A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

niobium

Paper Title Other Keywords Page
MOPEB072 Tracking of RRR Value and Microstructure in High Purity Niobium along the Production Chain from the Ingot to the Finished Cavity electron, scattering, extraction, cavity 435
 
  • S. Grawunder, F. Schoelz, B. Spaniol
    W.C. Heraeus GmbH, Materials Technology Dept., Hanau
  • R. Grill, W. Simader
    Plansee Metall GmbH, Reutte
  • M. Heilmaier, D. Janda
    TU Darmstadt, Darmstadt
  • W. Singer, X. Singer
    DESY, Hamburg
 
 

The RRR value of high pure Nb is showing strong relations to the individual production steps. Mainly the different kind of internal stresses caused by the several production steps are resulting in the variation of the RRR value. This work shows the RRR values along the complete production chain from the molten Ingot till to the finished cavity. The influence of the RRR value caused by stresses and the release of that stresses by vacuum annealing is shown.

 
MOPEB073 Single Crystal Niobium Development electron, cavity, linear-collider, collider 438
 
  • H. Umezawa, K. Takeuchi
    Tokyo Denkai Co., Ltd., Tokyo
  • F. Furuta, T. Konomi, K. Saito
    KEK, Ibaraki
  • K. Nishimura
    TKX Corporation, Osaka
 
 

KEK and Tokyo Denkai have developed new niobium ingot slicing technique. 150 pieces of the large grain niobium discs can be sliced in two days by using of this technique. Tokyo Denkai installed the slicing machine in December 2009. During the development of the slicing technique, we found that crystal growth mechanism in Electron Beam Melting. It gave us the suggestion to make a single crystal niobium ingot. This paper describes the production process of low cost and short production time niobium discs and single crystal niobium ingot development.

 
MOPEC057 Study and Realization of the First Superconducting Half Wave Resonator Prototype for the SRF Linac of the IFMIF Project cavity, linac, SRF, cryomodule 591
 
  • F. Orsini, P. Bosland, P. Bredy, G. Disset, N. Grouas, P. Hardy, V.M. Hennion, H. Jenhani, J. Migne, A. Mohamed, J. Plouin, J. Relland
    CEA, Gif-sur-Yvette
  • B. Branas Lasala, I. Podadera Aliseda, S. Sanz, F. Toral
    CIEMAT, Madrid
  • E.N. Zaplatin
    FZJ, Jülich
 
 

In the framework of the International Fusion Materials Irradiation Facility (IFMIF), which consists of two high power CW accelerator drivers, each delivering a 125 mA deuteron beam at 40 MeV, an accelerator prototype is presently under design for the first phase of the project. A superconducting option has been chosen for the 5 MeV RF Linac, based on a cryomodule composed of 8 low-beta Half-Wave Resonators (HWR), 8 Solenoid Packages and 8 RF couplers. This paper will focus on the HWR sub-system: the RF, thermo-mechanical design, and the realization of the first prototype of HWR will be presented. The resonator tuning frequency is controlled by an innovant Cold Tuning System (CTS), located in the central region of the cavity. The different options for tuning will be discussed and the final thermo-mechanical design will be detailed. First validation test results of the CTS are expected for the conference.

 
WEPEC005 Optical Inspection of SRF Cavities at DESY cavity, superconductivity, SRF, synchrotron 2896
 
  • S. Aderhold
    DESY, Hamburg
 
 

The prototype of a camera system developed at KEK/Kyoto University for the optical inspection of the inner surface of cavities is in operation at DESY since September 2008. More than 20 prototype nine-cell cavities for the European XFEL have been inspected. The unique illumination system combined with the optical sensors allows for the in-situ search of surface defects in high resolution. Such defects may limit the gradient when causing a breakdown of the superconducting state (quench). The comparison of features detected in the optical inspection and hotspots from the temperature mapping during RF-measurements give evidence for correlations. Consecutive inspections of cavities in different stages of the surface preparation process monitor the evolution of surface defects. There are examples for defects traced from the untreated surface condition to the RF-test with temperature map, which identify the defect as the quench location.

