinear wakefield amplitudes. Variation in the laser pulse length is considered for maximizing amplitudes of wakefields generated by half-sine and Gaussian pulse profiles. Further, the advantages of using a transversely inhomogeneous plasma for the generation of the nonlinear wakefields are studied and compared with the homogeneous case.


* E. Esarey, P. Sprengle, J. Krall and A. Ting, IEEE Trans. Palsma Sci. 24, 252 (1996)
** L. M. Gorbunov and V. I. Kirsanov, Zh. Eksp. Teor. Fiz. 93, 509 (1987), Sov. Phys. JETP, 46, 290 (1988).

 
THPEC002 Simulation of Electron Acceleration by Two Laser Pulses Propagating in a Homogenous Plasma electron, plasma, wakefield, simulation 4059
 
  • S. Krishnagopal
    BARC, Mumbai
  • P. Jha, A.K. Upadhyay
    Lucknow University, Lucknow
  • S.A. Samant, D. Sarkar
    CBS, Mumbai
 
 

We study electron acceleration by two laser pulses co-propagating one behind the other in a homogeneous plasma. We show, using one-dimensional simulations, that the wake amplitude can be amplified or diminished depending on the time delay between the two lasers, in agreement with linear analytic theory. We extend the study to the bubble regime using two-dimensional simulations. We find that the one-dimensional optimization holds in two dimensions also. Trapping and acceleration of quasi-monoenergetic electrons (up to around 300 MeV) is found in the bucket behind the second laser, even for low intensities, where there is no trapping with a single laser. Thus, this scheme could be very useful for achieving a desired accelerated energy with less intense lasers, or, equivalently, increasing the accelerated energy for a given laser intensity.


* G. Raj, A. K. Upadhyay, R. K. Mishra and P. Jha, Phys. Rev. ST Accel. and Beams 11, 071301 (2008).

 
THPEC003 Stabilization of Laser Accelerated Electron Bunch by the Ionization-stage Control electron, plasma, target, controls 4062
 
  • M. Mori, S.V. Bulanov, Y. Hayashi, K. Kawase, K. Kondo, A.S. Pirozhkov, A. Sugiyama
    JAEA, Ibaraki-ken
  • M. Kando
    JAEA APRC, Ibaraki-ken
  • H. Kotaki, K. Ogura
    JAEA/Kansai, Kyoto
  • H. Nishimura
    ILE Osaka, Suita
 
 

The pointing stability and the divergence of a quasi-monoenergetic electron bunch generated in a self-injected laser-plasma acceleration regime were investigated. Gas-jet targets have been irradiated with focused 40 fs laser pulses at the 4-TW peak power. A pointing stability of 2.4 mrad root-mean-square (RMS) and a beam divergence of 10.6 mrad (RMS) were obtained using argon gas-jet target for 50 sequential shots, while these values were about three times smaller than at the optimum condition using helium. In particular, the peak electron energy was 9 MeV using argon, which is almost three times lower than that using helium. This result implies that the formation of the wake-field is different between argon and helium, and it plays an important role in the generation of a electron bunch. This stabilization scheme is available for another gas material such as nitrogen. At nitrogen gas-jet target, the pointing stability is more improved to 1.4 times smaller (1.7 mrad (RMS)) than that in argon gas-jet target and the peak energy is increased to grater than 40 MeV. These results prove that this method not only stabilize the e-beam but also allows controlling the electron energy.

 
THPEC004 All-optical Hard X-ray Sources and their Application to Nuclear Engineering electron, photon, plasma, focusing 4065
 
  • K. Koyama
    University of Tokyo, Tokyo
  • A. Maekawa, H. Masuda, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken
  • Y. Oishi
    Central Research Institute of Electric Power Industry, Yokosuka-shi, Kanagawa
 
 

We are studying the artificial injection of initial electrons into the wakefield for producing stable electron bunch (the charge is 100 pC, the energy stability is better than a few per cent). The objective of our research is to produce 100-keV class monochromatic X-ray pulses for measuring concentrations of nuclear materials in a reprocessing plant. A K-edge densitometry using monochromatic hard x-ray beams is one of the effective technique to measure concentrations of nuclear materials in a reprocessing solutions. An inverse Compton scattering process between an IR-laser beam of 800 nm and high-energy electron bunch of above 80 MeV makes it possible to deliver tunable monochromatic x-rays near K-absorption edges of nuclear materials of 115-129 keV. In order to use in a reprocessing plant, the equipment for the K-edge densitometry must be smaller than a compact car. The only solution to realize the compact system is to use a laser wakefield accelerator instead of a radio frequency linac. An ultra-short ten-TW laser pulse focused on a supersonic jet makes it possible to accelerate electrons up to 100 MeV in a plasma length of 2.5 mm.

 
THPEC007 Density Structure Effect on the Electron Energy in Laser Wakefield Accelerator electron, plasma, acceleration, simulation 4068
 
  • J. Kim, G. Kim, J. Kim, S.H. Yoo
    KERI, Changwon
 
 

Using the nonlinear interaction between the high power laser and the plasma, we can generate strong acceleration field, called the laser wake field acceleration. The plasma density is very crucial to generate high energy electron. In this work, we studied the effect of the plasma density structure on the accelerated electron energy. We used 20 TW, 40 fs laser system to generate the plasma wakefield. A gas jet was used as a target. The plasma density was controlled by the back pressure of the gas nozzle and measured by the interferometer. The accelerated electron energy was measured using the electron energy spectrometer with 0.5 T magnet. The bunch charge was measured integrated charge transformer (ICT). When the plasma density is uniform, 2×1019 cm-3 we can generate 200 MeV electron beam with bunch charge 33 pC. The electron beam divergence was less than 5 degree. If there exists the downward density tramp, the electron energy is only 50 MeV. The PIC simulation also indicates that if there is density ramp structure, the electron is not accelerated well. In this presentation, the overall experimental and simulation results are presented.

 
THPEC009 A Gas-filled Capillary Plasma Source for Laser-driven Plasma Acceleration plasma, acceleration, electron, wakefield 4071
 
  • H. Suk, D. Jang, D. Jang, M. Kim, S. Oh
    APRI-GIST, Gwangju
 
 

In recent years, the laser-driven plasma wakefield acceleration has attracted much attention as it has a much higher acceleration gradient (>100 GeV/m) compared with the RF-based conventional accelerators. In the past, the supersonic gas jet method for plasma wakefield acceleration was widely used, but this method has a limitation in acceleration distance and energy because the focused laser beam is diffracted severely over a very short distance (~ a few mm range). To avoid the diffraction problem, a capillary plasma source can be used, where a high power laser beam can be guided over a long distance (~ a few cm range) by a parabolic plasma density profile in the capillary plasma channel. We have developed a gas-filled capillary plasma source for generation of GeV-level electron beams in collaboration with the University of Oxford team. In this presentation, the detailed test results and the near-future experimental plan for GeV-level e-beam generation are shown.

