A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

radiation

Paper Title Other Keywords Page
MOYCMH01 Relativistic Ion Beams for Treating Human Cancer ion, proton, light-ion, synchrotron 21
 
  • W.T. Chu
    LBNL, Berkeley, California
 
 

At LBNL in Berkeley, clinical trials were conducted (1975-1992) for treating human cancer using ion beams from the Bevalac and treated about 700 patients with helium-ion and about 300 patients with neon-ion beams.* Clinical trials (1997-2005) at GSI in Darmstadt, Germany used carbon-ion beams to treat about 250 patients. In 1994, NIRS in Chiba, Japan, commissioned its first-in-the-world ion-beam therapy facility, HIMAC, which accelerates ions as heavy as argon nuclei to 800 MeV/nucleon. Following it, several carbon-ion therapy facilities have been, or will be soon, constructed in: Hyogo (2001) and Gunma (2010), Japan; Heidelberg (2009), Marburg (2010) and Kiel (2012), Germany; Pavia (2010), Italy; Lyon (2013), France; Wiener Neustadt (2013), Austria; Shanghai and Lanzhou, China; and Minnesota and California, USA. Technical specifications of these facilities are: ion sources delivering all ion species from proton to carbon, accelerator energy of 430 MeV/n (30-cm range in tissue), beam intensity of about 109 pps (to deliver 1 Gy/min into 1-liter volume), repetition rate of about 0.5 Hz with long spill (for beam scanning), and treatment beam delivery and patient safety systems.


* Castro, JR, "Future research strategy for heavy ion radiotherapy," in Progress in Radio-Oncology (ed. Kogelnik, H.D.), Monduzzi Editore, Italy, 643-648 (1995).

 

slides icon

Slides

 
MOPEA015 Calculation of Radiation Shielding for Laser-driven Hadron Beams Therapeutic Instrument laser, ion, proton, electron 94
 
  • H. Sakaki, P.R. Bolton, T. Hori, K. Kondo, M. Nishiuchi, F. Saito, H. Takahashi, M. Ueno, A. Yogo
    JAEA, Kyoto
  • H. Iwase
    KEK, Ibaraki
  • K. Niita
    RIST, Ibaraki
 
 

The concept of a compact ion particle accelerator has become attractive in view of recent progress in laser-driven hadrons acceleration. The Photo Medical Research Centre (PMRC) of JAEA was established to address the challenge of laser-driven ion accelerator development for hadrons therapeutic. In the development of the instrument, it is necessary to do the bench-mark of the amount of the different types of radiation by the simulation code for shielding. The Monte Carlo Particle and Heavy Ion Transport code (PHITS) was used for bench-mark the dose on laser-shot radiations of short duration. The code predicts reasonably well the observed total dose as measured with a glass dosimeter in the laser-driven radiations.

 
MOPEA016 The Beam Characteristics of Intensity-modulated Radiotherapy 6MeV Standing Wave Accelerating Tube electron, target, beam-loading, medical-accelerators 97
 
  • H. Chen, Q.X. Jin, R.K. Li, Y. Z. Lin
    TUB, Beijing
  • J. Gao
    Tsinghua University, Beijing
 
 

The method of intensity-modulated radiotherapy (IMRT) is increasingly concerned by the medical world in recent years. Based on the performance characteristic of IMRT accelerator, a 6MeV S-band on axis-coupled SW, Suitable for IMRT, electron linear accelerating tube has been developed in Accelerator Lab of Tsinghua University. This paper provides the design performance characteristics of the tube and the results of the high-power tests,analyzes the performance and problems in the operation.

 
MOPEA020 Overview of the MedAustron Design and Technology Choices synchrotron, controls, proton, linac 109
 
  • M. Benedikt, J. Gutleber, M. Palm, W. Pirkl
    CERN, Geneva
  • U. Dorda, A. Fabich
    EBG MedAustron, Wr. Neustadt
 
 

MedAustron is a synchrotron based accelerator facility for cancer treatment in Austria currently in the development phase. The design is based on the PIMMS study* and CNAO** synchrotron. In addition to the clinical application, the accelerator will also provide beams for nonclinical research in the fields of medical radiation physics, radiation biology and experimental physics with an extended proton energy range beyond medical requirements to 800 MeV. The differences to others medical accelerator-based facilities will be elaborated, specifically the used source technologies and configuration (starting up with protons (p) and carbon ions (C6+) allowing a later upgrade to ion species up to neon) and the online verification of all relevant beam parameters. The current project status is presented.


* PIMMS Proton-ion medical machine study, Bryant, Philip J (ed.) et al., CERN, 2000.
** CNAO, www.cnao.it

 
MOPEA030 Material Recognition System using 950 keV X-band Linac with Dual Energy X-ray Scintillator Array linac, target, synchrotron, synchrotron-radiation 130
 
  • K. Lee, S. Hirai, M. Uesaka, T. Yamamoto
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken
  • E. Hashimoto
    JAEA, Ibaraki-ken
  • T. Natsui
    UTNL, Ibaraki
 
 

Dual energy X-ray system using high energy X-ray from linear accelerator (Linac) applies two times X-ray irradiation which have different energy spectrum each other in many cases. Two different X-rays yield two tomography images which is analyzed through numerical calculation with pixel values for material recognition of a object. However if the X-ray generation is not stable, the results of numerical calculation shows irregular tendency during the inspection. We propose the scintillator array in detection part, because two tomography images are obtained by just one irradiation. That leads to the time saving during inspection and the cost down for additional facilities. The optimal condition is researched to increase the ability of material recognition in interesting materials designing the detector with CsI and CdWO4 scintillators. We focus on the discrimination between heavy materials and light materials with the system in the research. X-ray source is 950 keV X-band Linac we developed for industrial application, which produce pulsed X-ray, 10 pps with around 400 mA beam current.

 
MOPEA031 Application of Liquid Cluster Ion Beams in Surface Processing ion, vacuum, acceleration, electron 133
 
  • H. Ryuto, G.H. Takaoka, M. Takeuchi
    Kyoto University, Photonics and Electronics Science and Engineering Center, Kyoto
 
 

A liquid cluster ion beam irradiation system has been developed for surface processing and modification of solid materials used in the semiconductor industry. The liquid clusters are produced by the adiabatic expansion method. The vapor pressure of the source materials such as water or ethanol is increased by heating, and ejected to a vacuum chamber through a supersonic nozzle. The ionized clusters by the electron impact ionization are accelerated to typically 3-9 kV after the elimination of monomers by the retarding voltage method, and irradiated on the solid surfaces. The sputtering yield of silicon by the ethanol cluster ion beam irradiation was more than 100 times larger than that by an argon monomer ion beam. On the other hand, the radiation damage and surface roughness caused by the ethanol cluster ion beam irradiation decreased when the mean cluster size was increased by increasing the retarding voltage. Irradiation effects of liquid cluster ion beams on polymers are also discussed.

 
MOPEA033 Characteristics of the Electron Linac Based Coherent Radiation Light Source at OPU electron, linac, gun, synchrotron 139
 
  • S. Okuda, T. Kojima, R. Taniguchi
    Osaka Prefecture University, Sakai
 
 

The coherent synchrotron and transition radiation from the bunched electron beams of a linear accelerator (linac) has continuous spectra in a submillimeter to millimeter wavelength range at relatively high peak-intensity. The coherent radiation has been applied to absorption spectroscopy for various kinds of matters. However, the number of such light sources are very small. A new pulsed coherent transition radiation light source has been established by using the electron beams of a 18 MeV S-band electron linac at Osaka Prefecture University (OPU). In the linac pulsed electron beams are injected from a thermionic triode gun with a cathode-grid assembly at pulse lengths of 5 ns-4 μs at a pulse repetition rate of 500 pulses/s in maximum. The light source will be also applied to the pump-probe experiment using the pulsed electron beam or the pulsed coherent radiation as a beam for pumping matters and the coherent radiation for probing them. The transient properties of the matters excited with the electron beams or the coherent radiation will be investigated. The characteristics of the light source are reported.

 
MOPEA035 Pulse Radiolysis with Supercontinuum Probe Generated by PCF laser, electron, gun, cathode 145
 
  • Y. Hosaka, R. Betto, A. Fujita, K. Sakaue, M. Washio
    RISE, Tokyo
  • S. Kashiwagi
    ISIR, Osaka
  • R. Kuroda
    AIST, Tsukuba, Ibaraki
  • K. Ushida
    RIKEN, Saitama
 
 

We have been studying a pump-probe pulse radiolysis as an application of the S-band photo cathode RF-Gun. Pump-probe spectroscopy is well-known method of pulse radiolysis measurement. We had used 5MeV electron beam obtained from the photo cathode RF-Gun as a pump beam, and used the white light emitted from Xe flash lamp or generated by self-phase modulation in the water cell as a probe light. However, the white probe light with high intensity, good stability and broad spectrum is a key issue for pump-probe pulse radiolysis. Supercontinuum light with photonic crystal fiber (PCF) is a new technique of white light generation. Short pulse laser through PCF spreads its spectrum by nonlinear optical effect. Supercontinuum light has very continuous spectrum, and it is studied for various applications recently. For applying supercontinuum light as a probe of pulse radiolysis experiment, we have generated a supercontinuum radiation with 7 picoseconds pulse width IR (1064nm) laser and PCF, and measured its properties. The experimental results of supercontinuum generation and design of a supercontinuum based pulse radiolysis system will be presented.

 
MOPEA037 Activation and Discoloration of Polymer by Proton Beam proton, target, neutron, cyclotron 151
 
  • S.J. Ra, M.H. Jung, K. R. Kim
    KAERI, Daejon
 
 

During the beam irradiation experiments with more than a few MeV energetic protons, nuclear reactions are occurred in sample materials. Because of these nuclear reactions, the samples are activated so many kinds of additional problems for the post-processing of the samples are caused; such as time-loss, inconvenience of sample handling, personal radiation safety, etc. For in-vitro experiments, we observe death of tumor cells by proton irradiation. The use of large activated container material can cause erroneous results in this case. To solve these problems, we studied why the samples are activated and how the level of the activation can be reduced. In our proton beam irradiation experiments, the target materials can be defined as the container and sample itself. We could easily reduce activation of container material comparing to activation of sample itself. Therefore, we tried to find less activated container material by irradiating proton beam in PS (Polystyrene), PMP (Polymethypenten), and PMMA (Poly methacrylate). We used 45 MeV proton beams (MC-50 Cyclotron, KIRAM) with 10 nA.

 
MOPEA047 Design of a Compact, Inexpensive Linac for Use in Self-contained Irradiators linac, cavity, electron, coupling 178
 
  • S. Boucher, X.D. Ding, A.Y. Murokh
    RadiaBeam, Marina del Rey
 
 

Self-contained irradiators are used for a number of applications, such as blood irradiation to prevent Graft-Versus-Host-Disease, biomedical and radiation research, and detector calibration. They typically use a sealed Cs-137 source to irradiate an item within a treatment compartment. The US National Research Council has identified as a priority the replacement of such high-activity sources with alternative technologies, in order to prevent them from falling into the hands of terrorists for use in a Radiological Dispersal Device ("dirty bomb"). RadiaBeam Technologies is developing a novel, compact, low-cost linear accelerator "the MicroLinac" for use in self-contained irradiators in order to effectively replace Cs-137 in such devices. A previous version of the MicroLinac, originally developed at SLAC, was designed to produce 1 MeV electron energy and 10 μA of average current. RadiaBeam has redesigned the linac to produce 1.5 MeV and 20 μA current, in order to match the penetration and dose rate of a typical blood irradiator. This paper describes the new design of the MicroLinac and our future development plans.

 
MOPEA052 Sub-micrometer Resolution Transverse Electron Beam Size Measurement System based on Optical Transition Radiation electron, target, laser, quadrupole 193
 
  • A.S. Aryshev, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • S.T. Boogert, V. Karataev
    JAI, Egham, Surrey
  • D.F. Howell
    OXFORDphysics, Oxford, Oxon
 
 

Optical Transition Radiation (OTR) appearing when a charged particle crosses a boundary between two media with different dielectric properties has widely been used as a tool for transverse profile measurements of charged particle beams in various facilities worldwide. The resolution of the conventional monitors is defined by so-called Point Spread Function (PSF) dimension - the source distribution generated by a single electron and projected by an optical system onto a screen. In our experiment we managed to create a system which can practically measure the PSF distribution. We demonstrated that is it is non-uniform. In this paper we represent the development of a novel sub-micrometer electron beam profile monitor based on the measurements of the PSF structure. The visibility of the structure is sensitive to micrometer electron beam dimensions. In this report we shall represent the recent experimental results. The future plans on the optimization of the monitor will also be presented.

 
MOPEA053 A Compact Soft X-ray Source based on Thomson Scattering of Coherent Diffraction Radiation photon, electron, scattering, target 196
 
  • A.S. Aryshev, S. Araki, M.K. Fukuda, J. Urakawa
    KEK, Ibaraki
  • V. Karataev
    JAI, Egham, Surrey
  • G.A. Naumenko
    INPR, Tomsk
  • A. Potylitsyn, L.G. Sukhikh, D. Verigin
    TPU, Tomsk
  • K. Sakaue
    RISE, Tokyo
 
 

High-brightness and reliable sources in the VUV and the soft X-ray region may be used for numerous applications in such areas as medicine, biology, biochemistry, material science, etc. 4th generation light sources based on X-ray free electron lasers are being built in a few world's leading laboratories. However, those installations are very expensive and the access to wider community is very limited. We propose a new approach to produce the intense beams of X-rays in the range of less than 500 eV based on compact electron accelerator. An ultimate goal of the project is to create a compact soft X-ray source based on Thomson scattering of Coherent Diffraction Radiation (CDR) using a small accelerator machine. CDR is generated when a charged particle moves in the vicinity of an obstacle. The radiation is coherent when its wavelength is comparable to or longer than the bunch length. The CDR waves will be generated in an opened resonator formed by two mirrors. In this report we represent the status of the experiment. The pilot experimental results and general hardware design will be demonstrated.

 
MOPEA056 Lifetime Measurement of HBC Stripper Foil using 3.2 MeV Ne+ for RCS of J-PARC proton, synchrotron, injection, TRIUMF 202
 
  • Y. Takeda, Y. Irie, H. Kawakami, M. Oyaizu, I. Sugai, A. Takagi
    KEK, Ibaraki
  • T. Hattori, K.K. Kawasaki
    TIT, Tokyo
 
 

Japan Proton Accelerator Research Complex (J-PARC) requires thick carbon stripper foils (200-500 ug/cm2) to strip electrons from the H- beam supplied by the linac before injection into the Rapid Cyclic Synchrotron. A H- beam of 181MeV energy is injected into the 3 GeV Rapid Cycling Synchrotron (RCS) with a pulse length of 0.5 ms, a repetition rate of 25 Hz, and an average beam current of 200 μA. The H- ions are stripped into protons by a charge stripper foil in the injection section. For this high-energy and high-intensity beam, the conventional carbon stripper foils will be ruptured in a very short time. Thus, long-lived thick carbon stripper foils are needed to this high-power accelerator. For this purpose, we are described R and D of long-lived Hybrid Boron-mixed Carbon foils (HBC-foils) of 100 - 500 μg/cm2 by arc discharge method. The preparation procedure is described and lifetime measurement by using a 3.2MeV Ne+ DC beam of 2-3 μA are reported.

 
MOPEA062 Development of Advanced Quantum Radiation Source based on S-band Compact Electron Linac electron, laser, linac, photon 220
 
  • R. Kuroda, H. Ikeura-Sekiguchi, M. Koike, H. Ogawa, N. Sei, H. Toyokawa, K. Yamada, M.Y. Yasumoto
    AIST, Tsukuba, Ibaraki
 
 

Advanced quantum radiation sources such as a laser Compton scattering X-ray source and a coherent THz radiation source have been developed based on an S-band compact electron linac at AIST in Japan. The laser Compton scattering X-ray source using a TW Ti:Sa laser can generate a hard X-ray pulse which has variable energy of 12 keV - 40 keV with narrow bandwidth by changing electron energy and collision angle for medical and biological applications. The coherent THz radiation source based on the electron linac has been also developed instead of a conventional laser based THz source. The designed THz pulse has high peak power more than 1 kW in frequency range between 0.1 - 2 THz. The THz pulse will be generated with coherent radiation such as synchrotron radiation and transition radiation using an ultra-short electron bunch with bunch length of less than 0.5 ps (rms). The coherent synchrotron radiation in the THz region has been already generated and it will be applied to the THz time domain spectroscopy (TDS). In this work shop, we will report present status of our advanced quantum radiation sources.

 
MOPEA074 Resonant Transition Radiation Induced by an Ultrashort Electron Bunch from Aluminium Foil Stack electron, photon, synchrotron, vacuum 244
 
  • W.C. Cheng
    National Chiao Tung University, Hsinchu
  • N.Y. Huang
    NTHU, Hsinchu
  • W.K. Lau
    NSRRC, Hsinchu
 
 

Resonant transition radiation (RTR) driven by a femtosecond electron beam is being studied. An aluminum foil stack with vacuum spacers is used as the radiator. With a 27 MeV electron bunch with pulse duration at ~ 100 fsec incident normally on the aluminum foil stack, high photon yields in hard X-ray regime can be obtained. Characteristics of the radiation such as emission spectrum, spatial distribution are calculated. The dependence of RTR photon yields on beam size and bunch length are also studied.

 
MOPEB006 Design Study of Combined Function Type Magnets for HiSOR-II quadrupole, synchrotron, synchrotron-radiation, dipole 286
 
  • S. Hanada
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
  • A. Miyamoto, S. Sasaki
    HSRC, Higashi-Hiroshima
 
 

The HiSOR-II is a storage ring planned as a successive machine of HiSOR, a present ring at Hiroshima Synchrotron Radiation Center. This accelerator has the circumference equal to or less than 50 m, and it has the emittance about 14 nm-rad and aims at the beam energy of 700 MeV. In the HiSOR-II project, we decided to adopt electromagnets with combined function. This type magnet has an advantage for constructing a small storage ring by reducing the total number of magnet, though it has a difficulty for the independent tuning of multipole field components. In addition, we decided to share a single return yoke between a bending magnet and adjacent quadrupole magnets. In this paper, we discuss about a possible magnetic interference between a bending magnet and a quadrupole magnet. Calculation is made with magnetic field simulation cord RADIA to analyze interference effect and examine the possibility of adoption to HiSOR-II storage ring. Also, we perform the tracking simulation of the beam with the mapping data of a magnetic field provided by this three-dimensional magnetic field analysis. By the simulation, the dynamic aperture is determined.

 
MOPEB010 Development of a High Radiation Resistant Septum for JPARC Main Ring Injection System septum, injection, beam-losses, proton 298
 
  • K. Fan, K. Ishii, H. Matsumoto, N. Matsumoto
    KEK, Ibaraki
 
 

The J-PARC is a high intensity proton accelerator complex, which consists of a LINAC, a Rapid Cycling Synchrotron (RCS) and a Main Ring (MR). The MR injection system employs a high-field septum to deflect the incoming beam from the RCS, which has been used for the beam commissioning study with low beam intensity successfully. Relative large beam losses in the injection area have been observed, which is proportional to the injection beam intensity. In future, the beam intensity will increase about 100 times to realize high beam power (~MW) operation required from neutrino experiments. The beam loss at the injection region is expected increase greatly due to the space charge effects, which creates severe radiation problems. Since the present injection septum coil is organic insulated, which will be destroyed under such a severe irradiation quickly. To cope with this problem, a new high radiation resistant injection septum magnet is developed, which uses inorganic insulation material (Mineral Insulated Cable - MIC) to prevent the septum from radiation damage. This paper investigates different effects caused by the MIC and gives an optimization design.

 
MOPEB021 Measurement of Field Inaccuracy and Shim Simulation of a 130-Pole Superconducting Undolator undulator, simulation, synchrotron, synchrotron-radiation 322
 
  • J.C. Jan, C.-H. Chang, C.-S. Hwang, F.-Y. Lin
    NSRRC, Hsinchu
 
 

A magnet array of superconducting undulator SU15, with 130 poles and length 0.98 m, was constructed, and the field measurement and training are also performed at National Synchrotron Radiation Research Center (NSRRC). The NbTi wires were excited to 1.36 T @ 497 A after 28 times quench. A cryogenic Hall probe (length 2500 mm) was used to characterize the distribution of the magnetic field of magnet arrays in the 5.6-mm magnetic gap. The measurement region of the cryogenic Hall probe is greater than 1200 mm in the vertical dewar. The length shrinkage or expansion of the Hall probe depends on the thermal variation at both ends of the Hall probe. The length of the Hall probe will be evaluated in the field measurement region. The reproducibility of the measurement system was verified in the same experiment. A field shimming method involving a trim iron piece was used to correct for deviations of the magnetic field. This paper discusses the measurement accuracy in the cryogenic Hall probe system and presents results of the field shimming.

 
MOPEB052 120 mm Superconducting Quadrupole for Interaction Regions of Hadron Colliders quadrupole, interaction-region, magnet-design, luminosity 385
 
  • A.V. Zlobin, V. Kashikhin, N.V. Mokhov, I. Novitski
    Fermilab, Batavia
 
 

Magnetic and mechanical designs of a superconducting quadrupole magnet with 120-mm aperture suitable for interaction regions of hadron colliders are presented. The magnet is based on a two-layer shell-type coil and a cold iron yoke. Special spacers made of a low-Z material are implemented in the coil midplanes to reduce the level of radiation heat deposition in the coil. The quadrupole mechanical structure is based on a thick aluminum collar supported by the iron yoke and stainless steel skin. Magnet parameters including maximum field gradient, field quality and temperature margin for NbTi or Nb3Sn coils at the operating temperatures of 1.9 K and 4.5 K are reported. The level and distribution of radiation heat deposition in the coil and other magnet components are discussed.

