
ADVANCED MULTI-PROGRAM GUI FOR ACCELERATOR MODELING

T. J. Roberts, Muons, Inc., Batavia IL 60510, U.S.A.

D. M. Kaplan, Illinois Institute of Technology, Chicago IL 60616, U.S.A.

Abstract
There are dozens of programs for designing and

modeling accelerator systems, most of which have their

own language for describing the system. This means a

designer must spend considerable time learning the

languages of different programs and converting system

descriptions among them. This paper describes a project

to develop a new language for accelerator modeling,

together with a portable suite of programs to implement it.

These programs will assist the user while editing, visual-

izing, developing, simulating, and sharing models of

accelerator components and systems. This suite is based

on a Graphical User Interface (GUI) that will permit users

to assemble their system graphically and then display it

and check its sanity visually, even while using modeling

programs that have no graphical or visualization capabil-

ities. Incorporating the concept of libraries as a primary

component of the language will encourage collaboration

among geographically diverse teams. The requirements

for developing this language and its tools will be based on

generality, flexibility, extensibility, portability, usability,

and sharability.

THE KEY CONCEPT IS COMMONALITY

All programs that model or design accelerator systems

have considerable commonality, in that they all model

accelerator systems, inherently using the same basic

beamline components (e.g. quadrupole magnets, bending

magnets, RF cavities, etc.). Implementing a dozen or so

types of components, and permitting them to be placed

sequentially on a beam centerline (with optional offsets

and rotations), can accommodate the great majority of

modern accelerator systems (except cyclotrons and other

systems that have no lattice and cannot be handled by

lattice design programs). A description of a system in

terms of its components will be usable by any modeling

program, as long as the tools exist to convert the original

description into the input language of the modeling

program. Rather than relying on language translation,

which is a challenging problem even for very simple

languages, the approach we use is instantiation. That is, a

human developer specifies how each component is

described in the input deck of each supported modeling

program. So a system described as a series of components

can be instantiated for any supported modeling program,

automatically providing the input deck to run it. The

method for doing this is so simple and general that

knowledgeable users can implement the required instan-

tiations for new components, and for new or unsupported

modeling programs.

INTRODUCING LINGUAFRANCA

The working title of this new description language is

“LinguaFranca”, with obvious linguistic and historical

roots. It is designed with the following general

requirements in mind:

Generality accommodate all types of accelerator and
beamline components; support as many
lattice design and simulation programs as
possible.

Flexibility make it easy for users to move components
around, add or delete components, specify
components’ attributes, combine sub-
systems into systems, etc.

Extensibility permit users to define their own
components and subsystems; permit users
to add new modeling and simulation
programs.

Portability programs must run on most operating
system environments, specifically Linux,
Windows, and Mac OS X.

Usability implement a modern GUI, but still permit
users to easily edit their system
descriptions using their favorite text editor.

Sharability make it easy to share components and
system descriptions among disparate users
via the web; components should be self-
documenting.

The primary advantages of this approach are:
• Reduced learning curves for designers to use unfamil-

iar modeling programs.

• Greatly improved ability for designers to select the

right modeling program for the job.

• For a given system, multiple modeling programs’ re-

sults can be compared and contrasted much more

easily.

• Designers can use graphical tools to construct and

visualize the system, even when using modeling

programs that don’t support it.

• Components are self-documenting and can be

published in libraries, fostering collaboration among

users and groups via the Internet.

• Considerably reduced development effort compared to

either translating description languages or

implementing these graphical and comparison

capabilities multiple times for the individual

simulation programs.

