
IRFU EPICS ENVIRONMENT
J.F. Denis, A. Gaget, F. Gohier, F. Gougnaud, T.J. Joannem, Y. Lussignol

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

integrates an internal FPGA with a customizable area for
user specific functionalities.

The timing system is based on MRF boards, the mTCA-
EVM300 for the Event master and the mTCA-EVM300U
for the Event receiver with delay compensation.

For remote I/Os, our choice remained the cheap and
convenient Beckhoff EtherCAT modules with
communication based on Modbus/Tcp.

This hardware has been integrated in IEE, but more
hardware can be easily added.

Table 1: Current Hardware Used With IEE
Designation Reference Tender
mTCA Crate NATIVE-R2/

NATIVE-R5
NAT

MCH MCH-PHYS80 NAT

CPU Intel RTM COMex3 NAT

CPU carried board IFC1410 IOxOS

Fast Acquisition
(8ch., 250 MS/s)

ADC311 IOxOS

Slow Acquisition
(20 ch., up to 5 MS/s)

ADC3117 IOxOS

Timing System
Master

mTCA-EVG300 MRF

Timing System
Receiver

mTCA-
EVR300U

MRF

IEE SOFTWARE DESCRIPTION
EPICS

The “EPICS Software Distribution” is a selection of
“Base”, “IOC support modules” and “extensions” exists on
official EPICS websites. The currently used EPICS Base is
R3.15.4. The IOC support modules are categorized as
either Software Support or Hardware Support. The
extensions are host tools and Channel Access clients such
as Control System Studio (CSS), Archive Appliance, CA
libraries (Java, Python…).

The development environment fully relies on the
standard “EPICS Build Facility”. EPICS software can be
divided into multiple <top> areas. An example of a <top>
area is the EPICS Base itself. Each <top> may be
maintained separately. A <top> directory structure
essentially contains the build configuration files in a
configure folder and a Makefile. The GUIs are made using
CSS BOY.

The Irfu EPICS Environment provides a standard
development model that all the developers involved in our

Abstract
The 3 years collaboration with ESS* at Lund (Swe-

den) has given us the opportunity to use new COTS hard-
ware and new tools. Based on that experience, we have de-
veloped the IEE (IRFU** EPICS Environment) by retain-
ing relevant and scalable ESS solutions. This platform cen-
tralized several functionalities, fully installed by scripting,
on a server that is running on a virtual machine. The func-
tionalities are an EPICS environment and the root file sys-
tem with the kernel for each embedded systems. In order to
provide homogeneous EPICS modules between all collab-
orators, a template was designed and used as containers for
new developments. Furthermore, a development and a pro-
duction workflow is also proposed and strongly recom-
mended. Due to the current responsibility of CEA IRFU to
provide an EPICS platform for SARAF** at Tel Aviv (Is-
rael), IEE was chosen as the standard platform for the
whole accelerator. This paper will present the new standard
IRFU EPICS Environment based on MTCA and virtual
machines.

INTRODUCTION
Based on our experiences of the standard platform

conception for SPIRAL2 (France) and IFMIF[1] (Japan)
project, and contributing to the ESS[2] (Sweden), CEA
decided to combine state of the art technologies as ESS and
our expertise acquired on IFMIF and SPIRAL2[3] to create
the new standard platform “IEE”: Irfu EPICS
Environment. The main idea of this platform is to propose
a generic methodology for future projects in keeping an
EPICS environment centralized on a server (IEE server)
shared it with all the clients fully parametrized and
automatically installed. A light and standalone version of
the IEE server can also be provided for development on
standalone PCs. This platform is used for the SARAF[3]
(Israel) project.

HARDWARE CONTEXT
Hardware

The current hardware standard for our EPICS projects
are the following (see Table 1.), based on mTCA.The
standardized crates are the NATIVE-R2/NATIVE-R5 from
NAT with the MCH-PHYS80 and the Intel CPU COMex3.

Fast (Up to 250 MS/s) and semi-fast (Up to 5 KS/s)
acquisitions for beam diagnostics and RF signals
acquisition are assured respectively by the FMC boards
IOxOS ADC_3110/3111 and ADC_3117. These boards are
plugged on a IOxOS IFC1410 motherboard which

*ESS, https://europeanspallationsource.se/
**IRFU, https://irfu.cea.fr/en/
***SARAF, http://soreq.gov.il/mmg/eng/Pages/SARAF-Facility.aspx control system software team have to follow. These

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA040

WEPHA040
1172

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

standards give the necessary homogeneity to the software
modules produced.

The IEE environment is installed on the server inside
the directory /iee/, and contains the subfolders listed in
Table 2.

Table 2: Main Directories Provided by the IEE Server

Linux
By default, Linux is the operating system installed on

each type of hardware. Except the mTCA system, the last
version of Centos is used. The PowerPC of the mTCA
board involves to build a specific Linux with a cross
compilation toolchain. This distribution is based on FSL-
Qoriq from NXP and is built with the tool Yocto.

