Paper | Title | Other Keywords | Page |
---|---|---|---|
MOAPP01 | Control System of SuperKEKB | controls, operation, EPICS, network | 1 |
|
|||
We introduce the control system of the SuperKEKB collider which is based on EPICS. We standardize the CPU module so that we easily maintain our huge control system. Most Input/Output Controllers (IOCs) installed along the 3 km beamline at SuperKEKB are developed with only two kinds of CPU module. In addition to providing standard IOC for individual hardware, we develop some beam operation system which promotes the beam commissioning. The alarm monitoring system, abort trigger system, and Beam Gate system are developed by the control group. The sophisticated Beam Gate system for positron beam controls operation of both damping ring and main ring. It obviously promotes the beam commissioning at those rings. The other highlight is the precisely synchronized control system. It is necessary to realize the highly complicated control of beam injection process. We configure the dedicated network with the Event Timing System and the distributed shared memory. The distant hardware components are synchronously operated with this network. The beam commissioning of SuperKEKB has been started in 2016. The control system supports its fruitful beam operation without serious problem. | |||
![]() |
Slides MOAPP01 [5.027 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOAPP01 | ||
About • | paper received ※ 03 October 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA028 | High Energy Photon Source Control System Design | controls, database, EPICS, experiment | 249 |
|
|||
A 6 GeV high energy synchrotron radiation light source is being built near Beijing, China. The accelerator part contains a linac, a booster and a 1360 m circumference storage ring, and fourteen production beamlines for phase one. The control systems are EPICS based with integrated application and data platforms for the accelerators and beamlines. The number of devices and the complexity level of operation for such a machine is extremely high, therefore, a modern system design is vital for efficient operation of the machine. This paper reports the design, preliminary development and planned near-future work, especially the databases for quality assurance and application software platforms for high level applications. | |||
![]() |
Poster MOPHA028 [2.257 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA028 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 08 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA033 | Timing, Synchronization and Software-Generated Beam Control at FRIB | network, hardware, software, controls | 272 |
|
|||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 The Facility for Rare Isotope Beams, once completed, will require hundreds of devices throughout the machine to operate using synchronized timestamps and triggering events. These include, but are not limited to fault timestamps, time-dependent diagnostic measurements and complex beam pulse patterns. To achieve this design goal, we utilize a timing network using off-the-shelf hardware from Micro Research Finland. A GPS time base is also utilized to provide client timestamping synchronization via NTP/PTP. We describe our methods for software-generated event and beam pulse patterns, performance of installed equipment against project requirements, integration with other systems and challenges encountered during development. |
|||
![]() |
Poster MOPHA033 [6.598 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA033 | ||
About • | paper received ※ 03 October 2019 paper accepted ※ 08 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA046 | A New Simulation Timing System for Software Testing in Collider-Accelerator Control Systems | controls, simulation, booster, software | 307 |
|
|||
Particle accelerators need a timing mechanism to properly accelerate the beam from its source to its destination. The synchronization among accelerator devices is important, which is accomplished by a distribution of timing signals. Devices which require their times synchronized to the acceleration cycle are connected to timelines. Timing signals are sent out along the timelines in the form of digital codes. Correspondingly, devices in the complex are equipped with timeline decoders, which allow devices to extract timing signals appropriately. In this work, a new simulation architecture is introduced which can generate user-specific timing events for software testing in the control systems. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA046 | ||
About • | paper received ※ 27 September 2019 paper accepted ※ 08 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA052 | Evolution Based on MicroTCA and MRF Timing System | controls, EPICS, MEBT, PLC | 334 |
|
|||
For many years our Institute CEA IRFU has had a sound experience in VME and EPICS. For the accelerator projects SPIRAL2 at Ganil in Normandy and IFMIF/LIPAc at JAEA/Rokkasho (Japan) the EPICS control systems were based on VME. For 5 years our Institute has been involved in several in-kind collaboration contracts with ESS. For the first contracts (ESS test stands, Source and LEBT controls) ESS recommended us to use VME based solutions on IOxOS boards. Our close collaboration with ESS, their support and the requirements for new projects have led us to develop a standardized hardware and software platform called IRFU EPICS Environment based on microTCA.4 and MRF timing system. This paper describes the advantages of the combination of these recent technologies and the local control system architectures in progress for the SARAF project. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA052 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 11 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA058 | Lua-Language-Based Data Acquisition Processing EPICS Subscription Filters | EPICS, factory, site, data-acquisition | 342 |
