
Lua–LANGUAGE–BASED DATA ACQUISITION PROCESSING EPICS
SUBSCRIPTION FILTERS*

J. O. Hill, Los Alamos National Laboratory, Los Alamos, USA

Abstract
A previous paper described an upgrade to EPICS ena-

bling client side tools at LANSCE to receive subscription
updates filtered selectively to match a logical configuration
of LANSCE beam gates, as specified dynamically by con-
trol room application programs. This update paper will ex-
amine evolving enhancements enabling Lua–language
based data acquisition processing subscription update fil-
ters, specified by snippets of Lua-language source-code
embedded within the EPICS channel-name’s postfix. We
will discuss the generalized utility of this approach across
a wide range of data acquisition applications, projects, and
platforms; the performance and robustness of our produc-
tion implementation; and our operational experience with
the software at LANSCE.

LANSCE
The Los Alamos Neutron Science Centre (LANSCE)

was originally designed to be a versatile machine for me-
dium-energy (800 MeV) nuclear physics experiments. It
had three injectors and could simultaneously accelerate
positive hydrogen ions (H+), negative hydrogen ions (H-)
and polarized negative hydrogen ions (P-). These three
beams could all have different intensities, duty factors, and
even different energies – depending on experimental needs.
Today LANSCE can simultaneously generate four H-
beam types and two H+ beam types. It services several ex-
perimental facilities including a proton storage ring, a low-
intensity neutron research facility, proton radiography, ul-
tra-cold neutron source, isotope production, and a pro-
posed materials test-station.

Developed during the infancy of computer control sys-
tems, the architecture of the original LANSCE control sys-
tem (LCS) had elements of data-acquisition along with el-
ements of traditional computer control system architec-
tures. One of the more interesting and useful features of the
legacy LCS system was its ability to do "Timed" and "Fla-
voured" reads. A "Timed Read" sampled typically relative
to the leading or trailing edge of a beam gate. A "Flavoured
Read" refers to the ability to schedule the read for a partic-
ular machine cycle containing a desired configuration of
beam-gates. A “Flavour” is configured by specifying for
each of 13 timing system beam gates whether it must be
present, must be absent, or is not relevant. Therefore, there
can be up to 313 possible flavour combinations. In practice,
only a few (meaningful) combinations of the six beam des-
tination beam-gates along with a handful of diagnostic-
trigger-gates are used, but more esoteric flavours for diag-
nostic and experimental purposes are considered to be es-
sential.

At LANSCE the 120 slot super-cycle of regularly sched-
uled beam gates repeats at a 1 Hz rate, but there is also a
cycle-stealing scheduling anomaly allowing multiple in-
compatible beam species to be scheduled in the same cycle,
and if more than one of them is currently enabled only the
gates for the highest-priority species will be emitted during
that cycle. This allows, for example, a beam species asso-
ciated with one-shot enabled proton-radiography, to mo-
dally assume a cycle assigned also to the beam species used
for high repetition rate production-oriented neutron exper-
iments.

A pivotal requirement, imposing unique constraints on
implementation of the lowest levels of the real-time em-
bedded system-software, is that configuration of "Timed"
and "Flavoured" data acquisition cycles must be dynami-
cally selected by application programs at the situational
compulsion of LANSCE operations and tuning staff.

EPICS CONTROL SYSTEM
An EPICS Input Output Controller (IOC) is configured

with Database Records implementing function blocks for
various purposes including logical IO, numerical calcula-
tion, and ordered sequencing. The EPICS Channel Access
(CA) internet communication subsystem is based on a pub-
lish-and-subscribe communication model where clients
subscribe for updates, servers publish updates to sub-
scribed clients, and records post state change events to
servers. A channel is a virtual communication link between
a client side application program and a process variable
(PV) exported by a service. EPICS clients issue asynchro-
nous read, write, and subscribe requests to the process var-
iable in the service. Clients are notified when the network
connectivity of a channel changes.