 
WEPEC006 Towards PLM-based Quality Assurance in the Fabrication of the Superconducting Cavities for the European XFEL cavity, superconducting-cavity, monitoring 2899
 
  • L. Hagge, J.A. Dammann, J. Iversen, J. Kreutzkamp, W. Singer
    DESY, Hamburg
 
 

For the series production of s.c. cavities for European XFEL, thorough quality assurance procedures are under preparation to ensure that all cavities satisfy their performance requirements. Each cavity needs to pass a number of quality gates at different levels of completion. At each quality gate, the so-far available manufacturing data and documentation is reviewed and approved by the XFEL cavity production team. To ensure reliable and repeatable procedures with timely responses, the QA efforts are supported by the DESY Product Lifecycle Management (PLM) System, aka DESY EDMS. The EDMS manages fabrication data, coordinates acceptance tests, manages signoffs and provides fabrication progress monitoring. In particular, the EDMS tracks the entire history of all individual cavities, their parts and their semi-finished products. The setup benefits from experience which has been gained at DESY in the cavity production for FLASH. The poster explains the planned QA procedures and customization of the EDMS, and reports inital experience.

 
WEPEC007 Surface Investigation on Prototype Cavities for the European XFEL cavity, factory, accelerating-gradient, electron 2902
 
  • X. Singer, S. Aderhold, A. Ermakov, W. Singer, K. Twarowski
    DESY, Hamburg
  • M. Hoss, F. Schoelz, B. Spaniol
    W.C. Heraeus GmbH, Materials Technology Dept., Hanau
 
 

Performance of XFEL prototype cavities fabricated at the industry and treated at DESY demonstrates big scattering from 15 to 41 MV/m. Most cavities satisfy the XFEL specification. Few cavities with low performance (15-17 MV/m) are limited by thermal break down without field emission. The T-map analysis detected the quench areas mainly close to the equator. Optical control by high resolution camera has been applied and allowed to monitor the defects in some cases with good correlation to T-map data. In order to understand the cause of reduced performance and get more detailed information of defects origin some samples have been extracted from two cavities and investigated by light microscope, 3D- microscope, SEM, EDX and Auger spectroscopy. Several surface flaws with sizes from few μm to hundreds of μm were detected by microscopy. The defects can be separated in two categories. The first category of defects indicates foreign elements (often increased content of carbon). Inclusions with increased content of carbon adhered on the surface and presumably have a hydrocarbon nature. Deviation from smooth surface profile characterizes the second type of defects (holes, bumps and pits).

 
WEPEC011 Multipacting Analysis of Superconducting RF Cavities using a Finite Element-based Code employing Leap Frog Method cavity, electron, simulation, site 2914
 
  • S. Ghatak, A.S. Dhavale, K.C. Mittal
    BARC, Mumbai
 
 

BARC is involved in the development of superconducting cavities for Accelerator Driven Sub-critical System (ADSS). The performance of superconducting RF structure can be greatly affected due to multipacting. Hence 2D and 3D multipaction simulation studies have been carried out for a medium velocity (β=0.49) elliptical Niobium cavity operating at 1050 MHz. An in-house code has been developed which uses finite element method based software to calculate electromagnetic field of the structure. Leap frog method algorithm has been used to solve Lorenz force equation for trajectory tracking of electrons which are launched inside from different initial positions. Electron trajectories are tracked until they hit the surface. An interpolation function is used to calculate SEY at different impact energies. By repeating the process at different field level for different primary electrons multipacting field levels are identified. The study revealed that the cavity structure is not multipacting prone up to 17 MV/m average accelerating field. Two point first order multipacting is observed at the equatorial region of the cavity when the accelerating field is between 18 MV/m and 28 MV/m.