|
|||
Funding: Work supported by US Department of Energy under contract DE-AC52-06NA25396. A previous paper described an upgrade to EPICS enabling client side tools at LANSCE to receive subscription updates filtered selectively to match a logical configuration of LANSCE beam gates, as specified dynamically by control room application programs. This update paper will examine evolving enhancements enabling Lua-language based data acquisition processing subscription update filters, specified by snippets of Lua-language source-code embedded within the EPICS channel-name’s postfix. We will discuss the generalized utility of this approach across a wide range of data acquisition applications, projects, and platforms; the performance and robustness of our production implementation; and our operational experience with the software at LANSCE. |
|||
![]() |
Poster MOPHA058 [0.881 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA058 | ||
About • | paper received ※ 01 October 2019 paper accepted ※ 19 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA059 | Ultra-High Precision Timing System for the CEA-Laser Megajoule | controls, laser, ISOL, shielding | 347 |
|
|||
High power laser such as the Laser MegaJoule (LMJ) or National Ignition Facility (NIF) requires different types of trigger precision to synchronize all the laser beams, plasma diagnostics and generate fiducials. Greenfield Technology, which designs and produces picosecond delay generator and timing system for about 20 years, has been hired by CEA to develop new products to meet the LMJ requirements. About 2000 triggers are about to be set to control and synchronize all of the 176 laser beams on the target with a precision better than 40 ps RMS. Among these triggers, Greenfield Technology’s GFT1012 is a 4-channels delay generator challenging ultra-high performances: an ultra-low jitter between 2 slaves below 4 ps RMS and a peak-to-peak wander over 1 week lower than 6 ps due to a thermal control of the most sensitive part (the thermal drift is below 1 ps/°C) and specific developments for clock management and restitution. On going investigation should bring the jitter close to 2 ps RMS between 2 slaves. | |||
![]() |
Poster MOPHA059 [0.488 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA059 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA068 | Improving Reliability of the Fast Extraction Kicker Timing Control at the AGS | kicker, software, extraction, controls | 373 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The fast extraction kicker system at AGS to RHIC transport line uses Stanford Research DG535 delay generators to time, synchronize, and trigger charging power supplies and high-level thyratron trigger pulse generators. This timing system has been upgraded to use an SRS DG645 instrument due to reliability issues with the aforementioned model and slow response time of GPIB buses. The new model provides the relative timing of the separate kicker modules of the assembly from a synchronized external trigger with the RF system. Specifications of the timing scheme, an algorithm to load settings synchronized with RHIC real-time events, and performance analysis of the software will be presented in the paper. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA068 | ||
About • | paper received ※ 12 July 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA076 | Timing System Upgrade for Medical Linear Accelerator Project at SLRI | FPGA, hardware, GUI, electron | 392 |
|
|||
A prototype of 6 MeV medical linear accelerator has been under development at Synchrotron Light Research Institute (SLRI). Several subsystems of the machine have been carefully designed and tested to prepare for x-ray generation. To maintain proper operation of the machine, pulse signals are generated to synchronize various subsystems. The timing system, based on the previous version designed on Xilinx Spartan-3 FPGA, is upgraded with better timing resolution, easier configuration with more timing channels, and future expansion of the system. A new LabVIEW GUI is also designed with more details on timing parameters for easy customization. The result of this new design is satisfactorily achieved with the resolution of 10 nanoseconds per time step and up to 15 synchronized timing channels implemented on two FPGA modules. | |||
![]() |
Poster MOPHA076 [0.727 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA076 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA136 | Integration of Optical Beam Loss Monitor for CLARA | EPICS, controls, radiation, interface | 544 |
|
|||
The detection of beam loss events in accelerators is an important task for machine and personal protection, and for optimization of beam trajectory. An optical beam loss monitor (oBLM) being developed by the Cockcroft Institute at Daresbury Laboratory required integration with the rest of the controls and timing system of the site’s electron accelerator, CLARA (Compact Linear Accelerator for Research and Applications). [1] This paper presents the design and implementation of an inexpensive solution using a Domino Ring Sampling device from PSI. Signals from the oBLM are acquired and can be processed to resolve beam loss events to a resolution of 0.2 m. | |||
