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Abstract

A simple scheme to generate intense light with orbital

angular momentum in a free-electron laser is described.

The light is generated from a helically pre-bunched beam

created in an upstream modulator. The beam energy is

tuned to maximize gain in the higher-order mode which

reaches saturation well before the spontaneous modes

driven by noise are amplified.

INTRODUCTION

Light with orbital angular momentum (OAM) has nu-

merous current and potential uses in modern research[1].

In addition to spin angular momentum associated with the

field polarization, light with a helical phase along the axis

of propagation also carries an orbital component of angu-

lar momentum that can be imparted to sample, entangled,

or used to rotate or spin micromechanical devices[2]. Tra-

ditionally, light with OAM has been generated in a variety

of ways using elements inserted in the optical beam path.

However, at shorter wavelengths and high peak power like

light produced in modern x-ray FELs, such mode conver-

sions may not be practical or feasible. Accordingly, here

we investigate the possibility of generating light with OAM

using a modulator/radiator arrangement that generates the

OAM optical mode in situ[3]. This differs from a related

scheme that relies on the harmonic emission from helical

undulators[4]. The modulator section is used to helically

modulate the e-beam which, after passing through a lon-

gitudinally dispersive section enters the undulator to radi-

ate coherent OAM light. Such an arrangement might be

of practical interest in general for users of x-ray FELs who

require higher order optical modes. Simulations indicate x-

ray OAM modes with peak power on the order of gigawatts

can be obtained in this manner.

Helical Energy Modulation

In the linear regime, the evolution of the electron beam

energy and phase as it interacts with helical magnetostatic

modulator fields and laser fields near the harmonic reso-

nance h is given by

dη

dz
=

eK

γ2mc2
Re

[
iE(h)(x)eiψ

(h)
0

]
dψ(h)

dz
= 2hkwη +

d

dz
ϕ(h)(x) (1)
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where η = (γ − γ0)/γ0 � 1 is the energy devi-

ation of the electron from the resonant energy γ0 =√
(1 +K2)k/2hkw, γ2 = γ2

z (1 + K2) is the longitudi-

nal relativistic factor, K = eB/mckw is the undulator pa-

rameter, k = 2π/λ is the wavenumber of the EM field,

k � kw = 2π/λw is the wavenumber of the modulator

magnetic field and dϕ(h)(x)/dz is a placeholder for addi-

tional phase contributions ϕ(h) = Arg
[
iE(h)

]
that depend

on the characteristics of the input electromagnetic field.

The total harmonic phase is

ψ(h)(x) = ψ
(h)
0 + ϕ(h)(x), (2)

where the 1D ponderomotive phase is ψ
(h)
0 = kz + hkw −

ckt. It has been assumed that the normalized modula-

tor field is much larger than the normalized EM fields:

K � Kf = e
∣∣E(h)

∣∣ /mc2k, and that the EM fields are

not modified by the electron beam.

Helical microbunching of the e-beam occurs as the ini-

tially unmodulated beam interacts with an axisymmetric

laser field at harmonics in the helical modulator[3]. The

harmonic interaction results from the additional oscillatory

components of the electron interacting in the transversely

varying input field E(x) given by

E(h)(x) =
1

(h− 1)!

[ ±iK√
2kwγ

e∓iφ

(
∂r ∓ i

r
∂φ

)]h−1

E(x).

(3)

This is a first order Taylor expansion of the field, for each

harmonic, in the neighborhood of an electron with trans-

verse position x⊥ = x̄⊥ + Re
[
x̃⊥we

−ikwz
]
. The ± sign

reflects the right- (upper sign) or left- (lower sign) handed-

ness of the helical modulator fields. Only the oscillatory

terms near resonance have been retained in the expansion.

It has been assumed that the wiggle amplitude of the elec-

tron |xw| � K/kwγ is governed primarily by the undulator

field and is small. The electron only samples a small, local

region of the input electric field and x⊥ � x̄⊥.

