Keyword: cavity
Paper Title Other Keywords Page
MOAPP02 The SPIRAL2 Control System Status Just Before the First Beam controls, linac, PLC, machine-protect 8
 
  • C.H. Haquin, P. Anger, P.-E. Bernaudin, C. Berthe, F. Bucaille, P. Dolegieviez, C.H. Patard, D. Touchard, A.H. Trudel, Q. Tura
    GANIL, Caen, France
 
  The SPIRAL2 Facility at GANIL is based on the construction of a superconducting LINAC (up to 5 mA - 40 MeV deuteron beams and up to 1 mA - 14.5 MeV/u heavy ion beams) with two experimental areas called S3 and NFS [1, 2]. At the end of this year, we will reach an important milestone with the first beam accelerated by the superconducting LINAC. The control system of the new facility relies on EPICS and PLC technologies. This paper will focus on the latest validated systems: machine protection system, the LINAC cryogenic system and the radio frequency system of the superconducting cavities. The validation requested a huge effort from all the teams but allow the project to be ready for this important moment.  
slides icon Slides MOAPP02 [6.262 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOAPP02  
About • paper received ※ 23 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA019 Upgrade of the Control System for the LHC High Level RF controls, software, PLC, interface 236
 
  • Y. Brischetto, L. Arnaudon, V. Costa, D.C. Glenat, D. Landré
    CERN, Meyrin, Switzerland
 
  The acceleration of particles in CERN’s Large Hadron Collider (LHC) is carried out by sixteen superconducting radiofrequency (RF) cavities. Their remote control is taken care of by a complex system which involves heterogeneous equipment and interfaces with a number of different subsystems, such as high voltage power converters, cryogenics, vacuum and access control interlocks. In view of the renovations of the CERN control system planned for the Long Shutdown 2 (LS2), the control software for the RF system recently underwent a complete bottom-up refactoring, in order to dispose of obsolete software and ensure the operation of the system in the long term. The upgraded software has been deployed one year before LS2, and allowed successful operation of the machine. This paper describes the strategy followed in order to commission the system and to guarantee LHC nominal operation after LS2.  
poster icon Poster MOPHA019 [1.661 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA019  
About • paper received ※ 26 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA053 Status of Control and Synchronization Systems Development at Institute of Electronic Systems controls, LLRF, FEL, electron 338
 
  • M.G. Grzegrzółka, A. Abramowicz, A. Ciszewska, K. Czuba, B. Gąsowski, P.K. Jatczak, M. Kalisiak, T. Lesniak, M. Lipinski, T. Owczarek, R. Papis, I. Rutkowski, K. Sapór, M. Sawicka, D. Sikora, M. Urbański, L. Zembala, M. Żukociński
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
 
  Funding: This work was supported by the Polish Ministry of Science and Higher Education under Grant DIR/WK/2016/06 and DIR/WK/2016/03.
Institute of Electronic Systems (ISE) at Warsaw University of Technology designs, builds and installs control and synchronization systems for several accelerator facilities. In recent years ISE together with the Deutsches Elektronen-Synchrotron (DESY) team created the RF synchronization system for the European XFEL in Hamburg. ISE is a key partner in several other projects for DESY flagship facilities. The group participated in development of the MTCA.4 standard and designed a family of components for the MTCA.4-based LLRF control system. Currently, ISE contributes to the development of the Master Oscillators for XFEL and FLASH, and phase reference distribution system for SINBAD. Since 2016 ISE is an in-kind partner for the European Spallation Source (ESS), working on the phase reference line for the ESS linac, components for 704.42 MHz LLRF control system, including a MTCA.4-based LO signal generation module and the Cavity Simulator. In 2019 ISE became one of the co-founders of the Polish Free-Electron Laser (PolFel) located in the National Centre for Nuclear Research in Świerk. The overview of the recent projects for large physics experiments ongoing at ISE is presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA053  
About • paper received ※ 01 October 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA103 The PLC Control System for the RF Upgrade of the Super Proton Synchrotron PLC, controls, GUI, hardware 458
 