 
MOPEB076 Mobile CT-System for In-situ Inspection in the LHC at CERN controls, vacuum, superconducting-magnet, diagnostics 447
 
  • L.R. Williams, F. Caspers, J.M. Dalin, J.Ph. G. L. Tock
    CERN, Geneva
  • V. Haemmerle, C. Sauerwein, I. Tiseanu
    RAYSCAN, Meersburg
 
 

For the inspection of certain critical elements of the LHC machine a mobile computed tomography system has been developed and built. This instrument has to satisfy stringent space, volume and weight requirements in order to be usable and transportable to any interconnection location in the LHC tunnel. Particular regions of interest in the interconnection zones between adjacent magnets are the plug in modules (PIM), the soldered splices in the superconducting bus-bars and the interior of the quench diode container. This system permits detailed inspection of these regions without needing to break the cryo vacuum. Limited access for the x-ray tube and the detector required the development of a special type of partial tomography, together with suitable reconstruction techniques for 3 D volume generation from radiographic projections. We present the layout of the complete machine and the limited angle tomography as well as a number of radiographic and tomographic inspection results.

 
MOPEC021 First Results from the LHC Luminosity Monitors luminosity, background, monitoring, simulation 501
 
  • A. Ratti, H.S. Matis, W.C. Turner
    LBNL, Berkeley, California
  • E. Bravin, S.M. White
    CERN, Geneva
  • R. Miyamoto
    BNL, Upton, Long Island, New York
 
 

The Luminosity Monitor for the LHC is ready for operation during the planned 2009-2010 run. The device designed for the high luminosity regions is a gas ionization chamber, that is designed with the ability to resolve bunch by bunch luminosity as well as survive extreme levels of radiation. The devices are installed at the zero degree collision angle in the TAN absorbers ±140m from the IP and monitor showers produced by high energy neutrons from the IP. They are used in real time as a collider operations tool for optimizing the luminosity at ATLAS and CMS. A photo-multiplier based system is used at low luminosities and also available. We will present early test results, noise and background studies and correlation between the gas ionization and the PMT. Comparison with ongoing modeling efforts will be included.

 
MOPD079 A Novel Synchrotron Radiation Interferometer for the Australian Synchrotron synchrotron, coupling, synchrotron-radiation, photon 879
 
  • K.P. Wootton
    Monash University, Faculty of Science, Victoria
  • M.J. Boland
    ASCo, Clayton, Victoria
 
 

A new arrangement for the synchrotron radiation interferometer was proposed - as far as is known, it is unique in the world. The Young's-type interferometer is composed of two independent and optically identical paths, each with a single slit on a motorised translating stage. These two single slit patterns are interfered to produce a double slit diffraction pattern. This arrangement permits rapid scanning of the profile of fringe visibility as a function of slit separation. The interferometer was used on two beamlines at the Australian Synchrotron, the optical diagnostic and infrared beamlines. The interferometer was used to measure the coherence of the photon beam created by the electron beam source, for normal and low emittance couplings. A large change in fringe visibility was observed, proving the experimental arrangement. The interferometer was validated in the measurement of the width of a hard-edged single slit, akin to Thompson and Wolf's diffractometer. Optical simulations and measurements inform proposed modifications to the optical diagnostic beamline, so as to implement the interferometer as a regular diagnostic tool.

 
MOPD083 Improvements of the Set-up and Procedures for Beam Energy Measurements at BESSY II polarization, wiggler, resonance, electron 891
 
  • P. Kuske, P.O. Schmid
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin
  • R. Görgen, J. Kuszynski
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

With a 7T wiggler in operation any attempts to detect the resonant depolarization of the electron spins were unsuccessful at BESSY II. This was attributed to the severely reduced final degree of spin polarization in the alternating fields of the strong wiggler which on the other hand nearly double the radiation loss per turn. The key to a clear detection of the depolarization were the improvement of the sensitivity of the polarimeter based on the spin dependent Touschek scattering cross section and the more effective and thus full depolarization of the beam. In the paper the steps taken will be presented in detail. With these improvements in place the high precision energy determination of the stored beam can be performed once again in parallel to the normal user operation and without any noticeable perturbations to the beam.

 
MOPD084 Highly sensitive beam size monitor for pA currents at the MLS electron storage ring electron, storage-ring, optics, monitoring 894
 
  • C. Koschitzki, A. Hoehl, R. Klein, R. Thornagel
    PTB, Berlin
  • J. Feikes, M.V. Hartrott, G. Wüstefeld
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

For the operation of the Metrology Light Source (MLS)*, the electron storage ring of the Physikalisch-Technische Bundesanstalt (PTB), as a primary radiation source standard all storage ring parameters have to be known absolutely. For the measurement of the electron beam size and the monitoring of the stability of the orbit location a new imaging system has been set up, that operates at very different intensity levels covering more than 11 decades, given by the variation of the electron beam current. The system uses a commercial zoom lens for the achromatic optical imaging of the electron beam source point onto two different camera systems. One camera system is for life-imaging of the electron beam at electron beam currents from 200 mA down to some μA. The second system is a cooled CCD-camera that allows imaging of the electron beam size and location at very low currents, down to only one stored electron.


* R. Klein et al., Phys. Rev. ST-AB 11, 110701 (2008).

 
MOPD090 Upgrade and Evaluation of the Bunch Compression Monitor at the Free-electron Laser in Hamburg (FLASH) simulation, electron, optics, FEL 912
 
  • C. Behrens, B. Schmidt, S. Wesch
    DESY, Hamburg
  • D. Nicoletti
    Università di Roma I La Sapienza, Roma
 
 

The control and stabilization of RF systems for accelerators has a considerable importance. In case of high-gain free-electron lasers (FEL) with magnetic bunch compressors, the RF phases determine the attainable bunch peak current, which is a relevant parameter for driving the FEL process. In order to measure the bunch peak current in a simple and fast but indirect way, both bunch compressors at FLASH are equipped with compression monitors (BCM) based on pyroelectrical detectors and diffraction radiators (CDR). They provide substantial information to tune the bunch compression and are used for beam-based feedback to stabilize RF phases. This monitor system becomes more important and more challenging after the installation of a third-harmonic RF system for longitudinal phase space linearization in front of the first bunch compressor. In this paper, we describe the hardware upgrade of the bunch compression monitor and show the expected performance by simulations of the CDR source and the radiation transport optics. Particle tracking simulations are used for generation of the simulated BCM-signal for various compression schemes. Comparison with experimental data will be presented.

 
MOPD091 Femtosecond Temporal Overlap of Injected Electron Beam and EUV Pulse at sFLASH electron, undulator, laser, polarization 915
 
  • R. Tarkeshian, A. Azima, J. Bödewadt, H. Delsim-Hashemi, V. Miltchev, J. Roßbach, J. Rönsch-Schulenburg
    Uni HH, Hamburg
  • R. Ischebeck
    PSI, Villigen
  • B. Mukherjee
    Westdeutsches Protonentherapiezentrum, Essen
  • E. Saldin, H. Schlarb, S. Schreiber
    DESY, Hamburg
 
 

sFLASH is a seeded FEL experiment at DESY, which uses a 38nm high harmonic gain (HHG)-based XUV-beam laser in tandem with FLASH electron bunches at the entrance of a 10m variable-gap undulator. The temporal overlap between the electron and HHG beams is critical to the seeding process. Use of a 3rd harmonic accelerating module provides a high current electron beam (at the kA level) with ~ 600fs FWHM bunch duration. The length of the HHG laser pulse will be ~30fs FWHM. The desired overlap is achieved in steps. First is the synchronization of the HHG drive laser (Ti: Sapphire, 800nm) and the incoherent spontaneous radiation from an upstream undulator. Next, the IFEL-modulated electron bunch will pass through a dispersive section, producing a density modulation in the beam. This in turn yields emission of coherent radiation from a downstream undulator or transition radiation screen when the longitudinal overlap of the two beams is achieved. The coherently enhanced light emitted will be then spectrally analyzed. The experimental layout, simulation results of generation and transport of both light pulses, and preliminary measurements are presented.

 
MOPE010 Observation of Dust Trapping Using Video Cameras electron, vacuum, insertion, beam-losses 975
 
  • Y. Tanimoto, T. Honda, S. Sakanaka
    KEK, Ibaraki
 
 

Sudden decrease in the beam lifetime is sometimes observed in many electron storage rings. Such an event has been commonly attributed to dust trapping, but its mechanism has not been entirely elucidated yet. Our recent research at PF-AR has shown that trapped dust with certain conditions can be visually observed by video cameras, and the recorded movies revealed that the trapped dust moved longitudinally. In addition, the light emission from the dust indicated that its temperature reached 1000 K or more. Thus, direct observation of trapped dust has been proved to be an effective way to investigate the dust trapping mechanism. We have carried on this research with advanced cameras, such as high-sensitivity or high-speed cameras, and the results will be presented.

 
MOPE014 Development of a Nondestructive Beam Profile Monitor using a Sheeted Nitrogen-molecular Beam target, ion, proton, electron 987
 
  • Y. Hashimoto, T. Toyama
    J-PARC, KEK & JAEA, Ibaraki-ken
  • T. Fujisawa
    AEC, Chiba
  • T. Morimoto
    Morimoto Engineering, Iruma, Saitama
  • T.M. Murakami, K. Noda
    NIRS, Chiba-shi
  • S. Muto
    KEK, Ibaraki
  • D. Ohsawa
    Kyoto University, Radioisotope Research Center, Kyoto-shi
 
 

A nondestructive beam profile monitor using a nitrogen-molecule gas-jet sheet has been developed for intense ion beams. The density of the gas-jet sheet corresponds to 1 x 10-3 Pa. A light emitted from nitrogen excited by an ion beam collision is measured with a high sensitive camera attached a radiation hard image intensifier. In tests, beam profiles of 6 MeV/u full-stripped oxygen beams whose peak current was 600 μA. were measured. This paper describes characteristics of the instruments and the beam test results.

 
MOPE016 Beam Monitor System for Central Japan Synchrotron Radiation Research Facility synchrotron, betatron, booster, synchrotron-radiation 993
 
  • M. Hosaka, Y. Furui, H. Morimoto, A. Nagatani, K. Takami, Y. Takashima, N. Yamamoto
    Nagoya University, Nagoya
  • M. Adachi, M. Katoh, H. Zen
    UVSOR, Okazaki
  • T. Tanikawa
    Sokendai - Okazaki, Okazaki, Aichi
 
 

Central Japan Synchrotron Radiation Research Facility which provides synchrotron radiation for a large community of users is under construction in the Aichi prefecture, Japan. The light source accelerator complex consists of a linac, a booster synchrotron and a storage ring. We have developed beam monitor systems which play important role especially in the commissioning stage of the accelerators. An RF knockout system to observe betatron tune of the electron beam in the booster synchrotron and the storage ring has been designed. We paid special attention in an RF source fed to a shaker to realize efficient measurement of the tune of electron beam during acceleration. We made a test experiment using electron beam of a booster synchrotron of the UVSOR facility. We have also developed a BPM system which enables a single path beam monitoring. The signal processing is based on a fast digital oscilloscope and a simple preprocessor circuit which was developed to improve position resolution. The performance was evaluated using an injection beam pulse to the storage ring of the UVSOR.

 
MOPE019 A Direct Measurement of the Longitudinal Phase Space for a Low Energy Electron Beam Using Energy Dependent Angular Distribution of Cherenkov Radiation electron, gun, photon, emittance 1002
 
  • K. Nanbu, H. Hama, F. Hinode, M. Kawai, F. Miyahara, T. Muto, Y. Tanaka
    Tohoku University, School of Scinece, Sendai
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai
 
 

A thermionic RF gun has been developed to generate very short electron bunch for a THz light source at Tohoku University. Bunch compression scheme requires, in general, linear momentum distribution of the particles with respect to the longitudinal position, so that measurement of longitudinal phase space is significant for better bunch compression. However, such measurement for the low energy electrons is difficult because space charge effect is so strong that longer drift space should not be included. Consequently, we have performed deliberation for employing energy dependent angular distribution of Cherenkov radiation. Though the energy dependence of emission angle of Cherenkov radiation is rapidly getting small as increasing the beam energy, it is still 25 deg/MeV at an energy around 2.0 MeV when we use radiator having refractive index of 1.035. Thus the beam energy distribution can be measured if we observe Cherenkov ring with sufficient angular resolution. Since this method needs only thin radiator, the drift space length will be minimized. We will discuss limitation for resolutions of both the time and the energy as well.

 
MOPE024 Development of Radiation Registant Optics System for High Intensity Proton Beamline at the J-PARC optics, proton, background, target 1017
 
  • A. Toyoda, A. Agari, E. Hirose, M. Ieiri, Y. Katoh, A. Kiyomichi, M. Minakawa, T.M. Mitsuhashi, R. Muto, M. Naruki, Y. Sato, S. Sawada, Y. Suzuki, H. Takahashi, M. Takasaki, K.H. Tanaka, H. Watanabe, Y. Yamanoi
    KEK, Tsukuba
  • H. Noumi
    RCNP, Osaka
 
 

Optical beam measurement such as OTR(Optical Transition Radiation), ODR(Optical Diffraction Radiation), gas Cerenkov, and so on is a powerful tool to observe a two-dimensional information of high intensity beam profile, so that this method is widely used at various electron and hadron accelerators. However, high radiation field to damage an optical system gradually becomes a major issue with increasing the beam intensity to explore new physics. Our present effort is devoted to develop a high efficient optical system to resist such high radiation field. We newly designed an optical system composed of two spherical mirrors which do not have any lenses vulnerable to radiation. Detailed optics design and a result of optical performance test will be presented. Also we will report a result of a beam test experiment of this optics system combined with an OTR screen performed at high intensity proton extraction beamline of the J-PARC.

 
MOPE027 Simulations for the Measurements of Longitudinal Bunch Profile using Coherent Smith-Purcell Radiation simulation, electron, diagnostics, induction 1026
 
  • D. Wu, W. Liu, C.-X. Tang
    TUB, Beijing
 
 

The coherent Smith-Purcell radiation (CSPR) has been demonstrated as an efficient technique for measuring the longitudinal profile of beam bunches. To measure the ultrashort beam bunches, the simulations for the measurements using CSPR are anlyzed with tools of three dimensional particle-in-cell simulations and Kramer-Kronig reconstruction. Different parameters such as rms length of beam bunch and profiles of grating are studied. Furthermore, the measurement device based on a Martin-Puplett Interferometer is introduced, in which noises and attenuation can be reduced.

 
MOPE032 Application of the Gige Vision Digital Camera for Beam Diagnostics in HLS emittance, diagnostics, synchrotron, synchrotron-radiation 1041
 
  • L.L. Tang, L.M. Gu, P. Lu, T.J. Ma, B. Sun, J.G. Wang, X.H. Wang
    USTC/NSRL, Hefei, Anhui
 
 

GigE Vision (Gigabit Ethernet vision standard) is a new interface standard for the latest vision of cameras with higher performance compared to analogue vision standard and other digital vision standard. In recent years, the market of industrial vision components is evolving towards GigE Vision. This paper presents applications of digital camera comply with GigE Vision standard for the measurement of beam profile and emittance at the storage ring of HLS (Hefei Light Source). These cameras provide low distortion for image transmission over long distance with high image rate. Using the image of beam profile transmitted by GigE Vision digital camera, we calculated the horizontal and vertical center positions, and then we calibrated these center positions by BPM (Beam Position Monitor) system. According to the result of calibration and the pixel size of CCD sensor, transverse sizes of beam profile were calculated, further more the transverse emittance and coupling factor were calculated as well.

 
MOPE037 Measurement of Beam Size at Pohang Light Source background, synchrotron, optics, ion 1056
 
  • J.Y. Ryu, E.-S. Kim, H.D. Kim, H.K. Park
    KNU, Deagu
  • J.G. Hwang
    Kyungpook National University, Daegu
  • C. Kim
    PAL, Pohang, Kyungbuk
 
 

The synchrotron-radiation interferometer was employed for the beam size measurement of electron beam circulating in the storage ring at 2.5 GeV Pohang Light Source. We measured the beam sizes in both vertical and horizontal directions as function of stored beam current. In this presentation, we will discuss the interferometer system, analysis method for the measurement and the measured results. We also compared the measured beam sizes with predicted values from the lattice parameters in the ring.

 
MOPE039 Beam Parameter Measurements of fs-THz Linac at PAL electron, quadrupole, emittance, linac 1059
 
  • C.M. Yim, S. Noh
    POSTECH, Pohang, Kyungbuk
  • H.-S. Kang, C. Kim, I.S. Ko
    PAL, Pohang, Kyungbuk
 
 

At Pohang Accelerator Laboratory, a femto-second THz facility was constructed for the experiments using femto-second THz radiation. The fs-THz radiation is generated from 60-MeV electron linac which consists of a photocathode RF gun, two accelerating columns, and two magnetic-chicane bunch compressors. The coherent transition radiation (CTR) is used for THz radiation generation. To generate high intensity THz radiation, the electron bunch length should be smaller than 200 fs. We report THz image obtained using IR-CCD camera and measured beam parameters including bunch length, energy spread, charge, emittance, and transverse beam size.

 
MOPE043 Reversed Cherenkov-transition Radiation and Prospect of its Application to Beam Diagnostics vacuum, plasma, diagnostics, optics 1068
 
  • A.V. Tyukhtin, S.N. Galyamin
    Saint-Petersburg State University, Saint-Petersburg
  • E.S. Belonogaya
    LETI, Saint-Petersburg
 
 

We describe both analytically and numerically beams radiation in presence of media which can be realized as modern metamaterials. In particular, effects of reversed Cherenkov radiation (RCR)* and reversed Cherenkov-transition radiation (RCTR)** are considered. These phenomena can be used for detection of charged particles and diagnostics of beams. Earlier we noted some useful properties of radiation in the case of the boundary between an ordinary medium and an isotropic left-handed metamaterial (LHM)*. Now we continue to analyze prospects of use of LHM for beam diagnostics. Moreover, we investigate RCR and RCTR in the case of certain anisotropic materials with properties being similar to properties of LHM. The useful features are reversed character of radiation and, particularly, existence of two thresholds for RCTR (lower threshold and upper one). This fact allows selection of particles (or beams) with energy in some predetermined range. The specific radiation patterns (having two or three lobes in anisotropic metamaterial) can be useful for particle energy measurement as well.


* Z.Y. Duan, B.-I. Wu, S. Xi, H.S. Chen., M. Chen, Progress in Electromagn. Research, v.90, p.75 (2009).
** S.N. Galyamin, A.V. Tyukhtin, A. Kanareykin, P. Schoessow, PRL, v.103, p.194802 (2009).

 
MOPE044 Particle Energy Determination Technique Based on Waveguide Mode Frequency Measurement background, plasma, diagnostics 1071
 
  • A.V. Tyukhtin, E.G. Doil'nitsina
    Saint-Petersburg State University, Saint-Petersburg
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
 
 

We consider the particles energy measurement method offered in our papers (footnotes). It is based on measurement of the modes frequencies in waveguide loaded with certain material. For this method, the modes frequencies must depend on the particles energy strong enough. Here we discuss the problem of selection of materials for this technique. It is shown that high precision of energy measurement can be reached by use of the system of specific parallel conductors. The approximate analytical approach for obtaining effective permittivity of such structure is developed. It is shown that selection of parameters of the structure allows ruling an effective permittivity characterized by both frequency dispersion and spatial one. The structure is simple enough for production. It allows measuring the particles energy for different predetermined ranges. The other ways of realization of the method are discussed as well. One of them consists in use of thin layer of ordinary dielectric. Selection of the layer thickness and dielectric constant allows obtaining strong enough dependence of frequency on Lorentz-factor in the relatively wide range.


A.V. Tyukhtin, S.P. Antipov, A. Kanareykin, P. Schoessow, PAC07, p.4156;
A.V. Tyukhtin, EPAC08, p.1302;
A.V. Tyukhtin, Technical Physics Letters, v.34, p.884 (2008), v.35, p.263 (2009).

 
MOPE046 Coherent Cherenkov Radiation from a Short bunch Passing near a Target and Possibility of a Bunch Length Diagnostics target, electron, diagnostics, vacuum 1074
 
  • A. Potylitsyn, S.Yu. Gogolev, D.V. Karlovets, Yu.A. Popov, L.G. Sukhikh
    TPU, Tomsk
  • G.A. Naumenko, M.V. Shevelev
    Tomsk Polytechnic University, Nuclear Physics Institute, Tomsk
 
 

A noninvasive technique to determine a sub-mm length of electron bunches (rms < 100 um) based on a measurement of the coherent Cherenkov radiation (CChR) spectrum in THz range is proposed. CChR is generated when electron bunch moves in a vacuum near dielectric target. If the optical properties and geometry of a target are chosen in order to achieve a low absorption with a dispersion allowing expanding the Cherenkov cone, such target may be considered as the «natural Cherenkov prism». We demonstrated a feasibility of using of CsI prism for measurement of a bunch length in the range 50-200 um for Lorentz factor = 100. We also measured CChR power from Teflon target generated by the 6.1 MeV bunched electron beam with bunch rms length 1.2 mm and compared it with coherent diffraction radiation one for identical conditions. CChR seems to be a promising radiation mechanism for a new beam diagnostics technique.