 
THPEC011 Electron Acceleration Experiments Using the Hercules Laser System at the University of Michigan electron, plasma, emittance, wakefield 4074
 
  • K.M. Krushelnick, V. Chvykov, F.J. Dollar, G. Kalintchenko, A. Maksimchuk, T. Matsuoka, C.S. McGuffey, W. Schumaker, A.G.R. Thomas, V. Yanovsky
    University of Michigan, FOCUS Center for Ultrafast Optical Science, Ann Arbor, Michigan
 
 

Recent experimental results will be discussed with regard to the use of the 300 TW, 30 fsec HERCULES laser system at the Center for Ultrafast Optical Science at Michigan to generate GeV range electron beams using Laser Wakefield Acceleration (LWFA). The electron beam quality is shown to be improved substantially using gas mixtures- causing an increase in beam charge and a decrease in emittance. The dynamics of the acceleration process are also determined by measurements of spatially resolved scattered laser radiation and the use of femtosecond optical probing techniques.

 
THPEC013 Compact Couplers for Photonic Crystal Laser-driven Accelerator Structures coupling, simulation, lattice, acceleration 4077
 
  • B.M. Cowan, M.C. Lin, B.T. Schwartz
    Tech-X, Boulder, Colorado
  • R.L. Byer, C. McGuinness
    Stanford University, Stanford, California
  • E.R. Colby, R.J. England, R.J. Noble, J.E. Spencer
    SLAC, Menlo Park, California
 
 

Photonic crystal waveguides are promising candidates for laser-driven accelerator structures because of their ability to confine a speed-of-light mode in an all-dielectric structure. Because of the difference between the group velocity of the waveguide mode and the particle bunch velocity, fields must be coupled into the accelerating waveguide at frequent intervals. Therefore efficient, compact couplers are critical to overall accelerator efficiency. We present designs and simulations of high-efficiency coupling to the accelerating mode in a three-dimensional photonic crystal waveguide from a waveguide adjoining it at 90 degrees. We discuss details of the computation, including an optimization routine to modify the geometric parameters of the coupler for maximum efficiency, the resulting transmission, and estimates of the fabrication tolerance for these devices. We include some background on the accelerator structure and photonic crystal-based optical acceleration in general.

 
THPEC019 Implementation of a Polarized Electron Source at the S-DALINAC electron, polarization, linac, scattering 4083
 
  • C. Eckardt, T. Bahlo, P. Bangert, R. Barday, U. Bonnes, M. Brunken, R. Eichhorn, J. Enders, M. Platz, Y. Poltoratska, M. Roth, F. Schneider, M. Wagner, A. Weber, B. Zwicker
    TU Darmstadt, Darmstadt
  • W. Ackermann, W.F.O. Müller, T. Weiland
    TEMF, TU Darmstadt, Darmstadt
 
 

At the superconducting 130 MeV Darmstadt electron linac S-DALINAC* a source of polarized electrons** is being installed, extending the experimental capabilities with polarized electron and polarized photon probes for nuclear structure studies. This involves disassembling the existing low energy test stand and rebuilding the beam line in the accelerator hall. The beam itself is produced from a GaAs cathode by irradiation with a pulsed laser. The low-energy electron beam line includes diagnostic elements, a Wien filter for spin manipulation, a 100 keV Mott polarimeter for polarization measurement and a chopper-prebuncher section to modulate the time structure of the beam. At higher energies a 5-10 MeV Mott polarimeter and a 50-130 MeV Moeller polarimeter as well as a Compton transmission polarimeter will be installed to measure the beam polarization after acceleration. The Mott polarimeter is working with backscattered electrons under 165° scattering angle while for the Moeller polarimeter a wide-angle (3°-15°) spectrometer magnet was designed. We report on the performance of the test stand, the ongoing implementation, and the polarimeter research and development.


* A. Richter, Proc. EPAC 96, Sitges, p.110.
** Y. Poltoratska et al., AIP Conference Proc. 1149 (2009), p.983.

 
THPEC020 QE Tests with Nb-Pb SRF Photoinjector and Arc Deposited Cathodes cathode, cavity, SRF, niobium 4086
 
  • J.K. Sekutowicz
    DESY, Hamburg
  • P. Kneisel
    JLAB, Newport News, Virginia
  • R. Nietubyc
    The Andrzej Soltan Institute for Nuclear Studies, Centre Swierk, Swierk/Otwock
  • T. Rao, J. Smedley
    BNL, Upton, Long Island, New York
 
 

In this contribution, we report Quantum Efficiency (QE) test results with a hybrid lead/niobium superconducting RF (SRF) photoinjector at 2K and new Pb arc deposited cathodes at 300K. The ultimate goal of our effort is to build a Nb injector with the superconducting cathode made of lead, which, as reported in the past, demonstrated superior QE compared to other metallic superconducting elements. At first, we present the test results obtained with a 1.6-cell high purity Nb cavity with the emitting lead spot in the center of the back plate. The QE test results at room temperature and the SEM surface analysis of eight Pb cathodes, deposited recently under various conditions, are discussed in the second part of this contribution.

 
THPEC024 Development of a High Average Power Laser Generating Electron Beam in ILC Format for KEK-STF cathode, electron, gun, cavity 4098
 
  • M. Kuriki, H. Iijima
    HU/AdSM, Higashi-Hiroshima
  • H. Hayano, Y. Honda, H. Sugiyama, J. Urakawa
    KEK, Ibaraki
  • G. Isoyama, S. Kashiwagi, R. Kato
    ISIR, Osaka
  • E. Katin, E. Khazanov, V. Lozhkarev, G. Luchinin, A. Poteomkin
    IAP/RAS, Nizhny Novgorod
  • G. Shirkov, G.V. Trubnikov
    JINR, Dubna, Moscow Region
 
 

Aim of Super-conducting Test Facility (STF) at KEK is demonstrating technologies for International Linear Collider. In STF, one full RF unit will be developed and beam acceleration test will be made. In super-conducting accelerator, precise RF control in phase and power is essential because the input RF power should be balanced to beam accelerating power. To demonstrate the system feasibility, the beam accelerating test is an important step in R&D phase of STF and ILC. To provide ILC format beam for STF, we develop an electron source based on photo-cathode L-band RF gun. To generate ILC format beam, we developed a laser system based on Yb fiber oscillator in 40.6 MHz. The pulse repetition is decreased by picking pulses in 2.7 MHz, which meets ILC bunch spacing, 364 ns. The pulse is then amplified by YLF laser up to 8 uJ per pulse in 1 mm. The light is converted to 266 nm by SHG and FHG. Finally, 1.5 uJ per pulse is obtained and 3.2 nC bunch charge will be made. We report the basic performance of the laser system from the accelerator technology point of a view.