STRAW-MAN LANGUAGE EXAMPLE

The design of LinguaFranca will begin with a survey of

lattice design and modeling programs, and an analysis of

their commonalities and differences. This has not yet

begun, but we do have a straw-man language design

TUPEC062 Proceedings of IPAC’10, Kyoto, Japan

1868

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

based on the syntax of G4beamline [1]. Commands start

with ‘%’ to distinguish them from commands for

modeling programs. The LinguaFranca programs know

nothing about any accelerator components; essentially the

only thing the programs know is that components are

defined in the input file or in libraries and are placed

sequentially along the centerline of the beamline (with

optional offsets and rotations). This gives users the ability

to define any sort of new component, subject only to the

constraint that the simulation program(s) can implement

it. The behavior of each object is determined by the

simulation programs, not by LinguaFranca. It certainly is

possible to define a component known to some simulation

programs but not to others, so a system using such a

component can only be simulated by the set of programs

that implement it – the tools will detect this and warn the

user when instantiation is attempted for a program that

cannot implement it (perhaps failing the instantiation

altogether).

Rather than presenting a formal description of this

straw-man language, a simple example is presented, with

a few comments. Some general notes about this straw-

man language:

• Attributes have double-precision real values
unless specified as type=string.

• Units conversion factors are implicitly defined,
including: mm, cm, m, km, tesla, gauss,
kilogauss, MeV, etc.

• Real numbers can have units appended, so
1000mm is equal to 100cm and to 1.000m; users
can use units different from those used by the
various simulation programs, because units
conversion happens automatically.

• The default units given in %attribute are used if
and only if no unit is contained in the value when
the attribute is specified.

• A \ at the end of a line joins the next line,
removing the \ and the “newline” character. This
occurs during LinguaFranca input processing and
is not passed to any simulation program.

• Comments are as in C++ (// comment to end of
line, /* block comment */). They are removed
during LinguaFranca processing, and are not
passed to any simulation program.

• The %instantiate command introduces one or
more lines to emit when instantiating for the
specified simulation program; the optional
%once and %every commands (within a
%instantiate) introduce lines to emit just for the
first placement, and for every placement.

• In lines within %instantiate (to be output to the
input file of a specific simulation program), all
real expressions are evaluated to numbers, and
all string-valued attributes have {attribute-name}
replaced by their value.

This example illustrates the structure to describe a simple
quadrupole that can be used by G4beamline, Transport,
and MAD accelerator simulation codes. The
quadrupole’s description is wholly contained between the

“%component” and “%endcomponent” commands.
Properties of the quadrupole are described by the
“%attribute” commands. Each accelerator program has
its own description of the quadrupole implemented via the
“%instantiate” command. Lastly, an HTML description is
given after the “%description” command, which provides
a human-readable description of the component.

Example – a generic component: SimpleQuadrupole

%component SimpleQuadrupole

%synopsis A simple quadrupole magnet, no fringe.

%attribute name type=string

%attribute length units=mm

%attribute aperture units=mm

%attribute gradient units=tesla/m

%attribute outerRadius units=mm

%icon gradient>0 ? “focus.png” : “defocus.png”

%instantiate G4beamline

%once

genericquad {name} length=length/mm \

 apertureRadius=aperture/mm \

 ironRadius=outerRadius/mm \

 gradient=gradient/(tesla/meter) \

 fringe=0 \

 openAperture=1

%every

place {name}

%instantiate transport

5. length/m gradient/kilogauss*aperture/m \

 aperture/cm ‘{name}’ ;

%instantiate mad

{name}: QUAD, L=length/m, \

 GRAD=gradient/(kilogauss/m);

%description

<html>

... HTML description in detail, with optional images.

... This can be very long, so it normally comes last.

</html>

%endcomponent

In keeping with good design practices, LinguaFranca is

inherently object oriented – the objects are components of

beamlines. So a quadrupole magnet is a single

component; if it is to be modeled with fringe fields, then it

is instantiated with multiple lines for programs that

separate the fringe fields from the quadrupole in their

input decks. It should be clear that this approach is

extremely flexible and general, and corresponds well to

the way components are placed into beamlines, and to the

way designers think about beamlines. Even though the

attributes and units of a component are not those used by

the modeling programs, expressions can be used to do the

appropriate conversion(s) – in the example the

SimpleQuadrupole has attributes aperture and gradient,

which are converted to pole-tip field and aperture for

Transport, in the proper units.