 
MOPE047 Photon Beam Position Measurements using CVD Diamond based Beam Position Sensor and Libera Photon at Swiss Light Source photon, synchrotron, synchrotron-radiation, instrumentation 1077
 
  • P. Leban, D.T. Tinta
    I-Tech, Solkan
  • C. Pradervand
    PSI, Villigen
 
 

Measurements were performed at the Swiss Light Source on the beamline X06SA using a four-quadrant CVD diamond sensor which was connected to Libera Photon, a new photon BPM device from Instrumentation Technologies. The outputs of the sensor are 4 current signals in the nA range and are directly connected to the measuring unit without any pre-amplifiers. External bias voltage was applied, although the Libera Photon can supply internal bias voltage. Measurements consisted of: scanning the measurement range, frequency analysis of the beam movement and analysis of the photon beam flux influence on the measured position. The Sensor was mounted on a motorized XY stepper motor stage. Acquired data consisted of raw signal amplitudes and processed positions. Acquisitions were taken at 10 kHz and 10 Hz rate.

 
MOPE049 Beam Stop Design and Construction for the Front End Test Stand at ISIS neutron, proton, target, vacuum 1080
 
  • R. Enparantza, I. Ariz, P. Romano, A. Sedano
    Fundación TEKNIKER, Eibar (Gipuzkoa)
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao
  • D.C. Faircloth, A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
 
 

A Front End Test Stand is being built at the Rutherford Appleton Laboratory in the UK to demonstrate a chopped H− beam of sufficiently high beam quality for future high-power proton accelerators (HPPA). The test stand consists on a negative Hydrogen ion source, a solenoid LEBT, a 324 MHz four vane RFQ, a MEBT composed of rebunching cavities and choppers and a set of diagnostics ending with a beam stop. The beam stop, which has to accept a 3 MeV, 60 mA, 2 ms, 50 Hz (10% duty factor) H− beam, consists of a coaxial double cone configuration where the inner cone's inner surface is hit by the beam and the inter-cone gap is cooled by high-speed water. The cones are situated inside a water tank and mounted at one end only to allow thermal expansion. In order to minimize both prompt and induced radiation pure aluminium is used, but the poor mechanical properties of pure aluminium are overcome by employing a metal spinning process that increases the yield strength to several times the original value of the non-deformed material. CFD and FEM codes have been used to avoid high temperature gradients, to minimize thermal stresses, and to minimize fatigue caused by the pulsed beam.

 
MOPE050 Multi Optical Transition Radiation System for ATF2 target, emittance, diagnostics, simulation 1083
 
  • J. Alabau-Gonzalvo, C. Blanch Gutierrez, J.V. Civera, A. Faus-Golfe, J.J. García-Garrigós
    IFIC, Valencia
  • J. Cruz, D.J. McCormick, G.R. White
    SLAC, Menlo Park, California
 
 

In this paper we describe the design, installation and first calibration tests of a Multi Optical Transition Radiation (OTR) monitor system in the beam diagnostic section of the Extraction (EXT) line of ATF2, close to the multi wire scanner system. This system will be a valuable tool for measuring beam sizes and emittances from the ATF Damping Ring (DR). With an optical resolution of about 2 um an original OTR design demonstrated the ability to measure a 5.5um beam size in one beam pulse and to take many fast measurements. This gives the OTR the ability to measure the beam emittance with high statistics, giving a low error and a good understanding of emittance jitter. Furthermore the near by wire scanners will be a definitive test of the OTR as a beam emittance diagnostic device. The muti-OTR system design proposed here is based on the existing OTR1X, located after the septums at the entrance of the EXT line.

 
MOPE057 First Beam Measurements with the LHC Synchrotron Light Monitors synchrotron, undulator, injection, synchrotron-radiation 1104
 
  • T. Lefèvre, E. Bravin, G. Burtin, A. Guerrero, A. Jeff, A. Rabiller, F. Roncarolo
    CERN, Geneva
  • A.S. Fisher
    SLAC, Menlo Park, California
 
 

On the Large Hadron Collider (LHC), the continuous monitoring of the transverse sizes of the beams relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 3 TeV), while edge and centre radiation from a beam separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the performance of the imaging system in terms of spatial resolution, and comments on the light intensity obtained and the cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

 
MOPE058 Measuring the Bunch Frequency Multiplication at CTF3 linac, diagnostics, optics, electron 1107
 
  • A.E. Dabrowski, S. Bettoni, E. Bravin, R. Corsini, S. Döbert, T. Lefèvre, A. Rabiller, P.K. Skowronski, L. Søby, F. Tecker
    CERN, Geneva
  • D. Egger
    EPFL, Lausanne
  • A. Ferrari
    Uppsala University, Uppsala
  • C.P. Welsch
    The University of Liverpool, Liverpool
 
 

The CTF3 facility is being built and commissioned by an international collaboration in order to test the feasibility of the proposed CLIC drive beam generation scheme. Central to this scheme is the use of RF deflectors to inject bunches into a Delay Loop and a Combiner Ring, in order to transform the initial bunch spacing of 1.5 GHz from the linac to a final bunch spacing of 12 GHz. The optimization procedure relies on several steps. The active length of each ring is carefully adjusted to within a few millimeters accuracy using a two‐period undulator. The transverse optics of the machine must be set-up in a way so as to ensure the beam isochronicity. Diagnostics based on optical streak cameras and RF power measurements have been designed to measure the longitudinal behaviour of the beam during the combination. This paper presents their performance and highlights recent measurements.

 
MOPE071 Coherent Diffraction Radiation Longitudinal Beam Profile Monitor for CTF3 pick-up, electron, simulation, target 1143
 
  • M. Micheler, G.A. Blair, G.E. Boorman, V. Karataev, K. Lekomtsev
    JAI, Egham, Surrey
  • R. Corsini, A.E. Dabrowski, T. Lefèvre
    CERN, Geneva
  • S. Molloy
    Royal Holloway, University of London, Surrey
 
 

A setup for the investigation of Coherent Diffraction Radiation (CDR) from a conducting screen as a tool for non-invasive longitudinal electron beam profile diagnostics has been designed and installed in the Combiner Ring Measurement (CRM) line of the CLIC Test Facility (CTF3, CERN). In this report the status of the monitor development and results on the interferometric measurements of CDR spectra are presented. The CDR signal correlation with an RF pickup and a streak camera is reported. The future plans for the system improvements are also discussed.

 
MOPE076 Longitudinal Bunch Profile Diagnostics in the 50-femtoseconds Range using Coherent Smith-Purcell Radiation electron, simulation, diagnostics, coupling 1155
 
  • N. Delerue, G. Doucas, E. Maclean, A. Reichold
    JAI, Oxford
 
 

We report on the possible utilisation of Smith-Purcell radiation to measure the longitudinal profile of 50-femtoseconds electron bunches. This length is typical for the bunches currently produced by Laser Wakefield Acceleration and is at the limit of what is achievable by alternative techniques, such as Electro-Optic sampling.

 
MOPE081 Performance of a Streak Camera using Reflective Input Optics optics, synchrotron, photon, synchrotron-radiation 1170
 
  • C.A. Thomas, G. Rehm
    Diamond, Oxfordshire
  • I.P.S. Martin
    JAI, Oxford
 
 

Electron bunch profile and length measurement from large bandwidth synchrotron radiation with a streak camera can be strongly limited by the chirp introduced by the length of material present in the input refractive optics of streak cameras. Elimination of the chirp can be done either by filtering the bandwidth of the synchrotron radiation pulses, by measuring time resolved spectra with the streak camera, or by replacing the front optics lenses by focussing mirrors. The first solution reduces the power available, thus limiting measurements to minimum bunch current that can be too high to assess the 'zero' current bunch length. The second elegant solution allows measurement of the bunch length with the whole bandwidth and available power but with loss of the second sweep axis in the camera, so that no beam dynamics can be observed. In order to prevent any pulse chirp, keep all the available power and capability of beam dynamics observation, we designed a new input optics exclusively with mirrors. We present here our design and the results of the system with our streak camera, measuring 2ps bunch in the new Diamond low-alpha lattice.

 
MOPE093 A High Resolution Transverse Diagnostic based on Fiber Optics diagnostics, electron, photon, laser 1203
 
  • R.B. Agustsson, G. Andonian, A.Y. Murokh, R. Tikhoplav
    RadiaBeam, Marina del Rey
  • D.L. Griscom
    NRL, Washington D.C.
 
 

A beam profile monitor utilizing the technological advances in fiber optic manufacturing to obtain micron level resolution is under development at RadiaBeam Technologies. This fiber-optic profiling device would provide a lost cost, turn-key solution with nominal operational supervision and requires minimal beamline real estate. We are currently studying and attempting to mitigate the technical challenges faced by a fiber optic based diagnostic system with a focus on radiation damage to the fibers and its effect on signal integrity. Preliminary irradiation studies and conceptual operation of the system are presented.

 
MOPE096 Progress Report on the Development of the Real Time Interferometer for Bunch Length Determination laser, optics, diagnostics, synchrotron 1212
 
  • G. Andonian, A.Y. Murokh, A.G. Ovodenko, M. Ruelas, R. Tikhoplav
    RadiaBeam, Marina del Rey
  • D. Dooley
    Spectrum Detector, Lake Oswego, Oregon
  • U. Happek
    UGA, Athens, Georgia
  • S. Reiche
    PSI, Villigen
 
 

This paper reports on the progress of the development of a bunch length diagnostic for high brightness beams. The diagnostic, termed the real time interferometer, is a single shot, autocorrelator that outputs the interferogram of coherent radiation emitted from compressed, high-brightness beams. The device uses all-reflective terahertz optics as well as a highly sensitive pyroelectric-based detector array. For initial testing, coherent transition radiation is used, however, the diagnostic can be used in a non-destructive manner if coherent edge or synchrotron radiation is employed. Current research includes diagnostic design and preliminary tests conducted at the BNL Accelerator Test Facility.

 
TUOARA03 Characterization of the THz Source at SPARC electron, laser, linac, vacuum 1296
 
  • E. Chiadroni, F. A. Anelli, M. Bellaveglia, M. Boscolo, M. Castellano, L. Cultrera, G. Di Pirro, M. Ferrario, L. Ficcadenti, D. Filippetto, S. Fioravanti, G. Gatti, E. Pace, R.S. Sorchetti, C. Vaccarezza
    INFN/LNF, Frascati (Roma)
  • A. Bacci, A.R. Rossi
    Istituto Nazionale di Fisica Nucleare, Milano
  • P. Calvani, S. Lupi, D. Nicoletti
    Università di Roma I La Sapienza, Roma
  • L. Catani, B. Marchetti
    INFN-Roma II, Roma
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma
  • O. Limaj
    University of Rome La Sapienza, Rome
  • A. Mostacci
    Rome University La Sapienza, Roma
  • C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
 
 

The region of the spectrum from 0.3 to 5 THz is of great interest for several experiments in different areas of research. A THz radiation source can be produced at SPARC as coherent transition radiation emitted by either a compressed or longitudinally modulated beam intercepting a metal foil placed at 45° with respect to the beam propagation. Results on the characterization of the THz source at SPARC are described in the paper.

 

slides icon

Slides

 
TUPEA079 Design of TPS Crotch Absorber vacuum, synchrotron, storage-ring, synchrotron-radiation 1506
 
  • I.C. Sheng, J.-R. Chen, Y.T. Cheng, G.-Y. Hsiung, C.K. Kuan, C.Y. Yang
    NSRRC, Hsinchu
 
 

The Taiwan Photon Source (TPS) is a third generation synchrotron accelerator which the designed energy will be 3 GeV whereas the current is 500mA. The role of crotch absorber is designed to protect downstream UHV vacuum chamber. It is is the only mask component to absorb large amount of synchrotron radiation (bending magnet) in the storage ring. Crotch absorber is installed from transverse direction of the bending chamber to intercept the power. Two bent OFHC copper tubes are vacuum brazed on the copper mask. A 30 degree groove is machined to face bending magnet fan. The reason is not only to dissipate the heat but also to limit back scattering to the rest of chambers. Top and bottom of the absorber are bolted with beryllium copper springs; they will provide extra support for the absorber after it is installed in the Aluminum chamber. Three thermocouples will be embedded inside of the mask to monitor the temperature gradient. Final prototype of the crotch absorber with thermal analysis, design and machined parts are also presented in this paper.

 
TUPEB001 Lattice Design and Study Tools Regarding the Super-B Project simulation, lattice, photon, synchrotron 1512
 
  • F. Méot
    CEA, Gif-sur-Yvette
  • N. Monseu
    LPSC, Grenoble Cedex
 
 

Lattice design tools are being developed, and related beam and spin dynamics simulations are being performed, in the framework of the international collaboration regarding the super-B project. The present contribution reports on this work.

 
TUPEB013 Strong-strong Simulation for Super B Factories simulation, luminosity, factory, damping 1542
 
  • K. Ohmi
    KEK, Ibaraki
 
 

Super B factories are designed with very low emittance and very low beta function at the interaction point. The two beams collide with a large crossing angle, thus the overlap area of the beams is limited at a small part of their length. Simulation of the beam-beam effects is hard because of the longitudinal slice of the beam is the order of 100. We discuss two methods for the simulation. One is a simplified method, which is mixture of the particle in cell and Gaussian approximation. The other is fully strong-strong simulation using the particle in cell. The shifted Green function is used to calculate the beam-beam force for less overlap of the beam distribution. Luminosity and its degradation due to IP optics errors in Super B factories are discussed.

 
TUPEB028 Algorithm for Computation of Electromagnetic Fields of an Accelerated Short Bunch inside a Rectangular Chamber wakefield, positron, vacuum, simulation 1584
 
  • A. Novokhatski, M.K. Sullivan
    SLAC, Menlo Park, California
 
 

We discuss the feasibility of an application of an implicit finite-difference approximation to calculate the fields of a bunch moving with no restriction inside the vacuum chamber.

 
TUPEB034 Interaction Region Design for a Ring Ring Version of the LHeC Study electron, luminosity, proton, synchrotron 1596
 
  • B.J. Holzer, S. Bettoni, O.S. Brüning, S. Russenschuck
    CERN, Geneva
  • R. Appleby
    UMAN, Manchester
  • J.B. Dainton, L.N.S. Thompson
    Cockcroft Institute, Warrington, Cheshire
  • M. Klein
    The University of Liverpool, Liverpool
  • A. Kling, B. Nagorny, U. Schneekloth
    DESY, Hamburg
  • P. Kostka
    DESY Zeuthen, Zeuthen
  • A. Polini
    INFN-Bologna, Bologna
 
 

The LHeC aims at colliding hadron-lepton beams with center of mass energies in the TeV scale. For this purpose the existing LHC storage ring is extended by a high energy electron accelerator in the energy range of 60 to 140 GeV. The electron beam will be accelerated and stored in a LEP like storage ring in the LHC tunnel. In this paper we present the layout of the interaction region which has to deliver at the same time well matched beam optics and an efficient separation of the electron and proton beams. In general the large momentum difference of the two colliding beams provides a very elegant way to solve this problem: A focusing scheme that leads to the required beam sizes of the electrons and protons is combined with an early but gentle beam separation to avoid parasitic beam encounters and still keep the synchrotron radiation level in the IR within reasonable limits. We present in this paper two versions of this concept: A high luminosity layout where the mini beta magnets are embedded into the detector design as well as an IR design that is optimised for maximum acceptance of the particle detector.

 
TUPEB043 Deflecting Synchrotron Radiation from the Interaction Region of a Linac-Ring LHeC proton, electron, photon, synchrotron 1623
 
  • A.K. Çiftçi, R. Çiftçi
    Ankara University, Faculty of Sciences, Tandogan/Ankara
  • F. Zimmermann
    CERN, Geneva
 
 

In a linac-ring electron-proton collider based on the LHC, before and after the collision point the electron beam can be deflected with weak dipole magnets positioned in front of the superconducting final quadrupole triplets of the 7-TeV proton beam. Significant synchrotron radiation may be produced when the electron beam, of energy 60-140 GeV, passes through these dipole magnets. As an alternative or complement to shielding, parts of the synchrotron radiation could be extracted together with the electron beam. We propose using mirrors with shallow grazing angle to deflect the synchrotron radiation away from the proton magnets. Various LHeC options are considered. Limitations and challenges of this approach are discussed.

 
TUPEB075 Preliminary results of the crystal collimation test in UA9 collimation, beam-losses, simulation, lattice 1695
 
  • D. Mirarchi, G. Cavoto
    INFN-Roma, Roma
  • R. Losito, W. Scandale
    CERN, Geneva
  • A.M. Taratin
    JINR, Dubna, Moscow Region
 
 

We present a detailed analysis of the beam loss data collected at the SPS during the 2009 machine developments devoted to test crystal collimation. Scintillator counters and Gas electron multiplier detectors were installed in special points to detect the effect of inelastic interaction of protons with the crystals in various orientation with respect to the beam. Clear correlations of the counting rates with the crystal positions and orientation were detected during the data-taking and were crucial to put the crystal in optimal channeling position. For one of the crystal the pattern of losses showed evidence of several planar and axial channeling conditions.

 
TUPEB080 Comparison of Carbon and Hi-Z Primary Collimators for the LHC Phase II Collimation System proton, collimation, dipole, injection 1707
 
  • L. Keller, T.W. Markiewicz, J.C. Smith
    SLAC, Menlo Park, California
  • R.W. Assmann, C. Bracco
    CERN, Geneva
  • Th. Weiler
    KIT, Karlsruhe
 
 

A current issue with the LHC collimation system is single-diffractive, off-energy protons from the primary collimators that pass completely through the secondary collimation system and are absorbed immediately downbeam in the cold magnets of the dispersion suppression section. Simulations suggest that the high impact rate could result in quenching of these magnets. We have studied replacing the 60 cm primary graphite collimators, which remove halo mainly by inelastic strong interactions, with 5.25 mm tungsten, which remove halo mainly by multiple coulomb scattering and thereby reduce the rate of single-diffractive interactions which cause losses in the dispersion suppressor.

 
TUPEC021 SW/TW Hybrid Photoinjector and its Application to the Coherent THz Radiation emittance, simulation, gun, cavity 1758
 
  • A. Fukasawa, J.B. Rosenzweig, D. Schiller
    UCLA, Los Angeles, California
  • D. Alesini, L. Ficcadenti, B. Spataro
    INFN/LNF, Frascati (Roma)
  • L. Faillace, L. Palumbo
    Rome University La Sapienza, Roma
 
 

A unique SW/TW hybrid photoinjector are being developed under the collaboration of UCLA, LNF/INFN, and University of Rome. It can produce 240-fs (rms) bunch with 500 pC at 21 MeV. The bunch distribution has a strong spike (54 fs FWHM) and the peak current is over 2kA. As the bunch form factor at 1 THz is 0.43, it can produce coherent radiation at 1 THz. We are considering three types of way to generate it; coherent Cherenkov radiation (CCR), superradiant FEL, and coherent transition/edge radiation (CTR/CER). CCR used hollow dielectric with the outer surface metallic-coated. OOPIC simulation showed 21 MW of the peak power (5 mJ) at 1 THz. For FEL and CTR/CER simulation, QUINDI, which was written at UCLA to solve the Lienard-Wiechert potential, was used to calculate the radiation properties. In the contrast to CCR, their spectra were broad and their pulse lengths were short. They will be useful for fast pumping.

 
TUPEC030 Conceptual Design of Injection System for Hefei Light Source (HLS) Upgrade Project injection, kicker, simulation, synchrotron 1785
 
  • G. Feng, W. Fan, W.W. Gao, W. Li, L. Wang, S.C. Zhang
    USTC/NSRL, Hefei, Anhui
 
 

In order to obtain more straight sections for insertion devices and higher brilliance synchrotron radiation, an upgrade project of Hefei Light source (HLS) is undergoing. A new injection system has been designed to improve injection efficiency and keep the machine running stably. Four kickers will be used to generate a local injection bump. Effects of injection system to injecting beam and stored beam have been simulated considering errors. Finally, ELEGANT code was used to simulate the injection process with new designed bump system. The simulation results show that the injection efficiency would be higher than 99% and perturbation on stored beam would be small enough, which are benefit to full energy injection and top-up operation of HLS in the future.

 
TUPEC035 Design of the Recirculating Linac Option for the UK New Light Source linac, dipole, FEL, emittance 1799
 
  • P.H. Williams, D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • D. Angal-Kalinin, J.K. Jones, P.H. Williams
    Cockcroft Institute, Warrington, Cheshire
  • R. Bartolini, I.P.S. Martin
    JAI, Oxford
  • J. Rowland
    Diamond, Oxfordshire
 
 

We present progress in the design of the recirculating linac option for the UK New Light Source. Improvements in all accelerator sections have been made such that the output meets the required specifications to drive the seeded NLS FELs. Full start-to-end simulations and tolerance studies are presented together with a comparison to the baseline, single pass linac design.

 
TUPEC037 Beam Dump and Collimation Design Studies for NLS: Thermal and Structural Behaviour simulation, collimation, undulator, electron 1805
 
  • J.-L. Fernandez-Hernando, D. Angal-Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

The proposed UK New Light Source project will need beam dump to absorb a bunch charge of 200 pC with the repetition rates starting from 1 KHz initially up to 1 MHz in the upgrade. We are exploring an option of a solid dump with a graphite core to absorb the beam power up to 450 kW for the upgrade option as this is the most challenging design. Since the beam dump design will also affect the building layout the choice of its design should be made at an early stage. Based on the feasibility studies of a solid dump, a decision not to go for more complex water dump can be taken. The post linac collimation section should protect the undulators from irradiation due to beam halo particles. This paper shows results and conclusions from simulations of the impact of the NLS beam on different solid beam dump solutions and the effect of the beam halo on the collimators.