![]() |
Poster MOPHA136 [0.817 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA136 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 11 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA137 | Timing Synchronization and Controls Integration for ESS Detector Readout | detector, EPICS, controls, FPGA | 547 |
|
|||
The European Spallation Source (ESS) is a new facility being built in Lund, Sweden, which when finished will be the world’s most powerful neutron source. STFC has an in-kind project with the Detector group at ESS to provide timing and control systems integration for the detector data readout system. This paper describes how time is synchronised and distributed to the readout system from the ESS timing system, and how EPICS is used to implement a controls interface exposing the functionality of detector front ends. | |||
![]() |
Poster MOPHA137 [1.180 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA137 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA138 | Beam Gate Control System for the Proton Injector and Beamlines on KOMAC | controls, operation, proton, linac | 551 |
|
|||
Funding: This work has been supported through KOMAC (Korea Multi-purpose Accelerator Complex) operation fund of KAERI by MSIT (Ministry of Science and ICT). The Korea Multi-purpose Accelerator Complex (KOMAC) 100 MeV proton linac operates with the timing system to change real-time timing parameters for low and high-flux proton beam utilization. The main requirements are to synchronize the operation of the facility including linac, target, and diagnostics, to provide a variable beam repetition rate up to 60 Hz, and to support post-mortem analysis when a beam trip occurs. The timing system, which consists of one event generator and eleven event receivers, is configured to control the beam gate and beam sequence to distribute the proton beam to the beam line. Corresponding to user’s demands, beam gate should be controlled, and the beam distribution must be precisely synchronized with the main reference signal. The timing system is configured with sequence logic for beam gate control, and the timing events can trigger the software to perform actions including beam on or off, post-mortem data acquisition, and beam distribution on the beam lines. The results of the timing control system for the beam gate and beam distribution are presented. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA138 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA154 | Data Acquisition System Deployment Using Docker Containers for the SMuRF Project | software, EPICS, hardware, network | 597 |
|
|||
The SLAC Microresonator Radio Frequency (SMuRF) system is being developed as a readout system for next generation Cosmic Microwave Background (CMB) cameras*. It is based on a FPGA board where the real-time digital processing algorithms are implemented, and high-level applications running in an industrial PC. The software for this project is based on C++ and Python and it is in active development. The software follows the client-server model where the server implements the low-level communication with the FGPA while high-level applications and data processing algorithms run on the client. SMuRF systems are being deployed in several institutions and in order to facilitate the management of the software application releases, dockers containers are being used. Docker images, for both servers and clients, contain all the software packages and configurations needed for their use. The images are tested, tagged, and published in one place. They can then be deployed in all other institutions in minutes with no extra dependencies. This paper describes how the docker images are designed and build, and how continuous integration tools are used in their release cycle for this project.
*arXiv:1809.03689 [astro-ph.IM] |
|||
![]() |
Poster MOPHA154 [2.189 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA154 | ||
About • | paper received ※ 27 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUAPP02 | Development of the MTCA.4 I/O Cards for SPring-8 Upgrade and New 3 GeV Light Source | linac, LLRF, cavity, FPGA | 665 |
|
|||
We will start a full energy injection from the SACLA to the SPring-8 from next year as a part of the SPring-8 upgrade. For this, we developed several I/O cards with the MTCA.4 form factor. One of the key issues is a timing synchronization between SACLA and SPring-8. We implemented required functions on the FPGA logic of a commercially available I/O card. We develop a module to distribute a trigger and clocks. We also developed cards used for the beam position monitor (BPM) and low-level RF system (LLRF). Those are included two types of cards. One is a 16-bit digitizer used for LLRF for the SPring-8 since 2018 march. We will use the card for the BPM with modified FPGA logic. Second is an implementation of functions with the pulsed RF signals processed on the FPGA logic of a commercially available card. These functions are used for the BPM of the beam transport line from the SACLA to SPring-8. The existing system is used 1 Hz beam repetition but we need more than 10 Hz to achieve an injection time less than 20 minutes to maximize user time. We will report the performance of the MTCA.4 cards, the upgrade plan of the SPring-8, and the construction of the 3 GeV Light Source. | |||
