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Abstract
A brief, but clear, review of beam polarization theory is 

given in the paper. Particularly, the algorithm of spin 
linear transfer matrix (SLIM) is applied to remark the 
situation of beam in storage ring, specific to HLS (Hefei 
Light Source). Theoretical analysis indicates that the 
beam in HLS, working at 800MeV and 2.58/3.58 
transverse tunes, could keep away from a variety of spin 
resonances, and should be able to build up high 
polarization. 

INTRODUCTION
It was first predicted by Ternov and rigorously justified 

by him and Sokolov (1962) that electrons cycling at high 
energy in a storage ring would become naturally polarized 
through the emission of spin-flip synchrotron radiation. 
The radiative self-polarization effect is now called 
Sokolov-Ternov effect. A quantitative solution for motion 
in a homogeneous field, by solving the Dirac equation, 
was given by Sokolov and Ternov (1964) [1]. Later, 
Derbenev and Kondratenko gave a detailed formula for 
the equilibrium degree of polarization [2]. S. R. Mane 
coming after them used semiclassical QED method to 
rederive the formula of equilibrium polarization [3]. 
Additionally, an excellent review of the electrodynamics 
of spin-flip synchrotron radiation has been given by 
Jackson [4]. A detailed presentation about these processes 
and a useful simulation algorithm using linear transfer 
matrix method are contributed by A. W. Chao [5, 6]. 

The polarization of a beam is actually an equilibrium 
physical status with spin-flip radiative polarizing effect 
and depolarizing effect of quantum diffusion working 
simultaneously. In order to obtain specific value of 
equilibrium polarization of a beam, one needs to calculate 
the spin-flip transition rates as well as the quantum 
diffusion rate of spin orientation. Extraordinarily, a 
special situation is that the spin diffusion rate becomes 
rather large when so-called depolarization resonances are 
encountered. This extends out two important projects: 
first is that, for an objective to achieve or maintain a high 
polarized beam one should study on how to cross the 
depolarization resonances while the beam is accelerated 
or decelerated; second is that, intentionally take place the 
depolarization resonance so as to use it to calibrate energy 
of particle beam accurately. Anyhow, both of them need 
to study on polarization dynamics and require a polarized 
beam. So some numerical simulations of polarization 
seem very necessary. Presently, some simulation codes 
are available such as SLIM [6], SMILE [7], and SITROS 
[8] and so forth. We use SLIM developed by A. W. Chao 

to study the situation of beam in HLS storage ring. Before 
this, the theory of polarization dynamics is reviewed 
briefly so as to understand the algorithm with less 
difficulty. In the end, the simulated result is remarked and 
the conclusion is given. 

POLARIZATION DYNAMICS 
Single-Particle Spin Dynamics 

The Hamiltonian for a relativistic electron moving in 
an electromagnetic field, up to the linear order in A , is 
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where  is the proper mass of electron with canonical 
momentum 

m

p  and 0e  is its charge;  is the electron 
velocity in units of light velocity  and S  is the spin; 
and

c

A  are the electromagnetic potentials. The interactive 
Hamiltonian is separated into two terms 
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while radiation filed is treated as a perturbation. Here the 
subscripts signify external field and radiation field 
respectively. The term, f extH H , without interacting with 
radiation field is called unperturbed term. Both  and 

 have the form 
extH
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is the Thomas precession vector mentioned in reference 
[9], with  the Lorentz factor and a  the anomalous 
magnetic moment of electron. Besides, E , B  are the 
electromagnetic fields in the accelerator. The distinction 
between two interactive Hamiltonian is indicated by 
adding subscripts to corresponding terms with “ext” and 
“rad”. The term (3) rotates the spin of electron, causing its 
variation with time (Thomas-BMT equation): 

dS S
dt

   (4) 

Equations (3) and (4) lay a foundation of single-particle 
spin dynamics in classical field theory. 

