Keyword: target
Paper Title Other Keywords Page
MOAPP03 Control System Plans for SNS Upgrade Projects controls, EPICS, neutron, experiment 12
 
  • S.M. Hartman, K.S. White
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC05-00OR22725.
The Spallation Neutron Source at Oak Ridge National Laboratory is planning two major upgrades to the facility. The Proton Power Upgrade project, currently underway, will double the machine power from 1.4 to 2.8 MW by adding seven additional cryomodules and associated equipment. The Second Target Station project, currently in conceptual design, will construct a new target station effectively doubling the potential scientific output of the facility. This paper discusses the control system upgrades required to integrate these projects into the existing EPICS based control systems used for the machine and neutron instrument beamlines. While much of the control system can be replicated from existing solutions, some systems require new hardware and software. Operating two target stations simultaneously will require a new run permit system to safely manage beam delivery.
 
slides icon Slides MOAPP03 [32.100 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOAPP03  
About • paper received ※ 02 October 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOAPP04 Status of the National Ignition Facility (NIF) Integrated Computer Control and Information Systems controls, diagnostics, experiment, operation 15
 
  • G.K. Brunton, A.I. Barnes, J.R. Castro Morales, M.J. Christensen, J. Dixon, M. Fedorov, M.S. Flegel, R. Lacuata, D.W. Larson, A.P. Ludwigsen, D.G. Mathisen, V.J. Miller Kamm, M. Paul, S.L. Townsend, B.M. Van Wonterghem, S. Weaver, E.F. Wilson
    LLNL, Livermore, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
The National Ignition Facility (NIF) is the world’s most energetic laser experimental facility with 192 beams capable of delivering 2.1 MJ of 500 TW ultraviolet laser light to a target. NIF experiments facilitate the study of extreme physical conditions at temperatures exceeding 100 million K and 100 billion times atmospheric pressure allowing scientists the ability to generate conditions similar to the center of the sun and explore the physics of planetary interiors, supernovae and thermonuclear burn. This year concludes a series of optimizations and enhancements to the control & information systems to sustain the quantity of experimental target shots while developing an enhanced precision diagnostic system to optimize and increase the power and energy capabilities of the facility. In addition, many new system control and diagnostic capabilities have been commissioned to increase the understanding of target performance. This year also concludes a multi-year sustainability project to migrate the control system software to Java. This talk will report on the current status of each of these areas in support of the wide variety of experiments being conducted.
 
slides icon Slides MOAPP04 [10.709 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOAPP04  
About • paper received ※ 30 September 2019       paper accepted ※ 11 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOBPP01 PLCverif Re-engineered: An Open Platform for the Formal Analysis of PLC Programs PLC, controls, software, interface 21
 
  • E. Blanco Viñuela, D. Darvas
    CERN, Geneva, Switzerland
  • V. Molnár
    BUTE, Budapest, Hungary
 
  Programmable Logic Controllers (PLC) are widely used for industrial automation in industry and at CERN. The reliability of PLC software is crucial, but typically only testing is used to validate it. Our work targets the use of formal verification in practical ways for many years, which showed that it can be beneficial and practically applicable to various PLC programs. In this paper, we present PLCverif, our platform for formal analysis of PLC programs which has largely enhanced the quality of the deployed PLC software. By re-engineering the previous internal prototype tool, we built PLCverif to be an open, extensible platform that can be used not only for CERN’s specific PLC programs. PLCverif is licensed under an open source license, allowing the interested parties to use and extend it.  
slides icon Slides MOBPP01 [5.586 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOBPP01  
About • paper received ※ 27 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOMPL001 Quality Assurance Plan for the SCADA System of the Cherenkov Telescope Array Observatory software, controls, data-acquisition, operation 121
 
  • E. Antolini
    CTA, Heidelberg, Germany
  • D. Melkumyan, K. Mosshammer, I. Oya
    DESY Zeuthen, Zeuthen, Germany
 
