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Abstract

In this work the nonlinear relativistic propagation of in-
tense lasers in plasmas is investigated. It is known that,
under appropriate conditions, the ponderomotive force as-
sociated with the laser envelope can excite large amplitude
electron waves (wakefields), which can be of interest for
particle acceleration schemes. Numerical solutions show-
ing some of the possible behaviors of this system are pre-
sented and compared to analytical ones, obtained through
an effective potential approach using an one-dimensional
Lagrangian formalism.

INTRODUCTION

Propagation of laser pulses in plasmas is a relevant sub-
ject in many fields of application. Particularly in the field
of particle acceleration, development of lasers with higher
power (shorter pulses) has allowed the experimental veri-
fication [1] of the ideas proposed by Tajima and Dawson
[2]. The purpose of this work is to analyze the behav-
ior of a laser pulse propagating in a plasma, considering
for this two limit-situations: a narrow pulse (with its width
w(τ) → 0) and a wide one (w(τ) � 1).
We start from the same model used by Duda and Mori [3],
but we follow as done by de Oliveira and Rizzato [4],[5]:
applying the variational approach in a low-dimensional
model (with a gaussian ansatz for the laser pulse) to obtain
an average Lagrangian, and then the dynamical equations
for the pulse width. With these equations, we can analyze
the existence and behavior of stationary solutions. Finally,
we compare these analysis with the numerical solution of
the laser and plasma coupled equations.

MODEL

Field Equations

We describe the laser pulse propagating in a plasma us-
ing two equations: one for the vector potential a (represent-
ing the pulse envelope), another for the density of electrons
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in the plasma n (representing the wakefield),(
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where x is the direction of the laser propagation. Rescaling
t → ωpt and x → (ωp/c)x and introducing the coordinates
ξ ≡ v−1

g x − t and τ ≡ x, these equations can be rewritten
as
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where K ≡ (1 − 1/v2
g) ≤ 0 , as 0 ≤ v2

g ≤ 1.

Average Lagrangian

In order to obtain an average Lagrangian, from which
one can derive the relevant dynamical equations through
the Euler-Lagrange prescription, we first define a scalar po-
tential
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and rescale it as ϕ ≡ vgφ to match some coefficients of
equations (3) and (4), that can be written as
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In order to keep vg free to assume any value, we avoid
the assumption of ω0 = k0. For this reason, our expres-
sions and definitions are slightly different from those used
by Duda and Mori [3]. Once that the Lagrangian which
generates equations (6) and (7) has been found,
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we proceed with the same technique applied by de Oliveira
and Rizzato [5], proposing an ansatz for the potential vec-
tor, calculating the scalar potential, applying both in the
Lagrangian and, finally, integrating over ξ. We choose the
following ansatz

a(ξ, τ) =

√
P

2π1/2w(τ)
exp

[
− (ξ − λ(τ))2

2w2(τ)

]
×

×exp
{
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}
, (9)

where P =
∫ ∞
−∞ |a|2dξ is the power of the laser, w(τ) is

the width of the pulse, λ(τ) its centroid, b(τ) is a chirping
factor and δ(τ) is a phase.
In this work we analyze two limits of this system, the nar-
row pulse and wide pulse regimes. This simplify the obten-
tion of the expressions for n or ϕ.

NARROW LASER PULSES

We consider narrow pulses those where their width w is
such that one can neglect a quantity in comparison to its
second “spatial” derivative (∂2

ξ ). So, ∂2
ξ n � n is valid for

this condition and equation (4) allows us to write n as
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which can be applied on equation (3) to obtain
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Through the application of the Euler-Lagrange equations,
one can see that equation (11) can be obtained from this
Lagrangian:
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Inserting the ansatz (9) in this Lagrangian (12), integrating
it over ξ to obtain L(ξ, τ) as L(τ) and varying it with re-
spect to the collective variables w(τ), λ(τ), b(τ) and δ(τ),
we obtain the following dynamical equation
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used to calculate an effective potential
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which do not has a fixed point, as can be seen in figure 1.
As a consequence, one se only the dispersion of the pulse
(figure 2).
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Figure 1: Effective potential fora a narrow pulse showing
that there is no fixed point for the width.
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Figure 2: Numerical solution for a narrow pulse showing
that for this condition there is only dispersion of the pulse.

WIDE LASER PULSES

We call here wide pulses those where their width w is
such that one can neglect the second “spatial” derivative
of a quantity in comparison to itself. In equation (7) for
example, considering that ∂ 2

ξ n 	 n, we can write n as
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With this approximation, and also considering that (for this
condition of pulse) ∂2

ξ |a|2 	 ∂2
ξ a , equation (3) can be

written as
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This equation can be obtained applying the Euler-Lagrange
equations in the following Lagrangian:
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Again we follow the variational approach, inserting the
ansatz (9) in the mentioned Lagrangian (17), integrating it
over ξ and, finally, varying it with respect to the collective
variables w(τ), λ(τ), b(τ) and δ(τ) to obtain (after some
algebraic work) the following dynamic equation:
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From this equation we can now calculate an effective po-
tential,

w′′ = −∂Uw

∂w
⇒ Uw =

K
[
8πK +

√
2πPw(τ)

]
16πk2

0w
2(τ)

, (19)

which (depending on the laser power) has a stable fixed
point, as can be seen in figure 3, located at
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Expanding (19) in the vicinity of (20) we find the linear
frequency
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Figure 3: Effective potential showing that (a) for lower
values of energy the width w(τ) can be trapped, resulting
in soliton-like solutions oscillating around the stable fixed
point, and (b) for higher energies the width is not confined
and only dispersion of the pulse is observed.

CONCLUSIONS

In the present work we analyzed the propagation of a
laser pulse in a plasma in two distinct limit situations (nar-
row and wide pulses), through the use of the variational
approach to obtain the dynamical equations for its width.
Results showed that for wide pulses there is no stationary
solution. For this reason, while this condition is valid, one
will see only a dispersive behavior in the laser pulse. For
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Figure 4: Numerical solution for a wide pulse. A small
perturbation in the equilibrium solution of w(τ) was done
to show that it is trapped, oscillating around its fixed point.
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Figure 5: Numerical solution for a wide pulse with higher
energy, showing that for this condition there is only disper-
sion.

wide pulses, a stable fixed point can exist, depending on the
energy of the pulse. This behavior can be understood look-
ing to the effective potential: if the energy is low enough,
w(τ) is trapped and we have a soliton-like solution oscil-
lating around the fixed point (figure 4). For higher values
of energy, the width is not confined and w(τ) → ∞ (figure
5).
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