 
THPEC025 First Emission of Novel Photocathode Gun Gated by Z-polarized Laser Pulse polarization, cathode, gun, focusing 4101
 
  • H. Tomizawa, H. Dewa, H. Hanaki, A. Mizuno, T. Taniuchi
    JASRI/SPring-8, Hyogo-ken
 
 

We have developed a laser-induced Schottky-effect-gated photocathode gun since 2006. This new type of gun utilizes a laser's coherency to realize a compact laser source using Z-polarization of the IR laser on the cathode. This Z-polarization scheme reduces the laser pulse energy by reducing the cathode work function due to Schottky effect. Before this epoch-making scheme, photocathode guns had never utilized laser's coherency. A hollow laser incidence is applied with a hollow convex lens that is focused after passing the beam through a radial polarizer. According to our calculations (convex lens: NA=0.15), a Z-field of 1 GV/m needs 1.26 MW at peak power for the fundamental wavelength (792 nm) and 0.316 MW for the SHG (396 nm). Therefore, we expect that this laser-induced Schottky emission requires just a compact femtosecond laser oscillator as a laser source. Besides, a dichromatic laser scheme (photo-exciting: 780 nm; gating: 30 um) should be applied to polarized electron sources for International Linear Collider (ILC). We report the first feasibility study of this laser-induced Schottky-effect on several metal photocathodes by comparing radial and azimuthal polarizations.

 
THPEC027 Beam Dynamics in Femtosecond Photocathode RF Gun electron, gun, emittance, linac 4107
 
  • K. Kan, T. Kondoh, T. Kozawa, K. Norizawa, A. Ogata, J. Yang, Y. Yoshida
    ISIR, Osaka
 
 

Time resolution of pulse radiolysis, which is a stroboscopic measurement technique, depends on electron bunch length. In order to improve the time resolution, femtosecond electron bunch generation at photocathode rf gun was investigated. A 1.6-cell S-band photocathode rf gun, similar to the Gun IV type at Brookhaven National Laboratory (BNL), was used. The rf gun consisted of a half cell and a full cell. A copper cathode was located in the half cell. The rf gun was driven by femtosecond UV laser pulse (266 nm), which was generated with third-harmonic-generation (THG) of Ti:Sapphire femtosecond laser (800 nm). The longitudinal and transverse dynamics of the electron bunch generated by the UV laser was investigated. The bunch length was measured with the dependence of energy spread on acceleration phase in a linac, which was set at the downstream of the rf gun. Transverse emittance at the linac exit was also measured with Q-scan method.

 
THPEC029 Photocathode Femtosecond Electron Beam Applications: Femtosecond Pulse Radiolysis and Femtosecond Electron Diffraction electron, gun, emittance, space-charge 4113
 
  • J. Yang, K. Kan, T. Kondoh, Y. Murooka, N. Naruse, K. Tanimura, Y. Yoshida
    ISIR, Osaka
  • J. Urakawa
    KEK, Ibaraki
 
 

Both ultrafast time-resolved radiolysis and electron diffraction based on photocathode rf electron guns have been developed in Osaka University to reveal the hidden dynamics of intricate molecular and atomic processes in materials. One of the photocathode rf guns has been used successfully to produce a 100-fs high-brightness electron single bunch with a booster linear accelerator and a magnetic bunch compressor. The time resolution of 240 fs was achieved at the first time in the pulse radiolysis. Another photocathode rf gun, which produces directly a near-relativistic 100-fs electron beam, has been developed to construct femtosecond electron diffraction. The megavolt electron diffraction patterns have been observed. The dependences of the emittance, bunch length and energy spread on the radio-frequency (rf) and space charge effects in the rf gun were investigated.

 
THPEC031 Multi-bunch Electron Beam Generation based on Cs-Te Photocathode RF-Gun at Waseda University electron, cavity, linac, klystron 4119
 
  • Y. Yokoyama, T. Aoki, K. Sakaue, T. Suzuki, M. Washio, J. Yokose
    RISE, Tokyo
  • H. Hayano, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • S. Kashiwagi
    ISIR, Osaka
  • R. Kuroda
    AIST, Tsukuba, Ibaraki
 
 

At Waseda University, we have been studying a high quality electron beam generation and its application experiments with Cs-Te photocathode RF-Gun. We have already succeeded in generating a stable high-charged single-bunch electron beam. To generate more intense electron beam, we designed a multi-bunch electron linac and developed the multi-pulse UV laser which irradiates to the cathode. The target values of the number of electron bunch and bunch charges are 100 bunches/train and 800 pC/bunch, respectively. In addition, we adopted the method of the amplitude modulation of the incident RF pulse to the S-band klystron in order to compensate the energy difference in each bunch because of the slow rise time of acceleration voltage in cavity and beam loading effect in the accelerating structure. In this conference, we will report design properties of our multi-bunch electron linac, the results of the multi-bunch electron beam diagnosis and the energy difference compensation using the RF amplitude modulation method.

 
THPEC032 Performance of the PHIN High Charge Photo Injector cathode, emittance, gun, electron 4122
 
  • M. Petrarca, E. Chevallay, A.E. Dabrowski, M. Divall Csatari, S. Döbert, D. Egger, V. Fedosseev, T. Lefèvre, R. Losito, O. Mete
    CERN, Geneva
 
 

The high charge PHIN photo injector is studied at CERN as an electron source for the CLIC Test Facility (CTF3) drive beam as an alternative to the present thermionic gun. The objective of PHIN is to demonstrate the feasibility of a laser-based electron source for CLIC. The photo injector operates with a 2.5 cell, 3 GHz RF gun using a Cs2Te photocathode illuminated by UV laser pulses generated by amplifying and frequency quadrupling the signal from a Nd:YLF oscillator running at 1.5GHz. The challenge is to generate a beam structure of 1908μbunches with 2.33nC perμbunch at 1.5GHz leading to a high integrated train charge of 4446nC and nominal beam energy of 5.5MeV with current stability below 1%. In the present test stand, a segmented beam dump has been implemented allowing a time resolved measurement of the energy and energy spread of the electron beam. In this paper we report and discuss the measured transverse and longitudinal beam parameters for both the full and time gated train of bunches, and the obtained photocathode quantum efficiency. Laser pointing and amplitude stability results are discussed taking into account correlation between laser and electron beam.