 
WEPEC013 Phase Locking of Superconducting Quarter Wave Resonator by Piezoelectric Actuator controls, cavity, linac, rf-amplifier 2920
 
  • B.K. Sahu, R. Ahuja, G.K. Chowdhury, R.N. Dutt, S. Ghosh, D. Kanjilal, D.S. Mathuria, A. Pandey, P. Patra, A. Rai, A. Roy, K. Singh
    IUAC, New Delhi
 
 

The existing phase locking scheme of the quarter wave resonators(QWR) in the first operational module of the superconducting heavy ion linear accelerator of Inter University Accelerator Centre consists of a fast (electronic) and a slow time scale control. Helium gas operated slow tuner turns out to be a complicated, somewhat unreliable and expensive for long term operation of the linac. In an alternate scheme to handle the slow time part of the phase control, the tuner plate is deflected by using a combination of a stepper motor for course adjustments and a piezoelectric crystal for fine adjustment of the frequency. The piezoelectric actuator is used in closed loop along with dynamic I-Q based electronic tuner to phase lock the superconducting cavities. During a recent cold test of a QWR, the frequency range of the resonator by the piezoelectric tuner was measured to be 1 kHz. In this test, the fundamental frequency of the QWR was first brought to 97.000 MHz by the mechanical course tuner. The resonator was then locked at a field of 3.8 MV/m at 6 W of helium power and 40 W of forward power from the RF amplifier using the resonator controller along with the piezoelectric tuner.

 
WEPEC018 Application of Electrochemical Buffing onto Niobium SRF Cavity Surface cavity, SRF, cathode, controls 2929
 
  • S. Kato, M. Nishiwaki
    KEK, Ibaraki
  • S. Azuma, F. Yamamoto
    Ultra Finish Technology Co., Ltd., Yokosuka
  • P.V. Tyagi
    Sokendai, Ibaraki
 
 

Niobium electropolishing for SRF cavities are generally considered to be the best technology today. However, hydrofluoric and sulphuric acid mixture usually used in the EP process is harmful and requires us carefully controlled handling of it and the many additional facilities. In this article, we propose a new application of electrochemical buffing onto niobium SRF cavity. In the method of electrochemical buffing, a rotating disk with abrasive fine particles where electrolyte is supplied is pressed against the workpiece. The disk and the work function as a cathode and an anode, respectively and an aqueous solution of sodium nitrate is used for the electrolyte. This technique brings us a couple of advantages like high etching rate, ultra small surface roughness, cost-effective and environment-compatible polishing.

 
WEPEC021 Measurement of Hydrogen Absorbed in Niobium cavity, superconducting-cavity, superconductivity, vacuum 2935
 
  • K. Nakanishi, K. Hara, K. Hosoyama, A. Kabe, Y. Kojima
    KEK, Ibaraki
 
 

Hydrogen absorbed in niobium was measured using effect of hydrogen Q-degradation. A niobium cavity was designed and manufactured for this experiment. Hydrogen was introduced from outside of the cavity by electrolysis of diluted sulfuric acid on the outer surface of the cavity with an anode made by stainless steel. The Q-factor is one of the most unstable property of superconducting cavities. Especially, the reproducibility of Q-factor cannot be so expected after disassembled and reassembled it. In this experiment, the Q-factor was measured without disassembling, because hydrogen was introduced from outside of the cavity. The Q-degradation was observed successfully. And the Q-factor becomes worse and worse, when hydrogen was introduced more and more. To estimate the amount of hydrogen which is absorbed in niobium, small and thin niobium samples were prepared. They were warmed by the energizing heating in vacuum after having introduced hydrogen. The out-gas was analyzed by QMS, and the amount of hydrogen was estimated. This method can be applied to measure the absorbed hydrogen during electro or chemical polishing of cavities without some influence of changing the surface morphology.