For simplicity, let us assume that the input laser field is

Gaussian transversely, has a pulse length much longer than

the e-beam, and diffracts negligibly over the length of the

modulator section. For a right-handed modulator operating

at the second harmonic, the resonant ponderomotive field

in Equation (3) is then given as

E(2)(r, φ) =
r

w2
0

√
Pμ0c

πw2
0

( −iK√
2γkw

)
e−iφ−r2/w2

0 (4)

where w0 is the laser spot size and P is the power of the
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Figure 1: Arrangement for generating OAM light in an FEL. The e-beam is helically modulated via the 2nd harmonic

interaction in the initial modulator stage.

input laser. The evolution equations in (1) are thus

dη

dz
=

a(r)

w0
cos (ψ − φ)

dψ

dz
= 4kwη (5)

where ψ = ψ(2) and a(r) = eK2r
γ3mc2kww2

0

√
Pμ0c
2π e−r2/w2

0 is

the energy amplitude coefficient that depends on the radial

coordinate. Note that the maximum modulation is obtain

at r = w0/
√
2, such that only electrons off-axis are modu-

lated in energy.

Following the small-signal gain analysis, we expand

both the energy and phase to increasing orders of a small

parameter: ψ = ψ0 + εψ1 + . . . and η = η0 + εη1 + . . ..
To lowest order, the electron energy is a constant, with the

energy deviation given by η0 = Δ, referred to as the detun-

ing. To next order, the energy modulation for an initially

unmodulated beam is thus given by

η(x) = Δ + η̃ +
a(r)

4Δkww0

[
sin (4Δkwz + ψ0 − φ)

− sin (ψ0 − φ)
]

(6)

where η̃ is an additional initial energy deviation and ψ0

the initial phase position. Note that the energy modula-

tion is a function both of the radial position r and the az-

imuthal coordinate φ. As a result, the modulation is heli-

cal along the longitudinal axis, and only the electrons off-

the optical axis are modulated. It is important to keep in

mind that the effective energy spread (averaged over a pe-

riod) induced by the modulation is
√〈η2〉 = [(Δ + η̃)2 +

a(r)2

2 sinc2(2kwΔz)]1/2, which must be much less than the

FEL parameter ρ to maximize the coherent emission in the

downstream radiator.

At zero beam detuning Δ = 0, the initial phase can be

written in terms of the co-moving beam coordinate s =
z − v0t as ψ0 = ks/βz = kbs where kb = 2π/λb is the

microbunching wavenumber. A modulator of length Lm

thus leads to a sinusoidal energy modulation of the form

η(r, φ; s) = η̃ + a(r)
Lm

w0
cos(kbs− φ) (7)

where η̃ is the initial energy deviation of the electron and η
is the final energy deviation at the modulator exit.

Helical Density Modulation

The energy modulation can be transformed into a den-

sity modulation through a longitudinally dispersive section

such as a magnetic chicane downstream of the modulator.

The density bunched helical beam then acts as a seed for

coherent emission of OAM light in the subsequent radiator

(See Figure 1). The simple dispersive section is character-

ized by an R56 which converts the longitudinal coordinate

s at the entrance of the chicane into s′, the coordinate at the

exit of the chicane via

s′ = s+R56η (8)

Using (7) and (8), the initial energy is related to the final

energy and the final electron position in the bunch by η̃ =
η − a(r)Lm

w0
cos(kbs

′ − kbR56η − φ).

