A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W   X    

injection

       
Paper Title Other Keywords Page
MOYBPA01 LHC Progress and Commissioning Plans LHC, dipole, quadrupole, luminosity 14
 
  • O.S. Brüning
    CERN, Geneva
  The LHC at CERN is in its final installation phase, and the first tests with beam are planned for part of the machine for the end of 2006. The commissioning of the full machine with beam is planned for summer 2007. The talk summarizes the current status of the LHC installation and the strategy for obtaining an optimum hardware configuration. In a second part the talk outlines the main milestones for the hardware and beam commissioning and presents estimates for the expected performance levels for the commissioning phase with beam.  
slides icon Transparencies
 
MOPCH042 Progress in the Design of a Two-Frequency RF Cavity for an Ultra-Low Emittance Pre-Accelerated Beam emittance, electron, cathode, coupling 133
 
  • J.-Y. Raguin, A. Anghel, R.J. Bakker, M. Dehler, R. Ganter, C. Gough, S. Ivkovic, E. Kirk, F. Le Pimpec, S.C. Leemann, K.L. Li, M. Paraliev, M. Pedrozzi, L. Rivkin, V. Schlott, A.F. Wrulich
    PSI, Villigen
  Today most of the X-rays Free-Electron Laser projects are based on state of the art RF guns, which aim at a normalized electron beam emittance close to 1 mm$·$mrad. In this paper we report on the progress made at PSI towards a hybrid DC + RF Low Emittance Gun (LEG) capable of producing a beam with an emittance below 0.1 mm.mrad. To reduce the intrinsic thermal emittance at the LEG cathode the electrons are extracted from nano-structured field-emitters. A gun test facility is under construction wherein after emission the beam is accelerated up to 500 keV in a diode before being injected and accelerated in a two-frequency 1.5-cell RF cavity. The fast acceleration in the diode configuration allows to minimize the emittance dilution due to the strong space charge forces. The two-frequency RF structure is optimized to limit the emittance blow-up due to the non-linearity of the RF field.  
 
MOPCH055 Circulation of a Short, Intense Electron Bunch in the NewSUBARU Storage Ring linac, storage-ring, CSR, radiation 163
 
  • Y. Shoji, Y. Hisaoka, T. Matsubara, T. Mitsui
    NewSUBARU/SPring-8, Laboratory of Advanced Science and Technology for Industry (LASTI), Hyogo
  • T. Asaka, S. Suzuki
    JASRI/SPring-8, Hyogo-ken
  One new method is proposed which supplies synchrotron radiation light from a short and intense electron bunch. This method supplies a short and intense x-ray pulse and extremely strong coherent radiation in a long wavelength region to beam lines of a storage ring. SPring-8 linac supplied a short and intense 1.0 GeV electron beam to NewSUBARU storage ring. The electron bunch was compressed to 10ps (full width) from the normal condition (20ps full width) using ECS system. The pulse charge was 0.10nC/bunch and the energy spread was (±) 0.2 % (full width) at the injection point. The ring lattice was adjusted at a quasi-isochronous condition to keep the short bunch for many revolutions. The estimated linear and non-linear momentum compaction factors were -6·10-5 (the linear factor), 0.0 (the second order factor) and +0.9 (the third order factor). The bunch length was measured by a streak camera, and the coherent radiation was detected by a Shottky diode detector. The short bunch was successfully circulated for about 50 turns.  
 
MOPCH074 Layout of an Accumulator and Decelerator Ring for FAIR antiproton, pick-up, kicker, electron 199
 
  • P. Beller, K. Beckert, C. Dimopoulou, A. Dolinskii, F. Nolden, M. Steck, J. Yang
    GSI, Darmstadt
  Antiproton physics and experiments with rare isotope beams are major research fields at FAIR. Antiproton physics requires the accumulation of high intensity antiproton beams. The accumulation of up to 1011 antiprotons at 3 GeV is foreseen. This will be accomplished by the combination of the collector ring CR for stochastic precooling and the specialized accumulator ring RESR. The accumulation scheme in the RESR is based on the usage of a stochastic cooling system. The requirements of this cooling system strongly affect the magnetic structure of the RESR. For experiments with short-lived rare isotope beams the RESR serves the task of fast deceleration. Precooled rare isotope beams will be injected at 740 MeV/u and then decelerated to energies between 100 and 400 MeV/u in less than 1 s. This contribution presents the ring design and lattice studies relevant for both tasks of the ring as well as a description of the antiproton accumulation scheme.  
 
