
AUTOTUNER: A GENERAL GRAPHICAL USER INTERFACE FOR

AUTOMATED TUNING
∗

Xiaobiao Huang1†, Tong Zhang1,2

1SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, USA 94025
2University of Science and Technology of China, 96 Jinzhai Rd, Hefei, Anhui, China

Abstract

AutoTuner is a general graphical user interface (GUI) that

we developed for automated tuning or online optimization.

The GUI provides a convenient interface to select tuning

knobs, objectives, and optimization algorithms and to change

the tuning control parameters. Tuning setup can be created

and saved for reuse. The progress of the tuning processing

is plotted in real time. The tuning process can be paused,

aborted, or resumed. We have tested the program for real-life

accelerator tuning problems.

INTRODUCTION

Tuning has been an indispensable approach for improving

machine performance since the beginning of particle accel-

erators. Traditionally tuning is done manually - an operator

turns a control knob at a time while watching the perfor-

mance of the machine and using the performance response

to guide the tuning direction. Manual tuning is usually slow

and is not effective for complex problems where multiple

inter-dependent knobs need to be tuned.

Modern accelerators are controlled through computers.

This has made automated tuning not only possible, but also

inevitable. Automated tuning is similar to manual tuning,

except here a computer takes the role of the operator. Auto-

mated tuning has many advantages over manual tuning. The

overhead of interfacing between the operator and the control

computers in the knob changing action is eliminated, which

saves time and reduces the risk of human errors. Multiple

knobs can now be turned simultaneously in arbitrary com-

binations, which is useful for large scale problems. Most

importantly, the computer can more efficiently and more

accurately process the data accumulated in the tuning pro-

cess and can potentially combine the data with some internal

models in real time to make better decisions in the process

which lead to the better solutions in less time.

Automated tuning is basically online optimization of per-

formance functions. The algorithms used in online optimiza-

tion are critical for its efficiency and its ability to find the

real optimum. Iterative parameter scans and the downhill

simplex method were tested in Ref. [1]. The robust conjugate

direction search (RCDS) method was proposed and tested

in Ref. [2]. Because RCDS is aware of the noise in online

function evaluation and takes measures to reduce sensitivity

to noise, it is very suitable for online applications. There

have been successful applications of RCDS at many labs

∗ Work supported by U.S. Department of Energy, Office of Science, Office

of Basic Energy Sciences, under Contract No. DE-AC02-76SF00515
† xiahuang@slac.stanford.edu

around the world [3–9]. Clearly, online optimization has

become a popular trend and has great potential for future

applications.

Today the application of online optimization is typically

done by running an optimization script. This requires the

user to be familiar with programming and the code setup for

the particular optimization problem. Therefore, the use of

online optimization is limited to experts and there is a cer-

tain learning curve and training requirement for accelerator

operators . A graphical interface (GUI) would make using

the online optimization tools substantially easier.

In Ref. [10] we reported on such a GUI called AutoTuner.

Since then we have improved the design and the functionality

of the program. In this report we describe the framework of

the GUI and its present status, including the experimental

tests we conducted on the SPEAR3 storage ring.

PROGRAM INTERFACE

The main purpose of the AutoTuner is to make online

optimization an accessible tool in routine operation of ac-

celerations. We try to make the interface easy to use and

complete with the necessary functionality by the design of

the program framework.

The main GUI panel is as shown in Figure 1. There are

five areas on the panel. The upper left area is for optimization

problem management. A problem definition includes the

knobs, the target (objective function), the optimization type,

the solver, and the working directory. The information is

saved in internal data structures and can be saved and re-used.

The optimization type can be minimization, optimization,

or setting the target to a specific value. The solver refers to

the optimization algorithm to be used. Presently we have

implemented the RCDS method and the downhill simplex

(Nelder-Mead) method. More algorithms can be added in the

future. Problem descriptions or instructions can be shown

in a text box at the bottom of this area.