An essential tenet of the original EPICS design was that
regular periodic processing of EPICS Records isn’t dis-
turbed by influences outside of an IOC thereby guarantee-
ing time-periodic algorithms such as PID loops, and time-
deterministic response by EPICS Records to state changes
detected within sensors, are properly maintained. The load
induced by Record Processing is constant and predictable.
In contrast, externally induced load from network clients is
variable. Therefore record processing executes at higher
priorities, and CA network services execute at relatively
lower priorities. Multiple event-queues, containing sub-
scription updates, communicate in between record-pro-
cessing, and the server’s per-client dedicated threads.

LUA – A BRIEF INTRODUCTION
“Lua”, a language designed specifically to be embedda-

ble within other software, was created in 1993 by members
of the Computer Graphics Technology Group (Tecgraf) at
the Pontifical Catholic University of Rio de Janeiro, in Bra-

* Work supported by US Department of Energy under contract
DE-AC52-06NA25396.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA058

MOPHA058
342

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

zil. "Lua" (pronounced LOO-ah) means "Moon" in Portu-
guese. It is a dynamic typed language, allowing automated
conversion between string and numeric types, with a mix-
ture of C-like and Pascal-like syntax. Lua is easily inter-
faced with C-language software.

LUA – OUR PERSPECTIVE
Lua provides unique features suitable for its embedding

within the core of EPICS, and for improving the overall
utility of EPICS. Lua provides efficient, compiled to byte-
code virtual machine execution, a compact footprint, a
portable implementation, and incremental garbage collec-
tion. Lua exception handling ensures that the sequence of
nested function calls conveying execution to a failure-
source-code-line might be reported. Lua has been success-
fully deployed into many industrial applications, and based
on this reputation it is expected to be robust. Lua has a
comprehensive set of features, and powerful adjunct-librar-
ies written by an active user community. Lua is well proven
for configuration, scripting, and rapid-prototyping, and is a
strong return-for-effort candidate functionally upgrading
weak areas in the pre-existing implementation of EPICS.
Finally, Lua has a liberal MIT license, compatible with EP-
ICS.

There are some negatives. In particular, with Lua the de-
fault scope of variables is global, arrays start at one alt-
hough storing data at index zero isn’t prohibited, and there
is ambiguity between nil-valued contrasted with non-exist-
ent table elements. Lua lacks support for user-defined-type
dedicated memory allocators appropriate within memory
constrained systems. See below.

MOTIVATION – DATA ACQUISITION
PROCESSING SUBSCRIPTION FILTERS
For review, at LANSCE an essential requirement is that

the flavour of a particular channel’s subscription update
stream currently viewed by the operations and tuning staff,
must be dynamically selectable. It is not practical for all
useful permutations to be a priori instantiated as flavour-
dedicated EPICS Records, and instead we must specify fla-
vouring when subscribing. Subscription update rates must
be managed due to our 120 Hz cycle rate to reduce loading,
while simultaneously facilitating cycle aligning of updates
originating from multiple IOCs.

Furthermore, at LANSCE we have additional require-
ments that starting and ending waveform process-variable
element-sequence indexes need to be specified as time off-
sets from timing system gates, and or waveform edges.

Another important requirement at LANSCE is to convey
to specialized application programs the beam-gates actu-
ally occurring within a particular data capture’s cycle sub-
ject to the LANSCE cycle-stealing scheduling anomaly.
The data-processing subscription update filter must insert
an additional word at the beginning of the waveform ele-
ment sequence identifying the actually occurring set of
beam gates. This type of filter establishes a private protocol
between itself and the application program that selected it.

Moreover, it is possible at LANSCE for the super-cycle
beam gate scheduling and the relative time offsets of all of
the timing gates, to be reconfigured by operators at any
time, and therefore we have additional requirement that fla-
vour selection matching and timing gate edge references
are computed against the particular configuration of the
timing system that generated the data, and not against the
current configuration of the timing system which might be
very different considering that the filter execution must be
postponed until it is running in the server’s downstream
lower-priority event queue consumer, processing on behalf
of a particular client.