To calculate how the e-beam evolves from the modula-

tor entrance to the exit of the chicane, we can define an ar-

bitrary axisymmetric initial distribution function f0(r, η̃).
The distribution satisfies

∫
f0rdrdη̃dφ=1. Let us also de-

fine a helical microbunching factor of the final distribution

bl = 〈
∫

f(r, η, φ, ψ′)eiψ
′−ilφrdrdηdφ〉 (9)

which quantifies the extent to which the e-beam is den-

sity modulated into the discrete helical mode l after the

dispersive section. The brackets represent averaging over

the phase coordinate ψ′ = kbs
′. The final variables can

be transformed back into the initial variables using both

dψ′dη = dψdη̃ and the invariance of the distribution func-

tion, f0(r, η̃) = f(r, η, φ, ψ′). The bunching factor at the

exit of the chicane is therefore determined with the integral

b1 = 2πi

∫
f0(r, η̃)e

ikbR56η̃J1

(
kbR56a(r)

Lm

w0

)
rdrdη̃

(10)

for which the only azimuthal bunching mode that is

nonzero is l = 1, as one might expect. Even for a

simple transverse distribution, this integral does not sim-

plify in a straightforward way due to the dependence of

a(r) on r in the Bessel function argument. For a Gaus-

sian beam, we consider a function of the form f0 =

(2πσ2
x

√
2πσ2

η)
−1exp(−r2/2σ2

x− η̃2/2σ2
η) where ση is the

relative rms energy spread and σx is the transverse rms
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Figure 2: Transverse contribution to the helical bunching

factor versus the parameter A. The ratio of the laser spot

size to the e-beam is σ = w0/σx.

beam size. The bunching factor is then

|b1| = e−(kbR56ση)
2/2 |Γ| (11)

where Γ = σ−2
x

∫
exp(−r2/2σ2

x)J1(A
r
w0

e−r2/w2
0 )rdr and

A =
eK2kbR56Lm

γ3
0mc2kww0

√
Pμ0c

2π
(12)

Figure 2 shows how the transverse contribution to the

bunching factor Γ varies with the parameter A. Three

different ratios of the laser spot size to the e-beam size

σ = w0/σx are shown. The maximum value of Γ is ob-

tained for A � 5− 12, with larger values corresponding to

larger σ. Clearly, for the proper choice of running condi-

tions, the parameter A can be tuned to yield a reasonable

value of bunching Γ. One only needs the total bunching

factor bl to be a few percent at the radiator entrance for

significant coherent emission, provided the betatron wave-

length is longer than a few FEL gain lengths to preserve the

helical structure. One of the dominant limiting factors for

short-wavelengths is the relative energy spread ση , which

places strict limitations on the available bunching factor in

Equation (11).

Coherent Emission in an FEL
Having exited the chicane with a density bunching fac-

tor on the order of a few percent, the e-beam is injected

into an undulator that is tuned to emit light at the wave-

length of the microbunching structure. Since the emission

is approximately the same wavelength as that of the seed

laser in the modulator section, the entire setup acts as a

‘mode converter’ that transforms the initially transversely

gaussian laser pulse into an OAM mode. It is worth not-

ing that, in addition to the helical bunching, intrinsic shot

noise gives a non-zero bunching factor for other modes

that can be amplified as SASE. Thus, one needs to make

the helical bunching factor sufficiently large to insure that

the OAM mode dominates during startup up to saturation.

In modern devices, a few percent is typically more than

Figure 3: Coherent emission of an l = 1 OAM mode in an

FEL, generated by helical bunching on e-beam. The curves

are: Δ=0% (blue), Δ=0.25% (red), and Δ=0.5% (yellow).

adequate. Figure 3 shows the OAM power emitted in an

FEL predicted by time-independent numerical simulations

from Genesis[6]. Parameters are; b1 = 8%, I0 = 1kA,

εnx = 1μm, K = 2.76, λw = 1.96cm and ση = 0.05%.

Note that this example requires initial modulation with a

∼ λ = 10 nm seed which might be supplied by an upstream

FEL process, perhaps even using the same e-beam (as long

as the energy spread is kept low enough to allow coherent

radiation in the downstream OAM undulator). Depending

on the detuning of the microbunching wavelength with re-

spect to the resonant wavelength of the OAM undulator,

the emitted power can be as high as 2 GW in this scenario.

In each case, the bunching factor at the fundamental mode

l = 0 stays well below 1% through the interaction length,

indicating that the fundamental mode has no growth and

that the emitted optical mode is essentially a pure l = 1
mode.
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