MOPCH077 The Collector Ring CR of the FAIR Project kicker, antiproton, pick-up, extraction 208
 
  • F. Nolden, K. Beckert, P. Beller, U. Blell, C. Dimopoulou, A. Dolinskii, U. Laier, G. Moritz, C. Muehle, I. Nesmiyan, C. Peschke, M. Steck
    GSI, Darmstadt
  The Collector Ring is a storage ring in the framework of the FAIR project. It has the purpose of stochastic precooling of both rare isotope and antiproton beams and of measurung nuclear masses in an isochronous setting. The paper discusses progress in the development of magnet systems, rf systems, injection/extraction strategies and stochastic cooling systems. Finally it is discussed how to confirm the predicted performance of the slotline electrodes developed recently for stochastic cooling.  
 
MOPCH080 Design of the NESR Storage Ring for Operation with Ions and Antiprotons electron, ion, antiproton, storage-ring 217
 
  • M. Steck, K. Beckert, P. Beller, C. Dimopoulou, A. Dolinskii, F. Nolden, J. Yang
    GSI, Darmstadt
  The New Experimental Storage Ring (NESR) of the FAIR project has two major modes of operation. These are storage of heavy ion beams for internal experiments and deceleration of highly charged ions and antiprotons before transfer into a low energy experimental area. The heavy ion beams can be either stable highly charged ions or rare isotope beams at an energy of 740 MeV/u selected in a magnetic separator. The antiprotons come with an energy of 3 GeV from the production target, they are pre-cooled and accumulated in a storage ring complex. The magnetic structure of the NESR has been optimized for large transverse and longitudinal acceptance by detailed dynamic aperture calculations. This will allow storage of multi-component beams with a large spread of charge to mass ratio, corresponding to a large spread in magnetic rigidity. Highest phase space density of the stored beams is provided by an electron cooling system, which for ions covers the full energy range and for antiprotons allows intermediate cooling during the deceleration process. For experiments with short-lived isotopes the cooling time and the time of deceleration will be optimized to a few seconds.  
 
MOPCH090 ITEP-TWAC Status Report ion, synchrotron, booster, accumulation 243
 
  • N.N. Alexeev, D.G. Koshkarev, B.Y. Sharkov
    ITEP, Moscow
  Three years of successful operation the ITEP-TWAC facility delivers proton and ion beams in several modes of acceleration and accumulation of by using the multiple charge exchange injection technique*. Substantial progress is achieved in output ion beam current intensity of the linear injector I3, in intensity of the buster synchrotron UK, in efficiency increasing of ion beam stacking and longitudinal compression in the storage ring U10. The machine status analysis and current results of activities aiming at subsequent improvement of beam parameters for extending beam technology applications are presented.

*N. Alexeev et al. Laser and Particle Beams (2002) V 20, N3, 385-392.

 
 
MOPCH094 Low-intensity Beams for LHC Commissioning from the CERN PS-booster LHC, emittance, CERN, proton 255
 
  • M. Benedikt, J. Tan
    CERN, Geneva
  A variety of low-intensity beams will be required for LHC commissioning. In contrast to the nominal LHC physics beam, these single-bunch beams are produced without longitudinal bunch splitting in the injector chain. Consequently, not only the transverse but also the longitudinal beam characteristics have already to be established in the CERN PS-Booster. The required intensities extend down to four orders of magnitude below the typical PS-Booster working range and the transverse emittances must be adjustable to vary the beam brightness over a large range. The different beam variants are briefly summarized and the specific techniques developed for their production, like low-voltage rf capture, and transverse and longitudinal shaving, are described. In particular, the choice of harmonic number and its consequences for operation and beam reproducibility are discussed. Finally, the performance achieved for the different beams is summarized.  
 
