Keyword: secondary-beams
Paper Title Other Keywords Page
TUPAF023 The Beamlines of the CERN East Area Renovation Project target, radiation, experiment, operation 717
 
  • J. Bernhard, M. Bonnet, Q. Bouirek, D. Brethoux, B.D. Carlsen, A. Ebn Rahmoun, J. Etheridge, S. Evrard, L. Gatignon, E. Harrouch, M. Lazzaroni, M. Van Dijk, A. Watrigant
    CERN, Geneva, Switzerland
 
  The East Area at the Proton Synchrotron is one of CERN's longest running facilities for experiments, beam tests, and irradiations with a successful history of over 55 years. The facility serves more than 20 user teams for about 200 days of running each year and offers mixed secondary hadron, electron and muon beams of 0.5 GeV/c to 10 GeV/c. In addition, the primary proton beam or ion beam is transported to the irradiation facilities CHARM and IRRAD. Due to the steadily high user demand, the CERN management approved an upgrade and renovation of the facility to meet future beam test and physics requirements. New beam optics will assure a better transmission and purity of the secondary beams, now also with the possibility of highly pure electron, hadron or muon beams. The upgrade includes a pulsed powering scheme with energy recovering power supplies and new magnets, reducing both power and cooling requirements. Together with the building consolidation, this results in a considerably lower energy consumption. The renovation phase is scheduled during the technical stops between 2018 and 2020. We will give an overview of the project scope including upgrades and future beams.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAK017 Abandoned Proton Beam Separation Design at MOMENT proton, target, separation-scheme, simulation 1001
 
  • C. Meng, H.T. Jing, Y.P. Song, J.Y. Tang, H. Wang
    IHEP, Beijing, People's Republic of China
 
  Funding: The National Natural Science Foundation of China under Grants 11575217
MOMENT (MuOn-decay MEdium baseline NeuTrino beam facility) is an accelerator-based neutrino beam facility using neutrino from muon decays. The proton driver is a continuous-wave proton linac of 1.5 GeV and 10 mA, which means an extremely high beam power of 15 MW. After bombarding the target, the abandoned proton beam power is very high and should be separate from target station carefully. Because of the energy is not very high and the layout of following transport line isn't linear, we should design special separation line for high momentum proton beam. In this paper the design of separation scheme at MOMENT will be proposed and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAK017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)