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Abstract 

A perturbation method based on Lie technique, 

originated by J. Irwin and C.-x. Wang, was extended to 

calculate the linear maps for the fringe field of a 

quadrupole. In our method, the fringe field shape is not 

necessarily anti-symmetric with respect to the hard-edge 

position. The linear maps were explicitly expressed as 

functions of fringe field integrals. Thus they can be used 

to assess the influence of the quadrupole fringe fields in 

beam dynamics. 

INTRODUCTION 

Fringe field effects are often neglected when people 

carry out optics design and numerical simulations for 

large storage rings, where the fringe field extensions are 

much smaller than the magnet lengths. For these studies, 

the conventional hard-edge model [1] is usually chosen. 

The design of modern light sources and colliders require 

more accurate modelling of the rings for purpose of 

studying the long-term beam dynamics accurately. With 

the fully developed analytical techniques such as Lie 

algebra [2] and differential algebra [3], it is convenient to 

calculate the linear and nonlinear maps for s-dependent 

magnetic fields such as quadrupole fringe fields [4-5]. 

Irwin and Wang proposed a Lie method to analytically 

estimate the maps for the fringe field of a quadrupole [4]. 

Their idea is to treat the fringe field as perturbation on the 

ideal hard-edge lens and then apply Lie technique in 

calculating the perturbation maps for fringe field. In their 

work, the fringe field is assumed to be anti-symmetric 

with respect to the edge of a normal hard-edge model. But 

we found that this assumption is not necessary. By re-

defining the fringe field integrals, more accurate maps for 

arbitrary shape of fringe field can be calculated using the 

same method. 

S-DEPENDENT HAMILTONIAN AND 

FRINGE FIELD INTEGRALS 

We start from defining the s-dependent Hamiltonian for 

the on-momentum particle in a quadrupole as 

H s( ) =
1

2
px
2 + py

2( ) +
1

2
K s( ) x 2 y 2( )        (1) 

where px , py  are the normalized particle momenta and 

K(s)  represents the s-dependent quadrupole strength. 

Following Irwin and Wang [4], we separate the fringe 

field region from the body part, i.e. 

H s( ) = H0 s( ) + ˜ H s( )                        (2) 

where H0 s( )  and ˜ H s( )  are the Hamiltonians of the 

body described by a hard-edge model and the perturbation 

due to the fringe field. For the exit-side fringe field, we 

have 

H0 s( ) =

1
2
px
2 + py

2( ) +
1
2
K0 x

2 y 2( ), s1 s s0

1

2
px
2 + py

2( ), s0 < s s2
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˜ K s( ) x 2 y 2( )

=
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K s( ) K0[ ] x 2 y 2( ), s1 s s0

1
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            (4) 

where s1 = 0  is the centre of the quadrupole, s2  is a 

point far outside the fringe field region, and s0  is the 
magnet end point defined by the hard-edge model (see 
Figure 1). 

 

Figure 1: Typical fringe field distribution from field 

measurements and corresponding trapezoidal model. 

    The linear map from s1 to s2  can be written as 

M s1 s2( ) = R s1 s0( )R+ s0 s2( )           (5) 

R s1 s0( ) = MQ s1 s0( )e: f2 :                (6) 

R+ s0 s2( ) = e: f2
+ :Mdrift s0 s2( )                (7) 

where MQ  and Mdrift  are exact linear maps, i.e. 

MQ s1 s( )
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K0

0 0
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Mdrift s0 s( )

1 s s0 0 0

0 1 0 0

0 0 1 s s0
0 0 0 1
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Assuming that the fringe perturbation is weak, the 

generating functions of the linear fringe maps can be 

calculated using the second-order BCH formulae 

f2 = H s( )ds
s1

s0
+
1

2
ds

s1

s0
d  s H s( ),H  s ( )[ ]

s

s0      (10) 

f2
+ = H s( )ds

s0

s2
+
1

2
ds

s0

s2
d  s H s( ),H  s ( )[ ]

s

s2      (11) 

where 

H s( ) =
˜ H s,MQ s0 s( )X( ), s1 s s0

˜ H s,Mdrift s0 s( )X( ), s0 < s s2

 
 
 

  
     (12) 

X = x, px,y, py[ ]
T

                      (13) 

where X  is the phase space vector at s0 . To calculate 

f2  and f2
+
 explicitly, Taylor expansion around s0  to the 

third order is performed to the linear transfer matrix Eq. 

(8) and we obtain 
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(14) 

where s = s s0 . Again we have assumed here that the 

fringe field region is short. Then we can calculate the 

generating functions as 

f2
1
2
I0 x

2 y 2( ) I1 xpx ypy( )

1

2
I2 px

2 py
2( ) +

1

2
K0I2 x

2 + y 2( )

+
2
3
K0I3 xpx ypy( ) +

1
2 2 x

2 + y 2( )

      (15) 

f2
+ 1

2
I0
+ x 2 y 2( ) I1

+ xpx ypy( )

1
2
I2
+ px

2 py
2( ) +

1
2 2

+ x 2 + y 2( )
          (16) 

From Eqs. (5-7), we also obtain the total linear fringe map 

Rf = e
: f2 :e: f2

+ :
= e: f2 :                       (17) 

where 
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2
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2
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   (18) 

where we define the fringe field integrals from the zero-
order to the third-order as 

I0 =
˜ K s( )ds,

s1

s0
I1 =

˜ K s( ) s s0( )ds
s1

s0

I2 =
˜ K s( ) s s0( )

2
ds,

s1

s0
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˜ K s( ) s s0( )
3
ds

s1

s0

  (19) 

I0
+ = ˜ K s( )ds,

s0

s2
I1
+ = ˜ K s( ) s s0( )ds

s0

s2
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2
ds,
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3
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  (20) 

2 = ds
s1

s0
d  s ˜ K s( ) ˜ K  s ( )  s s( )

s

s0

2
+ = ds

s0

s2
d  s ˜ K s( ) ˜ K  s ( )  s s( )

s

s2
           (21) 

From Eqs. (19-21), we can find that, only when the fringe 

field is anti-symmetric with respect to s0 , there exist 

I0 = I0
+

, I1 = I1
+
, and I2 = I2

+
. And then the terms of 

px
2 py

2
 and xpx + ypy  will cancel out in Eq. (18). But 

in reality, the fringe field is not anti-symmetric. In this 

case, the fringe map generated by Eq. (18) should be 

more accurate. 