 
THPEC051 Low Voltage Electron Beam Bunching and Deflection electron, simulation, solenoid, diagnostics 4170
 
  • M. Cavenago
    INFN/LNL, Legnaro (PD)
  • F. Cavaliere, G. Maero, B. Paroli, R. Pozzoli, M. Romé
    Universita' degli Studi di Milano e INFN, Milano
 
 

In a Malmberg'Penning trap like ELTRAP an electron beam can be stored or propagated in a space charge dominated condition, due to the low acceleration voltage used; in particular we can test the longitudinal expansion of the electron bunch with several diagnostics, including Thomson scattering. Pulsed electron beams produced by an external photocathode source in the 1'10 keV energy range and with 4 ns length have been measured also by two electrostatic diagnostic systems. A proper software is needed to compensate for the capacitance of the pickup electrodes. Rf can be applied to the sectored electrode to produce a plasma source or to excite or to detect rotational modes; in particular the use of a new 8 sector electrode will allow up to m=3 modes.

 
THPEC054 Angular Distribution of Laser Ablation Plasma ion, plasma, solenoid, target 4179
 
  • K. Kondo
    Department of Energy Sciences, Tokyo Institute of Technology, Yokohama
  • R. Dabrowski, M. Okamura
    BNL, Upton, Long Island, New York
  • T. Kanesue
    RIKEN Nishina Center, Wako
 
 

In a laser ion source, a high power pulsed laser shot focused on a solid state target produces laser ablation plasma. This plasma has initial velocity towards the normal direction of the target and simultaneously expands three dimensionally. Since charge state distribution, velocity distribution and plasma temperature strongly depends on laser power density, power density is one of the important parameter to the angular distribution of plasma. Angular distribution of expanding plasma was measured by changing laser power density. Details of the experiment will be shown in the paper.

 
THPEC057 Acceleration Test of Two-Beam Type IH-RFQ Linac rfq, linac, cavity, ion 4185
 
  • T. Ishibashi, T. Hattori, N. Hayashizaki, L. Liang
    RLNR, Tokyo
 
 

High intensity heavy ion beam acceleration in the low energy region is one of the most difficult conditions to achieve, because the space charge effect is extremely strong. In order to generate a high intensity beam using linacs, we have to avoid beam loss by the space charge effect as much as possible. Multibeam acceleration has been proposed as a possible method of reducing the space charge effect. If one cavity could be used to accelerate several beams, a significant gain would be made in installation space and operational cost saving. In this study we look at a multibeam type radio frequency quadrupole (RFQ) linac in order to accelerate several beams using a single cavity. The RFQ electrodes are placed in an IH type cavity; This structure is known as a IH-RFQ linac. GSI in Germany proposed a multibeam type IH-RFQ linac with several beam channels in a single cavity. However, this multibeam type IH-RFQ linac has yet to be manufactured. We manufactured a 2-beam type IH-RFQ linac as a prototype of the multibeam type IH-RFQ. The linac outputs C2+ beam of 60 keV/u and 44 mA/channel in the design value. We will report about the beam acceleration test of the linac.

 
THPEC062 LIS in Low Power Density for RHIC-EBIS ion, target, ion-source, heavy-ion 4197
 
  • K. Kondo
    Department of Energy Sciences, Tokyo Institute of Technology, Yokohama
  • R. Dabrowski, M. Okamura
    BNL, Upton, Long Island, New York
  • T. Kanesue
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka
 
 

The Electron Beam Ion Source (EBIS) project at Brookhaven National Laboratory is a new heavy ion pre-injector for Relativistic Heavy Ion Collider (RHIC) and NASA Space Radiation Laboratory science programs. An important requirement for EBIS is an ion source capable of efficiently providing a variety of heavy ion species to many users within short period of time. In that respect, Laser Ion Source (LIS), which can supply many heavy ion species from solid targets, is a good candidate for RHIC-EBIS, however, LIS has an issue to be resolved. This is the requirement of limited current in low energy beam transport. LIS in the condition that laser power density is low, is expected to provide limited current with long pulse length. The discussions of the experimental results are presented.

 
THPEC076 Ion Generation via a Laser Ion Source with Hot Target target, ion, plasma, ion-source 4232
 
  • R. Dabrowski, M. Okamura
    BNL, Upton, Long Island, New York
  • T. Kanesue
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka
  • K. Kondo
    Department of Energy Sciences, Tokyo Institute of Technology, Yokohama
 
 

The Laser Ion Source is an efficient method for generating heavy ions for acceleration. The output produces high current and high charge-state beams from almost any type of elemental species. Using the Laser Ion Source apparatus, we consider improving the efficiency of this method by heating the target prior to laser irradiation. Prior deposition of any thermal energy into the target could add with the energy being delivered by the pulsed laser to produce higher current beams. These beams could be composed of higher charge-state ions and/or an increased net number of ions. We investigate by using a retrofitted heater to heat the target to a variety of high temperatures and subsequently analyze the produced beam.

 
THPEC077 Confinement of Laser Plasma by Solenoidal Field for Laser Ion Source solenoid, ion, plasma, target 4235
 
  • T. Kanesue
    Kyushu University, Department of Applied Quantum Physics and Nuclear Engineering, Fukuoka
  • R. Dabrowski, M. Okamura
    BNL, Upton, Long Island, New York
  • K. Kondo
    Department of Energy Sciences, Tokyo Institute of Technology, Yokohama
 
 

A laser ion source can provide high-current highly-charged ions with a simple structure. Previously we have demonstrated acceleration of >60 mA carbon and aluminum ion beams using a direct plasma injection scheme. However, it was not easy to control the ion pulse width. Especially to provide longer ion pulse, a plasma drift length which is the distance between laser target and extraction point, has to be extended and the plasma is diluted severely. We apply a solenoid field to prevent reduction of ion density at the extraction point. A solenoid field of a few hundred Gauss enhanced the ion density up to 40 times. We present these results, including details of the solenoidal field effects on the expanding laser plasma.

