Keyword: FEL
Paper Title Other Keywords Page
MOMPR004 Control and Analysis Software Development at the European XFEL controls, software, MMI, operation 158
 
  • H. Santos, M. Beg, M. Bergemann, V. Bondar, S. Brockhauser, C. Carinan, R. Costa, F. Dall’Antonia, C. Danilevski, W. Ehsan, S.G. Esenov, R. Fabbri, H. Fangohr, G. Flucke, D. Fulla Marsa, G. Giovanetti, D. Goeries, S. Hauf, D.G. Hickin, T. Jarosiewicz, E. Kamil, Y. Kirienko, A. Klimovskaia, T.A. Kluyver, D. Mamchyk, T. Michelat, I. Mohacsi, A. Parenti, R. Rosca, D.B. Rück, R. Schaffer, A. Silenzi, M. Spirzewski, S. Trojanowski, C. Youngman, J. Zhu
    EuXFEL, Schenefeld, Germany
  • S. Brockhauser
    BRC, Szeged, Hungary
  • H. Fangohr
    University of Southampton, Southampton, United Kingdom
 
  Agile Project Management (Agile PM), coupled with the DevOps concept, has been worked out as a fundamental approach in a highly uncertain and unpredictable environment to achieve mature software development and to efficiently support concurrent operation*. At the European XFEL**, Agile PM and DevOps have been applied to provide adaptability and efficiency in the development and operation of its control system: Karabo***. In this context, the Control and Analysis Software Group (CAS) has developed in-house a management platform composed of the following macro-artefacts: (1) Agile Process; (2) Release Planning; (3) Testing Infrastructure; (4) Roll-out and Deployment Strategy; (5) Automated tools for Monitoring Control Points (i.e. Configuration Items****) and; (6) Incident Management*****. The software engineering management platform is also integrated with User Relationship Management to establish and maintain a proper feedback loop with our scientists who set up the requirements. This article aims to briefly describe the above points and show how agile project management has guided the software strategy, development and operation of the Karabo control system at the European XFEL.
*Toward Project Management 2.0
**The European X-ray Free Electron Laser technical design report
***Karabo:An integrated software framework combining control, data management, and scientific comp.
 
poster icon Poster MOMPR004 [0.871 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOMPR004  
About • paper received ※ 27 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA006 SwissFEL Undulator Control System undulator, controls, PLC, MMI 197
 
  • A.D. Alarcon
    PSI, Villigen PSI, Switzerland
 
  SwissFEL has successfully commissioned the Aramis beamline, hard x-rays (2 - 12.4 KeV), and the Athos line, soft x-rays (200 eV to 2 keV), will start commissioning in 2020. The Aramis undulator line is currently composed of 13 variable-gap in-vacuum undulators. The Athos line will be made of 16 APPLE II type undulators (Advanced Planar Polarized Light Emitter). Both beamlines have each undulator segment on a 5D mover system; they both also have phase shifters and movable quadrupole tables in between segments. PLCs and DeltaTau motor controllers are used to control motion, for I/O interface, and interlocks. EPICS IOCs communicate with the controllers and provide additional logic and some high level functionality. Further higher level functions are provided through Python scripts and other high level languages.  
poster icon Poster MOPHA006 [1.265 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA006  
About • paper received ※ 30 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA040 Beam Position Feedback System Supported by Karabo at European XFEL controls, feedback, diagnostics, photon 281
 
  • V. Bondar, M. Beg, M. Bergemann, S. Brockhauser, C. Carinan, R. Costa, F. Dall’Antonia, C. Danilevski, W. Ehsan, S.G. Esenov, R. Fabbri, H. Fangohr, G. Flucke, D. Fulla Marsa, A. Galler, G. Giovanetti, D. Goeries, J. Grünert, S. Hauf, D.G. Hickin, T. Jarosiewicz, E. Kamil, Y. Kirienko, A. Klimovskaia, T.A. Kluyver, D. Mamchyk, T. Michelat, I. Mohacsi, A. Parenti, D.B. Rück, H. Santos, R. Schaffer, A. Silenzi, C. Youngman, P. Zalden, J. Zhu
    EuXFEL, Schenefeld, Germany
  • S. Brockhauser
    BRC, Szeged, Hungary
  • H. Fangohr
    University of Southampton, Southampton, United Kingdom
 