The middle left area is for knob management. An opti-

mization problem can have multiple knobs. The potential

tuning knobs are grouped by categories. Knobs can be added

to the categories using the GUI. A knob can be a process

variable (PV) or a Matlab function. Each knob has a range,

a unit, and a designated pause time after the knob value is

changed before the performance evaluation begins. All of

these fields can be changed with the GUI and can be saved

to the problem definition. Internally the range of each knob

is mapped to [0, 1].

The bottom left area is for the definition of the objective

(i.e., target) function(s). Potentially multiple objective func-

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPML116

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 Online Modeling and Software Tools

THPML116
4939

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



tions can be used for one optimization session, although

we have only implemented single-objective algorithms so

far. The objective function(s) can be chosen from a list of

candidates. A target function is a measure of the machine

performance. It can be a PV or a Matlab function. The

noise level for a single evaluation is an input field for the

target. Multiple evaluations of the target function can be

performed to reduce the noise level. The pause time between

consecutive evaluation is also an input field.

Controls for the optimization algorithm are provided in

the bottom right area. Before online optimization begins, the

problem setting can be checked in case the problem has not

been previously tested. The “Start” button launches a new

optimization run for the current problem. Unlike launching

optimization with a script, in which case no intervention is

possible after it is started, the GUI allows interruption. The

optimization algorithm can be put on hold with the “Pause”

button and resumed later. The “Stop” button terminate the

optimization run. If improvement is made during the op-

timization run, the machine setting can be set to the best

solution using the “To Best” button. If that is not desired,

the original machine setting can be restored. Optimization

history data will be saved to data files in the working direc-

tory.

The top right area of the GUI shows the optimization

progress in two plots. The top plot shows the history of the

objective function values. The bottom plot shows the history

of the values of the normalized knob values. Both plots are

updated in real time as each data point is evaluated. The

real-time graphic display of the history of the optimization

run is very helpful for the user to make informed decisions.

CODE AND DATA MANAGEMENT

The AutoTuner GUI is intended to be an open and expand-

able program. The code and data management are struc-

tured in a way to facilitate users to extend its functionality.

The GUI essentially provides an interface for optimization

problem definition, optimization algorithm control, and vi-

sualization of optimization data.

The program interface described in the previous section

provides input fields to define optimization problems. The

problem definition is saved as a data object internally and can

be saved to a file to be re-used. Problems can also be defined

by using Matlab scripts to construct the data objects with

proper fields. A list of pre-defined problems are registered

through a script, which is loaded to the GUI for user selection.

Problem definition data are saved in a sub-directory along

with the main source code.

An algorithm is an extension of the program; all files re-

lated to the algorithm are located in one sub-directory. Each

optimization algorithm uses the same problem definition

data. The algorithm functions calls a standard objective

function for function evaluation. This function convert the

normalized decision variables to actual knob values. It then

calls the problem specific objective function that changes

the machine setting and measures machine performances.

The standard objective function updates the data plots on

the GUI.

The optimization data are saved in the working directory,

which is typically different from the GUI code directory.

When an optimization run is started, a new data record object

is created. Each data point is added to the data object as the

optimization algorithm proceeds. The data object is saved

with the start and end time stamp when the current run is

stopped. The saved data contain all relevant information of

the problem definition and machine setting which can be

used in post processing.

ONLINE TESTS

AutoTuner support the simulation mode for off-line tests,

which could be useful for the development stage of code ex-

pansion. This mode can potentially be used to optimize sim-

ulation problems using the same problem definition frame-

work. As we plan to integrate many optimization algorithms

into AutoTuner, it could become a general optimization soft-

ware package. In this report we only discuss its online opti-

mization capabilities.

