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Abstract 
In the Cherenkov free electron laser (CFEL), the 

electron interacted with the electromagnetic (EM) wave 
can be represented as a point particle or as a spatially 
spreading electron wave in the classical or quantum 
mechanical framework, respectively. In this paper, we 
present analytical expressions to describe the stimulated 
and spontaneous emissions. Also, we show that the 
results obtained by using the classical treatment are 
consistent with those obtained in the alternative quantum 
analysis. 

INTRODUCTION 
The CFEL provides a tuneable light source over a very 

wide range of frequency from microwave to optical 
region, including the THz spectral range.  

In the CFEL, The authors have been showed that the 
electron can be represented by a spatially spreading wave. 
Also, it was shown that the coherent length of electron 
wave l  is approximately same as the separating distance 
between electrons due to the repulsive Coulomb force. 
This quantum model of electron wave is implied when the 
EM wavelength is shorter than the spreading length of 
electron, as in the case of optical emission. Beside the 
coherent length of electron wave, we introduced another 
basic factor which is the electron wave relaxation time 
characterizing the damping phenomena on the time 
vibration of the electron wave. Analytical expressions of 
the gain amplification and the coupling coefficient of the 
spontaneous emission were presented in [1,2]. 

In this paper, on the basis of a classical analysis, the 
stimulated gain amplification and the coefficient of the 
spontaneous emission are formulated to be excited from 
current sources of the electron beam. We also introduce 
relaxation phenomena for variations or modulations of 
electron velocity and density providing a simple 
parameterization to define the boundary between the so 
called transit and steady states solutions of the 
amplification gain, as well as to provide a direct 
comparison with the quantum model. This classical 
analysis can be applied for the CFEL operated basically 
from sub-mm to cm portion of EM spectrum. 

EXCITATION OF THE EM WAVE  
The configuration of the CFEL treated in this paper is 

illustrated in Fig. 1. In Fig. 1, an electron beam is emitted 
from an electron gun and runs along a surface of a 
dielectric slab waveguide. The electric field component of 

zE  evanesces into the vacuum region to interact with the 
electron beam. The classical wave equation for the EM 
wave is written as  
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where iε  is the dielectric constant in the i th layer and σ  
is the conductivity representing the loss in the waveguide. 
The interaction with the electron beam is introduced 
through the current density J.  

The electric field component E of the EM wave is 
given as  

 ..),()( )( cceyxzF ztj += −βωTE ,             (2) 

where )(zF  is the field amplitude of the propagating 
wave and ),( yxT  is the transverse electric field 
distribution.  

By substituting Eq. (2) into Eq. (1), taking spatial and 
time averages after multiplying by 

][ )(exp),(* tzjyx ωβ −T , and neglecting the second 
derivative of )(zF , we obtain the following equation for 
the variation of the field amplitude,  
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where tΔ  and  zΔ  are time and spatial averages intervals.  
In Eq. (3), the current density is divided into two basic 

components spJ  and stJ  that cause the spontaneous and 
the stimulated emissions, respectively. So that  

 stsp JJJ += .                               (4) 

The variation of the propagation power P(z)  is written 
as, 

    

Figure 1: Cerenkov FEL consisting of an electron beam 
and a slab waveguide. 
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where g  is the gain coefficient by the stimulated 
emission given by 
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and spC  is the inclusion rate of the spontaneous emission, 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∂
∂

+
∂

∂
=

sp
sp

*

sp

*

speff
0

0
sp

)()()()(
z
zFzF

z
zFzFnC

μ
ε ,      (7) 

sp

)(
z
zF

∂
∂  is given by Eq. (3) by replacing J  by spJ . 

CFEL IN THE CLASSICAL APPROACH 

The Guided Spontaneous Emission  
Here, we denote an electron with a suffix i  and 

suppose that the electron is spatially localized as a point 
particle which is represented with a delta-function at a 
position ),,( iii zyx  and time it , and that the electron is 
running with a velocity iv  along the z direction. The 
current density is given by the summation over all 
electrons as   
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The delta-function can be expanded with an infinite 
number of spatially harmonic components having spatial 
variations with propagation constants of 1β ,… mβ . The 
field component whose propagation constant is almost the 
same as β  can be built up through the electron motion. 
Using Eq. (8) with Eq. (3), the coefficient spC  becomes 
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Here, TΔ , v , and J  are the interaction time, the 
averaged velocity, and averaged current density of the 
electron beam. ξ  is a coupling coefficient defined as,  
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From Eq. (9), the broadness of the spontaneous 
emission profile is determined by the interaction time TΔ , 
and the spectrum has a resonance peak at βω /=v . 