 
WEPEC023 Surface Study on Niobium Stain after Electro-polishing for Super-conducting RF Cavity cavity, ion, electron, radio-frequency 2941
 
  • M. Nishiwaki, H. Hayano, S. Kato, T. Saeki, M. Sawabe
    KEK, Ibaraki
  • P.V. Tyagi
    Sokendai, Ibaraki
 
 

In development of superconducting radio-frequency niobium cavities, there are problems in low performances of electro-polished (EP) cavities with a fresh EP solution due to stains on the surfaces with discoloration. Although the stain problems have been known from the past researches, the detailed study with surface analysis has not been carried out. In this study, the stains on the niobium surfaces were observed with x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy and scanning electron microscope. According to results of XPS, there are some differences in atomic components at the stained and non-stained surfaces, ex, a little amount of fluorine and no metal oxide were found only at the stained surface. In this article, we will describe the detail of the XPS results.

 
WEPEC027 Long-period Monitoring of Electro-polishing Electrolyte in EP Facility at KEK ion, monitoring, cavity, controls 2947
 
  • M. Sawabe., H. Hayano, S. Kato, M. Nishiwaki, T. Saeki
    KEK, Ibaraki
  • P.V. Tyagi
    Sokendai, Ibaraki
 
 

We have constructed an Electro-polishing (EP) Facility in the Superconducting RF Test Facility (STF) at KEK in 2008. The EP facility has been used for the EP process of Superconducting RF (SRF) 9-cell cavities for more than one year. In the EP facility, the capacity of the EP-electrolyte reservoir tank is 2,000 L. This size is relatively large if compared with EP facilities in other laboratories. It means that the quality control of EP electrolyte is more difficult because the status of EP-electrolyte changes as the aging of EP-electrolyte proceeds. In the real EP-process operations, we circulated the EP electrolyte of 1,100 L which was firstly delivered into the tank in January 2008 and was disposed in May 2009. During this period, we performed the EP processes 40 times and periodically measured the concentration of Nb ,Al ,HF in the EP electrolyte. In this article, we report the detailed results of the EP-electrolyte monitoring as well as the observation of changing electronic current oscillation in the EP processes during this period in the EP facility at STF/KEK.

 
WEPEC034 Various Rinsing Effects to Mitigate Contaminates Brought by BCP on Niobium SRF Cavity Surface cavity, SRF, electron, vacuum 2968
 
  • P.V. Tyagi
    Sokendai, Ibaraki
  • H. Hayano, S. Kato, M. Nishiwaki, T. Saeki, M. Sawabe
    KEK, Ibaraki
 
 

Buffered chemical polishing (BCP) has been widely used as a final recipe of the surface treatment for niobium cavities and there is still much room to improve this technology since it is environment friendly, cheaper and simpler than electro-polishing. To examine BCPed surface in detail, we carried out BCP experiment followed by various rinsing methods on a series of niobium samples at KEK. As a result of the BCP process some contaminants like fluorine, carbon, etc. have been detected at the surfaces which may be the prominent cause of limiting the performance of SRF cavities. To remove these contaminants, various rinsing processes such as ultra pure water rinse, ultrasonic pure water rinse, alcoholic rinse, detergent rinse, high pressure water rinse (HPR) had been tested after the BCP. The preliminary results show that, only HPR had potential to mitigate these contaminants. In this article, we describe the surface analysis results using X-ray photo electron spectroscopy etc and a comparative study of niobium BCPed samples followed by above mentioned rinsing processes.

