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Abstract

Compton scattering of a laser beam with a relativistic
electron beam has been used to generate an intense, highly
polarized, and nearly monoenergetic gamma-ray beam at
several facilities. The ability of predicting the spatial and
spectral distributions of a Compton gamma-ray beam is
crucial for the optimization of the operation of a Comp-
ton light source as well as for the applications utilizing the
Compton beam. In this paper, we present an analytical al-
gorithm for modelling Compton scattering process. Based
upon this algorithm, we developed a numerical integration
code to produce smooth results for the spatial and spectral
distributions of the Compton beam. This code has been
used to characterize the High Intensity Gamma-ray Source
(HIγS) at Duke University for varying electron and laser
beam parameters as well as different gamma-ray beam col-
limation conditions.

INTRODUCTION

Compton scattering of a laser beam with a relativistic
electron beam has been successfully used to generate an
intense, highly polarized and nearly monoenergetic x-ray
or gamma-ray beam with a tunable energy at many facili-
ties [1, 2]. These unique Compton beams have been used in
a wide range of basic and application research fields from
nuclear physics to astrophysics, from medical research to
homeland security and industrial applications [1].

The ability of predicting the spectral, spatial and tempo-
ral characteristics of a Compton gamma-ray beam is cru-
cial for the optimization of the gamma-ray beam produc-
tion as well as applications utilizing the beam. While the
theory of electron-photon Compton scattering (the scatter-
ing between a monoenergetic electron and a monoenergetic
laser beams with zero transverse beam sizes) are well doc-
umented in literature [3, 4], there remains a need to fully
understand the characteristics of the gamma-ray beam pro-
duced by Compton scattering of a laser beam and an elec-
tron beam with specific spatial and energy distributions,
i.e., the beam-beam scattering.

In this paper, we present a semi-analytical algorithm to
study the Compton scattering process of a laser beam and
an unpolarized electron beam in the linear Compton scat-
tering regime. Using this algorithm, we are able to charac-
terize a Compton x-ray or gamma-ray beam with varying
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laser and electron beam parameters, arbitrary collision an-
gles, and different gamma-beam collimation conditions.

ELECTRON-PHOTON SCATTERING

In the following, we limit our analysis to head-on colli-
sions of laser photons and electrons. Because of conserva-
tion of the momentum and energy, the photon energy after
the scattering is given by

Eg =
Ep(1 + β)

1 + Ep/Ee − (β − Ep/Ee) cos θf
, (1)

where Ep and Ee are the incident photon and electron en-
ergies; Eg is the scattered photon energy; β = v/c is the
speed of the incident electron relative to the speed of light;
and θf is the scattering angle between directions of the in-
cident electron and scattered photon.

In a laboratory frame, the angular differential cross sec-
tion is given by [5, 6]
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where re is the classical electron radius; mc2 is the rest
mass energy of electron; Pt is the degree of linear polar-
ization of the incident photon; τ is the azimuthal angle of
the polarization vector of the incident photon; φf is the az-
imuthal angle of the scattered photon;X and Y are Lorentz
invariant quantities given by

X =
2γEp(1 + β)

mc2
, Y =

2γEg(1− β cos θf )

mc2
. (3)

With Eqs. (1) and (2), one is able to study the spatial
and spectral distributions of a gamma-ray beam produced
by Compton scattering of a monoenergetic electron and
laser beams with zero transverse beam sizes, i.e., electron-
photon scattering. However, in the reality, the incident
electron and laser beams have finite spatial and energy dis-
tributions, which will change the distributions of the Comp-
ton gamma-ray beam. In the following section, we will
present an analytical algorithm for modelling a Compton
scattering process of a laser and an electron beams with
Gaussian phasespace distributions, i.e., the beam-beam
scattering.

BEAM-BEAM SCATTERING

In a laboratory frame, an electron beam and a laser beam
with Gaussian phasespace distributions can be described by
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Figure 1: Geometric constraint for a scattered gamma-ray
photon. The diagram only shows the projection of the con-
straint in the x-z plane.