 
TUPEC064 Full Electromagnetic Simulation of Coherent Synchrotron Radiation via the Lorentz-Boosted Frame Approach dipole, simulation, electron, laser 1874
 
  • J.-L. Vay, E. Cormier-Michel, W.M. Fawley, C.G.R. Geddes
    LBNL, Berkeley, California
 
 

Numerical simulation of some systems containing charged particles with highly relativistic directed motion can be speeded up dramatically by choice of the proper Lorentz-boosted frame*. Orders of magnitude speedup has been demonstrated for simulations from first principles of laser-plasma accelerator, free electron laser, and particle beams interacting with electron clouds. We summarize the technique and the most recent examples. We then address the application of the Lorentz-boosted frame approach to coherent synchrotron radiation (CSR), which can be strongly present in bunch compressor chicanes. CSR is particularly relevant to the next generation of x-ray light sources and difficult to simulate in the lab frame because of the large ratio of scale lengths. It can increase both the incoherent and coherent longitudinal energy spread, effects that often lead to an increase in transverse emittance. We use the WARP code** to simulate CSR emission around dipole simple bends. We present some scaling arguments for the possible computational speed up factor in the boosted frame and initial 3D simulation results for some standard CSR test cases.


* J.-L. Vay, Phys. Rev. Lett. 98 (2007) 130405
** D.P. Grote, A. Friedman, J.-L. Vay, and I. Haber, AIP Conf. Proc. 749 (2005), 55.

 
TUPD005 Analysis of THz spectra and bunch deformation caused by CSR at ANKA synchrotron, electron, impedance, synchrotron-radiation 1925
 
  • M. Klein, N. Hiller, P.F. Tavares
    KIT, Karlsruhe
  • A.-S. Müller, K.G. Sonnad
    FZK, Karlsruhe
 
 

The ANKA light source is regularly operated with a low momentum compaction factor lattice where short bunches are created for the generation of coherent synchrotron radiation (CSR). Short bunches with high electron density can generate strong self fields which act back on the bunch. This can lead to bunch shape deformation and a microbunching instability which were studied theoretically for the ANKA low alpha parameters (Klein et al. PAC 09). We extended these studies to a comparison of calculated electron distributions and bunch profiles measured with a streak camera. The Haissinski equation was solved for the CSR impedance to obtain a prediction for the distortion of the bunches for different bunch lengths and bunch currents. The comparison shows that the theory predicts a much stronger deformation caused by CSR than the streak camera observes. However, high frequency components of measured FTIR spectra show a clear indication for strong deformation or small

 
TUPD031 Electron Cloud in the Region of Weak Vertical Field of the Wiggler electron, wiggler, damping, vacuum 1994
 
  • L. Schächter
    Technion, Haifa
 
 

Electron cloud confined to move in the vertical direction by either the wiggler field or a dipole field has been investigated extensively. We present results of an analysis demonstrating that electrons may be trapped in the region of zero vertical field of a wiggler. Their characteristic frequency and life-time are established and some of the implications are discussed.

 
TUPD037 E-Cloud Map Formalism: an Analytical Expression for Quadratic Coefficient electron, simulation, space-charge, site 2009
 
  • T. Demma
    INFN/LNF, Frascati (Roma)
  • S. Petracca, A. Stabile
    U. Sannio, Benevento
 
 

The bunch-to-bunch evolution of the electron cloud density can be modeled using a cubic map. The map approach has been proved reliable for RHIC* and LHC**. The coefficients that parameterize the map may be obtained by fitting from time consuming numerical simulations. In this communication we derive a simple approximate formula for the quadratic coefficient, which determines the saturation of the cloud due to space charge, in the electron cloud density map, under the assumptions of round chambers and free-field motion of the elctrons in the cloud. Results are compared with simulations for a wide range of parameters governing the evolution of the elctron cloud.


* U.Iriso, S.Peggs, Phys. Rev.STAB 8, 024403, 2005.
** T.Demma, S.Petracca, G.Rumolo, F.Ruggiero, F.Zimmermann, Phys. Rev.STAB 10, 114401, 2007.

 
TUPD075 Start-to-end Simulation of a Compact THz Smith-Purcell FEL electron, simulation, emittance, free-electron-laser 2093
 
  • C.R. Prokop, P. Piot
    Northern Illinois University, DeKalb, Illinois
  • M.C. Lin, P. Stoltz
    Tech-X, Boulder, Colorado
 
 

Terahertz (THz) radiation has generated much recent interest due to its ability to penetrate deep into many organic materials without the damage associated with ionizing radiations. The generation of copious amounts of narrow-band THz radiation using a Smith-Purcell FEL operating as a backward wave oscillator is being pursued by several groups. In this paper we present start-to-end simulations of a Smith-Purcell FEL operating in the superradiant regime. Our concept incorporates a double grating configuration to efficiently bunch the electron beam, followed by a single grating to produce Smith-Purcell radiation. We demonstrate the capabilities and performances of the device, including initial beam properties (emittance and energy spread), with the help of numerical simulations using the conformal finite-difference time-domain electromagnetic solver VORPAL.

 
TUPD080 Study of High-frequency Impedance of Small-angle Tapers and Collimators impedance, simulation, vacuum, cavity 2102
 
  • G.V. Stupakov
    SLAC, Menlo Park, California
  • B. Podobedov
    BNL, Upton, Long Island, New York
 
 

Collimators and other similar accelerator structures usually include small-angle tapering to lower the wakefields generated by the beam. While the low-frequency impedance is well described by Yokoya's formula (for axisymmetric geometry), much less is known about the behavior of the impedance in the high frequency limit. In this paper we develop an analytical approach to the high-frequency regime for round collimators and tapers. Our analytical results are compared with computer simulations using the code ECHO.

 
TUPD092 Coherent Hard X-ray Free-electron Laser based on Echo-enabled Staged Harmonic Generation Scheme laser, FEL, bunching, electron 2120
 
  • C. Feng, Z.T. Zhao
    SINAP, Shanghai
 
 

A novel approach to producing coherent hard x-ray based on the echo-enabled staged harmonic generation (EESHG) scheme is proposed. This scheme is not a simple cascaded EEHG, but consists of an EEHG, a beam shifter and a conventional HGHG like configuration, which also works in the EEHG principle. In the first stage, all over the whole electron beam is energy modulated by a laser beam in the first modulator and then converts into separate energy bands by a very strong dispersion section. In the second modulator, the seed laser is adjusted so that only the tail half part of the e-beam is energy modulated, then this beam is sent through the second dispersion section which converts the energy modulated part into a density modulation. The radiation from the first stage serves as the seed laser of the second stage, the beam shifter is so tuned that the head part of the electron beam can exactly interact with the radiation from the first stage in the modulator of the second stage, so the total harmonic number will be hundreds. It is possible to do the proof-of-principle experiment of EESHG on the SDUV-FEL.

 
TUPE003 Diffusive Radiation in Infrared Region photon, scattering, electron, vacuum 2147
 
  • E.M. Sarkisyan, Zh.S. Gevorkian, K.B. Oganesyan
    YerPhI, Yerevan
 
 

We consider generation of diffusive radiation by a charged particle passing through a random stack of plates in the infrared region. Diffusive radiation originates due to multiple scattering of pseudophotons on the plates. To enhance the radiation intensity one needs to make the scattering more effective. For this goal we suggest to use materials with negative dielectric constant .

 
TUPE004 FEL User Facility FLASH FEL, electron, photon, laser 2149
 
  • S. Schreiber, B. Faatz, J. Feldhaus, K. Honkavaara, R. Treusch
    DESY, Hamburg
 
 

The free-electron laser facility FLASH at DESY, Germany finished its second user period scheduled from November 2007 to August 2009. More than 300 days have been devoted for user operation, a large part of beamtime has been allocated for machine studies for further developments, including beamtime for XFEL and ILC R&D. FLASH provides trains of fully coherent 10 to 50 femtosecond long laser pulses in the wavelength range from 40 nm to 6.8 nm. The SASE radiation contains also higher harmonics; several experiments have successfully used the third and fifth harmonics. The smallest wavelength used was 1.59 nm. We will give a summary of the experience from two years of user operation at FLASH.

 
TUPE005 FLASH II: a Seeded Future at FLASH undulator, laser, electron, FEL 2152
 
  • B. Faatz, N. Baboi, V. Balandin, W. Decking, S. Düsterer, J. Feldhaus, N. Golubeva, T. Laarmann, T. Limberg, D. Nölle, E. Plönjes, H. Schlarb, S. Schreiber, F. Tavella, K.I. Tiedtke, R. Treusch
    DESY, Hamburg
  • J. Bahrdt, R. Follath, M. Gensch, K. Holldack, A. Meseck, R. Mitzner
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
  • M. Drescher, V. Miltchev, J. Roßbach
    Uni HH, Hamburg
 
 

FLASH has been a user facility since 2005, delivering radiation in the wavelength range between 7 and 47 nm using the SASE principle. In order to increase user beam time and improve the radiation properties delivered to users, a major extension of the user facility called FLASH II has been proposed by DESY in collaboration with the HZB, which is a seeded FEL over the parameter range of FLASH. As logical continuation, the HHG development program started with sFLASH, will result in direct seeding. Because in the foreseeable future there will probably not be HHG seed lasers available at high repetition rates down to wavelengths of 4 nm, a cascaded HGHG scheme will be used to produce short wavelengths. After a first design report, the project now enters its preparation phase until the decision for funding will be taken. During this time, the FLASH beam parameters after the present upgrade 2009/2010 will be characterized and the present design will be re-evaluated and adjusted. In addition, complete start-to-end simulations will complete the simulations which have been performed so far, including a complete design of the extraction area.

 
TUPE009 Status of sFLASH, the Seeding Experiment at FLASH undulator, FEL, electron, laser 2161
 
  • H. Delsim-Hashemi, A. Azima, J. Bödewadt, F. Curbis, M. Drescher, Th. Maltezopoulos, V. Miltchev, M. Mittenzwey, J. Roßbach, J. Rönsch-Schulenburg, R. Tarkeshian, M. Wieland
    Uni HH, Hamburg
  • S. Bajt, K. Honkavaara, T. Laarmann, H. Schlarb
    DESY, Hamburg
  • R. Ischebeck
    PSI, Villigen
  • S. Khan
    DELTA, Dortmund
  • A. Meseck
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

Recently, the free-electron laser in Hamburg (FLASH) at DESY has been upgraded considerably. Besides increasing the maximum energy to about 1.2 GeV and installation of a third harmonic rf cavity linearizing the longitudinal phase space distribution of the electron bunch, an FEL seeding experiment at wavelengths of about 35 nm has been installed. The goal is to establish direct FEL seeding employing coherent VUV pulses produced from a powerful drive laser by high-harmonic generation (HHG) in a gas cell. The project, called sFLASH, includes generation of the required HHG pulses, transporting it to the undulator entrance of a newly installed FEL-amplifier, controlling spatial, temporal and energy overlap with the electron bunches and setting up a pump-probe pilot experiment. Sophisticated diagnostics is installed to characterize both HHG and seeded FEL pulses, both in time and frequency domain. Compared to SASE-FEL pulses, almost perfect longitudinal coherence and improved synchronization possibilities for the user experiments are expected. In this paper the status of the experiment is presented.

 
TUPE021 Electron Beam Conditioning with IR/UV Laser on the Cathode electron, laser, cathode, FEL 2182
 
  • G. Gatti, M. Bellaveglia, E. Chiadroni, L. Cultrera, M. Ferrario, D. Filippetto, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Bacci, A.R. Rossi
    Istituto Nazionale di Fisica Nucleare, Milano
  • P. Musumeci
    UCLA, Los Angeles
  • H. Tomizawa
    JASRI/SPring-8, Hyogo-ken
 
 

Shining a photocathode at the same time with an UV laser able to extract electrons and an IR laser properly tuned could influence the way the electron beam is generated. Such a process is under investigation at SPARC, through direct measurements, as much as through computer codes assessment studies.

 
TUPE022 The SPARX-FEL Project undulator, FEL, linac, electron 2185
 
  • L. Palumbo
    Rome University La Sapienza, Roma
  • C. Vaccarezza
    INFN/LNF, Frascati (Roma)
 
 

The SPARX-FEL project is meant to provide ultra high peak brightness electron beams, with the energy ranging between 1.5 - 2.4 GeV, in order to generate FEL radiation in the 0.6-40 nm range. The construction will start with a 1.5 GeV Linac; besides the basic S-band technology the C-band option is also presently under study. Both RF-compression and magnetic chicane techniques are foreseen to provide the suitable electron beam to each one of the three undulator systems which will generate VUV-EUV, Soft X-Rays and Hard X-rays radiation respectively. Dedicated beamlines will distribute the beam to the downstream undulators for applications in basic science and technology. In this paper we present the status of the project funded by the Italian Department of Research, MIUR, and by the local regional government, Regione Lazio, that foresees the construction of a user facility inside the Tor Vergata campus by collaboration among CNR, ENEA, INFN and the Università di Tor Vergata itself.

 
TUPE033 Optimum of Terahertz Smith-Purcell Radiation Generated the Periodical Ultrashort Bunched Beam electron, simulation, single-bunch, cathode 2215
 
  • W. Liu, W.-H. Huang, C.-X. Tang, D. Wu
    TUB, Beijing
 
 

Smith-Purcell radiation (SPR) is emitted when an electron passes near the surface of a periodic metallic grating. The radiation wavelength λ observed at the angle θ measured from a direction of surface grating is determined by λ=D/|n|(1/β cosθ), Where D is the grating period, βc is the electron velocity, c is the speed of light, and the integer n is the spectral order. This radiation mechanism is widely applicated to THz radiation source, for which can be developed into tunable and compact one. In this paper, the radiation characteristics of terahertz (THz) SPR generated from the ultrashort electron beam are analyzed with the three-dimensional particle-in-cell simulation. For obtaining the intense THz radiation, the grating parameters and that of ultrashort electron beam are optimum. The radiation power and energy are obtained by the PIC simulation. The band width of train bunches is compared with that of single bunch. The formation factors including the longitudinal and transverse are calculated. Through this study, we observe that the radiation power is enhanced and the band width can be adjusted.

 
TUPE034 Design of FEL by the EEHG Scheme at Tsinghua University laser, electron, simulation, bunching 2218
 
  • X.L. Xu, C.-X. Tang, Q.Z. Xing
    TUB, Beijing
 
 

Tsinghua University Thomson X-ray source ( TTX ) has been proposed at Tsinghua University. With the nominal electron beam parameters ( beam energy of 50MeV, slice energy spread of 5keV, peak current of 600A, rms normalized emittance of 2 mm mrad ) of the TTX linac , the design of Free Electron Laser ( FEL ) by the Echo-Enabled Harmonic Generation ( EEHG ) scheme is presented in this paper. High harmonics of the seeding laser is generated by the EEHG scheme. Parameters of the undulators and seeding lasers are optimized. Simulation results using the GENESIS code are also presented in this paper.

 
TUPE036 The Parameter Study for the Enhanced High Gain Harmonic Generation Scheme electron, undulator, laser, FEL 2221
 
  • Q.K. Jia, H. Geng, H.T. Li
    USTC/NSRL, Hefei, Anhui
 
 

An easy-to-implement scheme called Enhanced High Gain Harmonic Generation has been proposed and shown to be able to significantly enhance the performance of traditional HGHG-FEL. In this paper we investigate the effects of the system parameters in EHGHG scheme, such as the electron energy tuning, the energy spread, the dispersive strength, amount of the phase shift, and the power of seed laser. The numerical results are presented, and shown that: the EHGHG scheme has acceptable the parameters tolerance requirements and is not more or even less sensitive to the system parameters than that of the existing scheme.

 
TUPE039 Parameter Study for FEL Project at INFLPR FEL, laser, electron, linac 2227
 
  • F. Scarlat, E.S. Badita, M. Dumitrascu, R.D. Minea, E. Mitru, A.M. Scarisoreanu, E. Sima
    INFLPR, Bucharest - Magurele
  • V.G. Cimpoca, C. Oros, I. Popescu
    Valahia University, Faculty of Sciences, Targoviste
  • M.R. Leonovici
    Bucharest University, Faculty of Physics, Bucharest-Magurele
 
 

This paper is a presentation of a parameter study for FEL Project at INFLPR considering recent advances of technologies in the domain of accelerators, lasers, undulators and seeded operation with HHG which in their turn allow the construction of a national user facility based on an intense FEL at VUV wavelengths. The calculations also considered the possibilities for the facility to be upgraded for EUV regime, in a second stage. In the first stage, results were obtained for the FEL subsystem parameters starting from the 1 GeV beam electron energy, a 500 A electron current, a single stage HGHG FEL and VUV regime. Also, the status of the project is briefly sketched herein. On behalf of the RO FEL Design Team.

 
TUPE040 FEL Activity Developed at JINR undulator, FEL, electron, photon 2230
 
  • E. Syresin, G.A. Chelkov, E.A. Matyushevskiy, N.A. Morozov, G. Shirkov, G.V. Trubnikov, M.V. Yurkov
    JINR, Dubna, Moscow Region
  • O.I. Brovko
    JINR/LHE, Moscow
 
 

Different methods for diagnostic of ultrashort electron bunches are developed at JINR-DESY collaboration within the framework of the FLASH and XFEL projects. Photon diagnostics developed at JINR-DESY collaboration for ultrashort bunches are based on calorimetric measurements and detection of undulator radiation. The MCP based radiation detectors are effectively used at FLASH for pulse energy measurements. The infrared undulator constructed at JINR and installed at FLASH is used for longitudinal bunch shape measurements and for two-color lasing provided by the FIR and VUV undulators. The JINR also participates in development and construction of Hybrid Pixel Array Detector on the basis of GaAs sensors. The special laser source for the KEK photo-cathode gun is developed within the frame of the JINR-IAP-KEK collaboration.

 
TUPE044 Ultra-compact MW THz Superradiance FEL FEL, electron, undulator, bunching 2239
 
  • Y.-C. Huang, C.H. Chen
    NTHU, Hsinchu
 
 

We study a desktop MW superradiance free-electron laser (FEL) at THz frequencies. By using some nominal beam parameters from a THz-pulse-train electron gun, we show in theory and simulation that 10-MW-level radiation power at THz frequencies is achievable from a meter long undulator in one single electron transit through the undulator. The proposed THz superradiance FEL is directly attached to the emittance compensating coil of the photoinjector without using any additional beam-fucusing element in between. This compact design allows the construction of a 10-MW FEL at THz frequencies on an ordinary desk. We will also show the usefulness of a tapered undulator for a superradiance FEL. With a 20% linearly tapered undulator, the FEL radiation power can be increased by more than 30%. This FEL is being constructed at the High-energy OPtics and Electronics (HOPE) Laboratory, National Tsinghua University, Taiwan. Experimental progress of this ultracompact, high-power single-pass superradiance FEL will be reported in the conference.

 
TUPE046 Subpicosecond Bunch Formation by Traveling Wave under Heavy Beam Loading simulation, electron, emittance, undulator 2245
 
  • V.V. Mytrochenko, M.I. Ayzatskiy, V.A. Kushnir, A. Opanasenko, S.A. Perezhogin, Z.V. Zhiglo
    NSC/KIPT, Kharkov
 
 

Simulation results of subpicosecond bunch formation due to phase motion of electrons in traveling wave are presented. It has been shown that at satisfying phase conditions of electron injection that are necessary for velocity bunching, relative phase velocity of the total wave excited both by RF generator and particles becomes different from unit increasing bunch compression. Simulation of transportation of obtained 8.5 MeV bunches through undulator with a period of 90.6 mm and estimation of bunch form-factor at 446 harmonic of bunch repetition rate of 2797.15 MHz also was carried out. The data obtained allow to expect coherent radiation from undulator at wave-length of 240 um.

 
TUPE047 Possible Way of Tandem Free Electron Laser Realization on Channeling Relativistic Particles laser, FEL, electron, positron 2248
 
  • M.V. Vysotskyy, V.I. Vysotskii
    National Taras Shevchenko University of Kyiv, Radiophysical Faculty, Kiev
 
 

In the report the possibilities of FEL optimization and creation of tandem laser are considered. One of the optimal ways of coherent hard radiation generation is connected with the creation of FEL on channeling relativistic particles in perfect crystals [1]. The main role in solution of such problem plays the full Doppler effect [2]. The possibility of creation of tandem FEL, where one particle can radiate multiple times on one transition, is predicted for the first time. For such laser the intensive process of consecutive generation of two types of photons with different frequencies on the same radiating transition is possible and this double photon generation leads to the restoration of the initial state of quantum system. This effect allows to predict the possibility of multiple repeat of radiation cycle. The pumping source for such laser is the kinetic energy of moving particles. In such systems there is no need for inversion and absorption on radiation frequency is totally absent. The main problem of realization of tandem FEL is connected with the need of mediums with positive susceptibility in high frequency range, possible ways to solve this problem are also regarded.


1. Vysotskii V.I., Kuzmin R.N. Gamma-Ray Lasers, MSU Publ. House, Moscow, 1989.
2. Vysotskyy M.V., Vysotskii V.I. // Nuclear Instr. and Methods in Physics Research B, 2006, V. 252, P. 75-80

 
TUPE049 Optimisation of an HHG-Seeded Harmonic Cascade FEL Design for the NLS Project FEL, simulation, bunching, electron 2254
 
  • D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Bartolini
    JAI, Oxford
  • H. Geng, Z. Huang
    SLAC, Menlo Park, California
  • B.W.J. McNeil
    USTRAT/SUPA, Glasgow
 
 

Optimisation studies of an HHG-seeded harmonic cascade FEL design for the UK's proposed New Light Source (NLS) facility are presented. Three separate FELs are planned to meet the requirements for continuous coverage of the photon energy range 50-1000 eV with variable polarisation, 20 fs pulse widths and good temporal coherence. The design uses an HHG seed source tuneable from 50-100 eV to provide direct FEL seeding in this range, and one or two stage harmonic cascades to reach the higher photon energies. Studies have been carried out to optimise a harmonic cascade FEL operating at 1 keV; topics investigated include modulator configuration, seed power level and effects of the HHG seed structure. FEL simulations using realistic electron beam distributions are presented and tolerance to increased emittance has been considered.