  The Cherenkov Telescope Array is the future ground-based facility for gamma-ray astronomy at very-high energies. The CTA Observatory will comprise more than 100 telescopes and calibration devices that need to be centrally managed and synchronized to perform the required scientific and technical activities. The operation of the array requires a complex Supervisory Control and Data Acquisition (SCADA) system, named Array Control and Data Acquisition (ACADA), whose quality level is crucial for maximizing the efficiency of the CTA operations. In this contribution we aim to present the Quality Assurance (QA) strategy adopted by the ACADA team to fulfill the quality standards required for the creation and usage of ACADA software. We will describe the QA organization and planned activities, together with the quality models and the related metrics defined to comply with the required quality standards. We will describe the procedures, methods and tools which will be applied in order to guarantee, that for each phase of the project, the required level of quality in the design, implementation, testing, integration, configuration, usage and maintenance of the ACADA product are met.  
poster icon Poster MOMPL001 [1.425 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOMPL001  
About • paper received ※ 25 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOMPL006 Automatic Deployment in a Control System Environment controls, network, EPICS, software 126
 
  • M.G. Konrad, S. Beher, A.P. Lathrop, D.G. Maxwell, J.P.H. Ryan
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
Development of many software projects at the Facility of Rare Isotope Beams (FRIB) follows an agile development approach. An important part of this practice is to make new software versions available to users frequently to meet their changing needs during commissioning and to get feedback from them in a timely manner. However, building, testing, packaging, and deploying software manually can be a time-consuming and error-prone process. We will present processes and tools used at FRIB to standardize and automate the required steps. We will also describe our experience upgrading control system computers to a new operating system version as well as to a new EPICS release.
 
poster icon Poster MOMPL006 [3.806 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOMPL006  
About • paper received ※ 03 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA002 A Model-Driven Service-Oriented Wizard-Based Multi-Target Development Kit for Supervision Systems controls, operation, software, status 187
 
  • C.F. Afonso, L. Casalegno, S. Foglio, S.G. Gioia, M. Necchi, M.G. Pullia, S. Toncelli
    CNAO Foundation, Pavia, Italy
  • C. Larizza
    Pavia University, Biomedical Informatics Lab "Mario Stefanelli", Pavia, Italy
 
  Funding: Horizon2020 Marie Skłodowska-Curie Grant Agreement No 675265
The Italian National Hadrontherapy Center (CNAO) is a particle treatment and research center equipped with a synchrotron accelerator. The configuration and support environment of CNAO’s control system, originally designed in 2003, is currently being upgraded to incorporate mobile devices. As part of the technological upgrade, a product line architecture has been designed with intent to define application scope, reusability of core assets, and specification of variation points. Implementation and compliance with the product line architecture aims at reducing application’s development time, improving reliability, and aiding medical certification procedures. However, definition and compliance with the architecture comes with considerable overhead development costs. In order to assist the development of new environment applications, a visual wizard has been developed to create customized base applications. This paper presents the challenges encountered and description of the product line architecture for the upgraded configuration and support environment. Alongside, we also describe the Wizard Generator, currently implemented applications, and planned application validation.
 
poster icon Poster MOPHA002 [2.250 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA002  
About • paper received ※ 16 September 2019       paper accepted ※ 02 October 2020       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA012 Interrupting a State Machine controls, EPICS, LabView, electronics 219
 
  • K.V.L. Baker
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  At the ISIS Pulsed Neutron and Muon Source we talk to a variety of types of beamline systems for controlling the environment of samples under investigation. A state machine is an excellent way of controlling a system which has a finite number of states, a predetermined set of transitions, and known events for initiating a transition. But what happens when you want to interrupt that flow? An excellent example of this kind of system could be a field ramp for a magnet, this will start in a "stable" state, the "ramp to target field" event will occur, and it will transition into a state of "ramping". When the field is at the target value, it returns to a "stable" state. Depending on the ramp rate and difference between the current field and the target field this process could take a long time. If you put the wrong field value in, or something else happens external to the state machine, you may want to pause or abort the system whilst it is running. You will want to interrupt the flow through the states. This presentation will detail a solution for such an interruptible system within the EPICS framework.  
poster icon Poster MOPHA012 [0.386 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA012  
About • paper received ※ 27 September 2019       paper accepted ※ 02 October 2020       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA015 Reverse Engineering the Amplifier Slab Tool at the National Ignition Facility database, optics, simulation, operation 228
 