On the other hand, the perturbation theory says that the 
probability amplitude for an electron, initially in the state 
i , to be found in the state f  is given by 

1 ( ) ( ) ( )rfi addt f t H t i t
i

p     (5) 

where the interactive Hamiltonian with radiation field has 
been given ahead with subscript “rad”. Since the radiation 
power is in proportion to the probability 2

fip , we can 
derive the instantaneous radiation power based on the 
specific form of interactive Hamiltonian .radH

Come next, the classic instantaneous radiation power 
formula needs two aspects of modification when quantum 
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processes are considered. First is the recoil effect of 
photon emission; the other is the consideration of the 
electron’s spin. Particularly the second aspect of quantum 
modification is somewhat complicated that one should 
distinguish two cases: whether the spin of electron flips or 
not after emitting photon. In the case of no spin-flip, the 
quantum-modified expression has the form [5]: 
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Here  is the classical term what is familiar to us. 
Other two terms refer to the two quantum modifications 
mentioned above respectively, while  stands for the unit 
vector in the direction of electron’s spin,  the unit vector 
in the direction of prescribed bending field, and 

classic

n̂
ŷ

c  the 
critical frequency of radiation. The more significant thing 
here should be the radiation power with spin-flip: 

Wspin flip    (7) 
where  is the energy of emitted photon, and 
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is the instantaneous transition rate of spin-flip [5], with 
the instantaneous bending radius and  the unit vector of 
the electron velocity. It’s easy to see, the spin-flip 
radiation is weak and is hard to detect. But there is a 
phenomenon that involves spin-flip does more easily to 
observe. That is the “spin-flip radiative polarization”. 

v̂

Since the spin possesses only two possible values  
along any direction, a quantization axis pointing towards 

 needs to be chosen to diagonalize the unperturbed 
Hamiltonian and get the stationary spin eigenstates of the 
system. In the case of a planar ring, the spin quantization 
axis is the same for all the particles in the vertical 
direction, that is  for the above expressions and we 
can see obviously the spin-flip is asymmetric what causes 
polarization of the beam. Normally, the quantization axes 
are not vertical but symmetrically distributed about the 
vertical axis of equilibrium closed orbit when imperfect 
ring is considered. Derbenev and Kondratenko [2] 
introduced a variable vector  as the spin 
quantization axis. Since  depends on the specific orbital 
trajectory of the particle so does the quantization axis. 
Here  and 

n̂ ŷ

ˆ( , )n r p

r p  describe the electron’s motion state with 
respect to ideal one. They form a six-dimensional phase 
space of the electron motion. The vector  has great 
significance in calculation about polarization.  

ˆ( , )n r p

Multi-Particles Spin Polarization Dynamics 
In order to apply results of single-particle spin 

dynamics onto electron beam, polarization density matrix 
is needed. The polarization density matrix of a beam with 
N electrons can be specified by a three-component vector 
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where  represents the classical spin vector, while iS ˆ ˆiS n

denotes the spin projection operator of individual 

electrons. The term ˆ ˆiS n  can be understood as the spin 
expectation value of each electron, and the outer angular 
brackets denote an average over the wholeness of 
electrons. The polarization vector characterizes the 
“relative orientation” of spins of the electrons in a beam. 

Now restrict ourselves to equilibrium situation, what is 
more interested, we get the equilibrium polarization 
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where  is the unit vector in the direction of êqP n̂ , that is 
the direction of polarization. Make use of the dynamic 
equilibrium condition of spin-flip process, one would 
eventually obtain the reasonable approximation: 

W W ˆ
W Weq eqP P   (11) 

Here W  means the transition rate from spin up to spin 
down along the quantization axis  and vice versa. n̂

Try back to the thinking of the recoil of photon 
emission, the electron’s energy would change E
what means the quantization axes of the spin before and 
after emitting photon are not strictly parallel. Use  and ˆin

ˆ fn  to denote the quantization axes before and after 
emitting photon, then one has 

ˆˆ ˆ ˆf i i
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where n̂  is another significant quantity in radiative 

polarization that involves the spin diffusion rate. It is 
called spin chromaticity function. Hereto, we quote the 
end result, Derbenev-Kondratenko formula [2], for the 
equilibrium degree of the radiative polarization: 
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where  is the binormal vector of  the orbit. The integral 
over 

b̂
 is around the circumference of the ring and the 

angle brackets are over the orbital phase space. The 
expression is widely used to determine the equilibrium 
polarization of electron beam. One should always grasp 
the two important quantities, spin quantization axis and 
spin chromaticity function, in the expression. They 
contain all the detailed information of the accelerator 
structure.