 
TUPE050 Improved Temporal Coherence in SASE FELs electron, FEL, undulator, simulation 2257
 
  • N. Thompson, D.J. Dunning
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • B.W.J. McNeil
    USTRAT/SUPA, Glasgow
  • N. Thompson
    Cockcroft Institute, Warrington, Cheshire
 
 

A scheme for the generation of attosecond pulse trains in FEL amplifiers was recently proposed*. The method uses repeated equal temporal delays between the electron bunch and co-propagating radiation to generate a modal structure in the radiation field. The modes may be phase-locked via an energy modulation in the electron beam. As a consequence of the radiation /electron delays, the relative radiation /electron slippage during the interaction is increased and leads to a longer cooperation length with the effect of improving the temporal coherence. In this paper we present simulations demonstrating this effect. In particular, we show that the average spacing between the temporal spikes in a SASE FEL is increased in proportion to the increase in the cooperation length. It may therefore be possible to operate a SASE FEL in single-spike mode with longer, higher charge, electron bunches than previously thought possible.


* Physical Review Letters 100, (203901) 2008.

 
TUPE054 Short Pulse Options for the UK's New Light Source Project laser, electron, FEL, undulator 2266
 
  • I.P.S. Martin
    Diamond, Oxfordshire
  • R. Bartolini, I.P.S. Martin
    JAI, Oxford
  • D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

The New Light Source project aims to construct a suite of seeded free-electron lasers driven by a 2.25GeV cw super conducting linac. As part of the upgrade path, a number of options are being considered for generating ultra short (<1fs) soft x-ray pulses, with low-charge 'single-spike' operation and bunch slicing like approaches of particular interest, including as a possible extension to echo-enhanced harmonic generation. In this paper we present the status of this work, including recent results from fully start to end simulations.

 
TUPE055 Progress with the Design of the UK's New Light Source Facility FEL, linac, gun, laser 2269
 
  • R.P. Walker
    Diamond, Oxfordshire
 
 

Considerable progress has been made in recent months with the design of the UK's proposed New Light Source facility. This includes further optimisation of the injector, linac and FEL performance and operating parameters, and full start-to-end tolerance and jitter studies. More detailed engineering considerations for key components such as the cw linac cryomodules, undulator and vacuum chamber have been undertaken, as well as overall layout and outline design of the buildings. In this report we summarise progress in all these areas, the current status and future plans for the project.


* on behalf of the NLS project team.

 
TUPE060 Study of FEL Mirror Degradation at the Duke FEL and HIGS Facility FEL, cavity, wiggler, laser 2275
 
  • S.F. Mikhailov, J.Y. Li, V. Popov, Y.K. Wu
    FEL/Duke University, Durham, North Carolina
 
 

The Duke FEL and High Intensity Gamma-ray Source (HIγS) are operated with a wide range of electron beam energies (0.24 - 1.2 GeV) and photon beam wavelengths (190 - 1060 nm). Currently, the HIγS provides users with the gamma beams in the energy range from 1 to about 65 MeV, with a near future extension to about 100 MeV. The maximum total gamma-flux produced at the HIγS facility is up to 1010 gammas per second. Production of high level gamma-ray flux, requiring a very high average FEL intra-cavity power and high electron beam current, can cause significant degradation of the FEL mirrors. To ensure the predictability and stability of the HIγS operation for user research program, we have developed a comprehensive program to continuously monitor the performance of the FEL mirrors. This program has enabled us to use a particular set of FEL mirrors for a few hundreds hours of high gamma-flux operation with predictable performance. In this work, we discuss sources and consequences of the mirror degradation for a variety of wavelengths and present our estimates of the mirror life time as a function of the FEL wavelength, gamma-ray polarization, and total gamma-flux.

 
TUPE068 Polarization Analysis for Seeded FELs in a Crossed-Planar Undulator undulator, polarization, FEL, controls 2290
 
  • H. Geng, Y.T. Ding, Z. Huang
    SLAC, Menlo Park, California
  • R. Bartolini
    Diamond, Oxfordshire
  • D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

The crossed-planar undulator is a promising scheme for full polarization control in an x-ray FEL*. For SASE FELs, it has been shown a maximum degree of circular polarization of about 80% is achievable**. In this paper, we study the effectiveness of a cross undulator for a seeded x-ray FEL. The degree of circular polarization for both the fundamental and the harmonic radiation are considered.


* K.-J. Kim, Nucl. Instrum. Methods A445, 329 (2000).
** Y. Ding, Z. Huang, Phys. Rev. ST-AB 11, 030702 (2008).

 
TUPE069 A Proof-of-principle Echo-enabled Harmonic Generation FEL Experiment at SLAC laser, undulator, emittance, dipole 2293
 
  • M.P. Dunning, E.R. Colby, Y.T. Ding, J.T. Frederico, A. Gilevich, C. Hast, R.K. Jobe, D.J. McCormick, J. Nelson, T.O. Raubenheimer, K. Soong, G.V. Stupakov, Z.M. Szalata, D.R. Walz, S.P. Weathersby, M. Woodley, D. Xiang
    SLAC, Menlo Park, California
  • J.N. Corlett, G. Penn, S. Prestemon, J. Qiang, D. Schlueter, M. Venturini, W. Wan
    LBNL, Berkeley, California
  • P.L. Pernet
    EPFL, Lausanne
 
 

In this paper we describe the technical design of an on-going proof-of-principle echo-enabled harmonic generation (EEHG) FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment was designed through late 2009 and built and installed between October 2009 and January 2010. We present the design considerations, the technical realization and the expected performances of the EEHG experiment.

 
TUPE072 Preliminary results of the echo-seeding experiment ECHO-7 at SLAC laser, electron, undulator, simulation 2299
 
  • D. Xiang, E.R. Colby, Y.T. Ding, M.P. Dunning, J.T. Frederico, A. Gilevich, C. Hast, R.K. Jobe, D.J. McCormick, J. Nelson, T.O. Raubenheimer, K. Soong, G.V. Stupakov, Z.M. Szalata, D.R. Walz, S.P. Weathersby, M. Woodley
    SLAC, Menlo Park, California
  • J.N. Corlett, G. Penn, S. Prestemon, J. Qiang, D. Schlueter, M. Venturini, W. Wan
    LBNL, Berkeley, California
  • P.L. Pernet
    EPFL, Lausanne
 
 

ECHO-7 is a proof-of-principle echo-enabled harmonic generation* FEL experiment in the Next Linear Collider Test Accelerator (NLCTA) at SLAC. The experiment aims to generate coherent radiation at 318 nm and 227 nm, which is the 5th and 7th harmonic of the infrared seed laser. In this paper we present the preliminary results from the commissioning run of the completed experimental setup which started in April 2010.


* G. Stupakov, PRL, 102, 074801 (2009); D. Xiang and G. Stupakov, PRST-AB, 12, 030702 (2009).

 
TUPE080 Study of High Harmonic Generation at Synchrotron SOLEIL using an Echo Enabling Technique laser, electron, synchrotron, storage-ring 2308
 
  • C. Evain, M.-E. Couprie, J.-M. Filhol, M. Labat, A. Nadji
    SOLEIL, Gif-sur-Yvette
  • A. Zholents
    ANL, Argonne
 
 

SOLEIL is presently installing a laser bunch slicing set-up to produce ultra-short X-ray pulses. We propose a method to generate coherent synchrotron radiation at high harmonics in a storage ring using an echo scheme. Like in the method proposed recently for free electron lasers, the echo scheme uses two modulators and two dispersive sections. We show that this can be done at the synchrotron SOLEIL by adapting the classical slicing scheme. In the present study at SOLEIL, the two laser/electrons interactions are planned to occur in two out of vacuum wigglers of period 150 mm, and the high harmonic radiation will be emitted in an APPLE-II type undulator with a period of 44mm or 80 mm in the beamline TEMPO or with a period of 52 mm in the beamline DEIMOS.

 
TUPE088 Light Source based on Multiturn-circulation of Beam of Energy Recovery Linac emittance, brightness, cavity, undulator 2329
 
  • T. Nakamura
    JASRI/SPring-8, Hyogo-ken
 
 

Multiturn circulation of a beam from an energy recovery linac (ERL) in a light source with bunch-by-bunch switching devices with RF cavities can reduce the output current of the ERL by a factor of the number of turns of the circulation, keeping the average current of the light source*. This scheme eases the requirement of an electron gun and an ERL, and lead to the possibility of cost-effective multi-pass ERL scheme. In previous work*, the scheme to increase the number of circulation with a ring shaped beam transport was proposed. In this work we propose a scheme without ring-shaped transport and it can be applied to various shapes of ERLs and light sources. As an example, we show a nine-turn circulation light source with the combination of newly proposed three-turn circulation system. The detail of the system, the brightness including the growth of emittance and energy spread by radiation excitation, and the effect of round-to-flat beam conversion which is a possible method for the reduction of the growth of the horizontal emittance are discussed.


* T. Nakamura, Phys. Rev. ST Accel. Beams 11, 032803 (2008).

 
TUPE094 Cooling Test of ERL HOM Absorber HOM, cavity, superconducting-cavity, cryomodule 2344
 
  • M. Sawamura
    JAEA/ERL, Ibaraki
  • T. Furuya, H. Sakai, K. Umemori
    KEK, Ibaraki
  • K. Shinoe
    ISSP/SRL, Chiba
 
 

HOM absorbers are one of the key components to determine the ERL cavity performance to reduce the HOM problem for the high current operation. When a beam line HOM damper is installed inside the cryomodule, the HOM absorber is cooled down to liquid nitrogen temperature. The RF absorber used for the HOM absorber is required to have good frequency and temperature properties at low temperature. The RF absorber was selected by permittivity and permeability measurement of some ferrites and ceramics from room temperature to 40 K. The HOM absorber is designed by optimizing the parameters such as length, thickness and position with microwave simulation codes. The HOM absorber test model was designed and fabricated to test the RF, mechanical, cooling and temperature properties.

 
TUPE096 Recent Developments on ALICE (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory linac, cavity, LLRF, laser 2350
 
  • Y.M. Saveliev, R. Bate, R.K. Buckley, S.R. Buckley, J.A. Clarke, P.A. Corlett, D.J. Dunning, A.R. Goulden, S.F. Hill, F. Jackson, S.P. Jamison, J.K. Jones, L.B. Jones, S. Leonard, P.A. McIntosh, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, A.J. Moss, B.D. Muratori, J.F. Orrett, S.M. Pattalwar, P.J. Phillips, D.J. Scott, E.A. Seddon, B.J.A. Shepherd, S.L. Smith, N. Thompson, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Harrison, D.J. Holder, G.M. Holder, A.L. Schofield, P. Weightman, R.L. Williams
    The University of Liverpool, Liverpool
  • D. Laundy
    STFC/DL, Daresbury, Warrington, Cheshire
  • T. Powers
    JLAB, Newport News, Virginia
  • G. Priebe, M. Surman
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
 
 

Progress made in ALICE (Accelerators and Lasers In Combined Experiments) commissioning and a summary of the latest experimental results are presented in this paper. After an extensive work on beam loading effects in SC RF linac (booster) and linac cavities conditioning, ALICE can now operate in full energy recovery mode at the bunch charge of 40pC, the beam energy of 30MeV and train lengths of up to 100us. This improved operation of the machine resulted in generation of coherently enhanced broadband THz radiation with the energy of several tens of uJ per pulse and in successful demonstration of the Compton Backscattering x-ray source experiment. The next steps in the ALICE scientific programme are commissioning of the IR FEL and start of the research on the first non-scaling FFAG accelerator EMMA. Results from both projects will be also reported.

 
TUPE097 Coherent Synchrotron Radiation Simulations for the Cornell Energy Recovery Linac shielding, undulator, simulation, synchrotron 2353
 
  • C.E. Mayes, G.H. Hoffstaetter
    CLASSE, Ithaca, New York
 
 

Coherent Synchrotron Radiation (CSR) can be a detrimental effect on particle bunches with high charge and short bunch lengths. CSR can contribute to an increase in emittance and energy spread, and can limit the process of bunch compression. It is especially important in Energy Recovery Linacs (ERLs), because any relative energy spread induced at high energy is magnified after deceleration, and any energy lost by the particles is energy that cannot be recovered. Here we present CSR simulation results using the particle tracking code BMAD for the main operation modes in the proposed Cornell ERL, including an additional bunch compression mode. These simulations consider the effect of CSR shielding, as well as CSR propagation between bends.

 
WEXRA02 Echo-Enabled Harmonic Generation laser, bunching, undulator, FEL 2416
 
  • G.V. Stupakov
    SLAC, Menlo Park, California
 
 

Recently a new concept*, ** for FEL seeding has been proposed that should allow generation of much higher harmonics of the laser modulation than previously envisioned. The Echo-enabled Harmonic Generation (EEHG) FEL uses two modulators in combination with two dispersion sections to generate in the beam a high-harmonic density modulation starting with a relatively small initial energy modulation of the beam. The EEHG seeding technique makes feasible a one stage seeding of soft x-ray FELs. An experimental installation is now being constructed at SLAC to demonstrate the EEHG in the NLCTA facility.


*G. Stupakov, PRL, 102, 074801 (2009).
**D. Xiang and G. Stupakov, PRSTAB, 030702 (2009).

 

slides icon

Slides

 
WEIRA01 Experience of Academia-industry Collaboration on Accelerator Projects in Asia synchrotron, synchrotron-radiation, neutron, cavity 2444
 
  • A. Yamamoto
    KEK, Ibaraki
 
 

Japan has a long history of academia-industry collaboration on accelerator technology development. A recent example is superconducting cavity manufacture for the linear collider as well as a number of collaboration in superconducting magnets for circular colliders and physics experiments. Experience with Academia-industry Collaboration on Accelerator Projects in Japan and global Asia will be presented.

 

slides icon

Slides

 
WEPEA004 Large Vacuum Intervention to Install New BPMs and Radiation Absorbers in the LNLS Electron Storage Ring vacuum, storage-ring, electron, synchrotron 2475
 
  • R.M. Seraphim, O.R. Bagnato, F.H. Cardoso, R.H.A. Farias, R.O. Ferraz, H.G. Filho, F. R. Francisco, G.R. Gomes, S.R. Marques, R.T. Neuenschwander, F. Rodrigues, A.L. Rosa, M.B. Silva, M.M. Xavier
    LNLS, Campinas
  • P.F. Tavares
    Karlsruhe Institute of Technology (KIT), Karlsruhe
 
 

In the beginning of 2008 an upgrade of the beam position monitors (BPMs) of the Brazilian Synchrotron Light Source (LNLS) electron storage ring was decided and scheduled as part of the continuous effort to improve the electron beam orbit stability. The objective was to replace most of the 24 BPMs installed in the storage ring and install new radiation absorbers inside the vacuum chamber. The original stripline BPMs were sensitive to temperature changes in the vacuum chamber. Heat, which induced mechanical stress in the striplines, could lead to fluctuations in the position readings thereby disturbing the orbit stability. The problem affected differently the BPMs. Although not a great issue during a typical user shift, the perturbations could pose some problems for the most sensitive experiments. One third of the BPMs were replaced in October 2008 and the remaining in October 2009. Thus, this large vacuum intervention aimed at improving the thermal and mechanical stability of the electron beam orbit measurement system. Finally, it will be presented the main changes made in the vacuum chambers and a survey of the evolution of the vacuum system after both interventions.

 
WEPEA012 Status of the SOLEIL Femtosecond X-ray Source laser, electron, wiggler, storage-ring 2499
 
  • A. Nadji, F. Briquez, M.-E. Couprie, J.-C. Denard, J.-M. Filhol, C. Herbeaux, Ph. Hollander, M. Labat, J.-F. Lamarre, C. Laulhe, V. Leroux, O. Marcouillé, J.L. Marlats, T. Moreno, P. Morin, P. Prigent, S. Ravy, F. Sirotti
    SOLEIL, Gif-sur-Yvette
  • J. Luning
    UPMC, Paris
  • M. Meyer
    LIXAM, Orsay
 
 

An electron bunch slicing set-up is being installed on the SOLEIL storage ring, based on Zholents and Zolotorev method [1]. This will provide 100 fs long X-ray pulses with reasonable flux to two existing beamlines, working with soft X-rays (TEMPO) and hard X-rays (CRISTAL). The parameters of the laser system and of the wiggler modulator, and the optimisation of the laser focusing optics and beam path, from the laser hutch in the experimental hall to the inside of the storage ring tunnel have been finalised. The construction work will start early 2010, including the ordering of the laser, the construction of the laser hutch, the construction of the wiggler, the installation of a new modified vacuum dipole chamber by which the laser will enter into the ring, and the modifications of some components in the beamlines front-ends to provide the best possible separation of the sliced X-Ray. In this paper, we will report on the status of the installation of the set-up and the expected performances including laser-electron interaction efficiency, halo background effect and the possible operation filling patterns.

 
WEPEA014 Optics calibration at the MLS and at BESSY II optics, synchrotron, quadrupole, lattice 2505
 
  • P.O. Schmid, P. Kuske
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Berlin
  • D.B. Engel, J. Feikes, R. Müller, G. Wüstefeld
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
 
 

In this paper we present the results of our studies employing LOCO and MML for optics calibration at the MLS and at the BESSY II storage rings. Both the standard user modes and dedicated low alpha modes were analysed.

 
WEPEA015 Coherent THz Measurements at the Metrology Light Source single-bunch, optics, ion, vacuum 2508
 
  • G. Wüstefeld, J. Feikes, M.V. Hartrott, M. Ries
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
  • A. Hoehl, R. Klein, R. Müller, A. Serdyukov, G. Ulm
    PTB, Berlin
 
 

The Metrology Light Source* is the first storage ring optimized for THz generation**. It applies a bunch shortening mode, based on a flexible momentum compaction factor 'alpha'. The emitted THz radiation is very sensitive to the machine tuning, its power could vary by many orders of magnitude. We report on coherent THz signal intensities as a function of different machine parameters, such as beam energy, beam current, rf voltage and alpha tuning.


* R. Klein et al., Phys. Rev. ST. Accel. Beams vol. 11, 110701 (2008). ** J. Feikes et al., The Metrology Light Source: The First Electron Storage Ring Optimized for Generating Coherent THz Radiation, submitted to Phys. Rev. ST. Accel. Beams (2009).

 
WEPEA019 Beam Studies for TBONE linac, simulation, cavity, electron 2520
 
  • S. Hillenbrand, M. Fitterer, N. Hiller, A. Hofmann, E. Huttel, V. Judin, M. Klein, S. Marsching, A.-S. Müller, K.G. Sonnad, P.F. Tavares
    KIT, Karlsruhe
 
 

The Karlsruhe Institute of Technology (KIT) proposes to build a new light source called TBONE (THz Beam Optics for New Experiments), which aims at a spectral range from 0.1 to 150 THz with a peak power of several MW and a pulse length of only 5 fs. In order to achieve this, a beam transport system with minimal losses and a high bunch compression is required. In this paper we present first beam dynamic simulations of the superconducting linac as well as the bunch compressor and give a short status report of the TBONE project.

 
WEPEA020 Observation of Bunch Deformation at the ANKA Storage Ring synchrotron, storage-ring, optics, impedance 2523
 
  • N. Hiller, S. Hillenbrand, A. Hofmann, E. Huttel, V. Judin, B. Kehrer, M. Klein, S. Marsching, A.-S. Müller, A. Plech, N.J. Smale, K.G. Sonnad, P.F. Tavares
    KIT, Karlsruhe
 
 

A dedicated optics with a low momentum compaction factor is used at the ANKA storage ring to reduce the bunch length to generate coherent synchrotron radiation (CSR). A double sweep streak camera is employed to determine the bunch length and shape for different optics and as a function of the beam current. Measurements of the longitudinal bunch profile have been performed for many different momentum compaction factors and various bunch currents. This paper describes the set up of the streak camera experiments and compares the measured bunch lengths to theoretical expectations.

 
WEPEA021 Observation of Bursting Behavior Using Multiturn Measurements at ANKA synchrotron, single-bunch, synchrotron-radiation, electron 2526
 
  • V. Judin, S. Hillenbrand, N. Hiller, A. Hofmann, E. Huttel, M. Klein, S. Marsching, A.-S. Müller, N.J. Smale, K.G. Sonnad, P.F. Tavares
    KIT, Karlsruhe
  • H.W. Huebers
    Technische Universität Berlin, Berlin
  • A. Semenov
    DLR, Berlin
 
 

Since a few years CSR-Radiation created in low alpha mode is provided by the ANKA light source of the KIT*. Depending on the bunch current, the radiation is emitted in bursts of high intensity. These bursts display a time evolution which can be observed only on long time scales with respect to the revolution period. The intensity of the emitted radiation during a burst is significantly increased w.r.t. steady state emission. Some users of the THz radiation don't require particularly constant emission characteristics and could profit from the higher intensity. A better understanding of the long term behaviour of those bursts could help to improve the conditions for those users. We have investigated THz radiation in multiturn mode with a hot electron bolometer. Its time response of 165ps allowed us to resolve the signals of individual bunches. Using a 6GHz LeCroy oscilloscope for data acquisition, we were able to save up to 1.6ms long signal sequences at a sampling rate of 20GS/s. This amount of data corresponds to over 4000 bunch revolutions and allows turn-by-turn signal tracking of desired bunches. In single bunch mode we are able to take segmented data to avoid a huge overhead.


