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Abstract

The evolution of the electron density during electron
cloud formation can be reproduced using a bunch-to-bunch
iterative map formalism. The reliability of this formal-
ism has been proved for RHIC [1] and LHC [2]. The
linear coefficient has a good theoretical framework, while
quadratic coefficient has been proved only by fitting the re-
sults of compute-intensive electron cloud simulations. In
this communication we derive an analytic expression for
the quadratic map coefficient. The comparison of the the-
oretical estimate with the simulations results shows a good
agreement for a wide range of bunch population.

INTRODUCTION

In [1] it has been shown that, the evolution of the electron
cloud density can bedescribed introducing a quadratic map
of the form:

nm+1 = αnm + β nm
2 (1)

where nm + 1 and nm are the average densities of elec-
trons between two successive bunches. The coefficients α
and β are extrapolated from simulations and are functions
of the beam parameters and of the beam pipe characteris-
tics. An analytic expression for the linear map coefficient
that describes electron cloud behavior from first principles
has been derived for straight sections of RHIC [3]. In this
paper we find an analytical expression the quadratic term
coefficient. We consider Nel,m quasi-stationary electrons
gaussian-like distributed in the transverse cross-section of
the beam pipe. The bunch m + 1 accelerates the Nel,m

electrons initially at rest to an energy Eg . After the first
electrons- wall collision two new jets are created: the
backscattered electrons with energy Eg and the ”true sec-
ondaries” (with energy E0 ∼ 5 eV ).

The sum of these jets gives the number of surviving elec-
trons Nel,m+1, then one gets the linear coefficient

α =
Nel,m+1

Nel,m
(2)

In the next section we compute the quadratic term coeffi-
cient β when the saturation condition of the electron cloud
is obtained . Once calculated saturation we pass to esti-
mate theoretically the coefficient β. We compare our re-
sults with the outcomes of numerical simulations obtained
using ECLOUD [4]. In the Table 1 we report all parameters
used for our calculations.

Table 1: Input parameters for analytical estimate and
ECLOUD simulations.

Parameter Unit Value
Beam pipe radius b m .045
Beam size a m .002
Bunch spacing sb m 1.2
Bunch length h m .013
Energy for δmax E0,max eV 300
Energy width for secondary e− eV -
Number of particles per bunch Nb 1010 4 ÷ 9
Secondary emission yield (max) δmax - 1.7
Secondary emission yield (E → 0) - .5

STEADY-STATE: ELECTRONIC DENSITY
OF SATURATION

In the chamber we have two groups of electrons belong-
ing to cloud: primary photo-electrons generated by the syn-
chrotron radiation photons and secondary electrons gener-
ated by the beam induced multi-pactoring. Electrons in the
first group generated at the beam pipe wall interact with the
parent bunch and are accelerated to the velocity given by:
v/c = 2N̄bre/b, where re is the classical electron radius
and N̄b is the effective value of bunch population and

N̄b =
h

h+ sb
Nb (3)

sb ibeing the bunch spacing and h the length of bunch.
Electrons in the second group, generally, miss the parent
bunch and move from the beam pipe wall with the veloc-
ity given by: v/c =

√
2E0/mc2, E0 being the average

energy of the secondary electrons, until the next bunch ar-
rives. The process of thecloud formation depends, respec-
tively, on two parameters:

k =
2N̄breh

b2
(4)

ξ =
h

b

√
2E0
mc2

(5)

The second one is the distance (in units of b) passed by
electrons of each group before the next bunch arrives. At
low currents, k << 1, each electron interacts with many
bunches before it reaches the opposite wall. In the oppo-
site extreme case, k > 2, all electrons go wall to wall in
one bunch spacing. The transition to the second regime
occurs when k ∼ 1 . The density of the secondary elec-
trons grows until the space-charge potential energy of the
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secondary electrons is lower than E0. The saturation condi-
tion can be obtained by requiring that the potential barrier
is greater than electron energy in the point r/b = 1− ξ

−e V (1 − ξ) ∼ E0 (6)

where V is the electric potential generated by the bunch
and the electron cloud. To calculate the electric potential
we assume that our system is composed by a chamber with
radius b, a bunch with radius a and length h, an electron
cloud with density ρ. We consider the following electron
distribution :

ρ(r) = ρ0e
− (r − r0)