MOPCH095 Performance of Nominal and Ultimate LHC Beams in the CERN PS-booster LHC, emittance, optics, CERN 258
 
  • M. Benedikt, M. Chanel, K. Hanke
    CERN, Geneva
  The requirements for nominal and ultimate LHC beams in the CERN PS-Booster were specified in 1993 and served as input for the definition of the "PS conversion for LHC" project. Already during the upgrade project and also after its completion in 2000, the beam intensities to be provided from the PS Booster were increased in order to compensate for changes on the LHC machine, the beam production scheme in the PS and for non-anticipated beam losses along the injector chain. In order to improve the beam brightness, to be compatible with the increased requirements, extensive machine studies have taken place on the PS-Booster. The working point was changed to reduce the influence of systematic resonances and the injection line optics was re-matched to improve the injection efficiency. The paper summarizes briefly the evolution of the performance requirements. The various measures undertaken to improve the LHC beam quality are outlined and the present performance achieved in the PS-Booster is presented.  
 
MOPCH096 LEIR Lattice quadrupole, electron, optics, lattice 261
 
  • J. Pasternak, P. Beloshitsky, C. Carli, M. Chanel
    CERN, Geneva
  The Low Energy Ion Ring (LEIR) is a low energy ion cooling and accumulation ring and serves to compress long ion pulses from Linac 3 into high density bunches suitable for LHC ion operation. Issues of the LEIR lattice are to fulfil all constraints with a small number of quadrupoles and compensations of perturbations due to an electron cooler and gradients seen by the beam in the bending magnets during the ramp. Furthermore, experimental investigations via orbit reponse measurements will be reported.  
 
MOPCH097 CERN Proton Synchrotron Working Point Control Using an Improved Version of the Pole-face-windings and Figure-of-eight Loop Powering power-supply, CERN, controls, synchrotron 264
 
  • R.R. Steerenberg, J.-P. Burnet, M. Giovannozzi, O. Michels, E. Métral, B. Vandorpe
    CERN, Geneva
  The working point of the CERN Proton Synchrotron, which is equipped with combined function magnets, is controlled using pole-face-windings. Each main magnet consists of one focusing and one de-focusing half-unit on which four pole-face-winding plates are mounted containing two separate coils each, called narrow and wide. At present they are connected in series, but can be powered independently. In addition, a winding called the figure-of-eight loop, contours the pole faces and crosses between the two half units, generating opposite fields in each half-unit. The four optical parameters, horizontal and vertical tune and chromaticity, are adjusted by acting on the pole-face-winding currents in both half units and in the figure-of-eight loop, leaving one physical quantity free. The power supply consolidation project opened the opportunity to use five independent power supplies, to adjust the four parameters plus an additional degree of freedom. This paper presents the results of the measurements that have been made in the five-current mode together with the influence of the magnetic nonlinearities, due to the unbalance in the narrow and wide winding currents, on the beam dynamics.  
 
MOPCH100 Polarized Proton Acceleration in the AGS with Two Helical Partial Snakes resonance, polarization, AGS, extraction 273
 
  • H. Huang, L. Ahrens, M. Bai, A. Bravar, K.A. Brown, E.D. Courant, C.J. Gardner, J. Glenn, A.U. Luccio, W.W. MacKay, V. Ptitsyn, T. Roser, S. Tepikian, N. Tsoupas, J. Wood, K. Yip, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York
  • F. Lin
    IUCF, Bloomington, Indiana
  • M. Okamura, J. Takano
    RIKEN, Saitama
  Acceleration of polarized protons in the energy range of 5 to 25 GeV is particularly difficult: the depolarizing resonances are strong enough to cause significant depolarization but full Siberian snakes cause intolerably large orbit excursions and it is not feasible in the AGS since straight sections are too short. Recently, two helical partial snakes with double pitch design have been built and installed in the AGS. With careful setup of optics at injection and along the ramp, this combination can eliminate intrinsic and imperfection depolarizing resonances encountered during acceleration. This paper presents the accelerator setup and preliminary results. The effect of horizontal intrinsic resonances in the presence of two partial snakes are also discussed.  
 