* KIT - Karlsruhe Institute for Technology

 
WEPEA022 Studies of Polarisaion of Coherent THz Edge Radiation at the ANKA Storage Ring synchrotron, storage-ring, electron, background 2529
 
  • A.-S. Müller, I. Birkel, M. Fitterer, S. Hillenbrand, N. Hiller, A. Hofmann, E. Huttel, K.S. Ilin, V. Judin, M. Klein, S. Marsching, Y.-L. Mathis, P. Rieger, M. Siegel, N.J. Smale, K.G. Sonnad, P.F. Tavares
    KIT, Karlsruhe
  • H.W. Huebers
    Technische Universität Berlin, Berlin
  • A. Semenov
    DLR, Berlin
 
 

In synchrotron radiation sources coherent radiation is emitted when the bunch length is comparable to or shorter than the wavelength of the emitted radiation. At the ANKA storage ring this radiation is observed as so-called edge radiation (emitted in the fringe field of a bending magnet). This radiation exhibits a radial polarisation pattern. The observed pattern, however, is influenced by the radiation transport in the beam line. A detector system based on a superconducting NbN ultra-fast bolometer with an intrinsic response time of about 100 ps as well as conventional Si bolometers were used to study the beam polarisaion. This paper reports the observations made during measurements.

 
WEPEA025 Utilization of Crab Cavities in the Designed QBA Lattice of Taiwan Photon Source cavity, emittance, photon, electron 2538
 
  • H. Ghasem
    IPM, Tehran
  • G.-H. Luo
    NSRRC, Hsinchu
  • A. Mohammadzadeh
    NSTRI, Tehran
 
 

A pair of superconducting crab cavities has been studied in the QBA low emittance lattices of the 3 GeV TPS for generating ultra short X-ray pulses. Three configurations with different locations for the two cavities in a super-period of the TPS ring are investigated. The configuration with positioning the RF deflectors between the QBA cells in each super-period as an optimum arrangement gives rise to better quality electron bunches and radiated photon pulses. The FWHM of the radiated photon pulses of about 540 fs with an acceptable intensity is attained by optimizing the compression optical elements of the TPS photon beam line.

 
WEPEA028 Top-up Implementation and Operation at Elettra injection, booster, storage-ring, simulation 2543
 
  • E. Karantzoulis, A. Carniel, K. Casarin, S. Ferry, G. Gaio, F. Giacuzzo, S. Krecic, E. Quai, C. Scafuri, G. Tromba, A. Vascotto, L. Zambon
    ELETTRA, Basovizza
 
 

Elettra established top-up operations taking advantage of its new full energy injector. The safety simulations and personnel safety conditions, the radiation measurements, the implementation and the operations of the whole system are presented and discussed.

 
WEPEA029 HiSOR-II, Future Plan of Hiroshima Synchrotron Radiation Center storage-ring, booster, undulator, injection 2546
 
  • A. Miyamoto, K. Goto, S. Sasaki
    HSRC, Higashi-Hiroshima
  • S. Hanada
    Hiroshima University, Graduate School of Science, Higashi-Hiroshima
  • H. Tsutsui
    SHI, Tokyo
 
 

The HiSOR is a synchrotron radiation (SR) source of Hiroshima Synchrotron Radiation Center (HSRC), Hiroshima University, established in 1996. HiSOR is a compact racetrack-type storage ring having 21.95 m circumference, and 400-nmrad natural emittance, which is not so small compared with those of other medium~large storage rings. There are 14 beamlines on HiSOR, but the ring has only two straight sections for undulators which are obviously not compatible with modern SR facilities. Therefore, we are planning to construct a compact storage ring, 'HiSOR-II' in which undulators are dominant light sources. We refer to the electron storage ring MAX-III as the best models to design HiSOR-II lattice. This 700 MeV storage ring is designed that the circumference is equal to or less than 50 m so that it can fit in our existing site. It has several straight sections for undulators, and its natural emittance is about 14nmrad. The booster ring aiming for the top-up injection is constructed on the inside basement of HiSOR-II. This layout brings advantages in radiation shielding and prevention of magnetic field interference between two rings.

 
WEPEA030 Improved Stability of the Radiation Intensity at the NewSUBARU Synchrotron Radiation Facility electron, synchrotron, synchrotron-radiation, storage-ring 2549
 
  • S. Hashimoto, S. Miyamoto
    NewSUBARU/SPring-8, Laboratory of Advanced Science and Technology for Industry (LASTI), Hyogo
  • K. Kawata, Y. Minagawa, T. Shinomoto
    JASRI/SPring-8, Hyogo-ken
 
 

The periodic fluctuations and drifts in the radiation intensity have been observed at the NewSUBARU synchrotron radiation facility. To clarify the cause of this problem we have measured temperatures of air, cooling water, equipments and building with the network-distributed data logger. And we found that temperature fluctuations in both air in the shielded tunnel and the cooling water mainly affect the stabilities of electron beam orbit and optical axis. To maintain a constant temperature, the large doors for carrying equipment at the experimental hall were covered with insulated curtains, and we optimized PID parameters of temperature controllers for air and water. As results, the periodic fluctuations almost disappeared, but some drifts were still remained, which are due to slow variations of equipment temperature. By realizing the automatic COD correction, the drift in electron beam position could be suppressed and the fluctuations of radiation intensity observed at beam-lines became smaller than they used to be. For further stabilization, we recently introduced a XBPM upstream in a beamline to measure the vertical position of radiation axis precisely.

 
WEPEA036 Accelerators of the Central Japan Synchrotron Radiation Research Facility Project storage-ring, synchrotron, booster, synchrotron-radiation 2567
 
  • N. Yamamoto, M. Hosaka, H. Morimoto, K. Takami, Y. Takashima
    Nagoya University, Nagoya
  • Y. Hori
    KEK, Ibaraki
  • M. Katoh
    UVSOR, Okazaki
  • S. Koda
    SAGA, Tosu
  • S. Sasaki
    JASRI/SPring-8, Hyogo-ken
 
 

Central Japan Synchrotron Radiation (SR) Research Facility is under construction in the Aichi area, and the service will start from FY2012. Aichi Science & Technology Foundation is responsible for the operation and management, and Nagoya University SR Research Center is responsible to run the facility and support the users technically and scientifically. The accelerators consists of an injector linac, a booster synchrotron and an 1.2 GeV electron storage ring with the circumference of 72 m. To save construction expenses, the 50 MeV linac and the booster with the circumference of 48 m are built at inside of the storage ring. The beam current and natural emittance of the storage ring are 300 mA and 53 nmrad. The magnetic lattice consists of four triple bend cells and four straight sections 4 m long. The bending magnets at the centers of the cells are 5 T superbends and the critical energy of the SR is 4.8 keV. More than ten hard X-ray beam-line can be constructed. One variable polarization undulator will be installed in the first phase. The electron beam will be injected from the booster with the full energy and the top-up operation will be introduced as early as possible.

 
WEPEA037 Study of the Coherent Terahertz Radiation by Laser Bunch Slicing at UVSOR-II Electron Storage Ring laser, electron, storage-ring, undulator 2570
 
  • N. Yamamoto, M. Hosaka, Y. Taira, Y. Takashima
    Nagoya University, Nagoya
  • M. Adachi, M. Katoh, S.I. Kimura, H. Zen
    UVSOR, Okazaki
  • M. Shimada
    KEK, Ibaraki
  • T. Takahashi
    KURRI, Osaka
  • T. Tanikawa
    Sokendai - Okazaki, Okazaki, Aichi
 
 

Terahertz (THz) coherent synchrotron radiation (CSR) is emitted not only from shorter electron bunches compared with the radiation wavelength but also from electron bunches withμstructures. Formation ofμstructures at sub picosecond scale in electron bunches by a laser slicing technique is experimentally studied through observation of THz CSR. The properties of the THz CSR such as intensity or spectrum depend strongly on the shape and amplitude of theμstructure created in the electron bunches. To study in detail the formation ofμstructure in electron bunches using the laser slicing technique, we have performed experiments at the UVSOR-II electron storage ring. THz CSR, which contains information on theμstructure, was observed under various laser conditions. The THz CSR spectrum was found to depend strongly on the intensity and the pulse width of the laser. The results agreed qualitatively with a numerical calculation. It was suggested that the evolution of theμstructure during CSR emission is important under some experimental conditions.

 
WEPEA042 Lattice Design and Beam Lifetime Study for HLS St01orage Ring Upgrade Project lattice, synchrotron, emittance, storage-ring 2585
 
  • G. Feng, W. Fan, W.W. Gao, W. Li, L. Wang, H. Xu, S.C. Zhang
    USTC/NSRL, Hefei, Anhui
 
 

HLS (Hefei Light Source) is a dedicated synchrotron radiation research facility, whose emittance is relatively large. In order to improve performance of the machine, especially getting higher brilliance synchrotron radiation and increasing the number of straight sections for insertion devices, an upgrade project is on going. A new low emittance lattice, which keeps the circumference of the ring no changing, has been studied and presented in this paper. For the upgrade project, a new ring will be installed on current ground settlement of HLS and all of the magnets will be reconstructed. After optimization, two operation modes have been chosen for different users. Nonlinear dynamics shows that dynamic aperture for on-momentum and off-momentum particle is large enough. Beam lifetime has also been studied. Calculation results proves that expected beam lifetime about 8.5 hours can be obtained with a fourth harmonic cavity operation.

 
WEPEA060 An Update of the Lattice Design of the TAC Proposed Synchrotron Radiation and Insertion Devices lattice, storage-ring, undulator, insertion 2624
 
  • K. Zengin, A.K. Çiftçi, R. Çiftçi
    Ankara University, Faculty of Sciences, Tandogan/Ankara
 
 

The Turkish Accelerator Center (TAC) is a project for accelerator based fundamental and applied researches supported by Turkish State Planning Organization (TSPO). The proposed synchrotron radiation facility of TAC was consisted of 3.56 GeV positron ring for a third generation light source. In the first study, it was shown that the insertion devices with the proposed parameter sets produce maximal spectral brightness to cover 10 eV - 100 keV photon energy range. Now, in this study it is considered that the electron beam energy will be increased to 4.5 GeV, in order to obtain more brightness light and wide energy spectrum range, also the beam emittance reduced to 1 nm.rad.

 
WEPEA061 Comparative Analysis of Compton Scattering Cross Section Derived with Classical Electrodynamics and with use of Quantum Approach electron, scattering, photon, laser 2627
 
  • I.V. Drebot, Yu.N. Grigor'ev, A.Y. Zelinsky
    NSC/KIPT, Kharkov
 
 

In the paper the expression for cross section of Compton scattering derived with classical electrodynamics approach is presented. The comparative analysis of the Compton cross section value calculated with the presented expression and with expression derived with quantum approach was carried out for the case of head on collision and low photon beam intensity. Results of the analysis show the good agreement of both approaches. It proves legitimacy of classical electromagnetic approach use for analysis of particle beam dynamics and estimation of generated x-ray beam parameters in laser electron storage rings.

 
WEPEB060 System Design of Accelerator Safety Interlock for the XFEL/SPring-8 status, gun, electron, controls 2827
 
  • M. Kago, T. Matsushita, N. Nariyama, C. Saji, R. Tanaka, A. Yamashita
    JASRI/SPring-8, Hyogo-ken
  • Y. Asano, T. Fukui, T. Itoga
    RIKEN/SPring-8, Hyogo
 
 

The accelerator safety interlock system (ASIS) for the XFEL/SPring-8 protects personnel from radiation hazard. We designed the ASIS consisting of three independent systems; a central interlock system, an emergency interlock system and a beam route interlock system. The central interlock system monitors the machine tunnel security, status of beam line interlock system and radiation monitoring system. The emergency interlock system monitors status of emergency stop buttons. The beam route interlock system monitors electron beam route by inputting the current of the bending magnets at the electron-beam switching points. If any system trips, or if any system detects unsafe status, the permission signal for the accelerator operation from the system is off and the electron beam is inhibited. In addition, it is demanded that the permission signals must be transmitted within 16.6 ms. Therefore, the stability and fast response are required for the XFEL safety interlock system. We adopted programmable logic controllers (PLC) for the stability, and developed optical modules for the fast signal transmission. This paper describes system design of the ASIS.

 
WEPEB063 Concept of Radiation Monitoring and Safety Interlock Systems for XFEL/SPring-8 gun, electron, status, monitoring 2836
 
  • N. Nariyama, H. Aoyagi, M. Kago, T. Matsushita, C. Saji, R. Tanaka
    JASRI/SPring-8, Hyogo-ken
  • Y. Asano, T. Itoga
    RIKEN/SPring-8, Hyogo
 
 

The accelerator safety interlock system of XFEL/SPring-8 was designed to fulfill the requirement of matching with the safety interlock system of SPring-8 because both safety systems are planning to be unified in near future to deal with the electron beam injection from XFEL to SPring-8. At XFEL, however, additional requirements for the system also existed; the designed radiation shielding requires when the electrons are not injected into the dump core properly, the beam has to be terminated within 16 msec, which corresponds to 60 Hz operation, to avoid the next bunch coming. An outline of such different design criteria is presented together with the concept of the safety interlock system. The radiation monitoring system, which was also the same as that of SPring-8, was installed by reinforcing the redundancy and response time. Gamma and neutron monitors are set at 14 positions near the assumed loss points in the accessible place of the controlled area. The dose equivalent data are sent to the radiation monitoring systems of XFEL and SPring-8, respectively, and when the measured dose exceeds the preset level, an alarm signal is sent to the safety interlock promptly.

 
WEPEB064 Electricity Generation from Scattered Secondary Particles Induced by Synchrotron Radiation vacuum, synchrotron, synchrotron-radiation, beam-losses 2839
 
  • Y. Shimosaki, K. Kobayashi
    JASRI/SPring-8, Hyogo-ken
 
 

Electricity generation from scattered secondary particles has been examined for a kind of energy-recovery by using a beam loss monitor at the SPring-8 storage ring, in which PIN photodiodes are utilized without a reversed bias voltage in similar to a solar cell. The system and results will be reported.

 
WEPEB066 Shielding Analyses and Procedures for the SNS shielding, neutron, target, scattering 2845
 
  • I.I. Popova, P.D. Ferguson, F. X. Gallmeier, E. Iverson
    ORNL, Oak Ridge, Tennessee
  • W. Lu
    ORNL RAD, Oak Ridge, Tennessee
 
 

All stages of the SNS development require significant research and development work in the field of radiological shielding design to assure safety from a radiation-protection point of view for facility operation and to optimize accelerator and target performance. Here we present an overview of on-going shielding work and associated with it procedures and regulations. In the present time, the most of the shielding work is focused on the neutron beam lines and their instrument enclosures in order to commission and provide save operation in the future. This effort is performed according to the guidelines for shielding calculations of SNS neutron beam lines, which sets standards for the analyses and helps to prepare for the Instrument Readiness Review (IRR). The IRR ascertains that the instruments has been design, constructed, and installed to allow safe operation and maintenance. In addition, there is still support for the accelerator facility to redesign parts of the accelerator structures, to design shielding for removed components and test stands for accelerator structures, and for radiation protection analyses for evaluations of accelerator and target safety systems.

 
WEPEB067 Beam Containment System for NSLS-II injection, beam-losses, shielding, dipole 2848
 
  • S.L. Kramer, W.R. Casey, P.K. Job
    BNL, Upton, Long Island, New York
 
 

The shielding design for the NSLS-II will provide adequate protection for the full injected beam loss in two periods of the ring around the injection point, but the remainder of the ring is shielded for lower losses of <10% full beam loss. This will require a system to insure that beam losses don't exceed these levels for a period of time that could cause levels outside the shield walls. This beam containment system will measure, provide a level of control and alarm indication of the beam power losses along the beam path from the source (e-gun, linac) thru the injection system and the storage ring. This system will consist of collimators that will provide limits to (an potentially measure) the beam miss-steering and control the loss points of the charge and monitors that will measure the average beam current losses along the beam path and alarm when this beam power loss exceeds the level set by the shielding specifications. This will require some new ideas in beam loss detection capability and collimation. The initial planning and R&D program will be presented.

 
WEPEB068 Feasibility Tests of the Beam Halo Monitoring System for Protecting Undulator Permanent Magnets against Radiation Damage at XFEL/SPring-8 electron, undulator, permanent-magnet, free-electron-laser 2851
 
  • H. Aoyagi, T. Bizen, N. Nariyama
    JASRI/SPring-8, Hyogo-ken
  • Y. Asano, T. Itoga, H. Kitamura, T. Tanaka
    RIKEN/SPring-8, Hyogo
 
 

A beam halo region of an electron beam at a linear accelerator might hit the undulator magnets and degrade undulator permanent magnets. An interlock sensor is indispensable to protect the magnets against radiation damage. We have been developing an electron beam halo monitor using diamond detectors for an interlock sensor at the X-ray free electron laser facility at SPring-8 (XFEL/SPring-8). The diamond detectors are operated in photoconductive mode. Pulse-by-pulse measurements are adopted to suppress the background noise efficiently. The feasibility tests of this monitor have been performed at the SPring-8 compact SASE source (SCSS) test accelerator for XFEL/SPring-8, and the results will be summarized.

 
WEPEB072 First Operation of the Abort Gap Monitor for LHC synchrotron, proton, simulation, dumping 2863
 
  • T. Lefèvre, S. Bart Pedersen, A. Boccardi, E. Bravin, A. Goldblatt, A. Jeff, F. Roncarolo
    CERN, Geneva
  • A.S. Fisher
    SLAC, Menlo Park, California
 
 

The LHC beam dump system relies on extraction kickers that need 3 microseconds to rise up to their nominal field. As a consequence, particles crossing the kickers during this rise time will not be dumped properly. The proton population during this time should remain below quench and damage limits at all times. A specific monitor has been designed to measure the particle population in this gap. It is based on the detection of Synchrotron radiation using a gated photomultiplier. Since the quench and damage limits change with the beam energy, the acceptable population in the abort gap and the settings of the monitor must be adapted accordingly. This paper presents the design of the monitor, the calibration procedure and the detector performance with beam.

 
WEPEC028 Cavity Diagnostics using Rotating Mapping System for 1.3GHz ERL 9-Cell Superconducting Cavity cavity, electron, HOM, diagnostics 2950
 
  • H. Sakai, T. Furuya, S. Sakanaka, T. Takahashi, K. Umemori
    KEK, Ibaraki
  • M. Sawamura
    JAEA/ERL, Ibaraki
  • K. Shinoe
    ISSP/SRL, Chiba
 
 

We are developing the superconducting (SC) cavity for Energy Recovery Linac (ERL) in Japan. In order to survey the electron emission and the heating spot of the cavity inner surface in detail, cavity diagnostics with the rotating mapping system was applied. Two types of sensors, one of which is the carbon resistor and the other is the Si PIN photo diode, were set to detect the temperature rise and electron emission. By rotating the sensor arrays around the cavity axis, a lot of information is obtained all over the cavity surface in detail. This paper reports the results of vertical tests by using this rotating mapping system with Nb 9-cell ERL cavity.

 
WEPEC041 Manufacturing of the Main Accelerator with TESLA-like 9-cell SRF Cavities at Peking University cavity, vacuum, cryomodule, SRF 2977
 
  • F.S. He, J. Dai, J.K. Hao, S. Jin, Y.M. Li, L. Lin, K.X. Liu, X.Y. Lu, S.W. Quan, W. Xu, B.C. Zhang, K. Zhao, F. Zhu
    PKU/IHIP, Beijing
 
 

Peking University is striving for constructing a superconducting radio-frequency accelerator test facility (PKU-SETF) to provide coherent radiations [1]. A cryomodule consisting of a China made 9-cell TESLA type cavity was designed and constructed for this purpose, which is expected to provide 15-20 MeV energy gain at an operating temperature of 2K. Some technical issues in the manufacturing progress are reported, including the tungsten inert gas (TIG) welding of the LHe vessel and the superconducting cavity, the demagnetization of the vacuum vessel made of pure iron, and the manufacturing of the main power coupler.

 
WEPEC056 Optimization Studies for Radiation Shielding of a Superconducting RF Cavity Test Facility cavity, shielding, electron, SRF 3019
 
  • C.M. Ginsburg, I.L. Rakhno
    Fermilab, Batavia
 
 

Test facilities for high-gradient superconducting RF cavities must be shielded for particle radiation, which is generated by field emitted electrons in the cavities. A major challenge for the shielding design is associated with uncertainty in modeling the field emission. In this work, a semi-empirical method that allows us to predict the intensity of the generated field emission is described. Spatial, angular and energy distributions of the generated radiation are calculated with the Fishpact code*. The Monte Carlo code MARS** is used for modeling the radiation transport in matter. The detailed distributions of the generated field emission were used for studies with ILC-type superconducting RF cavities with accelerating gradients up to 35 MV/m in the Fermilab Vertical Cavity Test Facility. This approach allows us to minimize the amount of shielding inside cryostat which is an essential operational feature.


* E. Donoghue et al., Proc. SRF-2005, Ithaca NY, June 2005, TuP67.
** N. V. Mokhov and S. I. Striganov, Proc. Hadronic Shower Simulation Workshop, Batavia, Illinois, USA, 6-8 September, 2006.

 
WEPEC057 Single Spoke Cavities for Low-energy Part of CW Linac of Project X. cavity, linac, acceleration, superconductivity 3022
 
  • I.G. Gonin, M.S. Champion, T.N. Khabiboulline, A. Lunin, N. Perunov, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia
 
 

In the low-energy part of the Project X H-linac there families of 325 MHz SC single spoke cavities will be used, having beta = 0.11, 0.22 and 0.4. Two versions of the beta = 0.11 cavity were considered: low-beta single-spoke cavity and half-wave cavity. Results of detailed optimization of both versions are presented. Single spoke cavity was selected for the linac because of higher r/Q. Results of the beam dynamics optimization for initial stage of the linac with beta=0.11 single spoke cavity are presented as well.