  The XrayFeed device of Karabo [1, 2] is designed to provide spatial X-ray beam stability in terms of drift compensation utilizing different diagnostic components at the European XFEL (EuXFEL). Our feedback systems proved to be indispensable in cutting-edge pump-probe experiments at EuXFEL. The feedback mechanism is based on a closed loop PID control algorithm [3] to steer the beam position measured by a so-called diagnostic devices to the desired centered position via defined actuator adjusting the alignment of X-ray optical elements, in our case a flat X-ray mirror system. Several diagnostic devices and actuators can be selected according to the specific experimental area where a beam position feedback is needed. In this contribution, we analyze the improvement of pointing stability of X-rays using different diagnostic devices as an input source for our feedback system. Different types of photon diagnostic devices such as gas-based X-ray monitors [4], quadrant detectors based on avalanche photo diodes [5] and optical cameras imaging the X-ray footprint on scintillator screens have been evaluated in our pointing stability studies.  
poster icon Poster MOPHA040 [0.963 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA040  
About • paper received ※ 30 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA053 Status of Control and Synchronization Systems Development at Institute of Electronic Systems controls, LLRF, cavity, electron 338
 
  • M.G. Grzegrzółka, A. Abramowicz, A. Ciszewska, K. Czuba, B. Gąsowski, P.K. Jatczak, M. Kalisiak, T. Lesniak, M. Lipinski, T. Owczarek, R. Papis, I. Rutkowski, K. Sapór, M. Sawicka, D. Sikora, M. Urbański, L. Zembala, M. Żukociński
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
 
  Funding: This work was supported by the Polish Ministry of Science and Higher Education under Grant DIR/WK/2016/06 and DIR/WK/2016/03.
Institute of Electronic Systems (ISE) at Warsaw University of Technology designs, builds and installs control and synchronization systems for several accelerator facilities. In recent years ISE together with the Deutsches Elektronen-Synchrotron (DESY) team created the RF synchronization system for the European XFEL in Hamburg. ISE is a key partner in several other projects for DESY flagship facilities. The group participated in development of the MTCA.4 standard and designed a family of components for the MTCA.4-based LLRF control system. Currently, ISE contributes to the development of the Master Oscillators for XFEL and FLASH, and phase reference distribution system for SINBAD. Since 2016 ISE is an in-kind partner for the European Spallation Source (ESS), working on the phase reference line for the ESS linac, components for 704.42 MHz LLRF control system, including a MTCA.4-based LO signal generation module and the Cavity Simulator. In 2019 ISE became one of the co-founders of the Polish Free-Electron Laser (PolFel) located in the National Centre for Nuclear Research in Świerk. The overview of the recent projects for large physics experiments ongoing at ISE is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA053  
About • paper received ※ 01 October 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA069 Automation of the Undulator Middle Plane Alignment Relative to the Electron Beam Position Using the K-Monochromator undulator, electron, controls, photon 375
 
  • S. Karabekyan, S. Abeghyan, W. Freund
    EuXFEL, Schenefeld, Germany
  • L. Fröhlich
    DESY, Hamburg, Germany
 
  The correct K value of an undulator is an important parameter to achieve lasing conditions at free electron lasers. The accuracy of the installation of the undulator in the tunnel is limited by the accuracy of the instruments used in surveying. Moreover, the position of the electron beam also varies depending on its alignment. Another source of misalignment is ground movement and the resulting change in the position of the tunnel. All this can lead to misalignment of the electron beam position relative to the center of the undulator gap up to several hundred microns. That, in turn, will lead to a deviation of the ΔK/K parameter several times higher than the tolerance requirement. An automated method of aligning the middle plane of the undulator, using a K-monochromator, was developed and used at European XFEL. Details of the method are described in this article. The results of the K value measurements are discussed.  
poster icon Poster MOPHA069 [0.780 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA069  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOSH4001 A Library of Fundamental Building Blocks for Experimental Control Software experiment, controls, software, interface 653
 