MOPCH103 SPIRAL2 RFQ Prototype – First Results rfq, vacuum, ion, SPIRAL2 282
 
  • R. Ferdinand, R. Beunard, V. Desmezières, M. Di Giacomo, P. Robillard
    GANIL, Caen
  • A.C. Caruso
    INFN/LNS, Catania
  • S. Cazaux, M. Desmons, A. France, D. Leboeuf, O. Piquet, J.-C. Toussaint
    CEA, Gif-sur-Yvette
  • M. Fruneau, Y. Gómez-Martínez
    LPSC, Grenoble
  The SPIRAL2 RFQ has been designed to accelerate a 5 mA deuteron beam (Q/A=1/2) or a 1 mA particle beam with q/A=1/3 up to 0.75 MeV/A at 88MHz. It is a CW machine which has to show stable operation, provide the required availability and reduce losses to a minimum in order to minimize the activation constraints. Extensive modelisation was done to ensure a good vane position under RF. The prototype of this 4-vane RFQ has been built and tested in INFN-LNS Catania and then in IN2P3-LPSC Grenoble. It allowed us to measure the vacuum quality, the RF field by X-ray measurements, the cavity displacement and the real vane displacement during the RF injection. Different techniques were used, including an innovative and effective CCD measurement with a 0.6 μm precision. This paper outlines the different results.  
 
MOPCH109 Design Studies on a Novel Stellarator Type High Current Ion Storage Ring ion, plasma, kicker, space-charge 297
 
  • M. Droba, N.S. Joshi, O. Meusel, P. Nonn, U. Ratzinger
    IAP, Frankfurt-am-Main
  A high current storage ring for the accumulation of ion beams provided by a new 150 kV terminal is under consideration at the Frankfurt University. The configuration based on a toroidal magnetic field seems promising for the storage of intense low energy ion beams, especially when concerning the various potential concepts for space charge compensation. The theory of plasma confinement on magnetic surface is transformed to numerical simulations on circulating ion beams. The space charge effects and stability conditions are studied and will be presented. Various injection techniques based on crossed field-drifts are investigated. Accordingly test experiments are prepared based on two 30 degree toroidal sectors at a major radius of 1.3m with a maximum toroidal magnetic field of 0.6T on axis.  
 
MOPCH122 Realistic Beam Loss Estimation from the Nuclear Scattering at the RCS Charge-exchange Foil scattering, beam-losses, simulation, target 333
 
  • P.K. Saha, H. Hotchi, Y. Irie, F. Noda
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • H. Harada
    Hiroshima University, Higashi-Hiroshima
  We have developed simulation tools for the realistic beam loss estimation at the RCS(rapid cycling synchrotron) of J-PARC(Japan Proton Accelerator Research Complex). The present simulation concerns an accurate estimation of the beam loss caused by the nuclear scattering at the charge-exchange foil during the multi turn injection period. It can also figure out the loss point in the ring, so would become very useful for the maintenance and optimization as well. The simulation code GEANT together with the SAD(Strategic Accelerator Design) have been used for the present purpose. In this paper, detail simulation method including the result will be discussed.  
 
MOPCH126 Accelerator Research on the Rapid Cycling Synchrotron at IPNS acceleration, proton, synchrotron, extraction 339
 
  • G.E. McMichael, F.R. Brumwell, L. Donley, J.C. Dooling, W. Guo, K.C. Harkay, Q.B. Hasse, D. Horan, R. Kustom, M.K. Lien, M.E. Middendorf, M.R. Moser, S. Wang
    ANL, Argonne, Illinois
  The Intense Pulsed Neutron Source (IPNS) at Argonne National Laboratory is a national user facility for neutron scattering. Neutrons are produced by 70 ns pulses of protons (~3x 1012 protons per pulse) impacting a depleted-uranium target at a pulse repetition rate of 30 Hz. Three accelerators in series (a 750 keV Cockcroft-Walton, 50 MeV Alvarez linac accelerating H- ions, and a 450 MeV rapid-cycling proton synchrotron) provide the beam that is directed to the target. New diagnostics and a third rf cavity that can be operated at either the fundamental or second harmonic of the ring frequency have recently been installed and an experimental program established to try to gain understanding of an instability that limits the charge-per-bunch in the RCS. This program will be described, and preliminary results presented.  
 
