Keyword: antiproton
Paper Title Other Keywords Page
MOZGBF2 Status of the FAIR Project proton, target, cavity, dipole 63
 
  • P.J. Spiller, M. Bai, O. Boine-Frankenheim, A. Dolinskyy, F. Hagenbuck, C.M. Kleffner, K. Knie, S. Menke, C. Omet, A. Schuhmann, H. Simon, M. Winkler
    GSI, Darmstadt, Germany
  • J. Blaurock, M. Ossendorf
    FAIR, Darmstadt, Germany
  • I. Koop
    BINP SB RAS, Novosibirsk, Russia
  • D. Prasuhn, R. Tölle
    FZJ, Jülich, Germany
 
  The realization of the new Facility for Antiproton and Ion Research, FAIR at GSI, Germany, has advanced significantly. The civil construction process of the Northern part of the building complex, including the excavation of the SIS100 synchrotron tunnel has been launched end of 2017. On site of the GSI campus, major preparations and upgrade measures for the injector operation of the existing accelerator facilities are ongoing and will be completed mid of 2018. The shielding of the SIS18 accelerator tunnel has been enhanced for the booster operation at high repetition rates and high intensity Proton beams. Two new transformer stations were set-up and commissioned which will provide the required pulse and common power for FAIR. All major contracts for series production of SIS100 components have been signed and a large number of the superconducting SIS100 magnets has been produced and accepted. Major testing infrastructures for superconducting magnets of SIS100 and Super-FRS have been set-up at JINR, CERN and GSI. Also for all other FAIR accelerator systems, the procurement of the components is progressing well  
slides icon Slides MOZGBF2 [4.266 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBF2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOZGBF3 40 Years of Electron Cooling at CERN electron, proton, experiment, gun 69
 
  • G. Tranquille
    CERN, Geneva, Switzerland
 
  For nearly 40 years electron cooling has been used extensively on the storage rings of the CERN accelerator complex for the accumulation of ions or for the improvement of beam quality for precision experiments. Since the first cooling experiments on ICE the coolers have evolved to incorporate the latest advances in electron cooling technology and many unique experiments have also been performed when the coolers are not used for everyday operation. The trapping of anti-hydrogen atoms and more recently lead-lead and proton-lead ion collisions in the LHC have been made possible thanks to cooling in the AD and cooling and accumulation of lead ions in the LEIR respectively. The next cooler to be built at CERN will be installed on ELENA and will operate at electron energies below 350 eV. Many challenges lie ahead in operating at such a low energy with minimum perturbation to the storage ring. The present AD cooler, which has already seen two re-incarnations, will also be replaced with a new state-of-the-art device operating at higher energies in order to improve the quality of the antiproton beam in this ring.  
slides icon Slides MOZGBF3 [14.902 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-MOZGBF3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAF038 Prototyping Activities for a New Design of CERN's Antiproton Production Target target, proton, experiment, operation 772
 
  • C. Torregrosa, M.E.J. Butcher, M. Calviani, J.P.C. Espadanal, R. Ferriere, L. Gentini, E. Grenier-Boley, L. Mircea Grec, A. Perillo-Marcone, R. Seidenbinder, N.S. Solieri, M.A. Timmins, E. Urrutia, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  Antiprotons are produced at CERN by impacting intense proton beams of 26 GeV/c onto a high-Z water-cooled target. The current design consists in an Ir core target in a graphite matrix and inserted in a Ti-6Al-4V assembly. A new target design has been foreseen for operation after 2021 aiming at improving the operation robustness and antiproton production yield, triggering several R&D activities during the last years. First, both numerical (use of hydrocodes) and experimental approaches were carried out to study the core material response under extreme dynamic loading when impacted by the primary proton beam. The lessons learnt from these studies have been then applied to further prototyping and testing under proton beam impact at the CERN-HiRadMat facility. A first scaled prototype consisting in Ta rods embedded in an expanded graphite matrix was irradiated in 2017, while in 2018, the PROTAD experiment will test different real-scale AD-Target prototypes, in which the old water-cooled assembly is replaced by a more compact air-cooled one, and different core geometry and material configurations are investigated. This contribution details these prototyping and testing activities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAF038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAL067 Accelerators Validating Antimatter Physics proton, experiment, electron, FEL 1167
 