  • J.C. Oliveira, L. Arnaudon, A. Diaz Fontalva
    CERN, Geneva, Switzerland
 
  During the CERN Long Shutdown 2 (LS2), the 200 MHz main acceleration system of the Super Proton Synchrotron (SPS) is being upgraded. Two cavities will be added to reach a total of six. Each new cavity will be powered by Solid State Power Amplifiers (SSPA) grouped into 16 "towers" of 80 modules each, in total 2560 modules. This paper describes the newly developed control system which uses a master PLC for control and interlock of each cavity and the slave PLC controllers for each of the solid state amplifier towers. The system topology and design choices are discussed. Control and interlocking of all subsystems necessary for the operation of an RF cavity are detailed, and the interaction between the master and slave PLC controllers is outlined. We discuss some preliminary results and performance of the test installation.  
poster icon Poster MOPHA103 [3.012 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA103  
About • paper received ※ 27 September 2019       paper accepted ※ 02 October 2020       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA114 Achieving Optimal Control of LLRF Control System with Artificial Intelligence controls, LLRF, SRF, framework 488
 
  • R. Pirayesh, S. Biedron, J.A. Diaz Cruz, M. Martinez-Ramon, S.I. Sosa Guitron
    University of New Mexico, Albuquerque, New Mexico, USA
 
  Artificial Intelligence is a versatile tool to make machines learn the characteristics of a device or a system. In this research, we will be investigating applying deep learning and Gaussian process learning to make a machine learn the optimal settings of a low-level RF (LLRF) control system for particle accelerators. These settings include the multiple controllers’ parameters and the parameters of the LLRF that result in an optimal target function applied to the LLRF. Finding this target function, finding the right machine learning algorithm with the lowest error, and finding the best controller that result in the most optimal target function is the goal of this research.  
poster icon Poster MOPHA114 [0.847 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA114  
About • paper received ※ 09 October 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA124 Local Oscillator Rear Transition Module for 704.42 MHz LLRF Control System at ESS controls, LLRF, monitoring, operation 516
 
  • I. Rutkowski, K. Czuba, M.G. Grzegrzółka
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
 
  Funding: Work supported by Polish Ministry of Science and Higher Education, decision number DIR/WK/2016/03.
This paper describes the specifications, architecture, and measurements’ results of the MTCA-compliant Local Oscillator (LO) Rear Transition Module (RTM) board providing low phase noise clock and heterodyne signals for the 704.42 MHz Low Level Radio Frequency (LLRF) control system at the European Spallation Source (ESS). The clock generation and LO synthesis circuits are based on the module presented at ICALEPCS 2017. The conditioning circuits for the input and output signals must simultaneously achieve the desired impedance matching, spectral purity, output power as well as the phase noise requirements. The reference conditioning circuit presents an additional challenge due to input power range being significantly wider than the output range. The circuits monitoring the power levels of critical signals and voltages of supply rails for remote diagnostics as well as the programmable logic devices used to set the operating parameters via Zone3 connector are described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA124  
About • paper received ※ 04 October 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAPP02 Development of the MTCA.4 I/O Cards for SPring-8 Upgrade and New 3 GeV Light Source linac, LLRF, FPGA, timing 665
 
  • T. Fukui, N. Hosoda
    RIKEN SPring-8 Center, Innovative Light Sources Division, Hyogo, Japan
  • M. Ishii
    JASRI/SPring-8, Hyogo-ken, Japan
  • E. Iwai, H. Maesaka, T. Ohshima
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  We will start a full energy injection from the SACLA to the SPring-8 from next year as a part of the SPring-8 upgrade. For this, we developed several I/O cards with the MTCA.4 form factor. One of the key issues is a timing synchronization between SACLA and SPring-8. We implemented required functions on the FPGA logic of a commercially available I/O card. We develop a module to distribute a trigger and clocks. We also developed cards used for the beam position monitor (BPM) and low-level RF system (LLRF). Those are included two types of cards. One is a 16-bit digitizer used for LLRF for the SPring-8 since 2018 march. We will use the card for the BPM with modified FPGA logic. Second is an implementation of functions with the pulsed RF signals processed on the FPGA logic of a commercially available card. These functions are used for the BPM of the beam transport line from the SACLA to SPring-8. The existing system is used 1 Hz beam repetition but we need more than 10 Hz to achieve an injection time less than 20 minutes to maximize user time. We will report the performance of the MTCA.4 cards, the upgrade plan of the SPring-8, and the construction of the 3 GeV Light Source.  
slides icon Slides TUAPP02 [7.123 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUAPP02  
About • paper received ※ 01 October 2019       paper accepted ※ 20 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA002 LCLS-II Cryomodule and Cryogenic Distribution Control controls, cryomodule, cryogenics, PLC 1071
 