  • A. Bhasker, R.D. Clark, J.E. Dorham
    LLNL, Livermore, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
This paper discusses the challenges and steps required to convert a stand-alone legacy Microsoft Access-based application, in the absence of original requirements, to a web-based application with an Oracle backend and Oracle Application Express/JavaScript/JQuery frontend. The Amplifier Slab Selection (ASL) Tool provides a means to manage and track Amplifier Slabs on National Ignition Facility (NIF) beamlines. ASL generates simulations and parameter visualization charts of seated Amplifier Slabs as well as available replacement candidates to help optics designers make beamline configuration decisions. The migration process, undertaken by the NIF Shot Data Systems (SDS) team at Lawrence Livermore National Laboratory (LLNL), included reverse-engineering functional requirements due to evolving processes and changing NIF usage patterns.
 
poster icon Poster MOPHA015 [0.525 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA015  
About • paper received ※ 27 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA030 An Upgrade of the HARPS-N Spectrograph Autoguider at TNG GUI, software, controls, MMI 258
 
  • R. Cirami, I. Coretti, P. Di Marcantonio
    INAF-OAT, Trieste, Italy
  • F. Alesina, N. Buchschacher, F. Pepe
    Université de Genève, Observatoire Astronomique, Versoix, Switzerland
 
  HARPS-N is a high-precision radial-velocity spectrograph installed on the INAF TNG in the island of La Palma, Canary Islands. The HARPS-N project is a collaboration among several institutes lead by the Astronomical Observatory of the University of Geneva. The HARPS-N control software is composed by the Sequencer, which coordinates the scientific observations and by a series of modules implemented in LabVIEW for the control of the instrument front end, calibration unit and autoguider. The autoguider is the subsystem in charge of maintaining the target centered on the spectrograph fiber. It acquires target images at high frequency with a technical CDD and with the help of dedicated algorithms keeps the target centered on the fiber through a piezo tip-tilt stage. Exploiting the expertise acquired with the autoguiding system of the ESPRESSO spectrograph installed at the ESO VLT, a collaboration has been setup between the HARPS-N Consortium and the INAF - Astronomical Observatory of Trieste for the design and implementation of a new autoguider for HARPS-N. This paper describes the design, implementation and installation phases of the new autoguider system.  
poster icon Poster MOPHA030 [1.382 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA030  
About • paper received ※ 29 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA043 Accelerator Control Data Mining with WEKA controls, database, network, GUI 293
 
  • W. Fu, K.A. Brown, T. D’Ottavio, P.S. Dyer, S. Nemesure
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Accelerator control systems generates and stores many time-series data related to the performance of an accelerator and its support systems. Many of these time series data have detectable change trends and patterns. Being able to timely detect and recognize these data change trends and patterns, analyse and predict the future data changes can provide intelligent ways to improve the controls system with proactive feedback/forward actions. With the help of advanced data mining and machine learning technology, these types of analyses become easier to produce. As machine learning technology matures with the inclusion of powerful model algorithms, data processing tools, and visualization libraries in different programming languages (e.g. Python, R, Java, etc), it becomes relatively easy for developers to learn and apply machine learning technology to online accelerator control system data. This paper explores time series data analysis and forecasting in the Relativistic Heavy Ion Collider (RHIC) control systems with the Waikato Environment for Knowledge Analysis (WEKA) system and its Java data mining APIs.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA043  
About • paper received ※ 20 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUBPR02 A 4-Channel, 7 ns-Delay Tuning Range, 400 fs-Step, 1.8 ps RMS Jitter, Delay Generator Implemented in a 180 nm CMOS Technology experiment, timing, controls, power-supply 733
 
  • F.C. Badets, G.A. Billiot, S. Bouquet, B. Caillat, A. Fustier, F. Lepin, C. Magnier, G. Regis, A. Spataro
    CEA, Grenoble, France
  • D. Monnier-Bourdin, B. Riondet
    Greenfield Technology, Massy, France
 