  • M. Scarcia, R. Borghes, M. Lonza, M. Manfredda, R. Mincigrucci, E. Pedersoli
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  In many experimental facilities there is a rising interest by users and beamline scientists to take part in the experiment control software development process. This necessity arises from the flexibility and adaptability of many beamlines, that can run very different experiments, requiring changes in the software even during beamtimes. On the other side, we still need a professional and controlled approach in order to be able to maintain the software efficiently. Our proposed solution is to exploit the object oriented nature of programming languages to create a library that provides a uniform interface both to the different controlled devices (e.g. motors) and to experimental procedures (e.g. scans). Every component and procedure can be represented as an object, a building block for experiment control scripts. We can thus provide the scientists with a powerful tool for implementing highly flexible control software to run experiments. Furthermore, a library makes the development of experiment control scripts easier and quicker for software developers. In any case we are able to protect the most sensitive structures (e.g. control systems) beneath a strong and trusted software layer.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOSH4001  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCPR02 Data Exploration and Analysis with Jupyter Notebooks data-analysis, experiment, software, detector 799
 
  • H. Fangohr, M. Beg, M. Bergemann, V. Bondar, S. Brockhauser, C. Carinan, R. Costa, F. Dall’Antonia, C. Danilevski, J.C. E, W. Ehsan, S.G. Esenov, R. Fabbri, S. Fangohr, G. Flucke, C. Fortmann-Grote, D. Fulla Marsa, G. Giovanetti, D. Goeries, S. Hauf, D.G. Hickin, T. Jarosiewicz, E. Kamil, M. Karnevskiy, Y. Kirienko, A. Klimovskaia, T.A. Kluyver, M. Kuster, L. Le Guyader, A. Madsen, L.G. Maia, D. Mamchyk, L. Mercadier, T. Michelat, J. Möller, I. Mohacsi, A. Parenti, M. Reiser, R. Rosca, D.B. Rück, T. Rüter, H. Santos, R. Schaffer, A. Scherz, M. Scholz, A. Silenzi, M. Spirzewski, J. Sztuk, J. Szuba, S. Trojanowski, K. Wrona, A.A. Yaroslavtsev, J. Zhu
    EuXFEL, Schenefeld, Germany
  • S. Brockhauser
    BRC, Szeged, Hungary
  • A. Campbell, A. Götz, J. Kieffer
    ESRF, Grenoble, France
  • H. Fangohr
    University of Southampton, Southampton, United Kingdom
  • E. Fernandez-del-Castillo, G. Sipos
    The EGI Foundation, Amsterdam, The Netherlands
  • J. Hall, E. Pellegrini, J.F. Perrin
    ILL, Grenoble, France
  • T. Holm Rod, J.R. Selknaes, J.W. Taylor
    ESS, Copenhagen, Denmark
  • J. Reppin, F. Schlünzen, M. Schuh
    DESY, Hamburg, Germany
 
  Funding: With support from EU’s H{2}020 grants 823852 (PaNOSC) and #676541 (OpenDreamKit), the Gordon and Betty Moore Foundation GBMF #4856, the EPSRC’s CDT (EP/L015382/1) and program grant (EP/N032128/1).
Jupyter notebooks are executable documents that are displayed in a web browser. The notebook elements consist of human-authored contextual elements and computer code, and computer-generated output from executing the computer code. Such outputs can include tables and plots. The notebook elements can be executed interactively, and the whole notebook can be saved, re-loaded and re-executed, or converted to read-only formats such as HTML, LaTeX and PDF. Exploiting these characteristics, Jupyter notebooks can be used to improve the effectiveness of computational and data exploration, documentation, communication, reproducibility and re-usability of scientific research results. They also serve as building blocks of remote data access and analysis as is required for facilities hosting large data sets and initiatives such as the European Open Science Cloud (EOSC). In this contribution we report from our experience of using Jupyter notebooks for data analysis at research facilities, and outline opportunities and future plans.
 
