
VIZSCHEMA – A UNIFIED VISUALIZATION OF COMPUTATIONAL

ACCELERATOR PHYSICS DATA*

S. Shasharina
#
, J. Cary, M. Durant, D. Alexander, S. Veitzer, S. Kruger, Tech-X Corporation,

Boulder, CO, 80303, U.S.A.

Abstract
Data organization of simulations outputs differs from

application to application. This makes development of

uniform visualization and analysis tools difficult and

impedes comparison of simulation results. VizSchema is

an effort to standardize metadata of self-described data

formats so that the subsets of data needed to visualize

physics can be identified and interpreted by visualization

tools. Based on this standard, we developed a powerful

VisIt-based visualization tool. It allows a uniform

approach for 3D visualization of large data of various

kinds (fields, particles, meshes) from the COMPASS suite

for SRF cavities and laser-plasma acceleration. In

addition, we developed a specialized graphical interface to

streamline visualization of VORPAL outputs and submit

remote VORPAL runs. In this paper we will describe our

approach and show some visualizations results.

INTRODUCTION

Visualization is extremely valuable in providing better

understanding of scientific data generated by simulations

and guiding researchers in designing more meaningful

experiments. Scientific models need to be compared with

each other and validated against experiments.

Consequently, most computational scientists rely on

visualization tools. Standardizing on a subset of self-

described data formats like HDF5 [1] and NetCDF [2] is a

step forward but further standardization on metadata is

needed as one needs clues on how to interpret the

meaning of data subsets inside these files. For example,

how does one recognize that a particular dataset

represents a mesh and what kind of mesh is it or how does

one indicate that a dataset is mapped to a particular mesh?

In this paper we present a data model (VizSchema) for

computational applications dealing with field and

particles data in HDF5 files. Based on this model, we

implemented a plugin (called Vs) for the powerful

visualization tool VisIt [3]. The plugin imports

VizSchema compliant data into VisIt. In addition, we

developed a graphical user interface that embeds VisIt,

allows running accelerator codes locally and remotely and

displays default images meaningful to an accelerator

physicist who can then further customize them.

Examples of accelerator codes that benefit from this

effort include VORPAL [4], a 3D plasma simulation

code, and SYNERGIA [5], a multi-particle accelerator

code. Both codes are actively used in the COMPASS

SciDAC project [6].

VIZSCHEMA DATA MODEL

Principles

The VizSchema annotation identifies the data structures

that one needs to expose in order to do minimal

visualization. They are not about HOW the visualization

is performed (i.e. the type of light or position of the

camera); instead, they are WHAT is being visualized

(data and geometry) and WHAT needs to be exposed for

minimal visualization.

In designing the schema we use the following guiding

principles:

• VizSchema assumes that data comes as one

of three types: variables, variables with

meshes and meshes.

• The markup uses particular attributes

starting with “vs” and specific to type of

data.

Variables and Variables With Mesh

A variable represents data, which lives on a mesh

described outside of the variable array (like magnetic

field), while a variable with mesh contains spatial

information within itself (like particle information having

momentum and position typically in one dataset). The

suggested markup gives the information to the

visualization tool to interpret the data. In the following

pseudo-code snippet we show an example of a variable

markup:
Dataset "phi" {
 Att vsType = "variable"
 Att vsMesh = "mycartgrid"
 Att vsCentering = "zonal"
}

Since variables with mesh mix spatial and other data in

one dataset, there should be a way to specify the data

structure. If the dataset’s first N indices specify the

coordinates (like in VORPAL), one could use the

following markup:
Dataset "vorpal_electrons" {
 Att vsType = "variableWithMesh"
 Att vsNumSpatialDims = N
}

If the layout of data is different from this order (for

example, like in SYNERGIA), one needs to use

vsSpatialIndices, which would indicate which indices of

the dataset contain spatial informatio
Dataset “synergia_electrons” {
 Att vsType = “varibaleWithMesh”
 Att vsSpatialIndices = [0, 2, 4]
}

TUPEC069 Proceedings of IPAC’10, Kyoto, Japan

1880

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

Since the data can be ordered in many various ways,

VizSchema also has markup to specify the order of

indices starting from the fastest varying. More examples

can be found at

https://ice.txcorp.com/trac/vizschema/wiki/Variables.

Derived Variables

It is often useful to define additional variables, which

are not being dumped by a simulation but present an

interesting thing to see as well. That is why, in addition

to the prime variable described above, we allow defining

expressions using regular mathematical symbols. For

example, one could define a density of electric energy as

follows:
Group anygroupname {
 Att vsType = "variableDefinition"
 Att vsDefinition = "elecEnergyDensity =

(E_0*E_0+E_1*E_1+E_2*E_2)"
}

Meshes

There is no uniform classification of meshes across

tools and experiments. Based on our experience with

several codes, we determined that the following mesh

type categorizations are fairly general (although the list

will be growing):

• Structured grid, which is defined by a list coordinates

of its points.

• Rectilinear grid, which is defined by the lists of

increasing coordinate values for each axis.

• Uniform grid, which has constant distances between

nodes in all directions.

• Unstructured grid, which are defined by points and

cells of various types.

Examples of mesh markup can be found at

https://ice.txcorp.com/trac/vizschema/wiki/Meshes.