 
WEPEC039 IHEP Low-loss Large Grain 9-cell Cavity Fabrication and Processing cavity, SRF, target, superconducting-RF 2974
 
  • J.Y. Zhai, J.P. Dai, L. Dong, J. Gao, Z.D. Guo, Z.Q. Li, L.L. Men, Q.Y. Wang
    IHEP Beijing, Beijing
  • J.Z. Chen, J.Q. Qiao
    HJL, Beijing
  • J.X. Wang, H. Yu, H. Yuan
    BIAM, Beijing
  • W.P. Xie
    Ningxia Orient Tantalum Industry Co., Ltd., Dawukou District, Shizuishan city
  • T.X. Zhao
    IHEP Beiing, Beijing
 
 

The combination of the low-loss shape and large grain niobium material is expected to be the possible way to achieve higher gradient and lower cost for ILC 9-cell cavities. As the key component of the 'IHEP 1.3 GHz SRF Accelerating Unit and Horizontal Test Stand Project', a low-loss shape 9-cell cavity using Ningxia large grain niobium has been fabricated and surface treated at IHEP and will be tested at KEK. The fabrication procedure, surface treatment recipes as well as the SRF facilities are presented in this paper.

 
WEPEC043 R&D of PKU Single Spoke Cavity cavity, vacuum, resonance, simulation 2983
 
  • Z.Y. Yao, C. Chang, J.K. Hao, F.S. He, Y.M. Li, L. Lin, K.X. Liu, X.Y. Lu, S.W. Quan, B.C. Zhang, K. Zhao, F. Zhu
    PKU/IHIP, Beijing
  • L. Yang
    Peking University, School of Physics, Beijing
 
 

Spoke cavities have been developed and have apparent advantages for high current proton accelerator based on superconductivity at low and medium energy region. As the research and the technical reserve, Peking University has started the R&D program of single spoke cavity (SSC). The work is proposed to do beam load experiment on the HI-13 Tandem at CIAE. The maximum kinetic energy of proton beam is 26MeV, and the frequency of the chopper for superconducting is 150MHz. It leads us to the choice of a 450MHz and β=0.2 single spoke cavity. In this paper, the RF design, mechanical study, fabrication arts, tolerance analysis, and room temperature RF test is presented.

 
WEPEC044 RF Test of Two-cell Prototype for the PEFP Proton Linac Extension cavity, SRF, proton, accelerating-gradient 2986
 
  • H.S. Kim, Y.-S. Cho, H.-J. Kwon
    KAERI, Daejon
  • S. An
    PAL, Pohang, Kyungbuk
 
 

A superconducting RF cavity with a geometrical beta of 0.42 and a resonant frequency of 700 MHz has been under investigation for an extension program of Proton Engineering Frontier Project (PEFP) to accelerate the proton beam above 100 MeV. We developed and tested a two-cell prototype in order to confirm the fabrication procedure and check the RF and mechanical properties of such a low-beta elliptical cavity. The prototype has been fabricated with high RRR niobium sheets (RRR > 250). Double-ring structure was adopted to reduce the Lorentz force detuning effect. For the vertical test of the prototype cavity, a cryostat was designed and fabricated. Operating temperature is 4.2 K, therefore, pumping to reduce the pressure is not required. We applied 40 layers of superinsulation around the helium vessel in addition to the vacuum insulation between the helium vessel and outer chamber. The status of the prototype development and RF test results will be presented in this paper.

 
WEPEC065 Coupled Electromagnetic-Thermal-Mechanical Simulations of Superconducting RF Cavities cavity, simulation, resonance, SRF 3040
 
  • S.E. Posen, M. Liepe, N.R.A. Valles
    CLASSE, Ithaca, New York
 
 

The high magnetic and electric radio-frequency fields in superconducting microwave cavities cause heating of the inner cavity surface and generate Lorentz-forces, which deform the shape of the cavity and thereby result in a shift of the fundamental mode frequency. 3-dimensional numerical codes can create complex coupled simulations of the electromagnetic fields excited in a cavity, of heat dissipation and heat transfer, as well as of mechanical effects. In this paper we summarize our simulation results using the engineering simulation package ANSYS.