slides icon Slides TUCPR02 [15.943 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUCPR02  
About • paper received ※ 24 September 2019       paper accepted ※ 20 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WECPL02 Roadmap to 100 Hz DAQ at SwissFEL: Experiences and Lessons Learned experiment, operation, timing, controls 909
 
  • T. Celcer, A. Babic, S.G. Ebner, F. Märki, L. Sala
    PSI, Villigen PSI, Switzerland
 
  Providing reliable and performant Data Acquisition System (DAQ) at Free Electron Lasers (FELs) is a challenging and complex task due to the inherent characteristics of a pulsed machine and consequent need of beam synchronous shot-to-shot DAQ, which enables correlation of collected data associated with each FEL pulse. We will focus on experiences gathered during the process of moving towards 100 Hz operation at SwissFEL from the perspective of beam synchronous DAQ. Given the scarce resources and challenging deadlines, a lot of efforts went into managing conflicting stakeholder expectations and priorities and into allocation of time for operation support and maintenance tasks on one side and time for design and development tasks on the other side. The technical challenges we encountered have shown a great importance of having proper requirements in the early phase, a well thought system design concept, which considers all subsystems in the DAQ chain, and a well-defined test framework for validation of recorded beam synchronous data.  
slides icon Slides WECPL02 [4.248 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WECPL02  
About • paper received ※ 27 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WECPR03 Status of the Karabo Control and Data Processing Framework controls, GUI, interface, framework 936
 
  • G. Flucke, N. Al-Qudami, M. Beg, M. Bergemann, V. Bondar, D. Boukhelef, S. Brockhauser, C. Carinan, R. Costa, F. Dall’Antonia, C. Danilevski, W. Ehsan, S.G. Esenov, R. Fabbri, H. Fangohr, D. Fulla Marsa, G. Giovanetti, D. Goeries, S. Hauf, D.G. Hickin, E. Kamil, Y. Kirienko, A. Klimovskaia, T.A. Kluyver, D. Mamchyk, T. Michelat, I. Mohacsi, A. Muennich, A. Parenti, R. Rosca, D.B. Rück, H. Santos, R. Schaffer, A. Silenzi, K. Wrona, C. Youngman, J. Zhu
    EuXFEL, Schenefeld, Germany
  • S. Brockhauser
    BRC, Szeged, Hungary
  • H. Fangohr
    University of Southampton, Southampton, United Kingdom
 
  To achieve a tight integration of instrument control and (online) data analysis, the European XFEL decided in 2011 to develop Karabo*, a custom control and data processing system. Karabo provides control via event-driven communication. Signal/slot and request/reply patterns are implemented via a central message broker. Data pipelines for e.g. scientific workflows or detector calibration are implemented as direct TCP/IP connections. The core entities of Karabo are self-describing devices written in C++ or Python. They represent hardware, orchestrate other devices, or provide system services like data logging and configuration storage. To operate Karabo, a Python command line interface and a generic GUI written in PyQt are provided. Control and data widgets compose Karabo scenes that are provided by devices or are manually customized and stored together with device configurations in a central database. Since 2016, Karabo is used to commission and operate the currently three photon beam lines and six scientific instruments at the European XFEL. This contribution summarizes the status of Karabo, highlights achievements and lessons learned, and gives an outlook for future directions.
* Heisen, B., et al. (2013) In 14th International Conference on Accelerator and Large Experimental Physics Control Systems, ICALEPCS 2013. San Francisco, CA.
 
slides icon Slides WECPR03 [2.660 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WECPR03  
About • paper received ※ 27 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA021 Free-Electron Laser Optimization with Reinforcement Learning laser, electron, controls, free-electron-laser 1122
 
