FLASH Upgrade

FLASH free-electron laser user facility at DESY

Katja Honkavaara DESY

IPAC 2010 Kyoto, Japan May 23-28, 2010

FLASH at DESY in Hamburg

- > single-pass high-gain SASE FEL
 - SASE = self-amplified spontaneous emission
- > photon wavelength range from vacuum ultraviolet to soft x-rays
- > free-electron laser user facility since summer 2005
 - 1st period: Jun 2005 Mar 2007
 - 2nd period: Nov 2007 Aug 2009
 - 3rd period: starting late summer 2010
- FLASH is also a test bench for the European XFEL and the International Linear Collider (ILC)

FLASH layout before upgrade (Sep-2007 – Sep-2009)

FLASH. Free-Electron Laser in Hamburg

FEL performance

FLASH. Free-Electron Laser in Hamburg

- > more than 100 publications on photon science at FLASH in high impact journals
 - <u>http://hasylab.desy.de/facilities/flash/publications/selected_publications</u>

> upgrade shutdown: end September 2009 – mid February 2010

RF gun and 1st accelerating module

- > RF gun replaced by a new gun tested and commissioned at PITZ (DESY-Zeuthen)
 - Iow darkcurrent
 - reduced by a factor of 10
- Poster TUPE006
- installations allowing a 10 MW operation in the mid-term future
 - > higher accelerating gradient at the photocathode
 → improved electron beam quality
- > 1st accelerating module replaced
 - new high performance cavities
 - with piezo tuners

- > lasing process requires simultaneously a small emittance and a high peak current
- compression scheme used so far leads to non-linear bunch compression longitudinal bunch shape with a sharp spike (~ 50 fs) with a high peak current and a long tail
 - only a fraction of the bunch contributes to lasing
- Iongitudinal phase space can be linearized by 3rd harmonic cavities
 - more regular shape of the compressed bunch
 - Iarger part of the electron bunch contributes to lasing
- > 3.9 GHz module installed downstream of the first accelerating module
 - 4 nine-cell superconducting cavities
 - operated at 3.9 GHz (3rd harmonic of 1.3 GHz)
 - designed and constructed at FNAL in a collaboration with DESY

Linearization of longitudinal phase space

Katja Honkavaara | IPAC'10 | May-25, 2010

in Hamburg

Mounting of accelerating modules in injector

Katja Honkavaara | IPAC'10 | May-25, 2010

Energy upgrade

- > 7th superconducting TESLA type accelerating module installed
 - prototype module for the European XFEL
- > electron beam energy up to 1.2 GeV
 ↔ ~ 5 nm photon wavelength

Bunches	1200.1 MeV
1	
0.6 nC	
1000 kHz	

Transport of 7th accelerating module

Katja Honkavaara | IPAC'10 | May-25, 2010

- > 2 complete RF stations + 1 modulator replaced
 - all stations of same type now
- one additional RF station to optimize operation with seven accelerating modules
- accelerating modules 1, 6, and 7 have the optimized XFEL type waveguide distribution
 - power for each cavity pair can be adjusted individually to optimize energy reach

Free-Electron Laser in Hamburg

sFLASH: experiment for seeded FEL radiation

- > goal: generation of seeded FEL radiation for piloting experiments
- > installed between the collimator and SASE undulators in the FLASH linac \rightarrow new electron beamline with a length of ~ 40 m

Free-Electron Laser in Hamburg

- > HHG seeding at ~ 38 nm (~ 13 nm as an option)
 - HHG = high harmonic generation
- > synchronisation goal for pump probe experiments 10 fs
- > collaboration of DESY and University Hamburg

Operation with long bunch trains

- > lasing with 800 bunches / train demonstrated in spring 2007
 - 1 MHz bunch spacing, 5 Hz rep. rate
- > some user experiments with ~100 bunches / train in spring 2008
- > 3rd user period: trains with a few hundred photon pulses will be available
 - repetition rate increased from 5 Hz to 10 Hz
 - variable bunch spacing, e.g. 1 MHz, 500 kHz, 200 kHz, 100 kHz, 40 kHz
 - variable number of pulses per train (max train length 800 us)
 - example from March 2008
 - 100 bunches / train
 - 500 kHz bunch spacing
 - photon wavelength 7.05 nm

FLASH II

- second undulator line and experimental hall
- > common proposal by DESY and Helmholtz-Zentrum Berlin
- in planning phase

Summary and outlook

- > FLASH finished in August 2009 the very successful 2nd user period
- > upgrade shutdown from autumn 2009 to early 2010
- > major modifications
 - energy upgrade to 1.2 GeV (7th accelerating module installed)
 - installation of the 3rd harmonic module
 - sFLASH seeding experiment
- > commissioning of the upgraded facility on-going
- Iasing expected in June 2010
- > 3rd FEL user period scheduled to start late summer 2010