Finally, practical considerations dictate that the configu-
ration of filters used by a particular subscription can be
specified without revising the source code of the CA Client
general purpose application programs, obtained from the
wider EPICS user community.

Dynamically configured subscription filtering is a site
specific feature required at LANSCE, but our goal was to
provide general purpose infrastructure easily customized
across a wide range of sites and projects, effectively para-
digm shifting EPICS from its general-purpose process-
control-system origins into a wider utility also as a flexible
data-acquisition-system.

MOTIVATION – ENHANCED EVENT
QUEUE FUNCTIONALITY

The original EPICS IOC event queue implementation
has some flaws. First, there was a very limited set of data
transported on the event-queue; they were the process var-
iable’s scalar value, its alarm state, and its time-stamp. Fur-
thermore, it wasn’t possible for a single copy of device sup-
port allocated constant data associated with a particular up-
date to be shared in the event queues of multiple clients.
This type of sharing, and avoidance of memory copying,
becomes essential when waveforms, and or other types of
complex site specific data, are stored on the event queues
of multiple clients. Second, suppression of intermediate
updates is normal and expected in memory-constrained
systems, when event production exceeds consumption
rates [1]. However, the original implementation’s memory
management allowed reordering of events on the queue.
This was observed comparing arrivals of subscription up-
dates of one channel versus another, but not within updates
for a single channel. Third, real-time atomic bindings of
the data with site specific attributes must be preserved as
data updates flow through the EPICS database and event
queue conduits.

IMPLEMENTATION – FILTER SYNTAX
Our design configures the subscription update filters

with a snippet of Lua code specified within a CA channel-
name postfix. This approach avoids revising the source
code of CA Client general-purpose community obtained
application programs. Such postfixes are recognized and
removed by the CA Server before passing the channel
name to its service layer. Two basic forms of this channel-
name postfix both begin with a percent character followed

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA058

Software Technology Evolution
MOPHA058

343

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

by Lua source code enclosed by square or curly brackets
specifying respectively a direct-action filter or a factory.
Emulating Lua long literal strings, optional matching long
brackets also delineate the postfix, for example [[]],
{={}=}, or [===[]===]. Long brackets allow an un-
limited character set unambiguously within the postfix.
Some examples are provided in Tables 1 and 2 below, with
myPV serving as the channel’s name.

Table 1: Lua Filter, Channel Name Postfix
myPV%[val >= 3.2 and val <= 3.4]
myPV%[val.alarm.condition.severity~=0]
myPV%[3.4<val]
myPV%[==[val%3.4 [[nested comment]]]==]
myPV %[val==3.2]

Table 2: Lua Factory, Channel Name Postfix
myPV%{myFilterFactory ('blue')}
myPV%{myChannelFactory()}
myPV%{ myApplicationsFactory(10,2)}
myPV % {flavour('savoury')}

The channel name postfixes are themselves implicitly
prefixed, just prior to compilation into a callable Lua
chunk, as in table 3.

Table 3: Implicit Prefix

filter local val=...; return

factory local chanName=...; return

Filters are called, passing the subscription update pay-
load, in an argument named val. Filters return nil,
false, true, or a data-object for conveying sup-
press, suppress, send, or send replacing the update pay-
load’s value with the returned data object respectively.
With Lua, functions are first class values meaning they can
be stored in variables, passed as arguments to other func-
tions, and returned as results from functions. A factory may
return type Boolean, a direct-acting filter function, or a
channel object. A channel object may provide a method
named filterFactory returning type Boolean or a
channel specific direct-acting filter function. See table 4 for
a description of that method’s interface. Factories return
Boolean false or true for when all subscription up-
dates will be permanently disabled or enabled respectively.