  • N. Bruchon, G. Fenu, F.A. Pellegrino, E. Salvato
    University of Trieste, Trieste, Italy
  • G. Gaio, M. Lonza
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Reinforcement Learning (RL) is one of the most promising techniques in Machine Learning because of its modest computational requirements with respect to other algorithms. RL uses an agent that takes actions within its environment to maximize a reward related to the goal it is designed to achieve. We have recently used RL as a model-free approach to improve the performance of the FERMI Free Electron Laser. A number of machine parameters are adjusted to find the optimum FEL output in terms of intensity and spectral quality. In particular we focus on the problem of the alignment of the seed laser with the electron beam, initially using a simplified model and then applying the developed algorithm on the real machine. This paper reports the results obtained and discusses pros and cons of this approach with plans for future applications.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA021  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA075 EPICS Also for Small and Medium Sized Experiments EPICS, controls, experiment, electron 1269
 
  • H. Junkes
    FHI, Berlin, Germany
 
  The Max Planck Society (MPS) is now promoting the use of EPICS for data acquisition within its organization. An attempt is being made to establish an alternative to commercial systems. Not only the big experiments like radio telescopes, LIGO, accelerators and FELs will be supported, but also smaller to medium experiments. This will also benefit MPS users at beamlines of accelerators. In order to make EPICS also attractive for less IT-affine experimenters (besides physicists also chemists and biochemists), the first step is to revise the documentation, to create some dummy instructions, but also to develop, set up and test demonstration and production hardware. One focus at a later stage will be the use of the real-time operating system RTEMS. The poster shows the current status of the project and explains the planned further measures.  
poster icon Poster WEPHA075 [1.771 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA075  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA086 A Fast Wire Scanner System for the European Xfel and Its Impact on Safety Systems operation, timing, electron, software 1289
 
  • T. Lensch, T. Wamsat
    DESY, Hamburg, Germany
 
  The European-XFEL is an X-ray Free Electron Laser facility located in Hamburg (Germany). The 17.5 GeV superconducting accelerator will provide photons simultaneously to several user stations. Currently 12 Wire Scanner stations are used to image transverse beam profiles in the high energy sections. These scanners provide a slow scan mode for single bunch operation. When operating with long bunch trains (>100 bunches) fast scans are used to measure beam sizes in an almost nondestructive manner. To operate fast scans multiple impacts on the beam loss system (BLM) and the charge transmission interlock (TIS) have to be taken into account. This paper focuses on the interaction between these systems and first experiences performing measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA086  
About • paper received ※ 02 October 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA105 Beam Synchronous Data Acquisition Using the Virtual Event Receiver controls, LLRF, timing, software 1347
 
  • G. Mun, J. Hu, H.-S. Kang, C. Kim, G. Kim, W.W. Lee
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  The 4th generation light source, PAL-XFEL, is an X-ray free electron laser in Pohang, Korea. One of key features of the event timing system in the PAL-XFEL, the beam synchronous acquisition is used in many beam diagnostics and analysis and the species of that increase gradually. In order to reduce the cost for event receivers which are required for operating the beam synchronous acquisition and to resolve the difficulty of the limited platform dependent on event receivers, we developed the virtual event receiver system receiving timestamps and BSA information from an event generator not using real event receivers. In this paper, we introduce the software architecture of the virtual event receiving system and present test results of it.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA105  
About • paper received ※ 18 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA112 Database Scheme for On-Demand Beam Route Switching Operations at SACLA/SPring-8 operation, database, controls, storage-ring 1352
 
  • K. Okada, N. Hosoda, T. Ohshima, T. Sugimoto, M. Yamaga
    JASRI, Hyogo, Japan
  • T. Fujiwara, T. Maruyama, T. Ohshima, T. Okada
    RIKEN SPring-8 Center, Hyogo, Japan
  • T. Fukui, N. Hosoda, H. Maesaka
    RIKEN SPring-8 Center, Innovative Light Sources Division, Hyogo, Japan
  • O. Morimoto, Y. Tajiri
    SES, Hyogo-pref., Japan
 