![]() |
Slides TUAPP02 [7.123 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUAPP02 | ||
About • | paper received ※ 01 October 2019 paper accepted ※ 20 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUBPR02 | A 4-Channel, 7 ns-Delay Tuning Range, 400 fs-Step, 1.8 ps RMS Jitter, Delay Generator Implemented in a 180 nm CMOS Technology | experiment, controls, power-supply, target | 733 |
|
|||
This paper discloses the integration, in a 180 nm CMOS technology, of a 4-channel delay generator dedicated to synchronization down to a few ps. The delay generation principle relies on the linear charge of a capacitor triggered by the input pulse. The output pulse generation occurs when the capacitor voltage exceeds a threshold voltage. The delay full scale is automatically set to match the period of the master clock, ranging from 5-7 ns, with the help of an embedded calibration circuit. The delay value is controlled with the help of a 14-bit DAC setting the threshold voltage, which leads to a 400 fs delay step. Among other features, the chip embeds a combination mode of either 2 or 4 channels to output narrow width pulses. The chip is fully compliant with LVDS, LVPECL and CML differential input pulses and outputs LVPECL pulses. The chip has been fully characterized over temperature (0 to 60 °C) and supply voltage (± 10%). The chip is compliant with pulse repetition frequencies up to 20 MHz. The measured INL is 100 LSB and the RMS jitter is 1.8 ps. The power consumption has been measured to 350 mW for 4 active channels. | |||
![]() |
Slides TUBPR02 [5.312 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUBPR02 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUBPR03 | Major Upgrade of the HIT Accelerator Control System Using PTP and TSN Technology | controls, network, operation, Ethernet | 738 |
|
|||
Two important reasons led to the first developments for a new ACS for the HIT ion therapy accelerator complex: a) the first implementation of the ACS was done in 2003-2005 resulting in well-functioning, but mostly proprietary solutions more and more components of e.g. the specially built device control units (DCUs*) are becoming discontinued, thus a new realization using standard SoCs or similar is necessary; b) new functionality like multiple energy operation** should enhance the duty factor of the accelerator facility resulting in significantly higher patient irradiation efficiency. In cooperation with our commercial partner we are investigating the newly available deterministic Ethernet technologies like "Time-Sensitive Networking" with several IEEE 802.1xx standards. Early TSN implementations in embedded controller boards and switches were obtained in a test installation in autumn of 2018 to study feasibility, e.g. the required timing precision using PTP (resp. IEEE 802.1AS-Rev) to realize a "one-wire-ACS" based on Ethernet only for deterministic data transfer and message based triggers for synchronized ACS functions. We will report on our test bench experiences.
*R. Baer, Status and conceptual design of the control system for … HICAT, ICALEPCS 2005 **M. Galonska, Multi-energy trial operation of the HIT medical synchrotron, IPAC 2017 |
|||
![]() |
Slides TUBPR03 [3.816 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUBPR03 | ||
About • | paper received ※ 02 October 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUBPR04 | The Fault Diagnosis of Event Timing System in SuperKEKB | linac, operation, hardware, positron | 741 |
|
|||
Funding: Work supported China Scholarship Council The new MRF event timing system is one of the most important components to maintain the reliable and stable operation of the SuperKEKB project. This system is utilized to distribute high precision level timing signals and accompanying control instructions to synchronize different subsystems and machines. Event generator (EVG) generates signals of different beam modes every 50 Hz pulse which contains several event codes while Event receivers (EVR) receives them and output signals to dedicated devices all over the installation. To certain these events are consistent during the distribution, an event fault diagnosis system is essentially needed. An EVR based event timing diagnostic system is thus developed by modifying the driver support module to provide a log system of persistent event data as well as comparing the received event codes with the beam injector pattern, detecting the event timing interval fault and notifying the results by email every day. Then, we are able to locate the fault, analyze the data, fix bugs or replace hardware and resume accelerator operation quickly. |
|||
![]() |
Slides TUBPR04 [2.076 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUBPR04 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUBPR05 | LEReC Timing Synchronization with RHIC Beam | electron, laser, software, controls | 746 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy In RHIC low energy bunched beam cooling experiment, LEReC, a 704 MHz fiber laser is modulated such that when striking a photocathode, it produces corresponding electron bunches which are accelerated and transported to overlap an ion beam bunched at 9 MHz RF frequency The need for precise timing is handled well by the existing infrastructure. A layer of software application called the timing manager has been created to track the LEReC beam concerning the RHIC beam and allow instruments to be fired in real-time units instead of bunch timing or RHIC turns. The manager also automates set-tings of different modes based on the RF frequency and maintains the timing of instrumentation with a beam. A detailed description of the bunch structure and scheme of synchronizing the RF and laser pulses will be discussed in the paper. |