Eq. (4), where p is the momentum of an electron; p0 is the
centroid momentum of the electron beam; x′ and y′ are the
angular divergences of the electron in the x and y direc-
tions, respectively; αx,y, βx,y and γx,y are Twiss parame-
ters of the electron beam; σp, σz and εx,y are the electron
beam momentum spread, RMS bunch length, and emit-
tance, respectively; k and λ are the wavenumber and wave-
length of a laser photon, and k0 is the centroid wavenumber
of the laser beam; β0, σk and σl are the Rayleigh range, and
the RMS energy spread and bunch length of the laser beam.

The number of collisions occurring during a time dt and
inside a phasespace volume d3p d3k dV of the incident
laser and electron beams is given by [4]

dN(�r, �p,�k, t) = σtot(�p,�k)c(1 − �β · �k/|�k|)ne(�r, �p, t)

×np(�r,�k, t)d
3pd3kdV dt, (5)

where σtot(�p,�k) is the total Compton scattering cross sec-
tion which is determined by the momenta of the incident
electron and laser photon, �p and h̄�k; �ve and �vp are the
velocities of the electron and photon, and �β = �ve/c;
ne(�r, �p, t) = Nefe(�r, �p, t) and np(�r,�k, t) = Npfp(�r,�k, t),
where Ne and Np are the total numbers of electrons and
laser photons in their respective pulses.

To calculate the spatial and energy distributions of a
Compton gamma-ray beam, one need to integrate Eq. (5)
over the entire collision time t and phasespace volume
d3p d3k dV . However, during the integration, the differen-
tial cross section should be used instead of the total cross
section, and two constraints need to be imposed [5, 7].

The first constraint is the geometric one, which assures
the gamma-ray photon generated at the location �r can reach
the location �rd shown in Fig. 1. The projection of this con-
straint in the x-z and y-z planes is given by

θx + x′ =
xd − x

L
, θy + y′ =

yd − y

L
. (6)

Here, θx and θy are the projections of the scattering an-
gle θf in the x-z and y-z planes, i.e., θx = θf cosφf ,
θy = θf sinφf and θ2f = θ2x + θ2y , where θf and φf are the
angles defined in the electron coordinate system (xe, ye, ze)
in which the electron is incident along the ze-axis direction
(Fig. 1). x′ and y′ are the angular divergences of the in-
cident electron, i.e., the angles between the electron mo-
mentum and z-axis. L is the distance between the collision
plane and the detection plane (or the collimation plane).
Note that a far field detection (or collimation) has been as-
sumed, i.e., L � |�r| and L ≈ |�rd|.

The second constraint is the energy conservation. Due to
the finite energy spread of the electron beam, the gamma-
ray photon with an energy of Eg can be scattered from the
electron with an energy of γ̄mc2 and scattering angle of θf .
Mathematically, this constraint can be expressed as

δ(Ēg − Eg),where Ēg =
4γ̄2Ep

1 + γ̄2θ2f + 4γ̄Ep/mc2
. (7)

Thus, the spatial and energy distributions of a Compton
gamma-ray beam is given by

dN(Eg, xd, yd)

dΩddEg
≈ NeNp

∫
dσ

dΩ
δ(Ēg − Eg)c(1 + β)

×fe(x, y, z, x
′, y′, p, t)

×fp(x, y, z, k, t)dx
′dy′dpdkdV dt, (8)

where dΩd = dxddyd/L
2, and dσ/dΩ is the differential

Compton scattering cross section. Note that a head-on col-
lision between electron and laser beams has been assumed,
and the density function fe(�r, �p, t) in Eq. (5) has been re-
placed with fe(x, y, z, x

′, y′, p, t) of Eq. (4) under the ap-
proximation pz ≈ p for a relativistic electron beam. In ad-
dition, the integration

∫ · · · fp(�r,�k, t)d3k is replaced with∫ · · · fp(x, y, z, k, t)dk, where fp(x, y, z, k, t) is defined in
Eq. (4). Integrations over dkx and dky have been carried
out since the differential cross section has a very weak de-
pendency on kx and ky for a relativistic electron beam.