 
WEPD008 Development of a Short Period High field APPLE-II Undulator at SOLEIL undulator, polarization, synchrotron, synchrotron-radiation 3099
 
  • C.A. Kitegi, F. Briquez, M.-E. Couprie, T.K. El Ajjouri, J.-M. Filhol, K. Tavakoli, J. Vétéran
    SOLEIL, Gif-sur-Yvette
 
 

At SOLEIL, the production of high brilliant photon beams with adjustable polarization is achieved by means of Advanced Planar Polarized Light Emitter-II (APPLE-II) undulators. The HU36 is a short period high field APPLE-II type undulator with 36 mm period and 0.8 T peak field at a minimum gap of 11 mm. The HU36 circularly polarized radiation ranges from 2 keV to 5 keV, while the planar one extends up to 10 keV. High harmonic radiation (up to the 13th) is required to reach such high energy; therefore a small RMS phase error is needed. To enable closing the gap at 11 mm, the HU36 is planned to be installed in a short section where the large horizontal beta function imposes constraining tolerances on the integrated field errors. However at low period and high field, the magnet holders, commonly used at SOLEIL to maintain magnets on the girders, experience mechanical deformation due to the large magnetic forces. This results in the variation of field integrals when the shift between girders is changed. Solutions to minimize these errors are discussed and finally the HU36 magnetic performances are reviewed.

 
WEPD012 Cryogenic Design of a PrFeB-Based Undulator undulator, cryogenics, laser, electron 3111
 
  • J. Bahrdt, H.-J. Baecker, M. Dirsat, W. Frentrup, A. Gaupp, D. Pflückhahn, M. Scheer, B. Schulz
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Elektronen-Speicherring BESSY II, Berlin
  • F.J. Grüner, R. Weingartner
    LMU, Garching
  • D. Just
    Technische Universität Berlin, Berlin
  • F.H. O'Shea
    UCLA, Los Angeles, California
 
 

In collaboration with the Ludwig-Maximilian-University Munich a cryogenic PrFeB- based undulator has been built. The 20-period device has a period length of 9mm and a fixed gap of 2.5mm. The undulator has recently been installed at the laser plasma accelerator at the Max-Planck-Institute for Quantenoptik. The operation of a small gap device at a high emittance electron beam requires stable magnetic material. A high coercivity is achieved with PrFeB- material which is cooled down to 50K. This temperature is 100K lower as compared to the temperature of a NdFeB-based cryogenic undulator. In this paper we present the mechanic and cryogenic design and compare the predictions with measured data. The results are extrapolated to a 2m-long variable gap undulator.

 
WEPD018 Status of COLDDIAG: a Cold Vacuum Chamber for Diagnostics electron, vacuum, diagnostics, synchrotron 3126
 
  • S. Gerstl, T. Baumbach, S. Casalbuoni, A.W. Grau, M. Hagelstein, D. Saez de Jauregui
    Karlsruhe Institute of Technology (KIT), Karlsruhe
  • V. Baglin
    CERN, Geneva
  • C. Boffo, G. Sikler
    BNG, Würzburg
  • T.W. Bradshaw
    STFC/RAL, Chilton, Didcot, Oxon
  • R. Cimino, M. Commisso, B. Spataro
    INFN/LNF, Frascati (Roma)
  • J.A. Clarke, D.J. Scott
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • M.P. Cox, J.C. Schouten
    Diamond, Oxfordshire
  • R.M. Jones, I.R.R. Shinton
    UMAN, Manchester
  • A. Mostacci
    Rome University La Sapienza, Roma
  • E.J. Wallén
    MAX-lab, Lund
  • R. Weigel
    Max-Planck Institute for Metal Research, Stuttgart
 
 

One of the still open issues for the development of superconducting insertion devices is the understanding of the beam heat load. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the beam heat load mechanisms, a cold vacuum chamber for diagnostics is under construction. The following diagnostics will be implemented: i) retarding field analyzers to measure the electron flux, ii) temperature sensors to measure the total heat load, iii) pressure gauges, iv) and mass spectrometers to measure the gas content. The inner vacuum chamber will be removable in order to test different geometries and materials. This will allow the installation of the cryostat in different synchrotron light sources. COLDDIAG will be built to fit in a short straight section at ANKA. A first installation at the synchrotron light source DIAMOND is under discussion. Here we describe the technical design report of this device and the planned measurements with beam.

 
WEPD024 New Scheme of Quasi-Periodic Undulators undulator, lattice, photon, synchrotron 3141
 
  • S. Sasaki
    HSRC, Higashi-Hiroshima
 
 

More than a decade has past after the original quasi-periodic undulator (QPU) was proposed.* Until now, much work has been done to improve the QPU performance. One of the first most productive improvements was to introduce the quasi-periodicity in an electron trajectory by partially changing the field strength in a periodic undulator.** Also, a modification of creation theory of one-dimensional quasi-periodicity gave another degree of freedom to build this type of device.*** As the result, many different types of QPUs have been and will be installed in the synchrotron radiation facilities worldwide.**** In this paper, a new scheme of quasi-periodic undulator that has a different magnetic structure is proposed. This new QPU generates a slightly higher intensity radiation with higher harmonics pattern different from those of previous QPUs. This new scheme of QPU is achieved by introducing orthogonal field in each half-period in order to create additional phase delay of electron beam at certain positions predicted by the theory. We discuss about realistic magnetic configurations as well as possibilities and limitations of new-QPUs.


* Hashimoto, Sasaki, NIM A361, 611 (1995)
** Chavanne, et al, Proc EPAC98, p2213, Diviacco, et al, ibid, p2216
*** Sasaki, et al, Proc EPAC98, p2237
**** Steier, et al, Proc EPAC08, p2311

 
WEPD025 Theoretical Examination of Radiation Spectrum from the Quasi-periodic Undulator lattice, undulator, synchrotron, synchrotron-radiation 3144
 
  • S. Hirata
    Hiroshima University, Faculty of Science, Higashi-Hirosima
  • S. Sasaki
    HSRC, Higashi-Hiroshima
 
 

Different form conventional periodic undulators, the quasi-periodic undulator (QPU) can radiate irrational harmonics instead of rational harmonics. It suits with experiments that need highly monochromatic light after passing through the monochromator. For this reason, the QPU is used in many synchrotron radiation facilities all over the world. Recently, new type QPUs that generate radiation spectra different from those by conventional type QPU were proposed*,**. In principle, the shape of radiation spectrum from a new QPU is determined by magnetic field distribution having different quasi periodic pattern. However, calculated spectra using a realistic magnetic field are often different from those of theoretical expectation. In this paper, a detailed comparative study is conducted to examine why there are these differences, how to correct magnetic field to get predicted spectra that fit to the theory. In addition, a possibility of modifying the basis of theory is investigated. These results, new generation method of new quasi-periodicity, and magnetic field distribution to achieve the best performance are presented at the conference.


* S. Sasaki, Proceedings of PAC09, Vancouver, May, 2009.
** S. Sasaki, Proceedings of 6th Annual Meeting of Particle Accelerator Society of Japan (in Japanese).

 
WEPD029 End Field Termination for Bulk HTSC Staggered Array Undulator undulator, solenoid, FEL, electron 3156
 
  • R. Kinjo, M. A. Bakr, Y.W. Choi, T. Kii, K. Masuda, K. Nagasaki, H. Ohgaki, T. Sonobe, M. Takasaki, K. Yoshida
    Kyoto IAE, Kyoto
 
 

Aiming at realizing a short period undulator with strong magnetic field, we have proposed a Bulk HTSC (high temperature superconductor) Staggered Array Undulator which consists of bulk high temperature superconductor magnets with a staggered array configuration. The experiment with the prototype undulator at 77 K shows this configuration can be applicable to real undulator. We also estimated the magnetic performance of real device by calculations with a loop current model based on Bean model of superconductor. Although end field termination is required for practical use, traditional methods are not applicable for the bulk HTSCs. We found that the end field termination can be realized by controlling the shape and size of bulk HTSCs at the end section by numerical calculation using the loop current model. In the conference, the calculation and experimental result of end field termination will be presented.

 
WEPD033 Undulator Harmonic Field Enhancement Analysis undulator, electron, permanent-magnet, FEL 3165
 
  • Q.K. Jia
    USTC/NSRL, Hefei, Anhui
 
 

The enhancement of arbitrary odd harmonic field is analyzed for pure permanent magnet undulator. The two dimensional analytical formula of the magnetic field is given for a modified Harbch type undulator, in which the magnet blocks have different size. It is shown that the odd harmonic field can be enhanced by optimal the length ratio of the vertical magnetized magnet blocks and the horizontal magnetized magnet blocks, the 3rd harmonic field can exceeded 20% of the fundamental field and 7th harmonic field can exceeded 3 % of the fundamental field for magnet gap-period ratio equal to 0.1.

 
WEPD040 Spectrum Property Analysis of a Wiggler-like Undulator undulator, wiggler, photon, insertion 3177
 
  • S.D. Chen, T.M. Uen
    NCTU, Hsinchu
  • C.-S. Hwang
    NSRRC, Hsinchu
 
 

A wiggler with the property of low total radiation power and keeping high photon flux in hard x-ray region, 5-20 keV, which is necessary for the special demand of users, was under investigated for reducing the difficulty of the design of optical components in the beam line and decreasing the load of RF cavity power. Such an insertion devise was called wiggler-like undulator. The spectrum of wiggler-like undulater was investigated with a code, of which the algorithm is based on the compromising between photon flux and radiation power of insertion devices for spectrum optimization. The property of the spectrum of the wiggler-like undulator are discussed herein. Furthermore, the brilliance and the power distribution are somehow also discussed.

 
WEPD042 Design and Development of an Elliptically Polarized Undulator of Length 3.5 m for TPS undulator, photon, insertion, insertion-device 3183
 
  • C. H. Chang, C.-H. Chang, H.-H. Chen, J.C. Huang, M.-H. Huang, C.-S. Hwang, F.-Y. Lin, C.M. Wu
    NSRRC, Hsinchu
 
 

An elliptically polarized undulator of length 3.5 m and period length 48 mm (EPU48) is designed to fulfil experiments on spin-polarized PES and inelastic scattering at the Taiwan Photon Source (TPS). EPU48 would be used to produce variously polarized light in the soft X-ray spectral domain 0.4-1.5 keV. To achieve efficient mechanical performance and a high quality of photon source, a new manufacturing method by casting is adopted to fabricate a key component of the carriage of the undulator at National Synchrotron Radiation Research Center (NSRRC). We expect this approach to bestow advantages of decreased assembly error, increased rigidity and highly precise properties. Here we describe details of the design of the magnetic circuit and the mechanical design of the EPU48 based on this new concept of engineering construction.

 
WEPD044 Modelling Synchrotron Radiation from Realistic and Ideal Long Undulator Systems undulator, synchrotron, electron, synchrotron-radiation 3189
 
  • D. Newton
    The University of Liverpool, Liverpool
 
 

An analytic description of the synchrotron radiation from electrons with short-period helical trajectories is given by the Kincaid equation. A new code is under development which generates an analytical description of an arbitrary magnetic field, including non-linear and higher-order multipole (fringe field) components. The magnetic field map of a short-period undulator was modelled, using a 3-d finite element solver, and it's analytical field description has been used to compare the synchrotron radiation output from electrons with a 'realistic' trajectory in terms of the ideal analytic equations. The results demonstrate how small numerical inaccuracies in the particle tracking can lead to large inaccuracies in the calculated synchrotron output. The affects of the higher order field modes are studied which give additional insights into the radiation output from long undulator systems.

 
WEPD045 The Rapid Calculation of Synchrotron Radiation Output from Long Undulator Systems undulator, electron, synchrotron, synchrotron-radiation 3192
 
  • D. Newton
    The University of Liverpool, Liverpool
 
 

Recent designs for third generation light sources commonly call for undulator systems with a total length of several hundreds of metres. Calculating the synchrotron output from bunches of charged particles traversing such a system using numerical techniques takes an unfeasibly long time even on modern multi-node computer clusters. Analytical formulae (i.e. the Kincaid Equation) provide a more rapid solution for an idealised system but necessarily fail to produce the non-ideal response which is under investigation. A new code is described which generates an analytic description of an arbitrary magnetic field and uses differential algebra and Lie methods to describe the particle dynamics in terms of series of transfer maps. The synchrotron output can then be calculated using arbitrarily large step size with no loss of accuracy in the trajectory. The code is easily adapted to perform parallel calculations on multi-core machines. Examples of the radiation output from several long magnet systems are described and the performance is assessed.

 
WEPD047 Development Status of a Superconducting Undulator for the Advanced Photon Source (APS) undulator, photon, cryogenics, injection 3198
 
  • E.R. Moog, M. Abliz, K.D. Boerste, T.W. Buffington, D. Capatina, R.J. Dejus, C. Doose, Q.B. Hasse, Y. Ivanyushenkov, M.S. Jaski, M. Kasa, S.H. Kim, R. Kustom, E. Trakhtenberg, I. Vasserman, J.Z. Xu
    ANL, Argonne
  • N.A. Mezentsev, V.M. Syrovatin
    BINP SB RAS, Novosibirsk
 
 

A number of prototype magnetic structures for a superconducting undulator have been successfully built and tested. The field quality of a test device was measured in a vertical dewar; the phase errors were 7.1 deg. at the maximum design current with no phase shimming. The Advanced Photon Source (APS) specification for overall trajectory was met using the end compensation coils. Several Hall probes have been calibrated at cryogenic temperatures. The design for a cryostat to hold the undulator for installation in the APS storage ring is nearing completion, and a cryogenic measurement facility to measure the magnetic field of the completed undulator is under development.

 
WEPD050 Performance Evaluation of Undulator Radiation at CEBAF undulator, brilliance, photon, electron 3207
 
  • C. Liu
    CASA, newport news
  • G.A. Krafft
    JLAB, Newport News, Virginia
  • G.M. Wang
    BNL, Upton, Long Island, New York
 
 

The possibility of producing sub-ps x-ray by putting undulator in CEBAF machine will be discussed. The performance of undulator radiation at CEBAF will be calculated and compared with storage ring light source.

 
WEPD051 Ultrashort Electron Bunch Train Production by UV Laser Pulse Stacking electron, laser, gun, cavity 3210
 
  • L.X. Yan, Q. Du, Y.-C. Du, Hua, J.F. Hua, W.-H. Huang, C. Liao, C.-X. Tang
    TUB, Beijing
 
 

Ultrashort relativistic electron beam can be applied to produce high power coherent THz radiation by mechanisms such as FEL, CSR, CTR et al. The THz modulated electron beams, or THz-repetition-rate ultrashort electron bunch trains exhibit further enhancement of coherent THz radiation. This article will report the experimental results on the ultrashort electron bunch train production by copper based photocathode RF gun via direct UV laser pulse stacking using birefringent α-BBO crystal serials at our laboratory. The temporal profile of the electron beam was measured by deflecting cavity. Space charge effect downstream the photocathode is simulated. This shaping method of laser pulse by α-BBO crystals can also be applied to form quasi flattop UV laser pulse for reducing the initial emittance of the electron beam from the photocathode RF gun.

 
WEPD069 Booster of the ALBA Synchrotron Light Source: Pre-commissioning experiences booster, injection, synchrotron, quadrupole 3257
 
  • M. Pont
    CELLS-ALBA Synchrotron, Cerdanyola del Vallès
 
 

ALBA is a 3 GeV third generation synchrotron light source under construction in Spain. The injection system is composed of a 100 MeV Linac as pre-injector followed by a full energy booster synchrotron which shares the same tunnel as the storage ring. With a circumference of 249.6 m and a magnetic lattice based on combined magnets an emittance of 9 nm.rad has been predicted. At present time we are in an intensive sub-system commissioning testing with the aim to start the commissioning with beam early in January 2010.

 
WEPE003 Design of an 18 MW Beam Dump for 500 GeV Electron/Positron Beams at an ILC positron, electron, status, linear-collider 3341
 
  • J.W. Amann, R. Arnold, A. Seryi, D.R. Walz
    SLAC, Menlo Park, California
  • K. Kulkarni, P. Rai, P. Satyamurthy, V. Tiwari
    BARC, Mumbai
  • H. Vincke
    CERN, Geneva
 
 

Significant progress has been made in the design of an 18MW Beam Dump for 500 GeV electron/positron beams at an ILC. The beam dump design is based on circulating water with a vortex-like flow pattern to dissipate and remove the energy deposited by the beam. Multi-dimensional technology issues have been addressed to design the beam dump system. Detailed thermal-hydraulic analysis was carried out in all the critical regions of the beam dump which include, 1) location of highest volumetric power deposition by the beam, 2) location of highest linear power deposition, 3) entrance window region, 4) vessel walls etc. Based on this analysis, the sizing of the beam dump and its components, water flow rate and inlet jet velocity, optimum location of the beam path in the beam dump, beam sweep radius etc have been estimated. In addition, preliminary mechanical design of the beam dump, cooling circuit details, sizing of the hydrogen/oxygen recombiner system, ion exchange and 7Be removal, prompt and residual radioactivity studies etc have been carried out. Details of this work will be presented.

 
WEPE004 High Gradient Behaviors of Large Grain ICHIRO Single Cell Cavity by Chemical Polishing cavity, SRF, niobium, superconductivity 3344
 
  • F. Furuta, T. Konomi, K. Saito
    KEK, Ibaraki
 
 

We have started high gradient R&D with the combination of ICHIRO shape, sliced large grain niobium, and chemical polishing (CP). We fabricated one large grain ICHIRO single cell cavity that had end cell shape of ICHIRO 9-cell but no end group. We processed this cavity surface by centrifugal barrel polishing (CBP) and CP. This cavity successfully achieved the high gradient of 42MV/m at the first vertical test. We made series test by repeating CP on this cavity. The results of series test will be reported.

 
WEPE008 Construction of the S1-Global Cryomodules for ILC cavity, cryomodule, vacuum, accelerating-gradient 3356
 
  • N. Ohuchi, H. Hayano, N. Higashi, E. Kako, Y. Kondou, H. Nakai, S. Noguchi, T. Saeki, M. Satoh, M. Sawabe, T. Shidara, T. Shishido, A. Terashima, K. Tsuchiya, K. Watanabe, A. Yamamoto, Y. Yamamoto, K. Yokoya
    KEK, Ibaraki
  • T.T. Arkan, S. Barbanotti, H. Carter, M.S. Champion, R.D. Kephart, J.S. Kerby, D.V. Mitchell, Y. Orlov, T.J. Peterson, M.C. Ross
    Fermilab, Batavia
  • A. Bosotti, C. Pagani, R. Paparella, P. Pierini
    INFN/LASA, Segrate (MI)
  • D. Kostin, L. Lilje, A. Matheisen, W.-D. Möller, H. Weise
    DESY, Hamburg
 
 

In an attempt at demonstrating an average field gradient of 31.5 MV/m as per the design accelerating gradient for ILC, a program called S1-Global is in progress as an international research collaboration among KEK, INFN, FNAL, DESY and SLAC. The S1-Global cryomodule will contain eight superconducting cavities from FNAL, DESY and KEK. The cryomodule will be constructed by joining two half-size cryomodules, each 6 m in length. The module containing four cavities from FNAL and DESY has been constructed by INFN. The module for four KEK cavities is being modified at present. The assembly of the cryomodules is scheduled from January 2010, and the operation of the system is scheduled from June 2010 at the KEK-STF. In this paper, the construction of the S1-Global cryomodule will be presented.

 
WEPE010 Improvements of Cleaning Methods for High Q-slope Problem in Full End Single Cell Cavity  cavity, HOM, SRF 3362
 
  • K. Saito, F. Furuta, T. Konomi
    KEK, Ibaraki
 
 

We are developing LL high gradient SRF cavity for ILC. Recently we have observed a Q-slope problem at higher gradient over 35-40MV/m on the full end single cell cavities, which have a HOM coupler and an input coupler on a beam tube. This problem might be due to poor rinsing in such a complicate structure. We have studied to strengthen cleaning by improvement of the nozzle shape used high pressure water rinsing, inside ultrasonic cleaning, steam cleaning, and so on. In this paper we will report these results.

 
WEPE012 Summary of Vertical Tests for S1-Global Project in KEK-STF cavity, cryomodule, shielding, electron 3368
 
  • Y. Yamamoto, H. Hayano, E. Kako, S. Noguchi, M. Sato, T. Shishido, K. Umemori, K. Watanabe
    KEK, Ibaraki
 
 

Vertical tests of five 1.3GHz 9-cell cavities (MHI#5-#9) have been done totally 17 times from 2008 to 2009 for S1-Global project in KEK-STF, which is planned in 2010. MHI#7 cavity achieved 33.6MV/m, which was the best result, and the others below 30MV/m. After the exchange for new EP acid on May/2009, many brown stains (niobium oxide) were observed on the interior surface of the cavity, and onset gradient of radiation level measured at the top flange of cryostat was much lower. After several vertical tests, the effect by this phenomenon was gradually relaxed. After four cavities reached above 25MV/m, the gradient suddenly dropped due to the unknown cause at the next vertical test. Two of four cavities were recovered above 25MV/m at the final vertical test again. However, any cavity in KEK-STF did not reach ILC specification (Eacc=35MV/m, Q0=0.8x1010) yet. This means that more improvement for cavity fabrication and surface treatment is necessary. In this presentation, the summary of the vertical tests for S1-Global project in KEK-STF will be reported.

