A   B   C   D   E   F   G   H   I   K   L   M   N   O   P   Q   R   S   T   U   V   W  

accelerating-gradient

Paper Title Other Keywords Page
WEPEC007 Surface Investigation on Prototype Cavities for the European XFEL cavity, niobium, factory, electron 2902
 
  • X. Singer, S. Aderhold, A. Ermakov, W. Singer, K. Twarowski
    DESY, Hamburg
  • M. Hoss, F. Schoelz, B. Spaniol
    W.C. Heraeus GmbH, Materials Technology Dept., Hanau
 
 

Performance of XFEL prototype cavities fabricated at the industry and treated at DESY demonstrates big scattering from 15 to 41 MV/m. Most cavities satisfy the XFEL specification. Few cavities with low performance (15-17 MV/m) are limited by thermal break down without field emission. The T-map analysis detected the quench areas mainly close to the equator. Optical control by high resolution camera has been applied and allowed to monitor the defects in some cases with good correlation to T-map data. In order to understand the cause of reduced performance and get more detailed information of defects origin some samples have been extracted from two cavities and investigated by light microscope, 3D- microscope, SEM, EDX and Auger spectroscopy. Several surface flaws with sizes from few μm to hundreds of μm were detected by microscopy. The defects can be separated in two categories. The first category of defects indicates foreign elements (often increased content of carbon). Inclusions with increased content of carbon adhered on the surface and presumably have a hydrocarbon nature. Deviation from smooth surface profile characterizes the second type of defects (holes, bumps and pits).

 
WEPEC020 Realistic Evaluation of Local Field Enhancement based on Precision Profilometry of Surface Defects cavity, superconductivity, linear-collider, simulation 2932
 
  • Y. Morozumi
    KEK, Ibaraki
 
 

The limitation of the accelerating gradient is one of the current major issues in the development of 1.3 GHz superconducting RF accelerator structures. While some of single-cell cavities and a few of 9-cell structures have occasionally seen accelerating gradients over 50 MV/m and 40 MV/m respectively, the reproducibility of high gradient performance is still poor. Field emission and thermal breakdown due to surface imperfections are supposed to limit the gradient. Magnetic field enhancement at small surface defects can give rise to thermal breakdown through local heating ending up with low gradients. Simulations with idealized primitive models are totally unrealistic since real existing defects have complicated and irregular shapes. Profilometry-based realistic high-fidelity modelling of field enhancement will be presented.

 
WEPEC032 Surface Inspection on MHI-01~09 Cavities cavity, superconducting-cavity, controls, feedback 2962
 
  • K. Watanabe, H. Hayano, E. Kako, S. Noguchi, T. Shishido, Y. Yamamoto
    KEK, Ibaraki
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • Y. Kikuchi
    Tohoku Gakuin University, Miyagi
 
 

Nine 1.3 GHz 9-cell superconducting cavities (MHI-01 ~ 09) for International Linear Collider (ILC) project were fabricated from 2005 to 2009 at KEK-STF. The vertical test (with temperature and X-ray mapping) and optical inspection using by high resolution camera system for nine cavities were carried out from 2006 to 2009 for STF Phase-I project and S1-Global project at KEK. The cavities were separated to three series. The first series is MHI-01 ~ 04 (fabricated at 2005). They were made the Centrifugal barrel polishing (CBP) at initial surface treatment. The second series is MHI-05 and 06 (fabricated 2008). The third series is MHI-07 ~ 09 (fabricated at 2009). The surface treatments of second and third series cavity were made only Electro Polishing (EP) process (without CBP), because of the EBW seams of equator and iris were improved by the feedback of optical inspection method. A good correlation has been so far observed between the hot spots localized by thermometry measurements in the vertical test and the positions of surface defects found by this system. The result of optical inspection will be reported in this paper.

 
WEPEC033 Repair Techniques of Superconducting Cavity for Improvement Cavity Performance at KEK-STF cavity, laser, superconducting-cavity, linear-collider 2965
 
  • K. Watanabe, H. Hayano, E. Kako, S. Noguchi, T. Shishido, Y. Yamamoto
    KEK, Ibaraki
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
 
 

The repair techniques of superconducting cavity is important to obtain better yield of accelerating gradient of superconducting 1.3 GHz 9-cell cavities. The techniques for repair of the cavity are combination of the optical inspection, make a replica of defect, the local grinding and the result of temperature mapping in vertical test. The pit type defect (size: 0.7 mm x 0.5 mm, depth: about 115 um) was found at the quench location of MHI-08 cavity at 16 MV/m by optical inspection after 1st vertical test at June 2009. The location of defect is boundary between EBW seam and heat affected zone at 172 degree of 2-cell equator. If a cause of field limitation for MHI-08 is really this pit type defect, then the cavity can repair to remove the defect by mechanical grinding method. The defect was removed completely by the special grinding machine. After grinding, Electric polishing process and optical inspection were carried out to check the surface condition at grinding area. The 2nd vertical test of MHI-08 was carried out at October 2009. The accelerating field was improved from 16 MV/m to 27 MV/m. The result of repair of MHI-08 will be reported in this paper.