  • C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 721559.
The Extra Low Energy Antiproton ring (ELENA) will be a critical upgrade to the unique Antiproton Decelerator facility at CERN and is currently being commissioned. ELENA will significantly enhance the achievable beam quality and enable new experiments. To fully exploit the discovery potential of this facility, advances are urgently required in numerical tools that can adequately model beam transport, life time and interaction, beam diagnostics tools and detectors to fully characterize the beam's properties, as well as in novel experiments that exploit the enhanced beam quality that ELENA will provide. These three areas form the scientific work packages of the new pan-European research and training initiative AVA (Accelerators Validating Antimatter physics). The project has received around 4M€ of funding and brings together universities, research centers and industry to train 15 Fellows through research in this area. This contribution presents the research results across AVA's three scientific work packages.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-TUPAL067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAF084 Commissioning the ELENA Beam Diagnostics Systems at CERN electron, proton, diagnostics, MMI 2043
 
  • G. Tranquille, S. Burger, M. Gąsior, P. Grandemange, T.E. Levens, O. Marqversen, L. Søby
    CERN, Geneva, Switzerland
 
  The Extra Low ENergy Antiproton ring (ELENA) at CERN entered the commissioning phase in November 2016 using H ions and antiprotons to setup the machine at the different energy plateaus. The low intensities and energy of the ELENA beam generate very weak signals making beam diagnostics very challenging. With a circulating beam current of less than 1 μA and an energy where the beam annihilates in less than a few microns of matter, special care was taken during the design phase to ensure an optimal performance of these measurement devices once installed on the ring and transfer lines. A year on we present the performance of the various devices that have been deployed to measure the beam parameters from the extraction point of the Antiproton Decelerator (AD), through the ELENA ring and in the experimental lines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPAF084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMF086 Eradication of Mercury Ignitron from the 400 kA Magnetic Horn Pulse Generator for CERN Antiproton Decelerator proton, target, operation, kicker 2586
 
  • V. Namora, M. Calviani, L. Ducimetière, P. Faure, L.E. Fernandez, G. Gräwer, V. Senaj
    CERN, Geneva, Switzerland
 
  The CERN Antiproton Decelerator (AD) produces low-energy antiprotons for studies of antimatter. A 26 GeV proton beam impacts the AD production target which produces secondary particles including antiprotons. A magnetic Horn (AD-Horn) in the AD target area is used to focus the diverging antiproton beam and increase the antiproton yield enormously. The horn is pulsed with a current of 400 kA, generated by capacitor discharge type generators equipped with ignitrons. These mercury-filled devices present a serious danger of environmental pollution in case of accident and safety constraints. An alternative has been developed using solid-state switches and diodes. Similar technology was already implemented at CERN for ignitron eradication in the SPS Horizontal beam dump in the early 2000s. A project was launched to design and set up a full-scale test-bench, to install and test a dedicated solid-state solution. Following the positive results obtained from the test-bench, the replacement of ignitrons by solid-state devices in the operational AD-Horn facility is currently under preparation. This paper describes the test-bench design and results obtained for this very high current pulser.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-WEPMF086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF015 Beam Tracking Studies of Electron Cooling in ELENA electron, proton, simulation, emittance 2975
 
  • B. Veglia, J.R. Hunt, J. Resta-López, V. Rodin, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • J.R. Hunt, J. Resta-López, V. Rodin, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 721559.
The Extra Low ENergy Antiproton storage ring (ELENA), which is currently being commissioned at CERN, will further decelerate antiprotons extracted from the Antiproton Decelerator (AD) from 5.3 MeV to energies as low as 100 keV. It will provide high quality beams for the antimatter experiments located within the AD hall. At such low energies, it is important to correctly evaluate the long term beam stability. To provide a consistent explanation of the different physical phenomena affecting the beam, tracking simulations have been performed and the results will be presented in this contribution. These include electron cooling and various scattering effects under realistic conditions. The effects of several imperfections in the electron cooling process will also be discussed. In addition, analytical approximations of the temporal variation of emittance under these conditions will be presented, and compared with numerical simulation results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF016 3D Tracking Methods in a GEANT4 Environment Through Electrostatic Beamlines simulation, quadrupole, experiment, proton 2979
 