 
THPEC080 Fabrication of Silicon Strip Crystals for UA9 Experiment collimation, feedback, luminosity, extraction 4243
 
  • A. Mazzolari, E. Bagli, V. Guidi
    INFN-Ferrara, Ferrara
  • S. Baricordi, P. Dalpiaz, D. Vincenzi
    UNIFE, Ferrara
  • A. Carnera, D. De Salvador
    Univ. degli Studi di Padova, Padova
  • G. Della Mea
    INFN/LNL, Legnaro (PD)
  • A.M. Taratin
    JINR, Dubna, Moscow Region
 
 

Channeling in bent crystals is a technique with high potential to steer charged-particle beams for several applications in accelerators physics. Revisited methods of silicon micromachining techniques allowed one to realize a new generation of crystals. Characterizations using x-ray diffraction, atomic force microscopy, high resolution transmission electron microscopy and ion beam analysis techniques, showed high quality of the crystals. A specifically designed holder allowed to mechanically bend a crystal at given curvature and remove unwanted torsion. Characterization of such crystals with 400 GeV at CERN H8 external line highlighted 85% single-pass efficiency. A selected crystal has been installed inside the SPS ring in the environment of the CERN experiment UA9 and successfully employed for collimation of the circulating beam.


On behalf of UA9 collaboration

 
THPEC089 Overview of Solid Target Studies for a Neutrino Factory target, factory, proton, simulation 4263
 
  • T.R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon
  • J.J. Back
    University of Warwick, Coventry
  • J.R.J. Bennett
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • C.N. Booth, G.P. Skoro
    Sheffield University, Sheffield
  • S.J. Brooks
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
 
 

The UK programme of high power target developments for a Neutrino Factory is centred on the study of high-Z materials (tungsten, tantalum). A description of lifetime shock tests on candidate materials is given as part of the research into a solid target solution. A fast high current pulse is applied to a thin wire of the sample material and the lifetime measured from the number of pulses before failure. These measurements are made at temperatures up to ~2000 K. The stress on the wire is calculated using the LS-DYNA code and compared to the stress expected in the real Neutrino Factory target. It has been found that tantalum is too weak to sustain prolonged stress at these temperatures but a tungsten wire has reached over 26 million pulses (equivalent to more than ten years of operation at the Neutrino Factory). An account is given of the optimisation of secondary pion production from the target and the issues related to mounting the target in the muon capture solenoid and target station are discussed.

 
THPEC091 Tungsten Behavior at High Temperature and High Stress factory, target, simulation, site 4269
 
  • G.P. Skoro, C.N. Booth
    Sheffield University, Sheffield
  • J.J. Back
    University of Warwick, Coventry
  • J.R.J. Bennett, S.A. Gray, A.J. McFarland
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • T.R. Edgecock
    STFC/RAL, Chilton, Didcot, Oxon
 
 

Recently reported results on the tungsten lifetime/fatigue tests under conditions expected in the Neutrino Factory target have strengthened the case of solid target option for a Neutrino Factory. This paper gives description of the detailed measurements of the tungsten properties at high temperature and high stress. We have performed extensive set of measurements of the surface displacement and velocity of the tungsten wires that were stressed by passing a fast, high current pulse through a thin sample. Radial and longitudinal oscillations of the wire were measured by a Laser Doppler Vibrometer. The wire was operated at temperatures of 300-2500 K by adjusting the pulse repetition rate. In doing so we have tried to simulate the conditions (high stress and temperature) expected at the Neutrino Factory. Most important result of this study is an experimental confirmation that strength of tungsten remains high at high temperature and high stress. The experimental results have been found to agree very well with LS-DYNA modelling results.

 
THPD008 Upgrade of Cartridge-type Exchangeable Na2KSb Cathode RF Gun cathode, gun, linac, electron 4293
 
  • M. Uesaka, Y. Muroya, T. Ueda
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken
  • K. Kanbe, K. Miyoshi
    University of Tokyo, Tokyo
 
 

We are commissioning the cathode, Na2KSb at the wavelength of 266, 400 nm with thermo-mechanically modified structure and improved vacuum system (2·10-08 Pa). We could improve RF reflection waveform and obtain the maximum energy of 22 MeV. We estimate the electrical field of 50 MV at the cathode. So far, we have obtained the quantum efficiencies of 1.1, 0.01% and the maximal charges of 4.6, 1 nC for 266, 400 nm. We are observing and checking carefully individual difference of QE of the cathodes for 266, 400 nm, and we have obtained 22 MeV energy. This new RF photocathode RF gun system has been already used for subpicosecond time-resolved radiation chemistry.

 
THPD013 Construction of a Thermionic RF Gun Linac System for Ultrashort Electron Beam linac, electron, gun, cathode 4304
 
  • W.K. Lau, J.H. Chen, J.-Y. Hwang, A.P. Lee, C.C. Liang, T.H. Wu
    NSRRC, Hsinchu
  • W.C. Cheng
    National Chiao Tung University, Hsinchu
  • N.Y. Huang
    NTHU, Hsinchu
 
 

A 25-30 MeV S-band linac system that equipped with thermionic cathode rf gun is being constructed at NSRRC for generation of ultrashort relativistitic electron beam. According to simulation studies, high quality GHz repetition rate electron pulses of about 50 pC as short as few tens fsec can be produced. This injector system will be used as the driver for experiments on fsec head-on inverse Compton scattering X-ray source and high power wake field microwave sources. The progress of our construction work will be presented.

 
THPD020 Beam Dynamics Simulations of the NML Photoinjector at Fermilab emittance, electron, cavity, simulation 4316
 
  • Y.-E. Sun, M.D. Church
    Fermilab, Batavia
  • P. Piot
    Northern Illinois University, DeKalb, Illinois
 
 

Fermilab is currently constructing a superconducting RF (SRF) test linear accelerator at the New Muon Lab (NML). Besides testing SRF accelerating modules for ILC and Project-X, NML will also eventually support a variety of advanced accelerator R&D experiments. The NML incorporates a 40 MeV photoinjector capable of providing electron bunches with variable parameters. The photoinjector is based on the 1+1/2 cell DESY-type gun followed by two superconducting cavities. It also includes a magnetic bunch compressor, a round-to-flat beam transformer and a low-energy experimental area for beam physics experiments and beam diagnostics R&D. In this paper, we explore, via beam dynamics simulations, the performance of the photoinjector for different operating scenarios.

 
THPD033 Nonlinear Propagation of Laser Pulses in Plasmas: a Comparison between Numerical and Analytical Solutions plasma, wakefield, acceleration, electron 4349
 
  • A. Bonatto, R. Pakter, F.B. Rizzato
    IF-UFRGS, Porto Alegre
 
 

In this work the nonlinear relativistic propagation of intense lasers in plasmas is investigated. It is known that, under appropriate conditions, the ponderomotive force associated with the laser envelope can excite large amplitude electron waves (wakefields), which can be of interest for particle acceleration schemes. Numerical solutions showing some of the possible behaviors of this system are presented and compared to analytical ones, obtained through an effective potential approach using a one-dimensional Lagrangian formalism.