 
WEPEC035 Multipoint T-map System for Vertical Test of the Superconducting Accelerator Cavities cavity, cryogenics, vacuum, superconducting-cavity 2971
 
  • H. Tongu, H. Fujisawa, Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • H. Hayano, K. Watanabe, Y. Yamamoto
    KEK, Ibaraki
 
 

The vertical test is a performance trial done by cooling the superconducting cavity, and injecting the high-frequency electricity. The temperature mapping (T-map) system is developed for the vertical test. T-map system can find heat sources that may be caused by defects on inner surfaces of superconducting cavities. The purpose of our studies on T-map is to realize a high spacial resolution and easy installation of the sensors. CMOS analog multiplexers in the cryogenic temperature can manage about thousand sensors per 9 cells to send their signals with fewer lines. Inspection efficiencies to raise the production yield of the cavities would be improved by using such a high resolution T-map system. The preliminary test of the cryogenic temperature by the T-map system is reported.

 
WEPEC044 RF Test of Two-cell Prototype for the PEFP Proton Linac Extension cavity, SRF, niobium, proton 2986
 
  • H.S. Kim, Y.-S. Cho, H.-J. Kwon
    KAERI, Daejon
  • S. An
    PAL, Pohang, Kyungbuk
 
 

A superconducting RF cavity with a geometrical beta of 0.42 and a resonant frequency of 700 MHz has been under investigation for an extension program of Proton Engineering Frontier Project (PEFP) to accelerate the proton beam above 100 MeV. We developed and tested a two-cell prototype in order to confirm the fabrication procedure and check the RF and mechanical properties of such a low-beta elliptical cavity. The prototype has been fabricated with high RRR niobium sheets (RRR > 250). Double-ring structure was adopted to reduce the Lorentz force detuning effect. For the vertical test of the prototype cavity, a cryostat was designed and fabricated. Operating temperature is 4.2 K, therefore, pumping to reduce the pressure is not required. We applied 40 layers of superinsulation around the helium vessel in addition to the vacuum insulation between the helium vessel and outer chamber. The status of the prototype development and RF test results will be presented in this paper.

 
WEPE008 Construction of the S1-Global Cryomodules for ILC cavity, cryomodule, vacuum, radiation 3356
 
  • N. Ohuchi, H. Hayano, N. Higashi, E. Kako, Y. Kondou, H. Nakai, S. Noguchi, T. Saeki, M. Satoh, M. Sawabe, T. Shidara, T. Shishido, A. Terashima, K. Tsuchiya, K. Watanabe, A. Yamamoto, Y. Yamamoto, K. Yokoya
    KEK, Ibaraki
  • T.T. Arkan, S. Barbanotti, H. Carter, M.S. Champion, R.D. Kephart, J.S. Kerby, D.V. Mitchell, Y. Orlov, T.J. Peterson, M.C. Ross
    Fermilab, Batavia
  • A. Bosotti, C. Pagani, R. Paparella, P. Pierini
    INFN/LASA, Segrate (MI)
  • D. Kostin, L. Lilje, A. Matheisen, W.-D. Möller, H. Weise
    DESY, Hamburg
 
 

In an attempt at demonstrating an average field gradient of 31.5 MV/m as per the design accelerating gradient for ILC, a program called S1-Global is in progress as an international research collaboration among KEK, INFN, FNAL, DESY and SLAC. The S1-Global cryomodule will contain eight superconducting cavities from FNAL, DESY and KEK. The cryomodule will be constructed by joining two half-size cryomodules, each 6 m in length. The module containing four cavities from FNAL and DESY has been constructed by INFN. The module for four KEK cavities is being modified at present. The assembly of the cryomodules is scheduled from January 2010, and the operation of the system is scheduled from June 2010 at the KEK-STF. In this paper, the construction of the S1-Global cryomodule will be presented.

 
THPEA010 High Power RF Test on the Mass-produced C-band RF Components for XFEL/SPring-8. klystron, cavity, electron, linac 3694
 
  • T. Sakurai, T. Inagaki, C. Kondo, T. Shintake, K. Shirasawa
    RIKEN/SPring-8, Hyogo
  • S. Suzuki
    JASRI/SPring-8, Hyogo-ken
 
 

We report the high power rf test results of C-band accelerator system for X-ray free electron laser (XFEL) in SPring-8 site. In XFEL main accelerator, 64 C-band systems will be used in total, whose components are under mass production at several industries in Japan. We performed high power RF test with three sets of the mass-produced components in XFEL test bunker. We operate the C-band components with the accelerating gradient, as high as 40 MV/m. We measured the high voltage breakdown rate and the dark current emission.