  At SACLA, the X-ray free electron laser (XFEL) facility, we have been operating the electron linac in time-sharing (equal duty) mode between beamlines. The next step is to vary the duty factor on an on-demand basis and to bring the beam into the SP8 storage ring. It is a part of a big picture of an upgrade*. The low-emittance beam is ideal for the next generation storage ring. In every 60 Hz repetition cycle, we have to deal a bunch of electrons properly. The challenge here is we must keep the beam quality for the XFEL demands while responding occasional injection requests from the storage ring**. This paper describes the database system that supports both SACLA/SP8 operations. The system is a combination of RDB and NoSQL databases. In the on-demand beam switching operation, the RDB part keeps the parameters to define sequences, which include a set of one-second route patterns, and a bucket sequence for the injection, etc. As for data analysis, it is going to be a post-process to build an event for a certain route, because not all equipment get the route command in real time. We present the preparation status toward the standard operation for beamline users.
*http://rsc.riken.jp/pdf/SPring-8-II.pdf
**IPAC2019 proceedings
 
poster icon Poster WEPHA112 [0.561 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA112  
About • paper received ※ 01 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA150 SLED Tuning Control System for PAL-XFEL controls, cavity, EPICS, operation 1446
 
  • Y.J. Suh, H. Heo, H.-S. Kang, C. Kim, K.H. Kim, G. Mun, Y.J. Park
    PAL, Pohang, Republic of Korea
 
  A total of 42 SLED Tuners are installed at the PAL-XFEL (4th generation light source) acceleration section. To adjust this, a person directly enters the Tunnels and adjusts them manually. When the SLED Tuners are equipped with a motor, it can be adjusted remotely and the intensity of the beam is also monitored while monitored while monitoring the output of the Klystron. In addition, by storing the tuning point according to the XFEL beam rate as the LVDT value, it is possible to control the SLED bar according to the beam rate changing in real time, which is helpful to provide stable beam. In order to remotely control this device, an additional motor, LVDT, and limit switch are attached. Each device is connected to the controller and can be operated and data remotely from the cab through the EPICS IOC and CSS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA150  
About • paper received ※ 26 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA161 Revisiting the Bunch-Synchronized Data Acquisition System for the European XFEL Accelerator controls, data-acquisition, electron, interface 1460
 
  • T. Wilksen, A. Aghababyan, L. Fröhlich, O. Hensler, R. Kammering, K. Rehlich, V. Rybnikov
    DESY, Hamburg, Germany
 
  After about two years in operation the bunch-synchronized data acquisition as used with the accelerator control system at the European XFEL is being revisited and reevaluated. As we have now gained quite some experience with the current system design it was found to have shortfalls specifically with respect to the offered methods for data retrieval and management. In the context of modern data collection and management technologies readily in use by huge internet companies, new frameworks are being evaluated as a control-system independent replacement for data reduction, processing and online analysis. The main focus here is currently put on streaming technologies. Different approaches are being discussed in this paper and reviewed for feasibility and adaptability for control system architectures used at DESY’s accelerator facilities.  
poster icon Poster WEPHA161 [2.687 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA161  
About • paper received ※ 27 September 2019       paper accepted ※ 20 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA165 Upgrade of the European XFEL Phase Shifters undulator, operation, controls, software 1473
 
  • M. Yakopov, S. Abeghyan, M. Bagha-Shanjani, S. Karabekyan, J. Pflüger, F. Preisskorn
    EuXFEL, Schenefeld, Germany
  • G. Chen
    CAEP, Sichuan, People’s Republic of China
 
  To eliminate the impact of radiation shower on the incremental encoder readout and provide a better dynamic movement the upgrade of all 88 phase shifters of the European XFEL have been successfully done without interruption of the operation schedule. The implementation steps, as well as the results of the hardware and software tests made in the laboratory, are presented. The sensitivity of the Renishaw RGH22O15D00A encoder to the radiation shower was measured in the SASE3 undulator system, and the results are presented.  
poster icon Poster WEPHA165 [2.315 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA165  
About • paper received ※ 01 October 2019       paper accepted ※ 18 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WESH1003 jddd Migration to OpenJDK11+: Benefits and Pitfalls controls, interface, software, Windows 1501
 