 
WEPEC073 A Cryogenic RF Material Testing Facility at SLAC cavity, klystron, SRF, instrumentation 3049
 
  • J. Guo, D.W. Martin, S.G. Tantawi, C. Yoneda
    SLAC, Menlo Park, California
 
 

Superconducting RF is increasingly important for particle accelerators. A lot of effort has been made in the SRF material research recently, aiming to find the superconducting materials with better performance. We developed a testing system using a resonant cavity with high quality factor and an interchangeable wall for the testing of different materials. The system is capable for high power RF cryogenic test to find the critical magnetic field at different temperature. The facility can be also used on testing the low temperature properties of the normal conducting material. Different Cu, Nb and MgB2 samples have been tested. In this paper, we will present the most recent development of the system, along with a discussion on the recent testing results.

 
WEPEC078 Plasma Treatment of Niobium SRF Cavity Surfaces cavity, plasma, SRF, radio-frequency 3058
 
  • S. Popović, M. Rašković, J. Upadhyay, L. Vušković
    ODU, Norfolk, Virginia
  • H.L. Phillips, A-M. Valente-Feliciano
    JLAB, Newport News, Virginia
 
 

Plasma based surface modification provides an excellent opportunity to eliminate non-superconductive pollutants in the penetration depth region of the SRF cavity surface and to remove mechanically damaged surface layer improving surface roughness. We have demonstrated on flat samples that plasma etching in Ar/Cl2 of bulk Nb is a viable alternative surface preparation technique to BCP and EP methods, with comparable etching rates. The geometry of SRF cavities made of bulk Nb defines the use of asymmetric RF discharge configuration for plasma etching. In a specially designed single cell cavity with sample holders, discharge parameters are combined with etched surface diagnostics to obtain optimum combination of etching rates, roughness and homogeneity in a variety of discharge types, conditions, and sequences. The optimized experimental conditions will ultimately be applied to single cell SRF cavities.

 
WEPEC079 Design and Prototype Progress toward a Superconducting Crab Cavity Cryomodule for the APS cavity, HOM, damping, multipactoring 3061
 
  • H. Wang, G. Cheng, G. Ciovati, J. Henry, P. Kneisel, R.A. Rimmer, G. Slack, L. Turlington
    JLAB, Newport News, Virginia
  • R. Nassiri, G.J. Waldschmidt
    ANL, Argonne
 
 

A squashed, elliptical supercondconducting (SC) cavity with waveguide dampers on the beam pipes has currently been chosen as the baseline design [1] for the Short Pulse X-ray (SPX) project at the Advanced Photon Source (APS). An alternate cavity design, with a waveguide damper located directly on the cavity cell for improved damping characteristics, has also been designed and cold-tested with promising results. In either case, eight cavities would be operated CW in a single cryomodule at 2K to produce an electron bunch chirp of 4MV at a frequency of 2.815 GHz. Detailed analysis of multipactoring (MP), lorentz force detuning (LFD), and the thermal properties of the baseline design has led to an engineering specification of the basic parameters of the cryomodule.

 
WEPEC083 Tomographic Analysis of SRF Cavities as Asymmetric Plasma Reactors plasma, cavity, SRF, diagnostics 3072
 
  • M. Nikolić, A.L. Godunov, S. Popović, A. Samolov, J. Upadhyay, L. Vušković
    ODU, Norfolk, Virginia
  • H.L. Phillips, A-M. Valente-Feliciano
    JLAB, Newport News, Virginia
 
 

The tomographic reconstruction of local plasma parameters for nonequilibrium plasma sources is a developing approach, which has a great potential in understanding the fundamental processes and phenomena during plasma processing of SRF cavity walls. Any type of SRF cavity presents a plasma rector with limited or distorted symmetry and possible presence of high gradients. Development of the tomographic method for SRF plasma analysis consists of several steps. First, we define the method based on the inversion of the Abel integral equation for a hollow spherical reactor. Second step is application of the method for the actual elliptical cavity shape. Third step consists of study of the effects of various shapes of the driven electrode. Final step consists of testing the observed line-integrated optical emission data. We will show the typical results in each step and the final result will be presented in the form of correlation between local plasma parameter distributions and local etching characteristics.