  This paper discloses the integration, in a 180 nm CMOS technology, of a 4-channel delay generator dedicated to synchronization down to a few ps. The delay generation principle relies on the linear charge of a capacitor triggered by the input pulse. The output pulse generation occurs when the capacitor voltage exceeds a threshold voltage. The delay full scale is automatically set to match the period of the master clock, ranging from 5-7 ns, with the help of an embedded calibration circuit. The delay value is controlled with the help of a 14-bit DAC setting the threshold voltage, which leads to a 400 fs delay step. Among other features, the chip embeds a combination mode of either 2 or 4 channels to output narrow width pulses. The chip is fully compliant with LVDS, LVPECL and CML differential input pulses and outputs LVPECL pulses. The chip has been fully characterized over temperature (0 to 60 °C) and supply voltage (± 10%). The chip is compliant with pulse repetition frequencies up to 20 MHz. The measured INL is 100 LSB and the RMS jitter is 1.8 ps. The power consumption has been measured to 350 mW for 4 active channels.  
slides icon Slides TUBPR02 [5.312 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUBPR02  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUBPR06 Laser Megajoule Timing System timing, laser, diagnostics, experiment 749
 
  • T. Somerlinck, T. Falgon
    CEA, LE BARP cedex, France
  • N. Bazoge, S. Hocquet, D. Monnier-Bourdin
    Greenfield Technology, Massy, France
 
  The aim of the Laser Megajoule facility (LMJ) is to deliver more than 1 MJ of laser energy to targets for high energy density physics experiments. In association with Greenfield Technology, we developed a specific timing system to synchronize the 176 laser beams on the target with a precision better than 40 ps rms and to trigger and mark plasma diagnostics. The final architecture, settled and used since three years, is based on a master oscillator that sends a clock with serial data through a fiber-optic network, allowing to synchronize more than 500 delay generators spread over the large LMJ facility. The settings of each laser beam and the various experiments require different sampling rates (multi to single shot) and 16 groups for coactivity. Three kinds of delay generators, electrical and optical, are designed for standard precision (<150 ps jitter) and the third is designed for high precision. Each output deliver trigger or fiducial signals with jitter down to 5 ps and peak-to-peak wander less than 10 ps over a week. Test performance of this LMJ timing system is in progress all over the LMJ facility. Besides it will be installed on the petawatt laser (PETAL) this year.  
slides icon Slides TUBPR06 [58.283 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUBPR06  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCPL03 The LMJ Target Diagnostics Integration diagnostics, controls, interface, software 767
 
  • S. Tranquille-Marques, P. Prunet
    CEA, LE BARP cedex, France
 
  The French Laser Megajoule (LMJ) is, behind the US NIF, the second largest inertial fusion facility in the World. The main activity of this facility is the acquisition of several physical phenomena as neutron, gamma, X rays produced by the indirect attack of hundreds of high power laser beams on targets through measurement devices called "target diagnostics". More than 30 diagnostics will be installed and driven in a huge and complex integrated computer control system. All this Targets Diagnostics arrived one at a time, each one with its particularity and complexity. The Tango Architecture and Panorama are used for the command control of these equipment. The aim of this paper is first, to introduce how Targets Diagnostics are progressively integrated in the command control. We will then see how Targets Diagnostics managed to cohabit even if they are in different phases of their integration. The paper concludes how Target Diagnostics are configured and computer-driven during all the shot sequence.  
slides icon Slides TUCPL03 [56.870 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUCPL03  
About • paper received ※ 27 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WECPR02 Benefits and Drawbacks of Using Rust in an Existing C/C++ Codebase EPICS, MMI, framework, interface 928
 
  • B.S. Martins
    FRIB, East Lansing, Michigan, USA
 
  Mozilla has recently released a new programming language, Rust, as a safer and more modern alternative to C++. This work explores the benefits (chiefly the features provided by Rust) and drawbacks (the difficulty in integrating with a C ABI) of using Rust in an existing codebase, the EPICS framework, as a replacement for C/C++ in some of EPICS’ modules.  
slides icon Slides WECPR02 [0.471 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WECPR02  
About • paper received ※ 19 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEDPR04 The Web as the Primary Control System User Interface controls, framework, interface, GUI 987
 