 
THPD034 Stable Proton Beam Acceleration from a Two-specie Ultrathin Foil Target ion, proton, acceleration, simulation 4352
 
  • T.P. Yu, M. Chen, A.M. Pukhov
    HHUD, Dusseldorf
  • T.P. Yu
    National University of Defense Technology, Changsha, Hunan
 
 

By using multi-dimensional particle-in-cell simulations, we investigate the stability of proton beam acceleration in a two-specie ultra-thin foil. In this two-specie regime, the lighter protons are initially separated from the heavier carbon ions due to their higher charge-to-mass ratio Z/m. The laser pulse is well-defined so that it doesn't penetrate the carbon ion layer. The Rayleigh-Taylor-like (RT) instability seeded at the very early stage then only degrades the acceleration of the carbon ions which act as a "cushion" for the lighter protons. Due to the absence of proton-RT instability, the produced high quality mono-energetic proton beams can be well collimated even after the laser-foil interaction concludes.

 
THPD035 Matching the Laser Generated p - bunch into a CH-DTL emittance, proton, solenoid, linac 4355
 
  • A. Almomani, M. Droba, U. Ratzinger
    IAP, Frankfurt am Main
  • I. Hofmann
    GSI, Darmstadt
 
 

The concept of laser acceleration of protons by Target Normal Sheath Acceleration TNSA from thin foils could be used to produce a high intensity proton bunch. This proton bunch could be injected into a linac at energies of ten to several tens MeV. A CH- structure is suggested as the linac structure because of its high gradient. The motivation for such a combination is to deliver single beam bunches with quite small emittance values of extremely high particle number - in the order of 10 billion protons per bunch. Optimum emittance values for linac injection are compared with available, laser generated beam parameters. Options and simulation tools for beam matching by pulsed solenoid and CH- structure using LASIN and LORASR codes are presented.

 
THPD036 Electron Acceleration by a Whistler Pulse electron, plasma, acceleration, cyclotron 4358
 
  • R. Singh
    Indian Institute of Technology Delhi, Plasma Physics Group, New Delhi
  • A.K. Sharma
    Indian Institute of Technology Delhi, New Delhi
 
 

A Gaussian whistler pulse is shown to cause ponderomotive acceleration of electrons in a plasma when the peak whistler amplitude exceeds a threshold value. The threshold amplitude decreases with the ratio of plasma frequency to electron cyclotron frequency ωp / ωc. However above the threshold amplitude the acceleration energy decreases with ωp / ωc. The electrons gain velocities about twice the group velocity of the whistler. For acceleration of electrons one requires a whistler pulse of ω > ωc/2. It is seen that to enhance the energy gain the value of peak laser amplitude should be above a threshold value.

 
THPD038 Hybrid Schemes for the Post-acceleration of Laser Generated Protons proton, acceleration, solenoid, emittance 4363
 
  • A. Mostacci, M. Migliorati, L. Palumbo
    Rome University La Sapienza, Roma
  • D. Alesini, P. Antici
    INFN/LNF, Frascati (Roma)
  • L. Picardi, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
 
 

Protons generated by the irradiation of a thin metal foil by a high-intensity short-pulse laser have shown to posses interesting characteristics in terms of energy, emittance, current and pulse duration. They might therefore become in the next future a competitive source to conventional proton sources. Previous theoretical and numerical studies already demonstrated the possibility of an efficient coupling between laser-plasma acceleration of protons with traditional RF based beam-line accelerator techniques. This hybrid proton accelerator would therefore benefit from the good properties of the laser-based source and from the flexibility and know-how of beam handling as given from RF based accelerator structure. The proton beam parameters of the source have been obtained from published laser interaction experimental results and are given as input to the numerical study by conventional accelerator design tools. In this paper we discuss recent results in the optimization and design of the such hybrid schemes in the context of proton accelerators for medical treatments.

 
THPD039 Proton Generation Driven by a High Intensity Laser Using a Thin-foil Target proton, plasma, target, ion 4366
 
  • A. Sagisaka, P.R. Bolton, S.V. Bulanov, H. Daido, T. Esirkepov, T. Hori, S. Kanazawa, H. Kiriyama, K. Kondo, S. Kondo, M. Mori, Y. Nakai, M. Nishiuchi, K. Ogura, H. Okada, S. Orimo, A.S. Pirozhkov, H. Sakaki, F. Sasao, H. Sasao, T. Shimomura, A. Sugiyama, H. Sugiyama, M. Tampo, M. Tanoue, D. Wakai, A. Yogo
    JAEA, Kyoto
  • I.W. Choi, J. Lee
    APRI-GIST, Gwangju
  • H. Nagatomo
    ILE Osaka, Suita
  • K. Nemoto, Y. Oishi
    Central Research Institute of Electric Power Industry, Yokosuka-shi, Kanagawa
 
 

High-intensity laser and thin-foil interactions produce high-energy particles, hard x-ray, high-order harmonics, and terahertz radiation. A proton beam driven by a high-intensity laser has received attention as a compact ion source for medical applications. We have performed the high intensity laser-matter interaction experiments using a thin-foil target irradiated by Ti:sapphire laser (J-KAREN) at JAEA. In this laser system, the pulse duration is 40 fs (FWHM). The laser beam is focused by an off-axis parabolic mirror at the target. The estimated peak intensity is ~5x1019 W/cm2. We have developed on-line real time monitors such as a time-of-flight proton spectrometer which is placed behind the target and interferometer for electron density profile measurement of preformed plasma. We observed the maximum proton energy of ~7 MeV.

