
Docker containers for the SMuRF System
Each application used in the SMuRF system runs in an independent docker container.

• SMuRF Server: C++/Python application that provides access to the firmware registers and
handles the reception and processing of asynchronous streams of data originated at the
FPGA application (2240-byte packets at a 10kHz).

• pysmurf: Python application that provides a set of high-level routines that allow uses to
configure and use a SMuRF system, including data taking and analysis.

• ATCA Monitor: it is used to monitor the status of the ATCA crate, as well as all the cards
installed in it via IPMI.

• Utilities: A set of heterogeneous debugging tools.
• Timing IOC: EPICS IOC to control a timing master generator, used in some deployments.

Docker containers Layered Structure

The SMuRF Project
The next generation of cryogenic CMB (Cosmic Microwave Background) cameras require
densely instrumented sensor arrays. These arrays have large number of sensors, in the order
of 10,000 to 100,000 per camera. The readout of this large number of sensors is a big
challenge that requires substantial improvements in highly-multiplexed readout techniques.
The SMuRF system is being developed as a readout system for this next generation CMB
cameras. It aims to read 4000 microwave channels between 4 and 8 GHz, in a compact form
factor. The system reads out changes in flux in resonators by monitoring the change in
transmitted amplitude and frequency of RF tones produced at each resonator’s fundamental
frequency.
The SMuRF system is unique in its ability to track each tone while minimizing the total RF
power required to read out each resonator, thereby significantly reducing the linearity
requirements of the system.

Data Acquisition System 
Deployment Using Docker 

Containers for the SMuRF Project

Abstract:
The SLAC Microresonator Radio Frequency (SMuRF) system is being developed as a readout
system for next generation Cosmic Microwave Background (CMB) cameras. It is based on a
FPGA board where the real-time digital processing algorithms are implemented, and high-
level applications running in an industrial PC. The software for this project is based on C++ and
Python and it is in active development. The software follows the client-server model where
the server implements the low-level communication with the FGPA while high-level
applications and data processing algorithms run on the client. SMuRF systems are being
deployed in several institutions and in order to facilitate the management of the software
application releases, dockers containers are being used. Docker images, for both servers and
clients, contain all the software packages and configurations needed for their use. The images
are tested, tagged, and published in one place. They can then be deployed in all other
institutions in minutes with no extra dependencies. This paper describes how the docker
images are designed and build, and how continuous integration tools are used in their release
cycle for this project.

J. Vasquez
SLAC National Accelerator Laboratory, Menlo Park, California, USA

Docker Container for Development
Beside deployment, docker containers are used for software and firmware development.
They provide a uniform development environment, which is also consistent with the final
release environment. It is based on the concept of volumes, which allows to mount host’s
directories inside the container environment. This allows the developer to make persistent
changes to the code, while still compiling it and running it inside the docker container
environment.

Docker Image Release Cycle
The use of Continuous Integration (CI) tools is heavily used for the automation of the docker
image release cycle. The code for each application is hosted in GitHub repositories; Travis
jobs are triggered when new tags are pushed to those repositories. The Travis jobs are setup
to build the docker images, as well as pushing the resulting image to Dockerhub. Once there,
the image can be pulled to any server in the SMuRF project.

Jesus A. Vasquez Stanescu
jvasquez@slac.stanford.edu

The SLAC Common Platform 
The SLAC Common Platform is a set of Hardware devices, firmware and software libraries,
used for several projects at SLAC.
- Hardware: it is based on the ATCA (Advanced Telecommunication Computing Architecture)

standard.
- Firmware: it is a set of VHDL libraries which contain protocols, device access and commonly

used modules for all applications that use the SLAC Common Platform hardware.
- Software: it is based on Rogue, a C++ library with Python bindings. It is used as a

framework to write the low-level software application that communicates directly with the
FPGA

48V
Power
Filter

48V-to-12V
Supply

(Up to 200W)

IPMI

8GB
DDR3

Zone 1
Zone 2

Zone 3

Timing
Crossbar /
Fan Out

10G Eth / 40G Eth

MPS Network

LVDS IOs

1~2 High Speed 

7 ~ 10 high speed + LVDS IOs

Aux
Power
REGs

Local
Power
REGs

PLL

Application Card 1
(BPM, Timing, MPS, 

BLEN, BCM, etc)

2 x Timing

14 x 
Timing

To / From 
RTM

To / From 
RTM

RTM 
Interface

Backplane
Interface

Power/IPMI
Interface

To/From AMCs, 
RTM, & FPGA

Aux
Power
REGs

FPGA

Application Card 0
(BPM, Timing, MPS, 

BLEN, BCM, etc)

7 ~ 10 high speed + LVDS IOs

Standard off-the-
shelf crate

SMuRF
server pysmurf ATCA 

Monitor Utilities Timing 
IOC

Docker engine 

Host Operating System

Infrastructure

SMuRF
server pysmurf
SMuRF
server pysmurf

Ethernet Switch

Slot 1

Slot 2

Slot 7

…

ATCA crate

Industrial PC

10G Link

base

SMuRF
server

Utilities

Server

rogue pysmurf pysmurf

ATCA 
monitor

SMuRF
server base

ATCA 
monitor

Server
(fw /sw dev)

Base:
• Ubuntu:18.04 
• + Common packages/tools

Rogue:
• + Rogue framework

pysmurf:
• + pysmurf application 

ATCA monitor:
• + ATCA monitor application

SMuRF server base:
• + server application 

SMuRF server:
• + firmware files 

mounted
volume

mounted
volume

Changes back 
to repository

Changes back 
to repository

SMuRF Server 
container

Software repository
(host filesystem)

Firmware related 
files 

(host filesystem)

GitHub
repository

GitHub
repository

SMuRF Server 
image

(tag release)

tagged versiontagged version

GitHub
repository

Travis servers

Build process Dockerhub
repository

tag

Developer 
workstation

trigger image

SMuRF
ServersSMuRF

ServersSMuRF
ServersSMuRF

Servers

pull

Conclusions
The SMuRF project is under continuous development in several institutions across the US.
Software and firmware applications are not just under rapid development and evolution, but
they also are tools needed for other types of developments (hardware, sensors, etc.).
Docker containers are used as a deployment method for these applications. The use of
containers facilitates both the release of new version from part of the developers as well as
the deployment of new versions from part of the users. Once a docker image is built, it can
be run as a container in minutes in any of the SMuRF institutes. Integration with modern CI
tools has made the release process automatic for the developer.
Docker containers are also used for development purposes. They provide a uniform
development environment, which matches exactly with the final release environment.

17th Biennial International Conference on Accelerator and Large Experimental Physics Control Systems
Hosted by Brookhaven National Laboratory
October 5 - 11, 2019
New York, NY