|||
![]() |
Slides TUBPR05 [4.693 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUBPR05 | ||
About • | paper received ※ 04 October 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUBPR06 | Laser Megajoule Timing System | laser, diagnostics, target, experiment | 749 |
|
|||
The aim of the Laser Megajoule facility (LMJ) is to deliver more than 1 MJ of laser energy to targets for high energy density physics experiments. In association with Greenfield Technology, we developed a specific timing system to synchronize the 176 laser beams on the target with a precision better than 40 ps rms and to trigger and mark plasma diagnostics. The final architecture, settled and used since three years, is based on a master oscillator that sends a clock with serial data through a fiber-optic network, allowing to synchronize more than 500 delay generators spread over the large LMJ facility. The settings of each laser beam and the various experiments require different sampling rates (multi to single shot) and 16 groups for coactivity. Three kinds of delay generators, electrical and optical, are designed for standard precision (<150 ps jitter) and the third is designed for high precision. Each output deliver trigger or fiducial signals with jitter down to 5 ps and peak-to-peak wander less than 10 ps over a week. Test performance of this LMJ timing system is in progress all over the LMJ facility. Besides it will be installed on the petawatt laser (PETAL) this year. | |||
![]() |
Slides TUBPR06 [58.283 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUBPR06 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WECPL02 | Roadmap to 100 Hz DAQ at SwissFEL: Experiences and Lessons Learned | FEL, experiment, operation, controls | 909 |
|
|||
Providing reliable and performant Data Acquisition System (DAQ) at Free Electron Lasers (FELs) is a challenging and complex task due to the inherent characteristics of a pulsed machine and consequent need of beam synchronous shot-to-shot DAQ, which enables correlation of collected data associated with each FEL pulse. We will focus on experiences gathered during the process of moving towards 100 Hz operation at SwissFEL from the perspective of beam synchronous DAQ. Given the scarce resources and challenging deadlines, a lot of efforts went into managing conflicting stakeholder expectations and priorities and into allocation of time for operation support and maintenance tasks on one side and time for design and development tasks on the other side. The technical challenges we encountered have shown a great importance of having proper requirements in the early phase, a well thought system design concept, which considers all subsystems in the DAQ chain, and a well-defined test framework for validation of recorded beam synchronous data. | |||
![]() |
Slides WECPL02 [4.248 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WECPL02 | ||
About • | paper received ※ 27 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEMPR009 | Development of Event Receiver on Zynq-7000 Evaluation Board | controls, distributed, FPGA, linac | 1063 |
|
|||
The timing system of SuperKEKB accelerator is used Event Timing System developed by Micro Research Finland. In this presentation, we tested the receiver on Zynq7000 evaluation board. The serialized event data are transferred from Event Generator to Event Receiver by using GTX transceiver. So, we selected Zynq7000(7z030) as receiver, because the FPGA has the GTX. And also, Zynq is mounted on arm processor, it is easily able to control received event data stream by using EPICS ICO. Finally we are aiming to combine event system and RF or BPM system in one FPGA board. | |||
![]() |
Poster WEMPR009 [0.572 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEMPR009 | ||
About • | paper received ※ 17 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA026 | Integrating COTS Equipment in the CERN Accelerator Domain | controls, LabView, network, interface | 1136 |
|
|||
Successful integration of industrial equipment in the CERN accelerator complex relies mainly on 3 key components. The first part is the Controls Middleware (CMW). That provides a common communication infrastructure for the accelerator controls at CERN. The second part is timing. To orchestrate and align electronic and electrical equipment across the 27 km Large Hadron Collider (LHC) at sub nanosecond precision, an elaborate timing scheme is needed. Every component has to be configured and aligned within milliseconds and then trigger in perfect harmony with each other. The third and last bit is configuration management. The COTS devices have to be kept up to date, remotely managed and compatible with each other at all times. This is done through a combination of networked Pre eXecution Environments (PXE) mounting network accessible storage on the front ends, where operating systems and packages can be maintained across systems. In this article we demonstrate how COTS based National Instruments PXI and cRIO systems can be integrated in the CERN accelerator domain for measurement and monitoring systems. | |||
![]() |
Poster WEPHA026 [4.690 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA026 | ||