MOPCH130 Simulations for SNS Ring Commissioning target, RTBT, quadrupole, extraction 348
 
  • J.A. Holmes, S.M. Cousineau, S. Henderson, M.A. Plum
    ORNL, Oak Ridge, Tennessee
  In preparation for SNS ring commissioning, a number of operational issues have been studied using ORBIT Code simulations. These include beam injection without the use of time-dependent painting, beam accumulation and transport to the extraction dump and to the target, optimal painting schemes for various beam intensities, detailed tracking through the extraction septum with fully correct geometry, quadrupole current constraints in the ring-to-target transfer line (RTBT), and detailed modeling of H minus carbon foil stripping at injection. All these studies incorporated detailed physics including beam-foil interactions, symplectic single particle tracking, space charge and impedances, and losses due to apertures and collimation.  
 
MOPCH131 SNS Ring Commissioning Results target, extraction, beam-losses, linac 351
 
  • M.A. Plum, A.V. Aleksandrov, S. Assadi, W. Blokland, I.E. Campisi, P. Chu, S.M. Cousineau, V.V. Danilov, C. Deibele, G.W. Dodson, J. Galambos, M. Giannella, S. Henderson, J.A. Holmes, D.-O. Jeon, S.-H. Kim, C.D. Long, T.A. Pelaia, T.J. Shea, A.P. Shishlo, Y. Zhang
    ORNL, Oak Ridge, Tennessee
  The Spallation Neutron Source (SNS) comprises a 1.5-MW, 60-Hz, 1-GeV linac, an accumulator ring, associated beam lines, and a spallation neutron target. Construction began in 1999 and the project is on track to be completed in June 2006. By September 2005 the facility was commissioned up through the end of the superconducting linac, and in January 2006 commissioning began on the High Energy Beam Transport beam line, the accumulator ring, and the Ring to Target Beam Transport beam line up to the Extraction Beam Dump. In this paper we will discuss early results from ring commissioning including a comparison of achieved vs. design beam machine parameters and the maximum beam intensity achieved to date.  
 
MOPCH134 Electron-impact Desorption at the RHIC Beam Pipes electron, RHIC, vacuum, BNL 360
 
  • U. Iriso, U. Iriso
    CELLS, Bellaterra (Cerdanyola del Vallès)
  • W. Fischer
    BNL, Upton, Long Island, New York
  The electron induced molecular desorption coefficient of a material provides the number of molecules released when an electron hits its surface. This coefficient changes as a function of the material, energy of the electrons, surface status, etc. In this paper, this coefficient is inferred analyzing electron detector and pressure gauge signals during electron clouds at the Relativistic Heavy Ion Collider (RHIC) beam pipes. The evolution of the electron-impact desorption coefficient after weeks of electron bombardment is followed for both baked and unbaked stainless steel chambers, evaluating the feasibility of the scrubbing effect. Measurements of an energy spectrum during multipacting conditions are shown, and the final results are compared with laboratory simulations.  
 
MOPCH136 China Spallation Neutron Source Accelerators: Design, Research, and Development linac, target, extraction, synchrotron 366
 
  • J. Wei
    BNL, Upton, Long Island, New York
  • S.X. Fang, S. Fu
    IHEP Beijing, Beijing
  The Beijing Spallation Neutron Source (BSNS) is a newly approved high power accelerator project based on a H- linear accelerator and a rapid cycling synchrotron. During the past year, several major revisions were made to the design including the type of the front end, linac frequency, transport layout, ring lattice, and type of ring components. Possible upgrade paths were also laid out: based on an extension of the warm linac, the ring injection energy and the beam current could be raised doubling the beam power on target to reach 200 kW; an extension with a superconducting RF linac of similar length could raise the beam power near 0.5 MW. Based on these considerations, research and development activities are started. In this paper, we discuss the rationale of design revisions and summarize the recent work.  
 
MOPCH137 An Anti-symmetric Lattice for High Intensity Rapid-cycling Synchrotrons lattice, collimation, dipole, synchrotron 369
 
  • J. Wei, Y.Y. Lee, S. Tepikian
    BNL, Upton, Long Island, New York
  • S.X. Fang, Q. Qin, J. Tang, S. Wang
    IHEP Beijing, Beijing
  • S. Machida, C.R. Prior, G. Rees
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  Rapid cycling synchrotrons are used in many high power facilities like spallation neutron sources and proton drivers. In such accelerators, beam collimation plays a crucial role in reducing the uncontrolled beam loss. Furthermore, the injection and extraction section needs to reside in dispersion-free region to avoid couplings; a significant amount of drift space is needed to house the RF accelerating cavities; orbit, tune, and chromatic corrections are needed; long, uninterrupted straights are desired to ease injection tuning and to raise collimation efficiency. Finally, the machine circumference needs to be small to reduce construction costs. In this paper, we present a lattice designed to satisfy these needs. The lattice contains a drift created by a missing dipole near the peak dispersion to facilitate longitudinal collimation. The compact FODO arc allows easy orbit, tune, coupling, and chromatic correction. The doublet straight provides long uninterrupted straights. The four-fold lattice symmetry separates injection, extraction, and collimation to different straights. This lattice is chosen for the Beijing Spallation Neutron Source synchrotron.  
 