In this straw-man language, a system description file

consists of a sequence of %component definitions and

%place commands to insert the components into the

Proceedings of IPAC’10, Kyoto, Japan TUPEC062

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques 1869

simulated world in the desired configuration. Components

defined in a library can simply be referenced as

LibraryName:component, making it trivial to combine

components from multiple libraries. The tools will make it

easy to connect to multiple libraries simultaneously,

needing only a name and URL for each; as LinguaFranca

development evolves, the distribution will probably

include a list of known libraries and their URLs. Much of

the functionality of LinguaFranca will be in its libraries;

the development team will publish a library containing the

common accelerator components that are instantiable into

all supported simulation programs.

STRAW-MAN LINGUAFRANCA

GRAPHICAL EDITOR

The graphical editor will be written in Java [3]. This

gives portability across operating systems, and means that

advanced tools and libraries can be applied to improve the

efficiency and speed of software development.

The basic graphical editing concept is for the user to

connect to any desired libraries, and simply drag the

necessary components from a library into position in the

system being edited. Connected libraries each appear as a

window containing their contents, and can contain both

individual components and subsystems. Users can also

define and use components locally, without putting them

into a library.

As software development proceeds, new modules will

be added, to do such things as: tuning and optimizing a

beamline, coordinating multiple programs (e.g. tune via

Transport, then evaluate via G4beamline), generating and

displaying beam profiles and plots from output files

generated by simulation programs, plus anything else that

seems appropriate. The intent is to transform the graphical

editor into an Integrated Development Environment that

streamlines the design and evaluation of accelerator

systems.

Figure 1 shows an example of how the graphical editor

might look after inserting a quadrupole triplet.

Components are represented as icons; for some

components like SimpleQuadrupole, the icon used

depends on the values of attributes.

Figure 1 Artist’s conception of the Lingua Franca

 graphical editor. The three quadrupoles and four drifts
 were dragged from a library into the system, and their

 attributes were then edited.

LIBRARIES AND COLLABORATION

Beyond the LinguaFranca base library, it is intended

that individual designers, groups, or laboratories publish

libraries of their own, providing models of the magnets

and other components in their inventory. The design of

the LinguaFranca libraries will make it trivial for

designers to publish and use libraries containing both

subsystem designs and individual components. Self-

documenting components are an important aspect of this,

avoiding the separation of design data from human-

readable descriptions, and permitting complete integration

into the tools. This is intended to foster a new paradigm

for accelerator design, modeled after the way modern

software is developed, and facilitated by a set of tools that

treat such libraries as inherent elements of the language.

Rather than just sharing the tools and concepts,

accelerator designers will be able to share the results of

their design efforts in a simple and flexible way.

For instance, the design effort for a large new facility

(such as a muon collider or a linear collider) could be split

into numerous teams each working on one subsystem of

the overall facility. Each team could publish its own

library containing the components it is using in its

designs; they could also publish their latest complete

subsystem design in the library. An overall team could

use the subsystem designs from multiple teams’ libraries

to verify the matching and interfaces between subsystems;

potentially they could combine them all into an end-to-

end simulation (although in some cases computational

feasibility may prevent this from being useful). It is

advantageous to be able to do all this using multiple

modeling and simulation programs as checks on each

other.

SUMMARY

LinguaFranca will give accelerator designers modern
graphical tools and the ability to work with multiple
modeling and simulation programs much more easily.
This, in turn, will assist in the design of large systems by
large teams of experts who are geographically dispersed
and who may prefer different simulation programs for
different parts of the system. By making it easy to
compare and contrast the results from multiple simulation
programs, this approach can potentially improve the
accuracy of such designs, and the confidence in their
accuracy and realism. The inclusion of libraries as first-
class language elements will facilitate collaboration in
new ways, and will open a new paradigm for accelerator
design, using libraries of components and subsystem
designs in new designs and systems, rather than starting
essentially from scratch each time.

REFERENCES

[1] G4beamline: http://g4beamline.muonsinc.com
[2] Geant4: http://geant4.cern.ch
[3] Java: http://java.sun.com

:

TUPEC062 Proceedings of IPAC’10, Kyoto, Japan

1870

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