The new AutoTuner has been experimentally tested on

the SPEAR3 storage ring. Figure 1 shows the interface and

test results when it was applied to the kicker bump match-

ing problem. This problem has been previously reported in

Ref. [2,11]. The goal of the problem is minimize the residual

oscillation of the stored beam after the three injection kick-

ers are fired. The knobs are the voltages, pulse widths, and

pulse delays of two of the kickers, and two skew quadrupole

magnets between the kickers. The skew quadrupoles are

used to minimize oscillation in the vertical plane. The resid-

ual oscillation is measured by a turn-by-turn BPM and the

objective function is the f = σx + 3σy , where σx,y are rms

of beam orbit in the first 256 turns.

Data shown in Figure 1 were for the RCDS algorithm. No

initial conjugate direction set was provided to the algorithm.

Therefore, theknobs were initially optimized sequentially.

The downhill simplex method was also tested for this

problem. The results are shown in Figure 2. The simplex

method turns the knobs simultaneously. Both algorithms

found the optimal setting with about 50 function evaluations.

We also tested the GUI with other online optimization

problems, including injector beam intensity tuning with linac

and linac-to-Booster (LTB) knobs and SPEAR3 coupling

minimization. The Booster beam intensity at extraction was

used as the objective function for the injector tuning. The

K2 klystron phase and an LTB steering magnet (B3trim)

were used as knobs. These knobs are frequently tuned by

operators in operation. Coupling minimization has been

used as a test case for the RCDS method [2]. In this test the

objective was to maximize beam loss over a 6-second period

with 500 mA beam current because small coupling leads to

high loss rate for a Touschek lifetime dominated beam. The

knobs are 13 skew quadrupoles.

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPML116

THPML116
4940

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 Online Modeling and Software Tools



Figure 1: The AutoTuner GUI as it was used in the SPEAR3 kicker bump matching test experiment.

Figure 2: The history of knob variables and the objective

function in kicker bump matching optimization with the

Nelder-Mead simplex method.

CONCLUSION

We expanded the functionality of the AutoTuner program

with the aim of making it a general online optimization

tool. The user interface enables users to define and manage

optimization problems more conveniently. The RCDS and

the Nelder-Mead simplex optimization algorithms have been

implemented and more algorithms can be incorporated. The

GUI plots the history of the optimization process in real

time and allows intervention during optimization. A clear

scheme of program and user data management facilitates

further expansion of the program and post processing of

experimental data.

The GUI has been experimentally tested on the SPEAR3

storage ring with multiple test problems.

REFERENCES

[1] L. Emery, M. Borland, H. Shang, Proceedings of PAC03, Port-

land, Oregon, USA 2330-2332 (2003)

[2] X. Huang, J. Corbett, J. Safranek, J. Wu, Nucl. Instrum. Meths.

A 726, 77 (2013)

[3] X. Huang, J. Safranek, Phys. Rev. ST Accel. Beams 18, 084001

(2015).

[4] H.-F. Ji, et al, Chinese Physics C 39, 127006 (2015)

[5] S. Liuzzo, et al, Proceedings of IPAC2016, Busan, Korea,

3420-3422 (2016)

[6] I. Martin, et al, Proceedings of IPAC2016, Busan, Korea, 3381-

3383 (2016)

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPML116

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 Online Modeling and Software Tools

THPML116
4941

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



[7] G. Wang, et al, Proceedings of IPAC2017, Copenhagen, Den-

mark, 4683-4685 (2017)

[8] T. Pulampong, et al, Proceedings of IPAC2017, Copenhagen,

Denmark, 4086-4088 (2017)

[9] W. F. Bergan, et al, Proceedings of IPAC2017, Copenhagen,

Denmark, 2418-2420 (2017)

[10] X. Huang, Proceedings of NAPAC’16, Chicago, Ill, USA,

1287-1291 (2016)

[11] A. Sheinker, X. Huang, J. Wu, IEEE Trans. control systems,

26, 1, 336-343 (2018)

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-THPML116

THPML116
4942

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 Online Modeling and Software Tools