  • D.T. Robinson, A.L. Benwell, C. Bianchini, D. Fairley, S.L. Hoobler, K.J. Mattison, J. Nelson, A. Ratti
    SLAC, Menlo Park, California, USA
  • L.E. Farrish, J. Gubeli, C. Hovater, K. Jordan, W. Moore
    JLab, Newport News, Virginia, USA
  • J.A. Kaluzny, A. Martinez
    Fermilab, Batavia, Illinois, USA
 
  The new superconducting Linear Coherent Light Source (LCLS-II) at the SLAC National Accelerator Laboratory will be an upgrade to LCLS, the world’s first hard X-ray free-electron laser. LCLS-II is in an advanced stage of construction with equipment for both Cryoplants as well as more than half of the 37 cryomodules onsite. Jefferson Lab (JLab) is a partner lab responsible for building half of the LCLS-II cryomodules. Hence the Low Energy Recirculation Facility (LERF) at JLab was used to stage and test LCLS-II cryomodules before shipping them to SLAC. LERF was set up to test two cryomodules at a time. LERF used LCLS-II cryogenic controls instrumentation racks, Programmable Logic Controllers (PLC) controls and Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs) with the intention to use the LERF setup to check-out and verify cryogenic controls for LCLS-II. The cryogenic controls first utilized at LERF would then be replicated for controlling all 37 cryomodules via an EPICS user interface. This paper discusses the cryogenic controls currently developed for implementation in the LCLS-II project.  
poster icon Poster WEPHA002 [1.119 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA002  
About • paper received ※ 28 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA025 Initial Implementation of a Machine Learning System for SRF Cavity Fault Classification at CEBAF software, cryomodule, operation, SRF 1131
 
  • A. Carpenter, T. Powers, Y. Roblin, A.D. Solopova Shabalina, C. Tennant
    JLab, Newport News, Virginia, USA
  • K.M. Iftekharuddin, L. Vidyaratne
    ODU, Norfolk, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177
The Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Laboratory is a high power Continuous Wave (CW) electron accelerator. It uses a mixture of of SRF cryomodules: older, lower energy C20/C50 modules and newer, higher energy C100 modules. The cryomodules are arrayed in two anti-parallel linear accelerators. Accurately classifying the type of cavity faults is essential to maintaining and improving accelerator performance. Each C100 cryomodule contains eight 7-cell cavities. When a cavity fault occurs within a cryomodule, all eight cavities generate 17 waveforms each containing 8192 points. This data is exported from the control system and saved for review. Analysis of these waveforms is time intensive and requires a subject matter expert (SME). SMEs examine the data from each event and label it according to one of several known cavity fault types. Multiple machine learning models have been developed on this labeled dataset with sufficient performance to warrant the creation of a limited machine learning software system for use by accelerator operations staff. This paper discusses the transition from model development to implementation of a prototype system.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA025  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA034 Software Tools for Hardware Elliptical Cavity Simulator Management and Configuration controls, EPICS, network, hardware 1153
 