LINEAR FRINGE MAP 

    From Eq. (18), we can find the approximated 
perturbation matrix in the focusing plane due to the exit 
fringe field 

Mr,x =
1 0

J3 1

 

 
 

 

 
 
1 J2
0 1

 

 
 

 

 
 
eJ1 0

0 e J1

 

 
 

 

 
       (22) 

where we define 

J1 = I1 + I1
+( )

2K0I3
3

+
1

2
I0
+ I2 + I2

+( )     (23) 

J2 = I2 + I2
+
                             (24) 

J3 = K0I2 + 2 + 2
+( ) I0

+ I1 + I1
+( )       (25) 

    Here we artificially separate the fringe map into three 
parts: The right-most matrix on the right side of Eq. (22), 
corresponding to the terms of xpx ± ypy  in Eq. (18), is 

the effect of image magnification elements. This is the 

leading term of the linear fringe map. The terms x 2 + y 2 
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are the effects of focusing elements, which correspond to 
the left-most matrix on the right side of Eq. (22). The 

terms px
2 py

2  are the effects of drift elements due to 

non-symmetric shape of fringe field, corresponding to the 
middle matrix on the right side in Eq. (22). The matrix 
form of Eq. (22) is similar to the symplectic treatment in 
SAD code [6] on the quadrupole fringe field. However, 
the focusing effect by J3 is neglected in SAD. 
   It is straightforward to perform the same calculation for 
the entrance-side of fringe field. If K(s)  is symmetric 
with respect to the centre of the quadrupole, we can easily 
find the perturbation matrix as following 

Ml,x =
e J1 0

0 eJ1

 

 
 

 

 
 
1 J2
0 1

 

 
 

 

 
 
1 0

J3 1

 

 
 

 

 
           (26) 

where we used the same definitions as in Eqs. (23-25). 
    It’s trivial to calculate the perturbation matrices in the 
defocusing plane. 

APPLICATIONS OF LINEAR FRINGE 

MAP 

The first application of the fringe maps we have tried is 

to calculate the effective focal length of a normal 

quadrupole and the tune shifts induced by quadrupole 

fringe fields in the focusing plane. Putting the 

perturbation matrices to both sides of the exact matrix of 

a hard-edge model, we can obtain the whole focal length 

of a normal quadrupole as 

f 1 K0 sin K0L0( )e 2J1 2J3 cos K0L0( )  (27) 

Obviously this formula is much simpler than the Eq. (27) 

in Ref. [7]. The correction on the focal length due to the 

fringe fields is mainly contributed by the image 

magnification terms. 

The second application is to estimate the tune shift due 

to the fringe fields in a quadrupole. The perturbed one-

turn matrix at the exit-side of a quadrupole in a ring can 

be 

cos 2 Q0( ) + sin 2 Q0( ) sin 2 Q0( )
1+ 2

sin 2 Q0( ) cos 2 Q0( ) sin 2 Q0( )

 

 

 
 

 

 

 
 

r

Mr,x

=

cos 2 Q( ) + sin 2 Q( ) sin 2 Q( )
1+ 2

sin 2 Q( ) cos 2 Q( ) sin 2 Q( )

 

 

 
 

 

 

 
 

r

  (28) 

where Q0  is the non-perturbed tune and Q  is the tune 
with the fringe field perturbation. From Eq. (28), the tune 
shift due to the exit-side fringe field can be calculated 

Qr =Q Q0

r

2
J1 +

1

4 rJ3
1+ r

2

4 r

J2
      (29) 

where r , r  are the Twiss parameters at the exit-side of 

the quadrupole. Comparing with the term of J1 , the terms 

containing J2  and J3  in Eq. (29) are higher-order terms 

and can be neglected in most cases. Similar result as Eq. 

(29) can be easily obtained for the tune shift due to the 

entrance-side fringe field. 

Again we can repeat the same calculation for the 

defocusing plane. We can also use the linear fringe maps 

to calculate the effective length and strength of a 

quadrupole. This will be discussed in details elsewhere. 

DISCUSSION AND SUMMARY 

The linear fringe maps in a normal quadrupole were re-

calculated by using the Lie technique. The most important 

idea is to re-define the fringe field integrals, taking into 

account the non-symmetric profile of the field 

distribution. Thus high-order terms can be evaluated 

correctly in the fringe maps. As straightforward 

applications, simple formulae were found to estimate the 

tune shifts induced by the fringe fields in quadrupoles. 

This should be valuable in practical design of the storage 

ring optics. 

It’s worthwhile to point out that the same technique 

discussed in this paper can be extended to calculate the 

non-linear fringe maps in a quadrupole, which has been 

discussed in Ref. [4]. Including kinematic terms in the 

fringe maps is also trivial. 

    The author D.Z. would like to thank Dr. C.-x. Wang for 

valuable discussions. 
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