2

2σ2 (7)

where ρ0 is fixed by the condition

2πh

∫ b

a

ρ(r)rdr = −Nel e (8)

and Nel is the total number of electrons in the volume
πh(b2 − a2). The electric potential V (r), defined by the
condition V (b) = 0 is:

V (r) = −V0

[
g lnx+

G(x)

F (1)

]
, (9)

where F (x) =
∫ x

ã exp(−(ỹ − r̃0)
2/2σ̃2)y dy, G(x) =

∫ 1

x
F (y)/ydy, g = N̄b/Nel, V0 = Nel e/2πε0h and

x = r/b, ã = a/b, r̃0 = r0/b, σ̃ = σ/b. We note
that if σ >> b (or σ̃ >> 1) and r0 = 0 we obtain the
uniform electron cloud and with a → 0 we must neglect
the radial dimension of bunch with respect to that one of
electron cloud. In this case equation (9) gives

V (r) = −V0

[
g lnx+

1− x2

2

]
(10)

Obviously the potentials depend on g, the ratio of the den-
sities of the beam and of the cloud averaged over the beam
pipe cross-section. In FIG. 1 we report the spatial behav-
ior of two potentials. The potential (10) has minimum at
r = rm = b

√
g and is monotonic for g > 1 within the

beam pipe. For g < 1 it has minimum at the distance
rm < b, and the condition g = 1 defines the maximum
density. this is the well known condition of the neutrality.
The condition formulated in this form is, actually, indepen-
dent of the form of distribution. Similar behavior is found
also for the gaussian distribution density and is compared
with respect to previous one (FIG. 1). By imposing the con-
dition (6) we find the critical number (saturation condition)
of electrons in the chamber

Nel,sat =
2πε0hF (1)E0
e2G(1− ξ)

− F (1) ln(1− ξ)

G(1 − ξ)
N̄b (11)

while the average density of saturation is found by assum-
ing that electrons are confined in a cylindrical shell with

0.2 0.4 0.6 0.8 1.0

�1

0

1

2

3

4

5

x

V
0

�
1

V
�x
�

Figure 1: Plot of V −1
0 V (x), (9) and (10)), in the case of

uniform (solid lines) and gaussian (dashed lines) electronic
distribution for g = 0 ÷ 2, ã = .04, r̃0 = 0, σ̃ = .3.

inner radius a and external radius r0+p σ where p is a free
parameter. So

nsat =
Nel,sat

πhb2[(r̃0 + p σ̃)2 − ã2]
(12)

where p is a free parameter. For a uniform electron cloud
distribution we find the saturation density

n̄sat =
N̄el,sat

πhb2[1− ã2]
(13)

In the FIG. 2 we show the behavior of saturation density
(12) and (13). It is obvious for a gaussian distribution we
get a estimate of density saturation greater than that of a
uniform distribution. In fact, the same number of electrons
occupies a smaller volume (due to the Gaussian distribu-
tion).
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Figure 2: Plot of electronic densities of saturation nsat vs
Nb, (12) and (13)), withf uniform (solid line) and gaussian
(dashed lines) electronic distribution for ã = 0.04, r̃0 =
0, σ̃ = 0.3 and p = 2 ÷ 3.

ANALYTICAL DETERMINATION OF
COEFFICIENTS

The coefficient β can be found by imposing the satura-
tion condition of map (1):

nsat = αnsat + β nsat
2 → β =

1− α

nsat
(14)
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and the map (1) becomes

nm+1 = αnm +
1− α

nsat
nm

2 (15)

In Fig. (3), (4) we show the trends of the coefficient (14) as
a function of δmax for various values of bunch population
and viceversa.
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Figure 3: Analytical prediction of coefficient β (14) for
values δmax = 1.4÷ 2 and p = 2.
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Figure 4: Analytical prediction of coefficient β (14) for
values Nb = 4÷ 9 and p = 2.

RESULTS AND CONCLUSIONS

In Figs. 5 the analytical behavior and the outcomes of
simulations (ECLOUD code) of β coefficient using the pa-
rameters reported in Table 1 show an acceptable agreement.
As a future work the analytical result could be useful to de-
termine safe regions in parameter space where to minimize
the electron clouds. Furthermore we would extend our re-
sults to include the presence of a magnetic field.
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Figure 5: Comparison of the quadratic coefficient β (Eq.
(14)) derived using ECLOUD simulations (points) and us-
ing the analysis of previous sections (dashed lines) with
p = 2 ÷ 3. The solid line is the result by assuming an
uniform density.
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