About • | paper received ※ 27 September 2019 paper accepted ※ 19 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA027 | Evaluation of Timing and Synchronization Techniques on NI CompactRIO Platforms | FPGA, controls, network, hardware | 1141 |
|
|||
For distributed data acquisition and control system, clock synchronization between devices is key. The internal CPU clock of a CompactRIO has an accuracy of 40 ppm at 25 degree Celsius, which can cause up to 3 sec of drift per day. To compensate for this drift, common practice is to use a central clock (such as NTP) to synchronize the systems. In addition, the cRIO has an onboard FPGA which has its own 40 MHz clock. This clock is not synchronized with the CPU, and will also cause time drift. For short measurements, this drift is usually negligible, but for continuous data acquisition systems, running 24/7, the accumulated error has to be compensated. This article will show how we synchronized all clocks across multiple systems used for monitoring seismic activities in the LHC underground and surface areas. It will also describe the mechanism used to cross check synchronization by using the CERN developed White Rabbit timing system. | |||
![]() |
Poster WEPHA027 [0.567 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA027 | ||
About • | paper received ※ 26 September 2019 paper accepted ※ 19 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA037 | Status of the CLARA Control System | controls, EPICS, operation, diagnostics | 1161 |
|
|||
CLARA (Compact Linear Accelerator for Research and Applications) is a test facility for Free Electron Laser (FEL) research and other applications at STFC’s Daresbury Laboratory [1]. The control system for CLARA is a distributed control system based upon the EPICS [2] software framework. The control system builds on experience gained from previous EPICS based facilities at Daresbury including ALICE (formerly ERLP) [3] and VELA [4]. This paper presents the current status of the CLARA control system, experiences during beam exploitation and developments and future plans for the next phases of the facility. | |||
![]() |
Poster WEPHA037 [1.093 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA037 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA040 | IRFU EPICS Environment | EPICS, hardware, embedded, software | 1172 |
|
|||
The 3 years collaboration with ESS* at Lund (Sweden) has given us the opportunity to use new COTS hardware and new tools. Based on that experience, we have developed the IEE (IRFU** EPICS Environment) by retaining relevant and scalable ESS solutions. This platform centralized several functionalities, fully installed by scripting, on a server that is running on a virtual machine. The functionalities are an EPICS environment and the root file system with the kernel for each embedded systems. In order to provide homogeneous EPICS modules between all collaborators, a template was designed and used as containers for new developments. Furthermore, a development and a production workflow is also proposed and strongly recommended. Due to the current responsibility of CEA IRFU to provide an EPICS platform for SARAF** at Tel Aviv (Israel), IEE was chosen as the standard platform for the whole accelerator. This paper will present the new standard IRFU EPICS Environment based on MTCA and virtual machines.
*ESS, https://europeanspallationsource.se/ **IRFU, https://irfu.cea.fr/en/ ***SARAF, http://soreq.gov.il/mmg/eng/Pages/SARAF-Facility.aspx |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA040 | ||
About • | paper received ※ 27 September 2019 paper accepted ※ 19 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA044 | Upgrade of the Bunch Length and Bunch Charge Control Systems for the New SLAC Free Electron Laser | linac, detector, electron, EPICS | 1185 |
|
|||
In 2019 SLAC is building a new linear accelerator based on superconducting niobium cavities. The first one, now called the copper linac, could generate 120 electron bunches per second. The new one, called superconducting linac, will generate 1 million per second, bringing some challenges to many devices along with the accelerator. Most of them receive sensors and actuators in a VME-based Platform with its control running in software, with RTEMS as OS. This is feasible for 120 Hz, but not for 1 MHz. The new control hardware is ATCA-based Platform, that has carrier boards with FPGA connected to servers running Embedded real-time Linux OS, forming the High-Performance System (HPS). Instead of having all the new architecture installed at the accelerator and tested on the go, SLAC used the strategy of testing the systems in the copper linac, to have them ready to use in the superconducting linac in what was called the Mission Readiness Program. The Bunch Length System and the Bunch Charge System are examples of devices of this program. Both systems were tested in the copper linac at 120 Hz, with excellent results. The next step is to test them at the superconducting linac, at 1 MHz. | |||
![]() |
Poster WEPHA044 [1.308 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA044 | ||
About • | paper received ※ 28 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA065 | Upgraded Beam Instrumentation DAQ for GSI and FAIR: Overview and First Experiences | controls, injection, software, extraction | 1248 |
|
|||