  • R. Neswold, B.F. Harrison
    Fermilab, Batavia, Illinois, USA
 
  The application framework used in Fermilab’s Control System is proprietary and was written decades ago. Considered state-of-the-art at one time, it now lacks many features we expect from a modern interface and needs to be replaced. Our investigation of Web browsers and JavaScript revealed a powerful, rich, and state-of-the-art development environment. We discuss JavaScript frameworks, JavaScript language features, and packaging tools. We also discuss issues we need to resolve before we are confident this can become our primary application platform.  
slides icon Slides WEDPR04 [0.975 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEDPR04  
About • paper received ※ 01 October 2019       paper accepted ※ 02 October 2020       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEMPL001 An Application of Machine Learning for the Analysis of Temperature Rise on the Production Target in Hadron Experimental Facility at J-PARC operation, proton, EPICS, extraction 992
 
  • K. Agari, H. Akiyama, Y. Morino, Y. Sato, A. Toyoda
    KEK, Tsukuba, Japan
 
  Hadron Experimental Facility (HEF) is designed to handle an intense slow-extraction proton beam from the 30 GeV Main Ring (MR) of Japan Proton Accelerator Research Complex (J-PARC). Proton beams of 5·1013 protons per spill during 2 seconds in the 5.2 seconds accelerator operating cycle were extracted from MR to HEF in the 2018 run. In order to evaluate soundness of the target, we have analyzed variation of temperature rise on the production target, which depends on the beam conditions on the target. Predicted temperature rise is calculated from the existing data of the beam intensity, the spill length (duration of the beam extraction) and the beam position on the target, using a linear regression analysis with a machine learning library, Scikit-learn. As a result, the predicted temperature rise on the production target shows good agreement with the measured one. We have also examined whether the present method of the predicted temperature rise from the existing data can be applied to unknown data in the future runs. The present paper reports the status of the measurement system of temperature rise on the target with machine learning in detail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEMPL001  
About • paper received ※ 28 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA067 Control System Developments and Machine Model Benchmark for the GSI Fragment Separator FRS controls, framework, experiment, dipole 1253
 
  • J.P. Hucka, J. Fitzek, D. Ondreka, S. Pietri, B.R. Schlei, H. Weick
    GSI, Darmstadt, Germany
  • J. Enders
    TU Darmstadt, Darmstadt, Germany
 
  Funding: Supported by BMBF (05P15RDFN1 and 05P19RDFN1)
At the GSI facility, the LSA* framework from CERN is used to implement a new control system for accelerators and beam transfers. This was already completed and tested for the SIS18 accelerator. The implementation of experimental rings such as CRYRING and ESR is currently under development. In addition, the fragment separator FRS** and - at a later stage - also the superconducting fragment separator Super-FRS at FAIR will be controlled within this framework. The challenge posed by the implementation of the control system for the FRS arises from the interaction of the beam with matter in the beamline and the beam’s associated energy loss. This energy loss is determined using input from ATIMA*** and has been included into the code of the LSA framework. The developed control system solutions were tested in dry-runs and proven to control power supplies and actuators with the help of an out of framework solution. Additionally the current production version of the software and setting generator was simulated and benchmarked by comparison to older measurements.
*M. Lamont et al., LHC Project Note 368
**H. Geissel et al., NIM B 70, 286 (1992)
***H. Weick et al., NIM B 164/165 (2000) 168
 
poster icon Poster WEPHA067 [0.655 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA067  
About • paper received ※ 10 September 2019       paper accepted ※ 20 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA091 Generalising the High-Level Geometry System for Reflectometry Instruments at ISIS controls, neutron, experiment, EPICS 1300
 
  • T. Löhnert, A.J. Long
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J.R. Holt
    Tessella, Abingdon, United Kingdom
 