MOPLS009 The LHC as a Proton-nucleus Collider LHC, ion, proton, SPS 550
 
  • J.M. Jowett, C. Carli
    CERN, Geneva
  Following its initial operation as a proton-proton (p-p) and heavy-ion (208Pb82+ - 208Pb82+) collider, the LHC is expected to operate as a p-Pb collider. Later it may collide protons with other lighter nuclei such as 40Ar18+ or 16O8+. We show how the existing proton and lead-ion injector chains may be efficiently operated in tandem to provide these hybrid collisions. The two-in-one magnet design of the LHC main rings imposes different revolution frequencies for the two beams in part of the magnetic cycle. We discuss and evaluate the consequences for beam dynamics and estimate the potential performance of the LHC as a proton-nucleus collider.  
 
MOPLS012 The LHC Sector Test LHC, controls, instrumentation, radiation 559
 
  • M. Lamont, R. Bailey, H. Burkhardt, B. Goddard, L.K. Jensen, O.R. Jones, V. Kain, A. Koschik, R.I. Saban, J.A. Uythoven, J. Wenninger
    CERN, Geneva
  The proposal to inject beam into a sector of the partially completed LHC is presented. The test will provide an important milestone, force preparation of a number of key systems, and allow a number of critical measurements with beam. The motivation for the test is discussed, along with the proposed beam studies, the radiation issues and the potential impact on ongoing installation. The demands on the various accelerator systems implicated are presented along with the scheduling of the preparatory steps, the test itself and the recovery phase.  
 
MOPLS014 Lifetime Limit from Nuclear Intra-bunch Scattering for High-energy Hadron Beams scattering, LHC, proton, ion 565
 
  • F. Zimmermann, H.-H. Braun, F. Ruggiero
    CERN, Geneva
  We derive an approximate expression for the nuclear scattering rate inside a bunched hadron beam. Application to the LHC suggests that the loss rate due to nuclear scattering can be significant in high-energy proton or ion storage rings.  
 
MOPLS023 Status of Fast IR Orbit Feedback at RHIC RHIC, feedback, dipole, power-supply 589
 
  • C. Montag, J. Cupolo, J. Glenn, V. Litvinenko, A. Marusic, W. Meng, R.J. Michnoff, T. Roser, C. Schultheiss, J.E. Tuozzolo
    BNL, Upton, Long Island, New York
  To compensate modulated beam-beam offsets caused by mechanical vibrations of IR triplet quadrupoles at frequencies around 10 Hz, a fast IR orbit feedback system has been developed. We report design considerations and recent status of the system.  
 
MOPLS028 DAFNE Status Report luminosity, collider, feedback, interaction-region 604
 
  • A. Gallo, D. Alesini, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, B. Buonomo, A. Clozza, G.O. Delle Monache, E. Di Pasquale, G. Di Pirro, A. Drago, A. Ghigo, S. Guiducci, M. Incurvati, P. Iorio, C. Ligi, F. Marcellini, C. Marchetti, G. Mazzitelli, C. Milardi, L. Pellegrino, M.A. Preger, L. Quintieri, R. Ricci, U. Rotundo, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, S. Tomassini, C. Vaccarezza, M. Vescovi, M. Zobov
    INFN/LNF, Frascati (Roma)
  • G. Benedetti
    CELLS, Bellaterra (Cerdanyola del Vallès)
  • L. Falbo
    INFN-Pisa, Pisa
  • J.D. Fox, P. Raimondi, D. Teytelman
    SLAC, Menlo Park, California
  • E. Levichev, S.A. Nikitin, P.A. Piminov, D.N. Shatilov
    BINP SB RAS, Novosibirsk
  The operation of DAFNE, the 1.02 GeV c.m. e+e- collider of the Frascati National Laboratory with the KLOE detector, started in April 2004 has been concluded at the end of March 2006 with a total delivered luminosity of 2 fb-1 on the peak of the Phi resonance, 0.2 fb-1 off peak and a high statistics scan of the resonance. The best performances of the collider during this run have been a peak luminosity of 1.5 1032 cm-2s-1 and a daily delivered luminosity of 10 pb-1. The KLOE detector has been removed from one of the two interaction regions and its low beta section substituted with a standard magnetic structure, allowing for an easy vertical separation of the beams, while the FINUDA detector has been moved onto the second interaction point. Several improvements on the rings have also been implemented and are described together with the results of machine studies aimed at improving the collider efficiency and testing new operating conditions.  
 