 
WEPEC085 Simulation of the High-Pass Filter for 56 MHz Cavity for RHIC HOM, cavity, simulation, SRF 3078
 
  • Q. Wu, I. Ben-Zvi
    BNL, Upton, Long Island, New York
 
 

The damper of 56 MHz cavity is designed to extract all modes to the resistance load outside, including the fundamental mode. Therefore a high-pass filter is required to reflect the fundamental mode back into the cavity. A preliminary design of the filter was previously done. In this paper, we optimize all elements to eliminate the poor filter performance above 1 GHz. The circuit diagram is extracted from microwave lumped elements that reproduce the frequency spectrum of the finalized filter. We also show mode damping results with dampers and filters in the desired configuration, determining the final performance of the cavity.

 
WEPE004 High Gradient Behaviors of Large Grain ICHIRO Single Cell Cavity by Chemical Polishing cavity, SRF, radiation, superconductivity 3344
 
  • F. Furuta, T. Konomi, K. Saito
    KEK, Ibaraki
 
 

We have started high gradient R&D with the combination of ICHIRO shape, sliced large grain niobium, and chemical polishing (CP). We fabricated one large grain ICHIRO single cell cavity that had end cell shape of ICHIRO 9-cell but no end group. We processed this cavity surface by centrifugal barrel polishing (CBP) and CP. This cavity successfully achieved the high gradient of 42MV/m at the first vertical test. We made series test by repeating CP on this cavity. The results of series test will be reported.

 
WEPE009 Application of MO Sealing for SRF Cavities cavity, SRF, vacuum, impedance 3359
 
  • K. Saito, F. Furuta, T. Konomi
    KEK, Ibaraki
 
 

Dr. Matsumoto in KEK and his colleague have developed the MO flange for vacuum sealing of normal conducting high peak power RF wave-guide. This is impedance free sealing. We have applied this sealing to SRF cavity technology instead of indium sealing. We used pure aluminum gasket for the sealing material. We had a difficulty on the titanium flange but succeeded to establish leak tightness in super-fluid Helium by stainless flange. In this paper, we will report the R&D results.

 
WEPE011 Large Grain 9-cell Cavities R&D at KEK cavity, SRF, target, HOM 3365
 
  • K. Saito, F. Furuta, T. Konomi
    KEK, Ibaraki
 
 

We are developing large grain/single crystal niobium material for ILC collaborating with Tokyo Denkai. These materials are very much promising to obtain high SRF cavity performance with cost-effective production. We have fabricated two 9-cell cavities from these large grain niobium materials and made cold test to evaluate the SRF performance. In this paper, we will report cavity fabrications and preparations and cold test results.

 
WEPE015 Status of the Superconducting Cavity Development for ILC at MHI cavity, superconducting-cavity, status, HOM 3377
 
  • K. Sennyu, H. Hara, H. Hitomi, K. Kanaoka, M. Matsuoka, T. Yanagisawa
    MHI, Kobe
 
 

MHI has supplied superconducting cavity for the ILC R&D project to KEK in Japan for the last few years. We are improving the technology to design and fabricate the superconducting cavities. We can present some example of our work that have improved the productivity of the superconducting cavities.

