Keyword: Ethernet
Paper Title Other Keywords Page
MOPHA044 Development of Ethernet Based Real-Time Applications in Linux Using DPDK Linux, network, feedback, real-time 297
 
  • G. Gaio, G. Scalamera
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  In the last decade Ethernet has become the most popular way to interface hardware devices and instruments to the control system. Lower cost per connection, reuse of existing network infrastructures, very high data rates, good noise rejection over long cables and finally an easier maintainability of the software in the long term are the main reasons of its success. In addition, the need of low latency systems of the High Frequency Trading community has boosted the development of new strategies, such as CPU isolation, to run real-time applications in plain Linux with a determinism of the order of microseconds. DPDK (Data Plane Development Kit), an open source software solution mainly sponsored by Intel, addresses the request of high determinism over Ethernet by bypassing the network stack of Linux and providing a more friendly framework to develop tasks which are even able to saturate a 100 Gbit connection. Benchmarks regarding the real-time performance and preliminary results of employing DPDK in the acquisition of beam position monitors for the fast orbit feedback of the Elettra storage ring will be presented.  
poster icon Poster MOPHA044 [2.626 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA044  
About • paper received ※ 29 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA080 Automatic Reconfiguration of CERN 18 kV Electrical Distribution - the Auto Transfer Control System network, controls, operation, PLC 400
 
  • J.C. Letra Simoes, S. Infante, F.A. Marin
    CERN, Geneva, Switzerland
 
  Availability is key to electrical power distribution at CERN. The CERN electrical network has been consolidated over the last 15 years in order to cope with the evolving needs of the laboratory and now comprises a 200 MW supply from the French grid at 400 kV, a partial back up from the Swiss grid at 130 kV and 16 diesel generators. The Auto Transfer Control System has a critical role in minimizing the duration of power cuts on this complex electrical network, thus significantly reducing the impact of downtime on CERN accelerator operation. In the event of a major power loss, the control system analyzes the global status of the network and decides how to reconfigure the network from alternative sources, following predefined constraints and priorities. The Auto Transfer Control System is based on redundant logical controllers (PLC) with multiple remote IO stations linked via an Ethernet IP ring (over optical fiber) across the three major substations at CERN. This paper describes the system requirements, constraints and the applicable technologies, which will be used to deliver an operational system by 2020.  
poster icon Poster MOPHA080 [1.586 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA080  
About • paper received ※ 26 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA098 A New Communication Interface for the European Southern Observatory (ESO)’s Very Large Telescope Technical Detector Control System Using Aravis, an Open-Source Library for GenICam Cameras interface, controls, detector, software 444
 
  • K.F. Mulholland
    OSL, St Ives, Cambridgeshire, United Kingdom
  • J. Knudstrup, F. Pellegrin
    ESO, Garching bei Muenchen, Germany
 
  The European Southern Observatory’s Very Large Telescope (VLT) provides support for high-performance industrial cameras with its Technical Detector Control System (TDCS). Until now, TDCS has used a communication interface based on an API from Allied Vision Technologies (AVT), which only supports cameras made by AVT. As part of the VLT 2019 release, a new communication interface has been developed for TDCS using Aravis, the open-source library for GenICam cameras. Aravis has been independently developed to provide support for cameras from any vendor, although this is not guaranteed. It reads the GenICam interface of a GigE Vision camera to enable control. It also has capabilities for USB3Vision cameras. With this new communication interface, support for other manufacturers is now possible. It has been tested with cameras from AVT and Basler, and further tests using a CameraLink camera with a GigE Vision adapter are planned. This paper will discuss the capabilities of Aravis, considerations in the design of the communication interface, and lessons learnt from the implementation.  
poster icon Poster MOPHA098 [0.452 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA098  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA152 Use of Multi-Network Fieldbus for Integration of Low-Level Intelligent Controller Within Control Architecture of Fast Pulsed System at CERN controls, network, interface, FPGA 589
 
  • N. Voumard, C. Boucly, M.P. Pimentel, L. Strobino, P. Van Trappen
    CERN, Geneva, Switzerland
 
  Fieldbuses and Industrial Ethernet networks are extensively used for the control of fast-pulsed magnets at CERN. With the ongoing trend to develop increasingly more complex low-level intelligent controllers near to the actuators and sensors, the flexibility to integrate these within different control architectures grows in importance. In order to reduce development efforts and keep the fieldbus choice open, a multi-network field-bus technology has been selected for the network interfacing part of the controllers. Such an approach has been successfully implemented for several projects such as the development of high voltage capacitor chargers/dischargers, the surveillance of floating solid-state switch and the monitoring of a power triggering system that, today, are interfaced either to PROFIBUS-DP or PROFINET networks. The integration of various fieldbus interfaces within the controller and the required embedded software/gateware to manage to network communication are presented. The gain in flexibility, modularity and openness obtained through this approach is also reviewed.  
poster icon Poster MOPHA152 [0.587 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA152  
About • paper received ※ 27 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAPP03 Low-Cost Modular Platform for Custom Electronics in Radiation-Exposed and Radiation-Free Areas at CERN radiation, controls, FPGA, power-supply 671
 
  • G. Daniluk, C. Gentsos, E. Gousiou, L. Patnaik, M. Rizzi
    CERN, Geneva, Switzerland
 