  • J.R. Hunt, J. Resta-López, V. Rodin, B. Veglia, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • J.R. Hunt, J. Resta-López, V. Rodin, B. Veglia, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: Work supported by the EU under Grant Agreement 721559 and the STFC Cockcroft Institute core Grant No. ST/G008248/1.
Due to the relatively infrequent use of electrostatic beamline elements compared with their magnetic counterparts, there are few particle tracking codes which allow for the straightforward implementation of such beamlines. In this contribution, we present 3D tracking methods for beamlines containing electrostatic elements utilising a modified version of the Geant4 based tracking code 'G4beamline'. In 2020 transfer lines will begin transporting extremely low energy (100 keV) antiproton beams from the Extra Low Energy Antiproton (ELENA) ring to the antimatter experiments at CERN. Electrostatic bending and focusing elements have been chosen for the beamlines due to their mass independence and focusing efficiency in the low energy regime. These beamlines form the basis of our model which is benchmarked against simplified tracking simulations. Realistic beam distributions obtained via tracking around ELENA in the presence of collective effects and electron cooling will be propagated along the optimised 3D transfer model to achieve the best beam quality possible for the experiments.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAF078 Expected Performance of the Stochastic Cooling and RF System in the Collector Ring bunching, proton, emittance, simulation 3165
 
  • O.E. Gorda, C. Dimopoulou, A. Dolinskyy
    GSI, Darmstadt, Germany
  • T. Katayama
    Nihon University, Narashino, Chiba, Japan
 
  The Collector Ring is designed for stochastic cooling of antiprotons or radioactive ions at FAIR. Simulations of the cooling process in combination with the required RF beam manipulations have been done taking into account the improved and recently fixed ion-optics. The measured RF properties of the first of series debuncher system have been considered to evaluate the performance of the bunch rotation, de-bunching and re-bunching process within the planned CR operation cycle. The expected beam parameters and matching at extraction to the HESR storage ring are discussed in this paper. The latest hardware developments of the stochastic cooling system components are also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPAF078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPML044 Operation of a Cryogenic Current Comparator with Nanoampere Resolution for Continuous Beam Intensity Measurements in the Antiproton Decelerator at CERN cryogenics, operation, proton, injection 4741
 
  • M.F. Fernandes, D. Alves, T. Koettig, A. Lees, J. Tan
    CERN, Geneva, Switzerland
  • M.F. Fernandes, C.P. Welsch
    The University of Liverpool, Liverpool, United Kingdom
  • M. Schwickert, T. Stöhlker
    GSI, Darmstadt, Germany
  • T. Stöhlker
    IOQ, Jena, Germany
  • C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This project has received funding from the European Union's Seventh Framework Programme, under grant agreement number 289485.
Low-intensity charged particle beams are particularly challenging for non-perturbative beam diagnostics due to the small amplitude of induced electromagnetic fields. The Antiproton Decelerator (AD) and Extra Low ENergy Antiproton (ELENA) rings at CERN decelerate beams containing 107 antiprotons. An absolute intensity measurement of the circulating beam is essential to monitor the operational efficiency and to provide important calibration data for the antimatter experiments. This paper reviews the design of an operational Cryogenic Current Comparator (CCC) based on Superconducting QUantum Interference Device (SQUID) for current and intensity monitoring in the AD. Such a system has been operational throughout 2017, relying on a stand-alone cryogenic infrastructure based on a pulse-tube cryocooler. System performance is presented and correlated with different working environments, confirming a resolution in the nanoampere range.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2018-THPML044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)