 
THOARA02 Preparation Phase for the 1.3 GHz Cavity Production of the European XFEL cavity, HOM, superconductivity, controls 3633
 
  • W. Singer, S. Aderhold, A. Brinkmann, R. Brinkmann, J.A. Dammann, J. Iversen, G. Kreps, L. Lilje, A. Matheisen, W.-D. Möller, D. Reschke, J. Schaffran, A. Schmidt, J.K. Sekutowicz, X. Singer, H. Weise
    DESY, Hamburg
  • P.M. Michelato
    INFN/LASA, Segrate (MI)
 
 

The preparation phase for the European XFEL cavity production includes a number of actions. Material issues: qualification of high purity niobium vendors, verifying of large grain material as a possible option, construction of the scanning device for the niobium sheets. Mechanical fabrication issues: accommodation of the TESLA cavity design to the XFEL demands, device construction for RF measurement of components, integration of the helium tank and it's welding to the cavity into the fabrication sequence, documentation and data transfer, application of a new high resolution camera for inspection of the inside surface. Treatment and RF measurement: establishing the XFEL recipe, in particular the final surface treatment (final 40 μm EP or short 10 μm Flash BCP), and the cavity preparation strategy (vertical acceptance test with or without helium tank welded, with or without assembly of HOM antennas), construction of the cavity tuning machine. About 50 prototype cavities are produced at the industry, treated (partially in industry and partially at DESY) and RF-tested at DESY. The XFEL requirements are fulfilled with a yield of approx. 90%.

 

slides icon

Slides

 
THPEC020 QE Tests with Nb-Pb SRF Photoinjector and Arc Deposited Cathodes cathode, laser, cavity, SRF 4086
 
  • J.K. Sekutowicz
    DESY, Hamburg
  • P. Kneisel
    JLAB, Newport News, Virginia
  • R. Nietubyc
    The Andrzej Soltan Institute for Nuclear Studies, Centre Swierk, Swierk/Otwock
  • T. Rao, J. Smedley
    BNL, Upton, Long Island, New York
 
 

In this contribution, we report Quantum Efficiency (QE) test results with a hybrid lead/niobium superconducting RF (SRF) photoinjector at 2K and new Pb arc deposited cathodes at 300K. The ultimate goal of our effort is to build a Nb injector with the superconducting cathode made of lead, which, as reported in the past, demonstrated superior QE compared to other metallic superconducting elements. At first, we present the test results obtained with a 1.6-cell high purity Nb cavity with the emitting lead spot in the center of the back plate. The QE test results at room temperature and the SEM surface analysis of eight Pb cathodes, deposited recently under various conditions, are discussed in the second part of this contribution.

 
THPEC021 Coaxial Coupling Scheme for TESLA/ILC-type Cavities coupling, cavity, HOM, higher-order-mode 4089
 
  • J.K. Sekutowicz
    DESY, Hamburg
  • P. Kneisel
    JLAB, Newport News, Virginia
 
 

This paper reports about our efforts to develop a flangeable coaxial coupler for both HOM and fundamental coupling for 9-cell TESLA/ILC-type cavities. The cavities were designed in early 90‘s for pulsed operation with a low duty factor, less than 1 %. The proposed design of the coupler has been done in a way, that the magnetic flux B at the flange connection is minimized and only a field of <5 mT would be present at the accelerating field Eacc of ~ 36 MV/m (B =150 mT in the cavity). Even though we achieved reasonably high Q-values at low field, the cavity/coupler combination was limited in the cw mode to only ~ 7 MV/m, where a thermally initiated degradation occurred. We have improved the cooling conditions by initially drilling radial channels every 30 degrees, then every 15 degrees into the shorting plate. The modified prototype performed well up to 9 MV/m in cw mode. This paper reports about our experiences with the further modified coaxial coupler and about test results in cw and low duty cycle pulsed mode, similar to the TESLA/ILC operation conditions.

 
THPD009 Study on the High Order Modes of the 3.5cell Cavity at Peking University HOM, cavity, simulation, coupling 4296
 
  • F. Wang, F.S. He, L. Lin, K. Zhao
    PKU/IHIP, Beijing
 
 

As part of the updated DC-SC injector, a 3.5cell cavity has been fabricated at Peking University, which includes two Coaxial High Order Mode (HOM) couplers. The effect of the HOM couplers has been studied by numerical simulation and measurement. The results are highly uniform and show that the two couplers do effectively damp the HOMs.