  The CERN control system is comprised of multiple layers of hardware and software. These tiers extend from the hardware deployed close to the machine, up to the software running on computers that operators use for control and monitoring. We are currently developing a new centrally supported service in the layers closest to the accelerator - Distributed I/O and Fieldbus. A key aspect of this project is the selection of industrial standards for the layers, which are currently dominated by custom, in-house designed solutions. Regarding the Distributed I/O layer, this paper describes how we are adapting CompactPCI Serial (CPCI-S) to be suitable as the low-cost modular hardware platform for remote analog and digital I/O applications in radiation-exposed as well as radiation-free areas. We are designing a low cost 3U chassis with a CPCI-S backplane accompanied by a radiation tolerant, switched-mode power supply and an FPGA-based System Board. Regarding the Fieldbus layer, the paper focuses on the radiation-tolerant implementation of the Industrial Ethernet protocol, Powerlink.  
slides icon Slides TUAPP03 [7.663 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUAPP03  
About • paper received ※ 27 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAPP04 Extending the Life of the VME Infrastructure at BNL controls, FPGA, interface, hardware 678
 
  • W.E. Pekrul, C. Theisen
    BNL, Upton, New York, USA
 
  A large installation of VME controllers have been used to control and monitor the RHIC Accelerator complex at BNL. As this equipment ages a number of upgrade options are being pursued. This paper describes an FPGA based VME controller board development being undertaken to provide a upgrade path for control applications that reuses existing racks and power supplies and a catalogue of custom application boards. This board is based on a Xilinx Zynq that includes an ARM-9 and a large FPGA fabric. The board includes DRAM, SPI-Flash, Ethernet, SD card, USB, SFP, FMC and an Artix FPGA to support the VME bus protocol. The first application of a magnet quench detector will also be described.  
slides icon Slides TUAPP04 [2.138 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUAPP04  
About • paper received ※ 01 October 2019       paper accepted ※ 20 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUBPR03 Major Upgrade of the HIT Accelerator Control System Using PTP and TSN Technology controls, network, timing, operation 738
 
  • A. Peters, J.M. Mosthaf, C. Schömers
    HIT, Heidelberg, Germany
 
  Two important reasons led to the first developments for a new ACS for the HIT ion therapy accelerator complex: a) the first implementation of the ACS was done in 2003-2005 resulting in well-functioning, but mostly proprietary solutions more and more components of e.g. the specially built device control units (DCUs*) are becoming discontinued, thus a new realization using standard SoCs or similar is necessary; b) new functionality like multiple energy operation** should enhance the duty factor of the accelerator facility resulting in significantly higher patient irradiation efficiency. In cooperation with our commercial partner we are investigating the newly available deterministic Ethernet technologies like "Time-Sensitive Networking" with several IEEE 802.1xx standards. Early TSN implementations in embedded controller boards and switches were obtained in a test installation in autumn of 2018 to study feasibility, e.g. the required timing precision using PTP (resp. IEEE 802.1AS-Rev) to realize a "one-wire-ACS" based on Ethernet only for deterministic data transfer and message based triggers for synchronized ACS functions. We will report on our test bench experiences.
*R. Baer, Status and conceptual design of the control system for … HICAT, ICALEPCS 2005
**M. Galonska, Multi-energy trial operation of the HIT medical synchrotron, IPAC 2017
 
slides icon Slides TUBPR03 [3.816 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUBPR03  
About • paper received ※ 02 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA028 Power Supply Controller for Future Accelerator Facilities at BINP controls, power-supply, electron, operation 1145
 
  • P.B. Cheblakov, A.V. Gerasev, S.E. Karnaev, D.V. Senkov
    BINP SB RAS, Novosibirsk, Russia
 
  A design of a new power supply controller was initiated in BINP for upgrade of existing accelerator facilities and for demands of future projects. Any accelerator facility includes a set of diverse power supplies which controllers have different specifications: number and precision of DAC/ADC channels, speed and algorithm of operation. Therefore, the main idea is to elaborate a controller, which consists of common digital part including an interface with a control system and specialized analog frontend that fits to power supplies requirements. The digital part provides easy integration to control system by means of some standard network protocol and performing some data processing and analysis. Ethernet is used for communication with controllers, MQTT is under consideration as a high-level transport protocol in some cases and EPICS IOC was tested to be embedded into controller. The initial prototype of controller is developed and deployed at VEPP-3 storage ring. The status of the work and future plans are presented in the paper.  
poster icon Poster WEPHA028 [9.746 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA028  
About • paper received ※ 04 October 2019       paper accepted ※ 20 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA080 A Communication Protocol for Motion Control Applications at the JCNS Neutron Instruments controls, PLC, neutron, interface 1276
 
  • H. Kleines, F. Suxdorf
    FZJ, Jülich, Germany
 
  Main focus of slow control in neutron scattering is motion control for the movement of around 25 mechanical axes in a typical neutron instrument. The implementation of motion control functions in the JCNS neutron instruments at the FRM II research reactor in Garching, Germany, is based on Siemens S7 PLCs. A communication protocol called PMcomm which is optimized for motion control applications in neutron instruments has been developed at JCNS. PMcomm (PROFI motion communication) is based on PROFINET or PROFIBUS as the underlying transport protocol in order to facilitate the easy integration into the PLC world. It relies on the producer/consumer communication mechanism of PROFINET and PROFIBUS for the efficient direct access to often-used data like positions or status information. Coordinated movement of groups of axes is facilitated by a generic controller/axes model that abstracts from the specifics of the underlying motion control hardware. Simplicity was a major design goal of the protocol in order to allow an efficient and easy implementation on PLCs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA080  
About • paper received ※ 08 October 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)