Table 4: Channel’s Filter Factory Interface
filterFactory (channel, lowDelta, highDelta, timeout)

A subscription update subordinate property optionally
supplies a default filter to be used when the channel name
postfix is absent.

IMPLEMENTATION – DATA
ACQUISITION PROCESSING

SUBSCRIPTION FILTERS
The server creates a private Lua context for each of its

clients, thereby eliminating client-to-client side effects,
and also reducing mutual-exclusion overhead. Our imple-
mentation provides a set of Lua classes, as proxies for each

of the Lua primitive types. These objects enclose, in addi-
tion to one of the Lua primitive types, also a C++ 11 smart
pointer to the Data Access Catalog container intro-
spection interface, providing efficient access to a hierarchy
of the object’s subordinate properties. Furthermore, these
wrapper objects implement appropriate Lua operators so as
to behave transparently as proxies for the enclosed Lua
primitive type. Finally, the Lua indexing operator is also
implemented, providing access to subordinate properties.
For example, Data Access interfaced subordinate prop-
erties are conveniently accessed simply as ordinary varia-
bles within Lua source code as shown in table 5.

Table 5: Lua Property Index Syntax

val.alarm.condition.severity

The EPICS CA protocol has been enhanced so that,
when asynchronous requests fail within the server, a de-
tailed multi-line diagnostic message is conveyed to the ap-
plication’s response call-back method. A diagnostic mes-
sage is essential when providing the sequence of nested
function calls leading up to the source line of a Lua execu-
tion failure. Such diagnostics are operationally essential
improving productivity when users misconfigure wave-
form indexes out of bounds, misconfigure non-existent
gate-names, or for any other Lua exceptions occurring un-
expectedly during rapid-prototyping. Detailed diagnostics
messages are also forwarded to clients when there are Lua
compilation errors.

IMPLEMENTATION – WAVEFORMX
RECORD

A new DBF_VARIANT database field type has been
added to the EPICS database. The variant field type is im-
plemented as a class enclosing two C++ 11 smart pointers
to the Data Access Catalog, introspection, and Muta-
tor, modifying, C++ abstract base classes. The DBF_VAR-
IANT value field in the new waveformx record provides
therefore a polymorphic reference to any scalar and vector
primitive data type, and significantly also a polymorphic
reference to any hierarchical set of subordinate properties.
Furthermore, when processed, a shared immutable refer-
ence to its value field’s Data Access Catalog con-
tainer introspection interface is placed on the private EP-
ICS event queue of each subscribed client. The database is
also now upgraded to range-check precarious type conver-
sions.

This record is essential at LANSCE, allowing the real-
time binding between the data and the LANSCE specific
timing and flavouring properties to be transparently pre-
served, when transporting data through the EPICS database
event-queue conduits.

In contrast to the waveform record, the waveformx
record provides also new-functionality fields specifying
the default filter, samples-per-second, trigger name, trigger
edge, and trigger edge offset correction metadata. The ad-
ditional fields are used when calculating a waveform up-
date element sequence’s starting and ending element, and

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA058

MOPHA058
344

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

for supplying a default filter when the user does not specify
one in the channel name postfix.

IMPLEMENTATION – LANSCE SPECIFIC
SUBORDINATE PROPERTIES

At LANSCE, we provide polymorphic Data Access
container interface adapters for the subordinate properties
described in table 6. The schedule array contains bit-
mask elements encoding the set of gates scheduled in each
of the 120 slots of the LANSCE super-cycle. The cy-
cleIndex provides the current index in the schedule
array. The gateSet array provides time-offset delay and
width information for each of the LANSCE gates. The up-
dateVersion is incremented whenever either of the
schedule array or the gateSet array is modified by
the timing system.

Table 6: LANSCE Device Specific Properties

val.device.timing.cycleIndex
val.device.timing.updateVersion
val.device.timing.schedule[i]
val.device.timing.gateSet[i].width
val.device.timing.gateSet[i].delay

We emphasize, that site-specific polymorphic Data
Access container interface adapters are fully supported
and easily implemented for site specific properties.