 
WEPE013 Summary of Results and Development of Online Monitor for T-mapping/X-ray-mapping in KEK-STF cavity, EPICS, electron, diagnostics 3371
 
  • Y. Yamamoto, H. Hayano, E. Kako, S. Noguchi, M. Sato, T. Shishido, K. Umemori, K. Watanabe
    KEK, Ibaraki
 
 

Vertical test for 1.3GHz 9-cell cavity has been routinely carried out over one year since 2008 in KEK-STF. Temperature mapping (T-mapping) system using 352 carbon resistors was introduced to identify the heating location at thermal quenching of the cavity. T-mapping system in STF identified perfectly the heating location in every vertical test for S1-Global project. As X-ray-mapping system, 142 PIN diodes were used, and the x-ray emission site was detected under heavy field emission. During the vertical test, it is convenient to display the result of T-mapping and X-ray-mapping by online monitor system. For this purpose, the new online monitor system was developed by using EPICS (Experimental Physics and Industrial Control System) and Java script, and introduced in recent several vertical tests. As a data acquisition system, nine data loggers (MW100, YOKOGAWA) are used, and signals from totally 540 channels are stored every 0.1 sec. The online display for T-mapping and X-ray-mapping is updated automatically every 5 seconds. In this report, the summary of T-mapping/X-ray-mapping result and the online monitor system will be described in detail.

 
WEPE029 Impact of the Experiment Solenoid on the CLIC Luminosity solenoid, luminosity, coupling, synchrotron 3416
 
  • B. Dalena, D. Schulte, R. Tomás
    CERN, Geneva
 
 

The main detector solenoid and associated magnets can have an important impact on the CLIC luminosity. These effects are discussed for different solenoid designs. In particular, the luminosity loss due to incoherent synchrotron radiation in the experiment solenoid and QD0 overlap is evaluated. The impact of the AntiDiD (Anti Detector integrated Dipole) on luminosity and compensated techniques on beam optic distortion are also discussed.

 
WEPE071 Integrated Low Beta Region Muon Collider Detector Design collider, background, electron, shielding 3506
 
  • M.A.C. Cummings
    Muons, Inc, Batavia
  • D. Hedin
    Northern Illinois University, DeKalb, Illinois
 
 

Muon Colliders produce high rates of unwanted particles near the beams in the detector regions. Previous designs have used massive shielding to reduce these backgrounds, at a cost of creating dead regions in the detectors. To optimize the physics from the experiments, new ways to instrument these regions are needed. Since the last study of a muon collider detector in the 1990s, new types of detectors, such as solid state photon sensors that are fine-grained, insensitive to magnetic fields, radiation-resistant, fast, and inexpensive have become available. These can be highly segmented to operate in the regions near the beams. We re-evaluate the detector design, based on new sensor technologies. Simulations that incorporate conditions in recent muon collider interaction region designs are used to revise muon collider detector parameters based on particle type and occupancy. Shielding schemes are studied for optimization. Novel schemes for the overall muon collider design, including "split-detectors", are considered.

 
WEPE090 Intra-Beam Scattering in the CLIC Damping Rings emittance, lattice, damping, simulation 3557
 
  • A. Vivoli, M. Martini
    CERN, Geneva
 
 

The CLIC 3 TeV nominal design requires very low emittance of the electron and positron beams to be reached in the damping rings. Due to low energy and to relatively high bunch charge and ultra-low emittance, Intra-Beam Scattering (IBS) effect is very strong and an accurate calculation is needed to check if the required emittance is effectively reached. For this reason it is being developed at CERN a new Software for IBS and Radiation Effects (SIRE), which simulates the evolution of the beam particle distribution in the damping rings, taking into account radiation damping, IBS and quantum excitation. In this paper we present the results of our simulations performed with SIRE on the current lattice of the CLIC damping rings.

 
WEPE099 Thermal and Mechanical Effects of a CLIC Bunch Train Hitting a Beryllium Collimator wakefield, collimation, status, simulation 3584
 
  • J.-L. Fernandez-Hernando
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • J. Resta-López
    JAI, Oxford
 
 

Beryllium is being considered as an option material for the CLIC energy collimators in the Beam Delivery System. Its high electrical and thermal conductivity together with a large radiation length compared to other metals makes Beryllium an optimal candidate for a long tapered design collimator that will not generate high wakefields, which might degrade the orbit stability and dilute the beam emittance, and in case of the beam impacting the collimator temperature rises will not be sufficient enough to melt the metal. This paper shows results and conclusions from simulations of the impact of a CLIC bunch train hitting the collimator.

 
THOAMH02 High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL wakefield, acceleration, simulation, linear-collider 3605
 
  • J.B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
  • M.J. Hogan
    SLAC, Menlo Park, California
  • P. Muggli
    USC, Los Angeles, California
 
 

Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal of demonstrating >GeV acceleration in ~33 cm DWA tubes. In the nearer term before FACET's commissioning, we are planning measurements at the BNL ATF, in which we drive ~50-200 MV/m fields with single pulses or pulse trains. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for high efficiency operatio with pulse trains.

 

slides icon

Slides

 
THPEA073 Operational Experience with the LHC Superconducting Links and Evaluation of Possible Cryogenic Schemes for Future Remote Powering of Superconducting Magnets cryogenics, superconducting-magnet, power-supply, controls 3840
 
  • A. Perin, S.D. Claudet, R. van Weelderen
    CERN, Geneva
 
 

In the LHC, a large number of superconducting magnets are powered remotely by 5 superconducting links at distances of 70 up to 540 m. This innovation allowed to choose more convenient locations for installing the electrical feedboxes and their related equipment. The consolidations performed after the first commissioning campaign and the operational experience with the superconducting links over a period of several months are presented. Based on the successful application of superconducting links in the LHC, such devices can be envisaged for powering future accelerator magnets. Several possible cryogenic configurations for future superconducting links are presented with their respective figures of merit from the cryogenic and practical implementation point of view.

 
THPEB013 Lifetime Test of Carbon Stripping Foils by 650keV Intense Pulsed H- Ion Beam ion, target, ion-source, proton 3909
 
  • A. Takagi, Y. Irie, I. Sugai, Y. Takeda
    KEK, Ibaraki
 
 

Thick carbon foils (>300ug/cm2) has been used for stripping of H- ion beam into protons at the injection stage of the 3GeV Rapid Cycling Synchrotron (3GeV-RCS) in J-PARC. The carbon stripping foils with high durability at high temperature >1800K are strongly required. We have recently developed a new irradiation system for lifetime measurement of the stripping foils using the KEK 650keV Cockcroft-Walton type of high voltage accelerator with high current pulsed negative hydrogen ion beam, which can simulate the high energy-depositions upon foils in the RCS. It is found that, by adjusting the peak intensity and the pulse length of the hydrogen ion beams appropriately, the energy deposition becomes equivalent to that exerted by the incoming hydrogen ions and the circulating protons at the injection process of the RCS. The most important factor that affects the foil lifetime is the foil temperature. During lifetime tests by this system, the temperature of foil is measured by a fast thermometer and by using a phototransistor in a pulsed mode (650keV, 10mA, 0.25msec, 25Hz). The new irradiation system and some preliminary results on lifetime of the carbon stripping foil will be presented.

 
THPEB042 Development of Diffusion Bonding Joints between Oxgen Free Copper and AISI 316L Stainless Steel for Accelerator Components vacuum, electron, controls, synchrotron 3975
 
  • R.H.A. Farias, O.R. Bagnato, F. R. Francisco, D.V. Freitas, F.E. Manoel
    LNLS, Campinas
 
 

Diffusion bonding is a welding process where the main mechanism responsible for the union of the materials is the interdiffusion of atoms across the joint surface, even in solid state. The objective of the present work is to produce bonded joints that could be used in vacuum components for particle accelerator. Is this work was produced a welding joint between two dissimilar materials: oxygen free copper and AISI 316 L stainless steel. Each sample was bonded in vacuum (10-5mbar) at a temperature range between 800 and 900°C, pressure of 12MPa and holding times between 30 and 60min. Optical microscopy, scanning electron microscopy, mechanical testing and helium leak test were used to study the bond quality. The images obtained by optical and electron microscopy revealed good quality interfaces without the presence of defects and pores. All samples are tested through the helium leak test and were approved. The results indicate great potential to use this process in the manufacturing of components suitable for ultra high vacuum, for application in the design of new LNLS storage ring.

 
THPEB072 Maximizing the Efficiency of LHC Maintenance during Operation Times using a Mobile Tool status, insertion, collider, hadron 4035
 
  • P. Martel, Ch. Delamare, S. Mallon Amerigo, L. Pater, S. Petit, D. Widegren
    CERN, Geneva
 
 

The operation of the LHC imposes minimum maintenance time, when needed corrections to all systems are to be carried out. Today's maintenance management tools at CERN are seen as too slow and cumbersome for such a challenge. The short duration of the technical stops (72 h/month) requires preparation of jobs in advance, and coordination of all involved teams; at the same time, the radio-protection of personnel in the LHC underground areas imposes a strict "As Low As Reasonably Achievable"(ALARA) policy for the works' duration. In order to perform a maximum of tasks in a short time, a mobile tool for the manipulation of job and equipment data has been created. The ability to signal a new job to a team in the field will avoid unnecessary trips to the tunnel; the signaling of a job's completion (and its details) will allow subsequent jobs to start promptly and with more information; finally, the possibility to consult equipment's full manufacturing and installation data "in situ" will help with the investigation of unforeseen situations. In a 27 km environment with scarce Wi-Fi connectivity, an online light tool is now available, covering the essentials of asset maintenance tasks.

 
THPEB074 Utility System Design and Construction Status for the 3 GeV TPS Storage Ring storage-ring, controls, booster, cryogenics 4038
 
  • J.-C. Chang, J.-R. Chen, Y.-C. Lin, Z.-D. Tsai, T.-S. Ueng
    NSRRC, Hsinchu
 
 

The design of the utility system for the 3.0 GeV Taiwan Photon Source (TPS) has been finished and the construction engineering has been contracted out in the end of 2009. This paper presents the TPS utility system, including the electrical power, cooling water and air conditioning system, which were designed to meet requirements of high reliability and stability. The TPS construction site is located adjacent to TLS. Even some areas of TPS and TLS are overlapped. The whole utility system construction will be finished in the end of 2012. Therefore, the construction engineering of the TPS utility system is a challenge to finish on a tight schedule and keep the TLS in operation during the construction. Some management schemes of the construction engineering are also presented in this paper.

 
THPEC030 Design of the COMET Pion Capture Solenoid solenoid, target, proton, neutron 4116
 
  • M.Y. Yoshida, M. Aoki, Y. Kuno, A. Sato
    Osaka University, Osaka
  • T. Nakamoto, T. Ogitsu, K. Tanaka, A. Yamamoto
    KEK, Ibaraki
 
 

An intense muon beam is mandatory for the next-generation experiments to search for lepton flavor violating processes in the muon sector. The COMET experiment, J-PARC ·1021, aims to search for muon to electron conversion with an unprecedented sensitivity.. The muon beam is produced from pion decays in a strong magnetic field generated by superconducting solenoid coils. The large-bore superconducting coils enclose the pion-production target to capture pions with a large solid angle. The magnetic field is designed to have a peak of 5T at the target. To avoid severe radiation from the target, thick shielding is inserted in the warm bore of the pion capture solenoid magnet. The proton beam is injected through the gap between the pion capture solenoid and the subsequent transport solenoid magnets. For this purpose, the bore of the pion capture solenoid has to be larger than 1 m. This paper describes the design of the pion capture solenoid magnet for the COMET experiment.

 
THPEC045 Electrostatic Separator and K1.8 Secondary Beamline at the J-PARC Hadron-Hall kaon, secondary-beams, proton, target 4161
 
  • M. Ieiri, A. Agari, E. Hirose, Y. Katoh, M. Minakawa, R. Muto, M. Naruki, Y. Sato, S. Sawada, Y. Suzuki, H. Takahashi, T. Takahashi, M. Takasaki, K.H. Tanaka, A. Toyoda, H. Watanabe, Y. Yamanoi
    KEK, Tsukuba
  • H. Noumi
    RCNP, Osaka
 
 

In the hadron experimental hall at the 50-GeV Proton Synchrotron (PS) of J-PARC, the secondary beam line K1.8 with double stage separator is expected to provide 1-2 GeV/c kaon beams with less contamination of pions mainly for hadron and nuclear physics experiments with strangeness. An electrostatic (ES) separator is one of key elements of this secondary beam line. The ES separator will generate a 75kV/cm electrostatic field between parallel electrodes of 10cm gap and 6m in length along the beam direction. It is designed so as to be radiation-proof and to lower spark rate at the high intensity proton accelerator facility. The K1.8 line has two 6m ES separators with the intermediate focal point upstream of separators to reduce the pion backgrounds from the production target. The K-/π- ratio of the line is expected to have a larger value than 1 at the experimental target. Beam commissioning of the K1.8 has just started. We will report separator performance, optics design of the K1.8 beam line and the first result of the beam commissioning.

 
THPEC063 Physics Design of a Photo Fission Ion Source (PHIS) electron, ion, target, neutron 4200
 
  • K.O.LEE. Lee, K.H. Chung
    KAPRA, Cheorwon
  • H.G. Joo, S.K. Kauh
    SNU, Seoul
  • S.K. Ko
    University of Ulsan, Ulsan
 
 

The physics design of a Photo Fission Ion Source (PFIS) which will be used in a heavy ion accelerator is introduced. The design variables being considered are asymmetric magnetic field, cooling, neutron reflector and modulator (high density graphite), UCx target, bremsstrahlung power, microwave power and fission fragments (ions). Based on the design studied performed by using Monte Carlo codes and nuclear data, we will present the results, performance, optimization, ion distribution, bremsstrahlung power dependent radiation distribution, and temperature distributions. Finally we will conclude the feasibility of PFIS.

 
THPEC081 Upgrade of Radiation Shield for BT Collimators neutron, shielding, background, beam-transport 4246
 
  • M.J. Shirakata, T. Oogoe
    KEK, Ibaraki
 
 

The beam transport line between 3 GeV Rapid Cycling Synchrotron and Main Ring has a beam collimator system in order to improve the quality of injected beam in the main ring. The beam power deposited into the collimators is required to be increased for high intensity beam operation. The tolerance of existing radiation shield becomes insufficient, even though there is no heat problem. The gate-type shield system has been preparing in order to satisfy both the radiation shielding and feasibility of maintenance. The development of movable gate-type shield system is reported here, which fully covers more than 20 meters long collimator section.

 
THPD012 Preliminary Study on Emittance Growth in the LHeC Recirculating Linac emittance, linac, SRF, synchrotron 4301
 
  • Y. Sun, F. Zimmermann
    CERN, Geneva
  • C. Adolphsen
    SLAC, Menlo Park, California
 
 

In this paper, we estimate the emittance growth in the LHeC recirculating Linac, the lattice design of which is presented in another paper of IPAC10 proceedings. The possible sources for emittance growth included here are: energy spread from RF acceleration in the SRF (superconducting RF) linac plus large chromatic effects from the lattice, synchrotron radiation (SR) fluctuations in the recirculating arcs. 6-D multi-particle tracking is launched to calculate the emittance from the statistical point of view. The simulation results are also compared with a theoretical estimation.

 
THPD041 Evolution of Electron Bunches in a Combined Quasi-static and Laser Electric Field electron, laser, cathode, space-charge 4372
 
  • V.A. Papadichev
    LPI, Moscow
 
 

Short pulses of electrons of femtosecond and attosecond duration are necessary for numerous applications: studying fast processes in physics, chemistry, biology and medicine*. Previous calculations revealed that it is possible to obtain such short bunches by applying quasi-static electric voltage to a needle placed into a laser focus**,***. This paper presents results of computer simulation of the electron bunch evolution for various parameters of the problem (quasi-static and laser electric fields, radius of curvature of the needle, velocity of electron emission etc.). Simple model for analytical calculation of bunch evolution was elaborated to precisely assess its shortening in the case when one can neglect space-charge forces in the bunch. Influence of velocity dispersion in the bunch due to emission process is discussed and the way to optimize the bunching was proposed. Bunch dynamics accounting for space-charge forces was studied using analytical solution of equation of motion.


* P.Emma. Proc. EPAC04, p. 225, Lucerne, Suisse.
** V.A.Papadichev. Proc. EPAC08, p. 2812, Genoa, Italy.
*** V.A.Papadichev. Proc. EPAC08, p. 2815, Genoa, Italy.

 
THPD054 Inverse Compton Scattering by Laser Accelerated Electrons and its Application to Standoff Detection of Hidden Objects laser, electron, scattering, photon 4404
 
  • Y. Kitagawa, K. Fujita, R. Hanayama, K. Ishii, Y. Mori
    GPI, Hamamatsu
  • T. Kawashima
    Hamamatsu Photonics K.K., Hamamatsu
  • H. Kuwabara
    IHI, Yokohama
 
 

A technique for remote detection of hidden objects is an urgent issue, but is not yet realized, because a source and a sensor must be located on the same side of the object. An ultra-intense laser can produce extremely short and directional radiations, that is the inverse Compton scatterings used for the backscattering system. We here demonstrate that the laser-wakefiled-accelerated 10-MeV electrons inversely scatter the same laser light to keV X-ray emissions. A 10 TW OPCPA Ti:sapphire laser BEAT ( 1J output, wavelength 815 nm, and pulse width 150fs) is divided to two beams. A 0. 8-J beam is focused to an entrance edge of helium gasjet to accelerate electrons via wakefield and the other 0.2-J beam is focused to the exit of the plasma channel from the opposite direction. A second harmonic probe light measured the channel density. To the upstream direction of the latter beam, a CdTe detector analyzed the Compton spectrum under a photon counting mode* in the range of 1 keV to 20 keV, which well agrees with that calculated from the obtained electron spectrum up to a few tens MeV. We also have observed that the emission is strong into the laser axis direction.


*H. Kuwabara, Y. Mori, Y. Kitagawa, 'Coincident Measurement of a Weakly Backscattered X-ray with a CPA Laser-Produced X-ray Pulse', Plasma Fusion Research: 3, 003-004 (2008).

 
THPD057 The Analysis of Tunable Dielectric Loaded Wakefield Accelerating Structure of Rectangular Geometry wakefield, electron, vacuum, controls 4413
 
  • I.L. Sheynman, A. Altmark, S. Baturin
    LETI, Saint-Petersburg
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
 
 

The analysis of Vavilov-Cherenkov radiation generated by wide high current relativistic electronic bunch in a rectangular waveguide with multilayered dielectric filling is carried out. One ceramic layer of the structure possesses ferroelectric properties, which allow the waveguide frequency spectrum to be controlled by varying the permittivity of this ferroelectric layer by external electric field. On the basis of decomposition on orthogonal eigenmodes of a rectangular multilayered waveguide analytical expressions are received and numerical modeling of wakefield electromagnetic fields and the radial forces deflecting the bunch is spent.

 
THPD094 Production of Femtosecond Electron Pulse using Alpha Magnet together with Off-crest Acceleration for Generation of Coherent THz Radiation linac, electron, gun, simulation 4509
 
  • F. Miyahara, H. Hama, F. Hinode, M. Kawai, T. Muto, K. Nanbu, H. Oohara, Y. Tanaka
    Tohoku University, School of Scinece, Sendai
 
 

We have studied production of the very short-bunch electron beam to generate intense coherent THz radiation*. The bunch length of 100 fs is required to produce CSR around 1 THz. The beam from the thermionic RF-gun is introduced into the bunch compression system consist of an alpha magnet and a linac. The alpha magnet is often used as a bunch compressor for electron energy of several MeV. However, for our system, the alpha magnet plays a role of the longitudinal phase space rotator and energy filter. The bunch compression is done in the linac employing velocity bunching. The beam is injected on near the zero-cross phase of the RF field in the linac, and then the beam phase slip toward the crest. The longitudinal phase space and beam phase with respect to RF field at the entrance of the linac are optimized so that the bunch length would be minimum. In current analysis using numerical simulation based on the GPT code**, an rms bunch length of 30 fs has been obtained for a bunch charge of 20 pC. We will discuss the bunch compression scheme and the beam dynamics in the system. Prospect of the coherent radiation from the beam will be also reported.


* H. Hama et al, Proc. Ultrashort Electron & Photon Beam Techniques and Applications, Xian, China (2009)
** General Particle Tracer (GPT), URL: http://www.pulsar.nl/gpt

 
THPE005 Beam Polarization Theory and its Application to HLS Storage Ring polarization, electron, resonance, lattice 4518
 
  • J.Q. Lan, B. Sun, Y.C. Sun, H. Xu
    USTC/NSRL, Hefei, Anhui
 
 

A brief, but clear, review of beam polarization theory is given in the paper. Particularly, the algorithm of spin linear transfer matrix (SLIM) is applied to remark the situation of beam in storage ring, specific to HLS (Hefei Light Source). Theoretical analysis indicates that the beam in HLS, working at 800MeV and 2.58/3.58 transverse tunes, could keep away from a variety of spin resonances, and should be able to build up high polarization.

 
THPE037 Low Alpha Operation of the Diamond Storage Ring lattice, emittance, storage-ring, electron 4599
 
  • I.P.S. Martin, G. Rehm, J. Rowland, C.A. Thomas
    Diamond, Oxfordshire
  • R. Bartolini, I.P.S. Martin
    JAI, Oxford
 
 

The Diamond storage ring has been operated in low alpha mode providing short-pulse radiation for pump-probe experiments and coherent radiation for THz/IR measurements. Two lattices have been implemented, with both capable of providing a variable alpha in the range ±2x10-5, down to minimum values well below 1x10-6. The second lattice additionally provides a low emittance of 4nm.rad, compared to 35nm.rad for the first lattice. An overview of operation in low alpha mode is given, along with first measurements of coherent emission at long wavelengths under a variety of conditions.