Multi-Domain Data

Quite often simulation data comes from multiple

domains and uses different names in these domains, while

it would be natural to treat it as one variable in a

continuous domain. For such cases, we use vsMD

attribute, which instructs visualization tools to connect

data having the same value of this attribute.

VS PLUGIN

Based on the data model described above, we

implemented a C++ data reader class, which creates an

object that reflects the structure of an HDF5 file as it is

seen by visualization – lists of variables with the meshes

that they live on, variables with meshes, derived variables

and meshes and all their metadata.

Next we created a VisIt plugin using the reader’s API.

This plugin is available for the download at

https://ice.txcorp.com/trac/vizschema/wiki/WikiStart and

will be available upon VisIt installations in the next VisIt

release.

EXAMPLES

Several codes adopted VizSchema and now provide the

compliant output during I/O. One can also change the

files after they have been generated using PyTables [7]

(we have successfully using to change data as the schema

evolved and also to annotate SYNERGIA files in

accordance with the schema).

Figure 1: Examples of a visualization of VORPAL data:

electromagnetic fields (red and green) and magnetic stress

on the cavity (on the walls).

Figure 2: A three-dimensional VORPAL simulation

models the self-consistent evolution of the wake resulting

from a laser pulse and the acceleration of particles in a

laser-plasma particle accelerator. Courtesy of G.H. Weber

and C. Geddes.

Figure 3: Examples of a visualization of SYNERGIA

data: beam colored by the energy of the particles.

Figures 1-3 show some examples of visualizations done

using the VizSchema plugin for VisIt. Fig. 1 is a screen

capture of OASCR Award for Scientific Visualization at

the 2008 Scientific Discovery through Advanced

Computation Conference (Seattle) for the video, “Visual

Inspection of a VORPAL Modeled Crab Cavity.” Fig. 2

has been used as a cover for one of the issues of SciDAC

Proceedings of IPAC’10, Kyoto, Japan TUPEC069

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques 1881

review magazine [8]. Fig. 3 shows visualization for

SYNERGIA particle data.

VORPAL COMPOSER

The Composer interface is a customizable application

that provides the interface to setup, manage execution,

and visualize simulations such as VORPAL. Simulation

execution may be local on the user’s personal computer or

remotely on high performance resources. In the remote

case, the application functions as a client connecting to

secure shell daemons and visualization servers.

The VORPAL Composer application includes many

features useful in producing science from VORPAL

simulations. There is a robust editor with validation

capability. Run management includes preprocessing, file

staging, batch submission script creation, and monitoring

feedback. Visualization is provided by embedding VisIt

rendering windows. Finally, help is provided based on

the user’s context within the workflow and simulation

contents.

Relying on VisIt to pick out visualization objects from

the data files via VizSchema, VORPAL Composer can

present the user with an interface to make visualization

more efficient especially for the novice. The extra

Composer functionality includes:

• A file browser that bundles the hundreds of data files

in a typical VORPAL run into one “database” folder.

• Visualization objects can be organized by physical

type (fields & particles) rather than by plot-type

(pseudo-color & line plot) as seen in the raw VisIt

controls.

• Default plots can be automatically rendered for the

user with reasonable controls (slice & lineout for

example.

Figure 4 shows a screen shot of the VORPAL

Composer with the visualization tab displaying three VisIt

rendering windows (3D, 2D, & lineout). Note that full

VisIt visualization capability is still retained in Composer

because the raw VisIt controls can be brought up in a

separate window.

Figure 4: Embedded visualization in the VORPAL

Composer application leveraging VizSchema metadata.

CONCLUSIONS AND FUTURE

 DIRECTIONS

Standardization of the HDF5 output using consistent

markup for visualization proved to be useful in

accelerator physics applications as well as other domains

having notions of fields and particles. The developed

VisIt plugin is available for all interested parties.

In the nearest future we intend to extend the schema

and the plugin with more detailed metadata for

unstructured meshes, bring more applications into the

VizSchema realm and extend VizSchema for NetCDF.

ACKNOWLEDGMENT

We would like to thank the VisIt, FACETS and

VORPAL teams. We also thank C. Geddes and G. Weber

for providing us with images and J. Amundsen for

providing us with SYNERGIA data.

REFERENCES

[1] http://hdf.ncsa.uiuc.edu/HDF5/.
[2] www.unidata.ucar.edu/software/netcdf.
[3] H. Childs, E. S. Brugger, K. S. Bonnell, J. S.

Meredith, M. Miller, B, J Whitlock and N. Max, A
Contract-Based System for Large Data Visualization,
Proceedings of IEEE Visualization 2005, pp 190-198,
Minneapolis, Minnesota, October 23--25, 2005.

[4] C. Nieter and J/ R. Cary, "VORPAL: a versatile
plasma simulation code," J. Comp. Phys. 196, 448-
472 (2004).

[5] J. Amundson and P. Spentzouris, J. Qiang and R.
Ryne, Synergia: A 3D Accelerator Modelling Tool
with 3D Space Charge, Journal of Computational
Physics, Volume 211, Issue 1, 1 January 2006, Pages
229-248.

[6] http://www.scidac.gov/physics/COMPASS.html.
[7] http://www.pytables.org.
[8] http://www.scidacreview.org/0903/index.html.

TUPEC069 Proceedings of IPAC’10, Kyoto, Japan

1882

05 Beam Dynamics and Electromagnetic Fields

D06 Code Developments and Simulation Techniques