IMPLEMENTATION – LANSCE FILTERS
At LANSCE site-specific flavour filters and time-slice

filters have been implemented. Example filter syntax is
provided in table 7. Filter one selects cycles with gate
H+IP and also sans both gates H-GX and MPEG. Filter
two replaces the CA payload with elements 50 through 150
of the waveform data. Filter three selects cycles that have
beam gate H+IP, replacing the payload with the first 150
µs of the waveform. Filter four replaces the CA payload
with -30 through -10 µs of waveform data before the falling
edge of gate MPEG, selecting only cycles containing
MPEG. Filter five, replaces the CA payload with 100 µs af-
ter waveform rising edge through 150 µs before waveform
falling edge selecting only cycles containing LPEG. Filter
six, selects 100 µs after gate T0 through 15 µs before
waveform end for any flavour.

Table 7: LANSCE Filter Examples
1 XXTDAQ001D01%{flv('H+IP no H-GX MPEG')}
2 XXTDAQ001D01%{tim('(50:150)em')}
3 XXTDAQ001D01%{flv('H+IP','(0:150)us')}
4 XXTDAQ001D01%{tim('~MPEG(-30:-10)us','MPEG')}
5 XXTDAQ001D01%{flv('LBEG','(100:~(-150))us')}
6 XXTDAQ001D01%{tim('(T0(100):~(-15))us')}

Figures 1 and 2 show the position of raster patterned
beam at the LANSCE Isotope Production Facility selected
for two different time-slices. Figure 3 shows a LANSCE
linac oscilloscope-style beam-position screen push-button
selecting the flavour and the gate-relative time-slice. Our
perspective is that data acquisition filters, along with re-

cently improved immediacy of diagnostic screen update re-
sponse to set-point adjustments, has improved productivity
of our operations and tuning staff.

Figure 1: LANSCE isotope production beam position last
100 µs, raster patterned beam.

Figure 1: LANSCE isotope production beam position last
200 µs, raster patterned beam.

Figure 3: LANSCE linac beam position oscilloscope-style
button flavoured and time-sliced.

The LANSCE flavour filters also rate-govern, and syn-
chronize, high-repetition-rate flavours. This is accom-
plished when, for each flavour, at most four evenly distrib-
uted indexes into the schedule array are selected for en-
abling subscription updates. Index selections are identical
across all IOCs, as synchronized by the timing system. The
same rate-governing mechanisms are utilized when users
specify that the flavour isn’t relevant. This type of index

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA058

Software Technology Evolution
MOPHA058

345

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

match enabling of subscription updates greatly reduces
load on upstream IOC-to-IOC cycle correlation engines.
Additionally, our design anticipated, and we now observe
in practice, greatly improved probability of operator dis-
play updates being perceived stationary and synchronized
in between updates, across multiple IOCs.

We emphasize, that site-specific Lua filters are fully sup-
ported and easily implemented for site specific purposes.
The LANSCE specific Lua filters, implemented as C-lan-
guage source code Lua snap-ins, along with LANSCE spe-
cific polymorphic Data Access container interface
adapters are provided as examples on the world-wide-web
[2].

IMPLEMENTATION – EVENT QUEUE
MODIFICATIONS

A fully order-correct event queue sharing immutable
payloads in between multiple clients, and based on C++ 11
shared pointers to the Data Access polymorphic container
introspection interface, has been implemented.

IMPLEMENTATION – MEMORY
MANAGEMENT

Lua allocates, and resizes, many small random-sized
memory blocks, typically from the C-language runtime’s
dynamic memory pool. We expect an inevitable design
trade-off blending in between increased fragmentation or
increased CPU consumption, depending on allocation
strategies. Lua lacks support for user-defined-type dedi-
cated memory allocators, facilitating fixed-sized-block
based allocators [3], a standard approach in the memory-
constrained EPICS IOC. Nevertheless, the Lua allocator is
replaceable, and our replacement allocates blocks sized
less than a threshold value from a free-list. We set this
threshold so that all of our Lua user-defined-types allocate
from this free-list.