 
THPEA059 Ultra-high Gradient Compact S-band Linac for Laboratory and Industrial Applications coupling, linac, simulation, cavity 3807
 
  • L. Faillace, R.B. Agustsson, P. Frigola, A.Y. Murokh
    RadiaBeam, Marina del Rey
  • V.A. Dolgashev
    SLAC, Menlo Park, California
  • J.B. Rosenzweig
    UCLA, Los Angeles, California
 
 

There is growing demand from the industrial and research communities for high gradient, compact RF accelerating structures. The commonly used S-band SLAC-type structure has an operating gradient of only about 20 MV/m; while much higher operating gradients (up to 70 MV/m) have been recently achieved in X-band, as a consequence of the substantial efforts by the Next Linear Collider (NLC) collaboration to push the performance envelope of RF structures towards higher accelerating gradients. Currently however, high power X-band RF sources are not readily available for industrial applications. Therefore, RadiaBeam Technologies is developing a short, standing wave S-band structure which uses frequency scaled NLC design concepts to achieve up to a 50 MV/m operating gradient at 2856 MHz. The design and prototype commissioning plans are presented.

 
THPEA060 Status of High Power Tests of Normal Conducting Single-Cell Standing Wave Structures impedance, vacuum, klystron, electron 3810
 
  • V.A. Dolgashev, S.G. Tantawi, A.D. Yeremian
    SLAC, Menlo Park, California
  • Y. Higashi
    KEK, Ibaraki
  • B. Spataro
    INFN/LNF, Frascati (Roma)
 
 

We report results of ongoing high power tests of single cell standing wave structures. These tests are part of an experimental and theoretical study of rf breakdown in normal conducting structures at 11.4 GHz. The goal of this study is to determine the accelerating gradient capability of normal-conducting rf powered particle accelerators. The test setup consists of reusable mode-launchers and short test structures powered by SLAC's XL-4 klystron. We have tested structures of different geometries, cell joining techniques, and materials, including hard copper alloys and molybdenum. We found that the behavior of the breakdown rate is reproducible for different structures of the same geometry and material. The breakdown rate dependence on peak magnetic fields is stronger than on peak surface electric fields for structures of different geometries.

 
THPEA064 Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/m Range vacuum, damping, linac, alignment 3819
 
  • J.W. Wang, J.R. Lewandowski, J.W. Van Pelt, C. Yoneda
    SLAC, Menlo Park, California
  • B.A. Gudkov, G. Riddone
    CERN, Geneva
  • T. Higo, T. Takatomi
    KEK, Ibaraki
 
 

A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5·10-7/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed.

 
THPD042 Dispersion Engineering and Disorder in Photonic Crystals for Accelerator Applications lattice, dipole, HOM, wakefield 4375
 
  • R. Seviour
    Lancaster University, Lancaster
 
 

The possibility of achieving higher accelerating gradients at higher frequencies with the reduction of the effect of HOMs, compared to conventional accelerating structures, is increasing interest in the possible use of Photonic Crystals (PC) for accelerator applications. In this paper we analyze how the properties of the lattice of a PC resonator can be engineered to give a specific band structure, and how by tailoring the properties of the lattice specific EM modes can either be confined or moved into the propagation band of the PC. We further go on to discuss the role of disorder in achieving mode confinement and how this can be used to optimize both the Q and the accelerating gradient of a PC based accelerating structure. We also examine the use of high disorder to give rise to Anderson Localization, which gives rise to exponential localization of an EM mode. Discussing the difference between the extended Bloch wave, which extends over the entire PC, and the Anderson localized mode.

 
THPD048 First High-gradient Tests of the Single-cell SC Cavity with the Feedback Waveguide cavity, feedback, linac, background 4390
 
  • P.V. Avrakhov, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • M. Ge, I.G. Gonin, T.N. Khabiboulline, J.P. Ozelis, A.M. Rowe, N. Solyak, G. Wu, V.P. Yakovlev
    Fermilab, Batavia
  • J. Rathke
    AES, Medford, NY
 
 

Use of a superconducting travelling wave accelerating (STWA) structure with a small phase advance per cell rather than a standing wave structure may provide a significant increase in the accelerating gradient in the ILC linac. For the same surface electric and magnetic fields the STWA achieves an accelerating gradient 1.2 larger than TESLA-like standing wave cavities. In addition, the STWA allows longer acceleration cavities, reducing the number of gaps between them. However, the STWA structure requires a SC feedback waveguide to return the few hundreds of MW of circulating RF power from the structure output to the structure input. A test single-cell cavity with feedback was designed and manufactured to demonstrate the possibility of a proper processing to achieve a high accelerating gradient. The first results of high-gradient tests of a prototype 1.3 GHz single-cell cavity with feedback waveguide will be presented.