 The Stimulated Emission and Amplification  
The stimulated emission is obtained through 

modulations on the electron velocity and density by the 
EM field. The variation of the electron velocity v  can be 
given by  

{ }
τ

βω vcceyxTzF
m
e

dt
dv ztj

z
o

−+−= − ..),()( )( ,        (11) 

τ  represents the time of the relaxation phenomena 
whereas the relaxation effect must be caused by the 
Coulomb repulsing forces among electrons resulting in 
electrons-to-electrons scattering [3]. Similarly, the 
variation of the electron density N  is formulated by 
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Here, τ  works to relax the timely varying component 
toward the averaged value. Now, supposing that  
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where v  and N  are dc terms of electron velocity and 
density while )(tu  and )(tn are amplitudes of the timely 
varying component. By using Eqs. (11-13) to get the 
stimulating current density eNvJ −=st , and using Eq. (3) 
we can get the time-averaged gain coefficient as   
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where )( Tf ΩΔ  is a dispersion function defined by 
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)1/( eff −=−= cnvv ωωβΩ .                  
When the relaxation effect is not taken into account 

τΔ <<T , the dispersion function reduces to      
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which is the well-known dispersion function that shows a 
peak value of 0.135 at 6.2=TΩΔ . On the other hand, 
when τΔ >>T , the dispersion function becomes 
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Figure 2: (a). The effect of  TΔ  on maximum values of the normalized dispersion function 2/})(Im{ τΔTX . (b) The 
averaged amplification gain coefficient versus the applied voltage at different wavelengths. 

 
The variation of the peak value of )( TX Δ  with τΔ /T  

is shown in Fig. 2(a), at which the boundary between the 
transit state and the steady state is around 2/ ≈τΔT . 
Numerical examples of the gain dispersion with the 
acceleration voltage V  are given in Fig. 2(b), the width of 
the gain profile is reduced for smaller wavelengths. 

CFEL IN THE QUANTUM APPROACH 
AND ITS CLASSICAL LIMITS 

The Stimulated Emission Coefficient 
In this model the electron has a quantum nature 

whereas it is represented as a plane wave, for simplicity, 
the maximum spreading length l  of the electron wave is 
corresponding to the statistical distribution of isolated 
electrons. The travelling electron wave is written as 
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nk  and nω  are the wave number and the frequency of the 
electron wave at an energy level n. Using the density 
matrix method to express the dynamic motion of 
electrons, the gain was estimated in [1] as 
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where mmρ  is the diagonal element of the density matrix 
which means the probability to find electrons at the 
energy level m . mnω  corresponds to the energy difference 
between levels m and n. Note that, the initial, lower, and 
higher levels are named as  b , a , and c , respectively. 
Here, the relaxation effect is noticed as the electron wave 
phase relaxation characterizing the damping phenomenon 
on the time vibration of the electron wave [4]. waveξ  is a 
spatial coupling coefficient between the optical field and 
single electron wave given by  
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For microwaves when the field distribution is almost 
constant over l , ξξ =wave  and that the gain coefficient in 
Eq. (19) is identical to the gain coefficient in the steady 
state of the classical model given by Eqs. (14) and (17). 

The Spontaneously Emitted Light Coefficient 
The inclusion of the guided spontaneous emission was 

counted by help of quantization of the optical field to be, 

 [ ].2/)(Sinc
4

2
wave2

eff0
qsp lβξ

πε
ωΔτ

−−×= ab kk
n

JeC         (21) 

The term ωΔ  can be understood as the full width at 
half-maximum. However, when ξξ =wave ,  we find that 
the quantum mechanical treatment given by Eq. (9) 
coincides with the result of the classical treatment given 
by Eq. (21) at  the condition of πτωΔ =  which can be 
met when )//( effncl=τ .  

CONCLUSIONS 
The classical expressions of the stimulated and 

spontaneous emissions when the electron is assumed as a 
point particle are compatible with the results that were 
already obtained using the quantum model, in which the 
electron is represented as a plane wave with finite width.  
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