 
THPD040 Collimated Electron and Proton Beam from Ultra-intense Laser Interaction with a Rear Hole Target proton, target, electron, plasma 4369
 
  • X.H. Yang, C.L. Tian, Y. Yin, T.P. Yu
    National University of Defense Technology, Changsha, Hunan
  • Y.Q. Gu
    Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang
  • S. Kawata, Y.Y. Ma
    Center for Optical Research and Education, Utsunomiya University, Utsunomiya
  • F.Q. Shao
    National University of Defense Technology, Graduate School, Changsha
  • H. Xu
    National University of Defense Technology, Parallel and Distributed Processing, Changsha
  • M.Y. Yu
    Ruhr-Universität Bochum, Bochum
 
 

We have proposed a scheme for the generation of collimated proton beams from the interaction of an ultra-intense laser pulse with a rear hole target, which is studied by a 2.5D particle-in-cell (PIC) code PLASIM. When an ultraintense short laser pulse irradiates on such a target, the hot electrons will expand fast into the hole from the inner surfaces of the hole, and strong longitudinal sheath electric field and transverse electric field are produced. However, the plasma in the corners expand slower and be compressed strongly, and then a strong plasma jet is sprayed out from the corner with very high speed, which is just like what happened in armor piercing bullet due to the cumulative energy effect. The two jets extend into the hole and focus along the axis of the hole. At last, a high quality collimated proton beam can be obtained near the end of the hole along the propagation axis. It's found that the beam can propagate over a much longer distance without divergence. The effect of the hole diameter on the collimated proton beam is also investigated. Such target may serve as an important source for collimated proton beam in practical applications.

 
THPD041 Evolution of Electron Bunches in a Combined Quasi-static and Laser Electric Field electron, radiation, cathode, space-charge 4372
 
  • V.A. Papadichev
    LPI, Moscow
 
 

Short pulses of electrons of femtosecond and attosecond duration are necessary for numerous applications: studying fast processes in physics, chemistry, biology and medicine*. Previous calculations revealed that it is possible to obtain such short bunches by applying quasi-static electric voltage to a needle placed into a laser focus**,***. This paper presents results of computer simulation of the electron bunch evolution for various parameters of the problem (quasi-static and laser electric fields, radius of curvature of the needle, velocity of electron emission etc.). Simple model for analytical calculation of bunch evolution was elaborated to precisely assess its shortening in the case when one can neglect space-charge forces in the bunch. Influence of velocity dispersion in the bunch due to emission process is discussed and the way to optimize the bunching was proposed. Bunch dynamics accounting for space-charge forces was studied using analytical solution of equation of motion.


* P.Emma. Proc. EPAC04, p. 225, Lucerne, Suisse.
** V.A.Papadichev. Proc. EPAC08, p. 2812, Genoa, Italy.
*** V.A.Papadichev. Proc. EPAC08, p. 2815, Genoa, Italy.

 
THPD045 Fabrication of a Laser-based Microstructure for Particle Acceleration ion, electron, coupling, acceleration 4381
 
  • J. Zhou, J.C. McNeur, J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles
  • R.B. Yoder
    Manhattanville College, Purchase, New York
 
 

The Micro-Accelerator Platform is an optical-wavelength microstructure for laser acceleration of particles, currently under development at UCLA. It is a slab-symmetric structure and can be constructed in layers using existing nanofabrication techniques. We present several possible fabrication techniques and preliminary experimental outcomes for manufacturing this structure.

 
THPD046 Initial Results on Electron Beam Generation using Pyroelectric Crystals electron, vacuum, injection, plasma 4384
 
  • U.H. Lacroix, D.M. Fong, G. Travish, N. Vartanian
    UCLA, Los Angeles
  • E.R. Arab
    PBPL, Los Angeles
  • R.B. Yoder
    Manhattanville College, Purchase, New York
 
 

Pyroelectric crystals, which produce large surface electric fields during heating and cooling, have been proposed as a mechanism for constructing a stand-alone electron beam source. We report on experimental tests of this concept, using a variety of field emission tips combined with a pyroelectric crystal to produce a low-energy electron beam during thermal cycling. The mechanism is suitable for generating very small electron bunches, with energies up to tens of kilovolts, for use in microaccelerator structures.

 
THPD047 A Tapered Dielectric Structure for Laser Acceleration at Low Energy resonance, focusing, acceleration, vacuum 4387
 
  • J.C. McNeur, R. Dusad, Z.B. Hoyer, J.B. Rosenzweig, G. Travish, N. Vartanian, J. Xu, J. Zhou
    UCLA, Los Angeles
  • E.R. Arab
    PBPL, Los Angeles
  • R.B. Yoder
    Manhattanville College, Purchase, New York
 
 

This paper extends the physics of the Micro-Accelerator Platform (MAP), which is in development as an optical structure for laser acceleration of relativistic electrons. The MAP is a resonant, optical-scale, slab-symmetric device that is fabricated from dielectric materials using layer-deposition techniques. For stand-alone applications, low-energy electrons (beta ~ 0.3) must be synchronously accelerated to relativistic speeds for injection into the MAP. Even lower energies are desired for other particle species (e.g. protons or muons). In this paper, we present design and simulation studies on a tapered geometry and associated coupling scheme that can produce synchronous acceleration at beta < 1 within a MAP-like structure.

 
THPD053 Capture and Transport of Electron Beams from Plasma Injectors electron, emittance, quadrupole, solenoid 4401
 
  • P. Antici, A. Mostacci
    INFN/LNF, Frascati (Roma)
  • C. Benedetti
    Bologna University, Bologna
  • M. Migliorati, L. Palumbo
    Rome University La Sapienza, Roma
 
 

Electron beams produced by laser-plasma interaction are attracting the interest of the conventional accelerator community. In particular Laser-accelerated electrons are particularly interesting as source, considering their high initial energy and their strong beam current. Moreover, the advantages of using laser-plasma electron beam can be expressed in terms of size and cost of the global accelerating infrastructure. However, improvements are still necessary since, currently, the many laser-accelerated beams are characterized by a large energy spread and a high beam divergence that degrades quickly the electron beam properties and makes those sources not suitable as a replacement of conventional accelerators. In this paper, we report on the progress of the study related to capture, shape and transport of laser generated electrons by means of tracking codes. Our study has focused on laser-generated electrons obtained nowadays by conventional multi hundred TW laser systems and on numerical predictions. We analyze different lattice structures, working on the optimization of the capture and transport of laser-accelerated electrons. Results and open problems are shown and discussed.

 
THPD054 Inverse Compton Scattering by Laser Accelerated Electrons and its Application to Standoff Detection of Hidden Objects electron, scattering, radiation, photon 4404
 
  • Y. Kitagawa, K. Fujita, R. Hanayama, K. Ishii, Y. Mori
    GPI, Hamamatsu
  • T. Kawashima
    Hamamatsu Photonics K.K., Hamamatsu
  • H. Kuwabara
    IHI, Yokohama
 
 

A technique for remote detection of hidden objects is an urgent issue, but is not yet realized, because a source and a sensor must be located on the same side of the object. An ultra-intense laser can produce extremely short and directional radiations, that is the inverse Compton scatterings used for the backscattering system. We here demonstrate that the laser-wakefiled-accelerated 10-MeV electrons inversely scatter the same laser light to keV X-ray emissions. A 10 TW OPCPA Ti:sapphire laser BEAT ( 1J output, wavelength 815 nm, and pulse width 150fs) is divided to two beams. A 0. 8-J beam is focused to an entrance edge of helium gasjet to accelerate electrons via wakefield and the other 0.2-J beam is focused to the exit of the plasma channel from the opposite direction. A second harmonic probe light measured the channel density. To the upstream direction of the latter beam, a CdTe detector analyzed the Compton spectrum under a photon counting mode* in the range of 1 keV to 20 keV, which well agrees with that calculated from the obtained electron spectrum up to a few tens MeV. We also have observed that the emission is strong into the laser axis direction.


