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Abstract

The propagation and deflection of a 1 to 10 keV elec-
tron beam through a a Malmberg-Penning trap is described,
with the development of a vectorized and symplectic par-
titioned transport code. The experimental setup includes a
laser which is back-scattered by pulsed electron bunches,
produced by an external photocathode source with 4 ns
length, so that Thomson scattering diagnostics can be
tested and compared to other installed diagnostics. Both
the laser and the electron dump are described.

INTRODUCTION AND SETUP

The Malmberg-Penning trap ELTRAP[1] was originally
designed to store electrons accelerated by low voltages
(100 V) in a highly uniform magnetic field, to produce a
non-neutral plasma. In the recent ELTEST experiment, the
collision between 4ns electron bunches produced by an ex-
ternal source in the 2 to 10 keV energy range and a laser
beam beam (L2 in fig 1) is studied, as a test of the Thom-
son scattering diagnostic. Six photomultiplier (PMT) win-
dows are placed around the CF35 laser input pipe. In order
to measure the very few Thomson backscattered photons,
proper dumping of the laser and of the electron beams are
required. The longitudinal expansion of the electron bunch
due to space charge can be measured by an electrostatic
diagnostics[2]; proper software is needed to compensate
for the capacitance of the pickup electrodes.

A schematic view of the experimental apparatus is
shown in fig 1, where z is the main solenoid axis and z = 0
its middle plane; external beam source is at z = −1.41 m,
while main laser input viewport is at z = 1.36 m; eight lat-
eral CF63 flanges for e− dumps are placed at r = 0.125
m, centered about zc = 1.1 m, and may be equipped with
removable phosphor screens to detect the deflected beam.
The off-axis deflection of the electrons is complicated by
the magnetic field but was recently demonstrated. Its op-
timization needs development of a vectorized code for
crossed electric and magnetic fields.

Laser L2 collimated to a 6 mm diameter makes a 10.6
mrad angle with the z axis, crossing it at z = 0.33 m, so that
L2 travels 17 mm under the z axis at z =−1.3 m, where the
laser dump is located. The dump consists of a mirror, devi-
ating L2 outside of the vacuum chamber through a bottom
CF63 port onto an absorber. The mirror is protected from
electrons by a 16 mm diameter 60 mm long drift tube, sus-
tained through a pole by the same CF63 flange. The pole is
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Figure 1: Experimental set-up: L1= UV laser extracting
electrons; L2 = main laser; PMT = photomultipliers; D =
deflector; Ci electrodes; Ii iron shims

designed to minimize rf dipole effects, similar to the Quar-
ter Wave Resonator case[3].

A bunched electron beam[4] is generated by a photocath-
ode source heated at 1050 K and illuminated by a t d = 4 ns
pulse from an UV laser L1 (λ = 337 nm). A local mag-
netic field BH (generated by a Helmholtz-coil pair with a
1% uniformity over a distance of 13mm from the emitter)
provides the initial focusing of the emitted electrons. This
field is much less, |BH

z |< 50 G, than the main solenoid field
Bz < 2 kG, but can be easily reversed. The source is held
at a fixed potential Vs (adjustable from -1.1 kV to -10 kV)
with respect to the grounded vacuum chamber, and elec-
tron bunches with total charge from 0.5 pC to 50 pC can
be obtained. From the Child-Langmuir limit on extracted
current, |Vs| > 1.3±0.2 kV in our source geometry.

ELECTRON BEAM SIMULATIONS

Electron beam deflection and scrapers have the purpose
of avoiding direct illumination of the PMT window from
the electron beam. The deflector is partly shielded from the
main solenoid field, since this exerts a strong guiding effect
of the electron beam. Let E be the applied electric field, B
the applied magnetic field and Es the field generated by the
beam space charge. For reasonable large source voltage
|Vs|< 5 kV, the self field Es is small compared to E (except
for the acceleration gap in the electron source, excluded
from these global simulations) and will be here neglected.

Without deflection field, the electron beam radius rb will
expand as rb

∼= r0
√

B0/Bz(0,0,z). In the deflector we have
Bd

z = 0.03 T when B0 = 0.1 T, and Ed ∼= 1 kV/cm; in the
well known drift approximation, electrons will tend to ac-
quire a transverse velocity vd = Ed ×Bd/|Bd |2 while they
maintain their longitudinal velocity vz

∼= cβ, with β ∼= 0.18
for a typical source voltage Vs = −8 kV. After the deflec-
tor vd vanishes again, but the beam has moved off-axis, so
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Figure 2: A) Domains d = 1 and 2 of simulation geometry;
deflector negative electrode marked in blue; B) zoom on
beam compression region; C) zoom on beam deflection

that the diverging magnetic field now completes the elec-
tron deflection. The need to integrate several simulations
together leaded us to developed some particle tracing tools
in the Comsol Multiphysics 3.5 (TM) environment[5]; the
status of these tools is here described.

A view of the beam simulation region is in fig 2A. The
magnetic field is computed in cylindrical coordinates r,z;
simulation region is a large sphere

√
r2 + z2 ≤ 2 m, and

at its boundary, the field is matched with a residual dipole
field. This allows to approximately account for effects of
the infinite region around the sphere (even if the so-called
infinite element techniques would be more precise). Most
of the border of the beam simulation region is at ground
potential, so that E needs to be computed only inside; due
to the 3D geometry, E was computed only in a part (with
the domain index d = 2), assuming E ∼= 0 elsewhere.