As construction of the FAIR accelerator complex progresses, the existing heavy ion synchroton SIS18, the storage ring ESR and the high energy beam transfer lines HEBT have been upgraded to the future control system. Within this upgrade the beam instrumentation (BI) data acquisition systems (DAQ) have been heavily modernized too. These are now integrated into the control system with its White Rabbit based timing system, data supply (i.e. ion species, energy, etc) and services like archiving. Dedicated clients running in the main control room allow visualization and correlation of the data and status of the BI devices. The DAQ hardware has been upgraded using new state-of-the-art components. With a trend to slowly phase out VME based systems, solutions based on standard Industrial PC for few channels as well as on the new µTCA standard for many channels have been successfully implemented. This contribution will give an overview over the upgraded BI-DAQ systems like current transformers and counter applications for ionization chambers, scintillators, and more. It will also present first experiences during beam operation with the new control system, which started summer last year. | |||
![]() |
Poster WEPHA065 [2.710 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA065 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA071 | Timing System Integration with MTCA at ESS | EPICS, network, hardware, linac | 1264 |
|
|||
European Spallation Source (ESS) organization has selected cutting-edge technologies to satisfy performance and scalability expectations: - Micro Telecommunications Computing Architecture (MTCA). - Micro Research Finland (MRF) based timing system with delay compensation. - Experimental Physics and Industrial Control System (EPICS). To achieve optimal data acquisition quality, the control system is built on top of the timing system which gives the same absolute time reference to all EPICS process variables (PVs). The MTCA system gives configurable cableless access to manage connections among different electronic mezzanine cards, therefore reducing installation workload. | |||
![]() |
Poster WEPHA071 [1.322 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA071 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA086 | A Fast Wire Scanner System for the European Xfel and Its Impact on Safety Systems | FEL, operation, electron, software | 1289 |
|
|||
The European-XFEL is an X-ray Free Electron Laser facility located in Hamburg (Germany). The 17.5 GeV superconducting accelerator will provide photons simultaneously to several user stations. Currently 12 Wire Scanner stations are used to image transverse beam profiles in the high energy sections. These scanners provide a slow scan mode for single bunch operation. When operating with long bunch trains (>100 bunches) fast scans are used to measure beam sizes in an almost nondestructive manner. To operate fast scans multiple impacts on the beam loss system (BLM) and the charge transmission interlock (TIS) have to be taken into account. This paper focuses on the interaction between these systems and first experiences performing measurements. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA086 | ||
About • | paper received ※ 02 October 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA092 | SNS Credited Pulse Energy Limit System Conceptual Design | PLC, controls, target, operation | 1304 |
|
|||
Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC05-00OR22725. The Controls Group at the Spallation Neutron Source (SNS) is designing a programmable signal processor based credited safety control that calculates pulsed beam energy based on beam kinetic energy and charge. The SNS Pulsed Energy Limit System (SPELS) must reliably shut off the beam if the average power exceeds 2.145 MW averaged over 60 seconds. This paper will cover the architecture and design choices needed to develop the system under the auspices of a programmable radiation-safety credit control. The authors will also introduce the concept of a graded failure approach that allows the credited system to continue operation in the presence of some faults. |
|||
![]() |
Poster WEPHA092 [0.981 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA092 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA096 | Timing Signal Distribution for Synchrotron Radiation Experiments Using RF Over White Rabbit | experiment, synchrotron-radiation, radiation, synchrotron | 1316 |
|
|||
In synchrotron radiation experiments, some measurements such as nuclear resonant scattering, time-of-flight, and time-resolved measurements necessitate an RF clock and fundamental revolution frequency (zero-address) signals synchronized with a storage ring. Currently, these timing signals are delivered directly over dedicated cables from an accelerator timing station to each experimental station. Considering the upcoming IoT era, it is preferable that these signals can be distributed over a network based on digital technology. Therefore, I am building a proof of concept system (PoCS) that will achieve distributions of the 508.58 MHz clock and the zero-address signals synchronized with the storage ring using RF over White Rabbit*. The PoCS consists of a master node, which receives the RF clock and the zero-address signals from the accelerator, and two slave nodes which generate timing signals near experimental stations. Each node employs a SPEC** board and a new FMC DDS***. The slave node will be able to output the RF clock with the arbitrary division rate and phase after reproducing the 508.58 MHz clock. This paper will describe the achieved functions and performance of the PoCS.