  • E. Sombrowski, K. Rehlich, G. Schlesselmann
    DESY, Hamburg, Germany
 
  The Java Doocs Data Display (jddd) is a Java-based tool for creating and running graphical user interfaces for accelerator control systems. It is the standard graphical user interface for operating the European XFEL accelerator. Since Java 8 Oracle introduced a number of major changes in the Java ecosystem’s legal and technical contexts that significantly impact Java developers and users. The most impactful changes for our software were the removal of Java Web Start, Oracles new licensing model and shorter release cycles. To keep jddd up to date, the source code had to be refactored and new distribution concepts for the different operating systems had to be developed. In this paper the benefits and pitfalls of the jddd migration from Oracle Java8 to OpenJDK11+ will be described.  
poster icon Poster WESH1003 [7.285 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WESH1003  
About • paper received ※ 17 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAPP05 Overview of Acquisition and Control Electronics and Concepts for Experiments and Beam Transport at the European XFEL PLC, controls, interface, electron 1554
 
  • P. Gessler, H. Ali, F. Babies, K.-E. Ballak, H. Bamaga, B. Baranasic, O. Bieler, N. Coppola, K. Dornack, J. Eilers, D. Emes, B. Fernandes, M. Fobian, T. Freyermuth, S.T. Huynh, N. Jardón Bueno, M. Meyer, O. Oshtuk, P. Parlicki, J. Reifschläger, S. Sayar, H. Sotoudi Namin, M. Stupar, J. Tolkiehn, H. Vega Perez, S. Wagner, J. Zach
    EuXFEL, Schenefeld, Germany
 
  FPGA based fast electronics to acquire and pre-process signals of detectors and diagnostics and PLC based hardware and software for motion, vacuum and other control and monitoring applications are key elements of the European X-Ray Free Electron Laser. In order to bring the newly developed scientific user facility up and running, the underlying electrical and electronic components require a diverse array of tools and processes to be developed in order to meet the continually adapting requirements and make use of technological advances. Many challenges were faced, including high availability and up-time, adaptability to a dynamic environment, rapid lead-time for integration of complex components, numerous instrumentation installations and commissioning, high time resolution and subsequently, high demands on data and sampling rates, synchronization and real-time processing. In this contribution we will provide an overview of the selected technologies, developed concepts and solutions along with generically designed frameworks and tools, which aim to provide a high degree of standardization on the control systems and even automatic generation from requirements to final install.  
slides icon Slides THAPP05 [13.323 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THAPP05  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THCPR04 The European XFEL Beam Loss Monitor System electron, high-voltage, undulator, controls 1630
 
  • T. Wamsat, T. Lensch
    DESY, Hamburg, Germany
 
  The European XFEL MTCA based Beam Loss Monitor (BLM) System is composed of about 470 BLMs, which are part of the Machine Protection System (MPS). The BLMs detect losses of the electron beam, in order to protect accelerator components from damage and excessive activation, in particular the undulators, since they are made of permanent magnets. Also each cold accelerating module is equipped with a BLM to measure the sudden onset of field emission (dark current) in cavities. In addition some BLMs are used as detectors for wire- scanners. Further firmware and server developments related to alarm generation and handling are ongoing. The BLM systems structure, the current status and the different possibilities to trigger alarms which stop the electron beam will be presented.  
slides icon Slides THCPR04 [7.156 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THCPR04  
About • paper received ※ 02 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRAPP05 Review of Commissioning and First User Operation in Respect to High Level Controls at the European XFEL operation, controls, MMI, software 1665
 
  • R. Kammering, B. Beutner, W. Decking, L. Fröhlich, O. Hensler, T. Limberg, S.M. Meykopff, M. Scholz, J. Wilgen
    DESY, Hamburg, Germany
 
  In September 2017 the European XFEL entered user operation after years of construction and one year of commissioning. To provide a fast and flexible startup of the various sections of the machine, the high-level control software was essential from the beginning. While progressing in commissioning and increasing operation parameter space, the enormous complexity of the European XFEL put hard requirements on the control and operation concepts. Having now the full baseline parameters reached, this paper will review the high-level software concepts and architecture in respect to effectiveness, reliability and ease of operation. Beside a review of the high-level software concepts and design ideas also general operation concepts and the interoperability between the various sub-systems in respect to the overall facility performance will be presented.  
slides icon Slides FRAPP05 [12.121 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-FRAPP05  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)