Several integration methods are useful, namely: the sym-
plectic partitioned (SP) Runge Kutta (known up to the 8th
order)[6]; the leap-frog, with the Boris ordering of elec-
tric and magnetic forces (SP2B) [7]; the non symplectic
Runge Kutta RK45 (4th and 5th order); here we mainly
use a 4th order SP Runge Kutta, but we add a Boris order-
ing of electric and magnetic forces (SP4B). It is important
to define first an uniform framwork, that allows to switch
tracing methods and integration steps δs, especially when
crossing domain borders (or passing near electrodes). Let
us use s = ct instead of time t and let om be the number of

length units in one meter (the geometry is drawn in cm);
non-relativistic motion equations are simply

dx
ds

= β ,
dβ
ds

= q1(E+q2β×B) (1)

where q1 = q/(mc2), q2 = c/om and q = −e is the electron
charge. With the notation y ≡ (x,β) this system is written
as dy/ds = F(y,s), which integrated to

yn+1 − yn

Δs
= f (yn,Δs) , f =

1
Δs

∫ sn+Δs

sn

dsF(y(s),s) (2)

The integration method should return f (by computing F
at some points y near yn) and also d = D(yn,Δs) where d is
the domain to which these points y belong. If d or f (yn,Δs)
significantly change respect to the n− 1 step, then yn+1 is
rejected and Δs is decreased until an assigned minimum.
This rules avoids large errors at domain borders and near
electrodes.

In any integration step, let y0 ≡ yn the initial point and
yM ≡ yn+1 the final point; for a symplectic integrator x and
velocities β are separately advanced

xk = xk−1 + ckΔsβk−1 (3)

βk = βk−1 +K(xk,βk−1,dkΔs) (4)

for k = 1, . . . ,M, where ck and dk are tabled weights and K
is the kick, that is the velocity increment associated to the
xk point, proportional to the dkΔs length; usually dM = 0, so
that only M−1 computations of K are necessary. Without
magnetic field K = q1E(xk)dkΔs and the symplectic prop-
erty is evident, since we have a chain of symplectic trans-
forms. The second order accuracy requires c 1 = c2 = 1

2 and
d1 = 1, which is the usual leap frog. The choice for the 4th
order accuracy is[6, 8, 9]

c1 = c4 = 1/(4−24/3) , c2 = c3 = 1
2 − c1 (5)

and d1 = d3 = 2c1 and d2 = 1−4c1.
Since a magnetic field is present, K = βk −βk−1 is com-

puted from the sequence[7]

β− = βk−1 + sdq1E(xk)
β+ = R[2q1q2sd |B(xk)| , B̂) ]β−

βk = β+ + sdq1E(xk) (6)

where sd = dkΔs/2 and R(α,n) is the rotation by an angle
α around the axis n.

An example of beam tracking simulation is given in fig
2. Methods RK45, SP4B and SP2B gave comparable re-
sults in first tests with Δs ∼= 1 cm (0.1 cm minimum): the
relative error in final energy was within 10−3. This may
be due to the domain changes and to residual errors in the
electric field calculation, which is interpolated from finite
element solution, without particular refinements (possible,
but slower). The work to benchmark methods with an ana-
lytic expression (a fit of the computed E) is in an advanced
status. In general, noise filtering (independent from solu-
tion mesh and based on Poisson eq. properties) should be
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Figure 3: Beam images of a 0.1 mm spacing xy lattice and a
2.5 mm radius circle, for two starting positions: A) z = 0.74
m ; B) z = −1.4 m

possible and is considered. Since in our implementation
only SP4B and SP2B can work with many particles at a
time, they run faster than RK45 (for a set of 41 particles,
350 s and 100 s against 1200 s of CPU on standard 3GHz
P4 computer; one core used).

Fig 2 shows a substantial beam oscillation, which may
need some corrections with the source inbuilt solenoid and
some consideration of self fields. The beam radius is within
2.5 mm at the source and, on the average, it is some-
what compressed by the main solenoid; the deflector optics
is strongly magnifying and stigmatic. With the viewport
plane coordinates (u,v), where u = z− zc, fig 3B shows an
impact map on the lateral viewport; simulation results are
roughly independent from the integration method used and
in agreement with the observed scintillation light.

ELECTROSTATIC DIAGNOSTICS

Before removing the P43 three layer phosphor screen
(diameter 110 mm) from the z-axis, this was used also as
a charge collector, thanks to Al coating. The screen both
produces scintillation light, showing an xy image, recorded
and time integrated by CCD camera, and collects a current
I(t) equal to the beam current Ib(t), plus small corrections
due to image charges.

Figure 4: Bunch FWHM tr at collector vs beam energy Eb

The measuring technique is based on the analytic com-
putation of the voltage V (t) at a DSO (Digital Sampling
Oscilloscope), as a function the parameters of I(t) (total
charge Q, FWHM duration tr), by using standard circuit
analysis. We have a large capacitance C (the phosphor
screen) connected by a small inductance L (about 5 nH)
to a coaxial line terminated at the scope. By fitting V (t) to
the actually measured signal VM(t), the parameter tr can be
measured.

From a plot of tr against the beam energy Eb = −eVs we
see a small and regular decrease for Eb > 5 keV, down to
a limit value tr = tm ∼= 4 ns; this can be interpreted as the
FWHM pulse duration at source. The bunch lengthening

due space charge should go as E−3/2
b and is 2 ns at Eb =

5 keV. Below this energy, data are much less regular and
may be interpreted as an indication of non adequate beam
transport at extraction: the bunch charge increases with Eb

when Eb < 5 keV, so hindering a trend of FWHM decrease.
This interpretation is qualitatively supported by a 1D fluid
model.

In conclusion, the Penning-Malmberg machine, de-
signed to study long term evolution of stored electron
clouds, can also be efficiently used for time-resolved di-
agnostics of bunched electron beams.
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