*https://ohwr.org/project/wr-d3s **https://ohwr.org/project/spec ***https://ohwr.org/project/fmc-dac-600m-12b-1cha-dds |
|||
![]() |
Poster WEPHA096 [2.200 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA096 | ||
About • | paper received ※ 02 October 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA103 | Backward Compatible Update of the Timing System of WEST | FPGA, network, distributed, controls | 1338 |
|
|||
Between 2013 and 2016, the tokamak Tore Supra in operation at Cadarache (CEA-France) since 1988 underwent a major upgrade following which it was renamed WEST (Tungsten [W] Environment in Steady state Tokamak). The synchronization system however was not upgraded since 1999*. At the time, a robust design was achieved based on AMD’s TAXI chip**: clock and events are distributed from a central emitter over a star shaped network of simplex optical links to electronic crates around the tokamak. Unfortunately, spare boards were not produced in sufficient quantities and the TAXI is obsolete. In fact, multigigabit serial communication standards question the future availability of any such low rate SerDeses. Designing replacement boards provides an opportunity for a new CDR solution and extended functionalities (loss-of-lock detection, latency monitoring). Backward compatibility is a major constraint given the lack of resources for a full upgrade. We will first describe the current state of the timing network of WEST, then the implementation of a custom CDR in full firmware, using the IOSerDeses of Xilinx FPGAs and will finally provide preliminary results on development boards.
*"Upgrade of the timing system for Tore Supra long pulses", D. Moulin et al. IEEE RealTime Conference 1999 **http://hep.uchicago.edu/~thliu/projects/Pulsar/otherdoc/TAXIchip.pdf |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA103 | ||
About • | paper received ※ 30 September 2019 paper accepted ※ 03 October 2020 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPHA105 | Beam Synchronous Data Acquisition Using the Virtual Event Receiver | FEL, controls, LLRF, software | 1347 |
|
|||
The 4th generation light source, PAL-XFEL, is an X-ray free electron laser in Pohang, Korea. One of key features of the event timing system in the PAL-XFEL, the beam synchronous acquisition is used in many beam diagnostics and analysis and the species of that increase gradually. In order to reduce the cost for event receivers which are required for operating the beam synchronous acquisition and to resolve the difficulty of the limited platform dependent on event receivers, we developed the virtual event receiver system receiving timestamps and BSA information from an event generator not using real event receivers. In this paper, we introduce the software architecture of the virtual event receiving system and present test results of it. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA105 | ||
About • | paper received ※ 18 September 2019 paper accepted ※ 10 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THBPP01 | Building the Control System to Operate the Cryogenic Near Infrared Spectropolarimeter Instrument for the Daniel K. Inouye Solar Telescope | controls, software, GUI, status | 1568 |
|
|||
The Cryogenic Near Infrared Spectropolarimeter (Cryo-NIRSP) will be one of the first light instruments on the Daniel K. Inouye Solar Telescope (DKIST) currently under construction in Hawaii. Cyro-NIRSP is a near- and thermal- IR imager and spectrograph operating in a cryogenic environment. It will be used to study the faint solar coronal magnetic field across a large field-of-view. Such a complex and precise instrument demands equal requirements from the control system. The control system must handle the many sub-components (e.g. cameras, polarimeter, mirrors) and bring them all together to manage the setup, timings, synchronization, real time motion and overall monitoring. It is built within the pre-defined DKIST software framework, which provides consistency across all instruments. This paper will discuss how such a control system has been achieved for the Cryo-NIRSP instrument detailing some of the challenges that were overcome relating to the synchronization of specific components and the complex inter-dependencies between configurables. It will also touch on the data processing and visualization software development for the end-to-end functioning of the instrument. | |||
![]() |
Slides THBPP01 [5.471 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THBPP01 | ||
About • | paper received ※ 24 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
FRAPP03 | Status of the CSNS Accelerator Control System | controls, linac, EPICS, PLC | 1662 |
|
|||
The China Spallation Neutron Source (CSNS) accelerator consists of an 80 MeV H− linac, a 1.6 GeV Rapid Cycling Synchrotron (RCS) and two beam transport lines. The designed proton beam power is 100 kW in Phase-I. EPICS(Experimental Physics and Industrial Control System) is chosen as the software platform for the accelerator control system. The accelerator control system mainly consists of 21 sub-systems. VME64x based system with real-time embedded controllers is chosen for the timing system and fast protection system. PLCs and some embedded industrial computers are used for the device level controls. CSS (Control System Studio) and RDB based techniques are adopted for high level applications. The overall control system has been completed in 2018 and transitioned to routine operations in September of the same year. The design and the operation status of the overall accelerator control system are introduced in this paper. | |||
![]() |
Slides FRAPP03 [9.395 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-FRAPP03 | ||
About • | paper received ※ 28 September 2019 paper accepted ※ 09 October 2019 issue date ※ 30 August 2020 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||