  • W. Cichalewski, K. Klys
    TUL-DMCS, Łódź, Poland
 
  Funding: Work supported by Polish Ministry of Science and Higher Education, decision number DIR/WK/2016/2017/03-1
The European Spallation Source (ESS) is currently in the middle of its construction phase. This facility linear accelerator consists of different sections. Superconducting part of this linac will be equipped with spokes and elliptical cavities (like M-Beta and H-Beta types). Various ESS linac components will be delivered by different in-kind partners from Europe. In order to provide a reliable development and evaluation platform hardware-based electronic cavity simulator have been built. This solution is especially useful for Low Level Radio Frequency (LLRF) systems development and integration in case of limited access to real superconducting structures. This contribution presents software tools developed for efficient cavity simulator parameters configuration and management. Solutions based on Python and EPICS framework are presented. Tool adaptation to ESS proposed E3 framework and experience from cavity simulator operation are also discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA034  
About • paper received ※ 01 October 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA089 Design and Implementation of Superconducting Booster Control System controls, booster, EPICS, interface 1292
 
  • A.L. Li, Z. Peng, J. Zheng
    CIAE, Beijing, People’s Republic of China
 
  In order to improve beam energy, a superconducting booster is built behind the tandem accelerator. The Control system is designed based on EPICS according to its functional needs. It gives a detailed description of hardware and software. The control system realizes data acquisition, network monitoring, Process variable (PV) management, database services, historical data analysis, alarm and other functions of remote device. The running result shows that the control system has fast response time and works stably and reliably, which meets the control requirement.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA089  
About • paper received ※ 30 September 2019       paper accepted ※ 03 October 2020       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA150 SLED Tuning Control System for PAL-XFEL controls, EPICS, operation, FEL 1446
 
  • Y.J. Suh, H. Heo, H.-S. Kang, C. Kim, K.H. Kim, G. Mun, Y.J. Park
    PAL, Pohang, Republic of Korea
 
  A total of 42 SLED Tuners are installed at the PAL-XFEL (4th generation light source) acceleration section. To adjust this, a person directly enters the Tunnels and adjusts them manually. When the SLED Tuners are equipped with a motor, it can be adjusted remotely and the intensity of the beam is also monitored while monitored while monitoring the output of the Klystron. In addition, by storing the tuning point according to the XFEL beam rate as the LVDT value, it is possible to control the SLED bar according to the beam rate changing in real time, which is helpful to provide stable beam. In order to remotely control this device, an additional motor, LVDT, and limit switch are attached. Each device is connected to the controller and can be operated and data remotely from the cab through the EPICS IOC and CSS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA150  
About • paper received ※ 26 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA153 A State Machine Solution to Control Superconducting Cavities controls, MMI, EPICS, rfq 1452
 
  • D. Touchard, R. Ferdinand, M. Lechartier, F. Pillon, L. Valentin
    GANIL, Caen, France
  • Y. Lussignol
    CEA-DRF-IRFU, France
 
  For the commissioning of the SPIRAL2 accelerating cavities at GANIL, a whole EPICS control-command system has been developed to start the radio-frequency (RF) system. The description of the RF constraints, the functions performed will be discussed to understand the operation of state machines that have been developed. The first results of the commissioning of the control-command of the cavities will be presented.  
poster icon Poster WEPHA153 [1.262 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA153  
About • paper received ※ 26 September 2019       paper accepted ※ 20 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAPP02 The Control System of the Elliptical Cavity and Cryomodule Test Stand Demonstrator for ESS controls, cryomodule, EPICS, PLC 1538
 
  • A. Gaget, T.J. Joannem
    CEA-DRF-IRFU, France
 
  CEA IRFU Saclay* is taking part of ESS (European Spallation Source)** construction through several packages and, especially in the last three years on the Elliptical Cavity and Cryomodule Test stand Demonstrator (ECCTD)***. The project consists of RF test, conditioning, cryogenic cool-down and regulations of eight cryomodules with theirs four cavities each. For now, two medium beta cavities cryomodules have been successfully tested. This paper describes the context and the realization of the control system for cryogenic and RF processes, added to cavities tuning motorization relying on COTS solutions: Siemens PLC, EtherCAT Beckhoff modules, IOxOS fast acquisition cards and MRF timing cards.
*IRFU, https://irfu.cea.fr/en/
**ESS, https://europeanspallationsource.se/
***ECCTD, http://irfu.cea.fr/dacm/en/Phocea/Viedeslabos/Ast/astvisu.php?idast=3359
 
slides icon Slides THAPP02 [6.841 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THAPP02  
About • paper received ※ 27 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)