  At the ISIS Pulsed Neutron and Muon Source, we in the Experiment Control Group are currently upgrading from the LabVIEW*-based SECI instrument control system to the new IBEX control system** based on EPICS***. One class of instrument we have yet to migrate to the new system is reflectometers. These instruments require equipment to track the path of the neutron beam to high levels of precision over various experimental configurations, which results in a unique set of control system requirements. Since August 2018, we have been implementing a higher level geometry layer responsible for linking beamline components together and preserving experimental parameters such as the incident beam angle across different configurations. This layer is written as a Python server running on the instrument, which interfaces to the Channel Access protocol used by EPICS. This talk will provide an overview of the system architecture, specifically how it supports the design goal of making the system easy to extend and reconfigure while preserving the functionality of the existing solution, as well as an outlook on future plans for a more sophisticated motion control system.
*http://www.ni.com/en-gb/shop/labview.html
**https://iopscience.iop.org/article/10.1088/1742-6596/1021/1/012019/pdf
***https://epics-controls.org/
 
poster icon Poster WEPHA091 [0.550 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA091  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA092 SNS Credited Pulse Energy Limit System Conceptual Design PLC, timing, controls, operation 1304
 
  • C. Deibele, D.C. Williams
    ORNL, Oak Ridge, Tennessee, USA
  • K.L. Mahoney
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC05-00OR22725.
The Controls Group at the Spallation Neutron Source (SNS) is designing a programmable signal processor based credited safety control that calculates pulsed beam energy based on beam kinetic energy and charge. The SNS Pulsed Energy Limit System (SPELS) must reliably shut off the beam if the average power exceeds 2.145 MW averaged over 60 seconds. This paper will cover the architecture and design choices needed to develop the system under the auspices of a programmable radiation-safety credit control. The authors will also introduce the concept of a graded failure approach that allows the credited system to continue operation in the presence of some faults.
 
poster icon Poster WEPHA092 [0.981 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA092  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THCPR02 Target Control and Protection Systems Lessons from SNS Operations controls, PLC, instrumentation, neutron 1623
 
  • D.L. Humphreys
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC05-00OR22725.
The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory has been in operations since 2006 and proposes a project to build a Second Target Station (STS) to effectively double potential scientific output. The SNS target controls operate in a harsh environment which includes high radiation, exposure to gaseous radionuclides, and activated liquid mercury and mercury vapor. These conditions necessitate protective interlocks and credited controls for protection functions to ensure proper response to off-normal conditions. In order to inform the design of target controls for the STS, we have examined lessons learned during SNS operations regarding the design and implementation of the control and protection systems for the first target station (FTS). This paper will examine various aspects of the performance of the target control and protection systems including reliability, maintainability and sustainability given the challenging environment created by 1.4 MW operations. Specific topics include distributed control of various target subsystems, response to loss of power, selection of nuclear grade instrumentation, and applying these lessons to the design for the STS project.
 
slides icon Slides THCPR02 [7.233 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-THCPR02  
About • paper received ※ 01 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRAPP01 The Laser MegaJoule Facility: Command Control System Status Report controls, laser, diagnostics, MMI 1652
 
  • H. Durandeau, R. Clot, P. Gontard, S. Tranquille-Marques, Y. Tranquille-Marques
    CEA, LE BARP cedex, France
 
  The Laser MegaJoule (LMJ) is a 176-beam laser facility, located at the CEA CESTA Laboratory near Bordeaux (France). It is designed to deliver about 1.4 MJ of energy on a target, for high energy density physics experiments, including fusion experiments. The first bundle of 8-beams bundle was commissioned in October 2014. Today five bundles are in operation. In this paper, we focus on two specific evolutions of the command control: the Target Chamber Diagnostic Module (TCDM) which allows the measurement of vacuum windows damages (an automatic sequence activates the TCDM that can be operated at night without any operator) and new Target Diagnostics integration. We also present a cybersecurity network analysis system based on Sentryo Probes and how we manage maintenance laptops in the facility.  
slides icon Slides FRAPP01 [20.352 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-FRAPP01  
About • paper received ※ 27 September 2019       paper accepted ※ 20 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)