Assuming head-on collisions for each individual scatter-
ing event, neglecting the angular divergences of the laser
beam and replacing x′ and y′ with θx and θy , we can inte-
grate Eq. (8) over dV, dt and dp to yield Eq. (9), where
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L
)2 +
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Figure 2: Calculated spatial distribution of a Compton
gamma-ray beam at a transverse plane 30 meters down-
stream from the collision point. The left figure is a 3D plot
of the distribution and the right one is its contour plot. The
gamma beam with the peak energy of about 9 MeV is pro-
duced by a 515 MeV electron beam scattering with a 545
nm linearly polarized laser beam. The polarization vector
of the laser beam has an azimuthal angle of 45 degree with
respect to the horizontal plane.

θf =
√

θ2x + θ2y , θxmax =
√

4Ep/Eg − θ2y, σγ =
σEe

mc2
,

γ =
2EgEp/mc2

4Ep − Egθ2f

⎛
⎝1 +

√
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4E2

pEg/(mc2)2

⎞
⎠ , (10)

and σEe is the RMS energy spread of the electron beam.
The integrations with respect to k, θy and θx in Eq. (9)

must be carried out numerically. Thus, a numerical integra-
tion Compton scattering code in the C++ computing lan-
guage (CCSC) has been developed to evaluate the integral
of Eq. (9).

The spatial and spectral distributions of Compton
gamma-ray beams calculated using this code are illustrated
in Figs. 2 and 3. More applications of this code can be
found in [8, 9]. This code has been benchmarked with
our another Compton scattering code based upon a Monte
Carlo simulation algorithm [9, 10].

CONCLUSIONS

In this paper, we present an analytical algorithm to
model a gamma-ray beam produced by Compton scatter-
ing a laser beam and an electron beam with Gaussian phas-
espace distributions. Based upon this algorithm, we have
developed a numerical integration code to produce smooth
results for the spatial and spectral distributions of a Comp-
ton beam. This code has been successfully used to char-
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Figure 3: Comparison of measured and calculated Comp-
ton gamma beam spectra. The gamma-ray beam is pro-
duced by Compton scattering of a 466 MeV electron beam
and a 790 nm laser beam at the HIγS facility. The en-
ergy spread of the electron beam is 0.1%, and horizontal
and vertical emittance are 7.8 and 1.0 nm-rad, respectively.
The collimator with an aperture radius of 12.7mm is placed
60 meters downstream from the collision point.

acterize the High Intensity Gamma-ray Source (HIγS) at
Duke University for varying electron and laser beam pa-
rameters as well as different gamma-ray beam collimation
conditions.

REFERENCES

[1] H. R. Weller et al., Prog. Part. Nucl. Phys. 62, 257 (2009).

[2] Y. K. Wu, N. A. Vinokurov, S. Mikhailov, J. Li and V. Popov,
Phys. Rev. Lett. 96, 224801 (2006).

[3] V. B. Berestetskii, E. M. Lifshitz and L. P. Pitaevskii, Quan-
tum Electrodynamics, 2nd ed., Butterworth-Heinemann,
1982.

[4] L. D. Landau and E. M. Lifshitz, the Classical Theory of
Fields, 4th ed., Butterworth-Heinemann, 1975.

[5] V. N. Litvinenko and J. M. Madey, SPIE 2521, 55 (1995).

[6] S. H. Park, V. N. Litvinenkob, W. Tornowc and C. Mont-
gomery, Nucl. Instr. and Meth. A475, 425 (2001).

[7] S. H. Park, Ph.D. Dissertation, Department of Physics, Duke
University, 2000.

[8] C. Sun, J. Li, G. Rusev, A. P. Tonchev and Y. K. Wu, Phys.
Rev. ST Accel. Beams 12, 062801 (2009).

[9] C. Sun, Ph.D. Dissertation, Department of Physics, Duke
University, 2009.

[10] C. Sun and Y. K. Wu, A 4D Monte Carlo Compton Scatter-
ing Code, Proceedings of IEEE Nuc. Sci. Symp., 2009.

Proceedings of IPAC’10, Kyoto, Japan MOPEA081

08 Applications of Accelerators, Technology Transfer and Industrial Relations

U05 Applications, Other 267