THE SLIM ALGORITHM AND ITS 
APPLICATION TO HLS 

SLIM [6] is an algorithm which uses thin lens 
approximation to calculate the spin polarization of a beam 
in an electron storage ring. It firstly obtains the 
equilibrium closed orbit. Then the polarization directions, 
namely quantization axes, along the particle orbit are 
calculated. After that, the 8×8 transfer matrices are 
constructed and the spin chromaticity functions along the 
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ring are evaluated. At last, the equilibrium polarization is 
worked out according to the expression (13). 

First of all, the input parameters should be converted 
into corresponding ones of thin lenses before the 
simulation is carried out. Since errors are brought in when 
each thick lens is replaced with thin lens, there would be 
accumulated some considerable change of the lattice in a 
superperiod. So the parameters of thin lenses should be 
further matched that its lattice in common with the thick 
lens lattice as much as possible. The following two 
figures show the results of matching and simulation. 
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Figure 1: Comparison between thick and thin lens lattices.

Figure 2: Polarization versus energy. 

Fig. 1 is the comparison between thick lens lattice and 
thin lens lattice that has been matched. Fig. 2 is the 
calculation result of polarization versus energy when a 
random distribution of vertical orbit kickers is introduced 
to simulate field imperfections. 

RESULTS AND DISCUSSION 
From Fig. 1 we can see, the thin lens lattice, after 

matched, is on the whole in accordance with thick lens 
lattice though there are some distinctions in some places. 
Specially, dispersion function of the matched thin lens 
lattice is a little lower than the thick one in the middle 
region of a period. This would result in a bit decrease of 

the momentum compact factor. Never mind! Note here 
the transverse tunes are the most important things what 
we need accurately to analyze the frequency spectra of 
depolarization resonances. The small discrepancy of 
lattice functions in some places is admissible. 

With this matched thin lens lattice, the polarization 
versus beam energy is simulated as showed in Fig. 2. A 
red dashed line, in 0.8 GeV position, is marked out in the 
figure. The corresponding polarization is 92.15%. The 
beam in HLS works at 800 MeV and 2.58/3.58 transverse 
tunes while the spin precession frequency is 1.8155. The 
theoretical analysis shows, the beam keeps away from a 
variety of spin depolarization resonances and is able to 
build up high polarization.  

Furthermore, the specific types of resonances at some 
energy are designated in the corresponding locations in 
Fig. 2. We can see the integer resonances occur at the 
energies near 0.44 GeV and 0.88 GeV. We also note that, 
since HLS works at difference resonance tunes, each 
place of depolarization consists of at least two resonances. 
The superposition of resonances would enlarge the 
strength of depolarization. 

CONCLUSION 
In conclusion, we first reviewed the dynamics of 

radiative polarization by starting with the single-particle 
spin dynamics. Then with the generalization to multi-
particles spin dynamics, as well as the spin-flip processes 
considered, the polarization conclusion was seen to be 
obviously. After that, an algorithm of spin transfer matrix 
was used to simulate the situation of beam polarization in 
HLS. In the calculations about equilibrium polarization, 
two quantities, spin quantization axis and spin 
chromaticity function, are extremely important. An 
appropriate understanding about these two quantities is 
necessary to catch on polarization theory. One should 
always bear in mind that, they are vector fields but not 
constant vectors. In the end, the simulation result was 
remarked. We got the conclusion that the beam in HLS, 
working at 800MeV and 2.58/3.58 transverse tunes, could 
build up high polarization. 
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