*H. Kuwabara, Y. Mori, Y. Kitagawa, 'Coincident Measurement of a Weakly Backscattered X-ray with a CPA Laser-Produced X-ray Pulse', Plasma Fusion Research: 3, 003-004 (2008).

 
THPD055 Improvement in Proton Beam Properties during Laser Acceleration and Propagation proton, target, plasma, simulation 4407
 
  • Y.Y. Ma, S. Kawata, K. Takahashi
    Center for Optical Research and Education, Utsunomiya University, Utsunomiya
  • Y.Q. Gu, Y.Y. Ma
    Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang
  • F.Q. Shao
    National University of Defense Technology, Graduate School, Changsha
  • Z.M. Sheng
    Shanghai Jiao Tong University, Shanghai
  • Y. Yin, T.P. Yu, D. F. Zhou
    National University of Defense Technology, Changsha, Hunan
  • M.Y. Yu
    Ruhr-Universität Bochum, Bochum
  • H.B. Zhuo
    National University of Defense Technology, Parallel and Distributed Processing, Changsha
 
 

Energetic protons of tens MeV or more produced by intense lasers have been observed in recent experiments and numerical simulations. Meanwhile, significant efforts have been made to improve the proton beam quality *,**,***. For most applications, it is important to improve the quality of the proton beam both during the production and during the propagation. Some schemes are proposed to improve the quality of the proton beam both during the production form the laser plasma interaction and during the propagation. The physics is investigated by 2D3V and 3D particle-in-cell codes PLASIM and PLASIM3D. In this paper, we propose to use an umbrella-like target to accelerate, and collimate protons. It is found that high intensity collimated MeV-proton beams can be produced ****. We also propose a scheme to generate quasi-monoenergetic proton beam from the interactions of an ultra-intense laser pulse and a thin tailored hole target. Particle simulation shows that a monoenergetic proton beam is generated from the hole. The propagation of a proton beam both in vacuum and in a plasma is also studied. Compared with the propagation in vacuum, the proton beam quality can be improved obviously.


* T. Toncian, et al. Science 312, 410(2006).
** B. M. Hegelich, et al. Nature 439, 441(2006).
*** H. Schwoerer, et al. Nature 439, 445(2006).
**** Y. Y. Ma et al., Phys Plasmas 16, 34502(2009).

 
THPD072 Laser Energy Conversion to Solitons and Monoenergetic Protons in Near-critical Hydrogen Plasma plasma, ion, proton, acceleration 4446
 
  • I. Pogorelsky, M. Babzien, M.N. Polyanskiy, V. Yakimenko
    BNL, Upton, Long Island, New York
  • N. Dover, Z. Najmudin, C.A.J. Palmer, J. Schreiber
    Imperial College of Science and Technology, Department of Physics, London
  • G. Dudnikova
    UMD, College Park, Maryland
  • M. Ispiryan, P. Shkolnikov
    Stony Brook University, StonyBrook
 
 

Recent theoretical and experimental studies point to better efficiency of laser-driven ion acceleration when approaching the critical plasma density regime. Simultaneously, this is the condition for observing solitons: "bubble"-like quasi-stationary plasma formations with laser radiation trapped inside. Exploring this regime with ultra-intense solid state lasers is problematic due to the lack of plasma sources and imaging methods at ~1021/cc electron density. The terawatt picosecond CO2 laser operated at Brookhaven's Accelerator Test Facility offers a solution to this problem. At 10 μm laser wavelength, the CO2 laser shifts the critical plasma density to 1019/cc which is attainable with gas jets and can be optically probed with visible light. Capitalizing on this approach, we focused a circular-polarized CO2 laser beam with a0=0.5 onto a hydrogen gas jet and observed monoenergetic proton beams in the 1 MeV range. Simultaneously, the laser/plasma interaction region has been optically probed with a 2nd harmonic picosecond Nd:YAG laser to reveal stationary soliton-like plasma formations. 2D PIC simulations agree with experimental results and aid in their interpretation.

 
THPD077 Linear Collider Test Facility: Twiss Parameter Analysis at the IP/Post-IP location of the ATF2 beam line optics, emittance, controls, simulation 4458
 
  • B. Bolzon, A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux
  • S. Bai
    IHEP Beijing, Beijing
  • P. Bambade
    KEK, Ibaraki
  • G.R. White
    SLAC, Menlo Park, California
 
 

At the first stage of the ATF2 beam tuning, vertical beam size is usually bigger than 3um at the IP. Beam waist measurements using wire scanners and a laser wire are usually performed to check the initial matching of the beam through to the IP. These measurements are described in this paper for the optics currently used (βx=4cm and βy=1mm). Software implemented in the control room to automate these measurements with integrated analysis is also described. Measurements showed that beta functions and emittances were within errors of measurements when no rematching and coupling corrections were done. However, it was observed that the waist in the horizontal (X) and vertical (Y) plane was abnormally shifted and simulations were performed to try to understand these shifts. They also showed that multiknobs are needed in the current optics to correct simultaneously αx, αy and the horizontal dispersion (Dx). Such multiknobs were found and their linearity and orthogonality were successfully checked using MAD optics code. The software for these multiknobs was implemented in the control room and waist scan measurements using the αy knob were successfully performed.

 
THPE084 Impact of Filling Patterns in Bunch Length and Lifetime at the SLS simulation, cavity, feedback, synchrotron 4719
 
  • N. Milas, L. Stingelin
    PSI, Villigen
 
 

The filling pattern can have a big impact in the effective bunch lengthening of a passive 3rd harmonic system and as a consequence in the Touschek component of the beam lifetime. Using a longitudinal dynamics tracking code, in which the effects of the accelerating system and the 3rd harmonic system are taken into account, we can calculate the synchronous phase drift caused by the transient beam-loading and thus the effective bunch increase for several different filling patterns. In this paper we present a comparison between simulation and measurements for the SLS.