VIRTUALIZATION
The IEE server is the main part of the infrastructure. Its

main goal is to provide an EPICS environment, to
distribute all sort of necessary files like root file systems or
kernel binaries, and run some essential services such as
DHCP, NFS... needed by different kinds of clients. It can
run directly on a physical machine or can be virtualized.
Running the server on a virtual environment offers some
machine is full virtualized (Operating System & drivers),
while for the second one the Operating System is the same
as the host machine and only the applications are full
isolated from the host, this is called a containerized
application (see Fig. 1). Containers consume much less

machine resources and it is more powerful, so we decided
to use this technology through the software called Docker.

Figure 1: Illustration of the difference between
virtual machines and containers.

Virtualization is also interesting in hardware failure. To
limit this issue, we decided to create a pool of physical
machines, called a cluster. Setting up a cluster enables to
use another host machine in case of hardware failure. The
main container “IEE server” running into the master server
can be duplicated on two slaves servers. In case of physical
failure of the master server, one of the slave servers can
take the hand automatically.

Hence to make the best of all these virtualization
advantages, the IEE server runs inside a Docker container,
on a cluster of physical machines. This provides high
disponibility of the service and protects against most
hardware failures.

A Proxmox test stand was elaborated in order to try this
tool. It is composed of three physical machines on which
Proxmox was installed (see Fig. 2). These three machines
are linked in order to create an IEE cluster. The IEE server
runs on the physical master server, and is duplicated every
15s on the two physical slave servers. In case of the master
server crashing, the IEE server can restart shortly on one of
the slave. Furthermore, a container can also be easily
migrated on another physical machine of the cluster, for
hardware maintenance or upgrade.

Figure 2: Illustration of the IEE cluster.

Designation Reference
Base The central core of the EPICS

control system toolkit

Toolchains Cross compilation toolchains for all
embedded system supported

Extensions Java and Python CA libraries

Iocs All stables IOCs used in production

Modules All stables modules used in
production

Data Writable directory to share data
between server and embedded

system,.

Startup Boot scripts to configure embedded
system during the boot. Also

contains startup scripts to start
IOCs after boot.

Support Support modules from the EPICS
community (Modbus,

StreamDevice, S7PLC…)

Tops Directory shared between
development PCs and embedded

systems. Inside, each developer has
a private directory and can test his

developments directly on the
embedded system.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA040

Software Technology Evolution
WEPHA040

1173

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

AUTOMATISATION
Ansible

Ansible is a tool which enables to automatically
configure a machine using scripts and a set of parameters.
These scripts are called playbooks and roles. A role is
dedicated to set up a specific functionality such as the
configuration of a dhcp server. It is developed
independently from the playbook. A playbook is composed
of one or several roles to be called on an inventory of target
machines. In order to be confident about any installation of
the IEE server, these roles and playbooks are thoroughly
tested using Molecule and versioned on Gitlab. The
playbooks and roles are then used to “provision” the
various containers and virtual machines available for IEE
user and administrators (see Fig. 3).

Cookiecutter
Cookiecutter is a tool to create file and folder tree based

on a project template. In our case, we use it to create a role
template that includes all necessary files and folder, with
for instance a preset test section.

Molecule
Molecule is designed to test Ansible roles. It first creates

a working environment via drivers (Docker, Vagrant,
etc…), then download and execute the playbook and its
roles, and test the result of the execution with tools such as
testinfra, Inspec.

Packer
Packer automates the creation of many types of machine

image (Ovf, box…). In our case, two types of images are
created. Based on the last version of Centos, one is
dedicated to run in a Container and another one to run
inside a hypervisor such as Virtualbox or VmWare. In both
case, the image integrates every package needed for the
IEE server which allows to provision the box without
internet access. It also enables to ensure homogeneity of
the CentOs version installed on each system.

Kickstart
This tool enables to automate the installation of an

Operating System on machines. It requires a single file
form, “Eq.”, if in the text. The equation number is placed
in parentheses [e.g., Eq. (1)].

Containing the answers to all the questions that would
normally be answered through a graphical interface during
the installation. We use it in combination with Packer.

Figure 3: Flow production of machine images.

ENVIRONMENT
In order to avoid any perturbation in production, the

development environment is completely distinct. Another
IEE server is dedicated to the development (see Fig. 4).

Development Environment
By default, IOCs first load EPICS modules in

development, and if nothing is found, they load stable
EPICS modules. When the developer is confident about his
new feature or patch of the EPICS module, he creates a tag
and push his development to Gitlab server.

Production Environment
Only stable EPICS modules, tagged modules puished on

the Gitlab server, are used by IOCs running on embedded
system. Currently the update process of EPICS modules is
done manually, and requires to stop the experiment.

Figure 4: Development and production environment.

REFERENCES
[1] J. Marroncle et al., “IFMIF-LIPAc Diagnostics and its Chal-

lenges,” in Proc. IBIC'12, Tsukuba, Japan, Oct. 2012, paper
WECC01, pp. 557-565.

[2] F. Gougnaud et al., “The Implementation of the Spiral2 In-
jector Control System,” in Proc. ICALEPCS'11, Grenoble,
France, Oct. 2011, paper MOPMU025, pp. 491-493.

[3] F. Gougnaud et al., “Evolution Based On MicroTCA And
MRF Timing System,” presented at the ICALEPCS'19, New
York, NY, USA, Oct. 2019, paper MOPHA052, this
conference.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA040

WEPHA040
1174

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Software Technology Evolution