IMPLEMENTATION – INSTALLATION
Site specific Lua filter installation requires only registry

function registration as described in the EPICS Application
Developer’s Guide [4]. A new configuration environment-
variable, see Table 8, specifies a white-space separated set
of registry function names for Lua state initialization,
called once per each new client attaching to the server. The
interface to these functions is the lua_CFunction in the
Lua reference manual, returning LUA_OK for success, oth-
erwise failure. The EPICS build system has been modified
so Lua source files are first compiled to byte-code, next to
a C-source-code with a lua_CFunction callable
method for loading its embedded Lua byte-code, and fi-
nally into object-code. EPICS base R3.15 source-code, up-
graded as described herein, and in use operationally at
LANSCE implementing FPGA embedded advanced signal
processing diagnostic and feedback control systems, can be
found on the world-wide-web [5][6].

Table 8: Filter Install Environment Variable

EPICS_CAS_LUA_STARTUP_FUNCTIONS

IMPLEMENTATION – FUTURE WORK
We will soon implement specialized filtering based on

the actual flavours subject to cycle-stealing. Furthermore,
at LANSCE our filters process every update at 120 Hz, for
multiple signals, for multiple clients. Therefore the filter
execution efficiency is significant, and we have some ad-
ditional optimization ideas, allowing more clients and sub-
scriptions per installed EPICS IOC. We also anticipate
need for additional new record types consistent with the
waveformx record’s paradigm.

OTHER USES OF LUA WITHIN EPICS
We have also, as an original-concept presented at multi-

ple EPICS user-group meetings, leveraged the embedded
Lua interpreter supplying an alternative EPICS IOC shell,
and a Lua scripting record. Lua offers a significant func-
tionality upgrade compared to the EPICS IOC shell, and
has been plumbed capable of calling any of the EPICS IOC
shell commands. The Lua scripting record provides an al-
ternative in between the EPICS C-language based sub-
routine record and the EPICS calc expression inter-
preter. It provides rapid prototyping similar to calc, Lua’s
improved full-language-functionality compared to calc,
but reduced efficiency compared to the subroutine
function-block. Rapid-prototyping is available via modifi-
cations to the Lua record fields specifying Lua source file
names.

CONCLUSIONS
EPICS base has been enhanced supporting Lua–lan-

guage–based data acquisition processing subscription up-
date filters. Such filters determine if a particular subscrip-
tion update may be forwarded or not, and might also post-
process the subscription update’s data replacing the sub-
scription update message’s data payload. Site-specific hi-
erarchical process-variable subordinate properties and site-
specific Lua filters are fully supported and easily imple-
mented. The new features paradigm shift EPICS from its
original process-control-system origins into a much wider
utility as also a flexible data-acquisition-system. These
new features are in operational use, improving productiv-
ity, at LANSCE.

REFERENCES
[1] Queueing Theory, https://en.wikipedia.org/wiki/

Queueing_theory

[2] LANSCE Filters, https://git.launchpad.net/
~johill-lanl/+git/lansce-filters

[3] Memory Management – Fixed-size blocks allocation,
https://en.wikipedia.org/wiki/Memory_
management#Fixed-size_blocks_allocation

[4] EPICS Application Developer’s Guide,
https://epics.anl.gov/base/R3-15/5-docs/Ap-
pDevGuide/AppDevGuide.html

[5] https://code.launchpad.net/~johill-lanl/
epics-base/server1

[6] J. O. Hill, “The LANSCE FPGA Embedded Signal Pro-
cessing Framework”, in Proc. ICALEPCS'15, Melbourne,
Australia, Oct. 2015, paper THHA2O02, pp. 1079-1082.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-MOPHA058

MOPHA058
346

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