MOPLS037 Beams Injection System for e+e- Collider VEPP-2000 collider, quadrupole, optics, luminosity 622
 
  • D.E. Berkaev, V.V. Druzhinin, I. Koop, A.P. Lysenko, F.V. Podgorny, V.P. Prosvetov, P.Yu. Shatunov, Y.M. Shatunov, D.B. Shwartz
    BINP SB RAS, Novosibirsk
  Electron-positron collider VEPP-2000 is under commissioning at the Budker Institute of Nuclear Physics. The paper presents the injection system of the collider delivering the beam from the booster storage ring BEP with maximum energy 900 MeV. A matching of the beam injection with the storage ring optics is done with respect to a nonlinear kicker field. Features of beam diagnostic and transfer line magnets including pulse septums (100 mksec; 30 kGs) and fast kickers (20 nsec; 70 kV) are described. Results of the magnetic measurements and their comparison to calculated data are given.  
 
MOPLS043 Studies of the Beam-beam Interaction at CESR electron, positron, optics, lattice 637
 
  • J.A. Crittenden
    Cornell University, Department of Physics, Ithaca, New York
  • M.G. Billing
    CESR-LEPP, Ithaca, New York
  The Cornell Electron Storage Ring facility operates 2-GeV multi-bunch electron and positron beams in a single beam-pipe. Electrostatic separators are used to separate the two counter-rotating beams at the parasitic crossings. When the beam energy was lowered from 5 GeV in 2003, the strength of the beam-beam interaction became a more important factor in beam-current limitations, resulting in extensive experimental and calculational studies of their characteristics. The CESR lattice design procedure has been modified recently to account explicitly for their dynamic consequences. We describe our modelling of the beam-beam interaction, experimental validation techniques, and investigations into compensation strategies.  
 
MOPLS045 Achieving a Luminosity of 1034/cm2/s in the PEP-II B-factory luminosity, electron, positron, beam-beam-effects 643
 
  • J. Seeman, J. Browne, Y. Cai, W.S. Colocho, F.-J. Decker, M.H. Donald, S. Ecklund, R.A. Erickson, A.S. Fisher, J.D. Fox, S.A. Heifets, R.H. Iverson, A. Kulikov, A. Novokhatski, V. Pacak, M.T.F. Pivi, C.H. Rivetta, M.C. Ross, P. Schuh, K.G. Sonnad, M. Stanek, M.K. Sullivan, P. Tenenbaum, D. Teytelman, J.L. Turner, D. Van Winkle, M. Weaver, U. Wienands, W. Wittmer, M. Woodley, Y.T. Yan, G. Yocky
    SLAC, Menlo Park, California
  • M.E. Biagini
    INFN/LNF, Frascati (Roma)
  • W. Kozanecki
    CEA, Gif-sur-Yvette
  For the PEP-II Operation Staff: PEP-II is an asymmetric e+e- collider operating at the Upsilon 4S and has recently set several performance records. The luminosity has exceeded 1x1034/cm2/s and has delivered an integrated luminosity of 728/pb in one day. PEP-II operates in continuous injection mode for both beams, boosting the integrated luminosity. The peak positron current has reached 2.94 A and 1.74 A of electrons in 1732 bunches. The total integrated luminosity since turn on in 1999 has reached over 333/fb. This paper reviews the present performance issues of PEP-II and also the planned increase of luminosity in the near future to over 2 x 1034/cm2/s. Upgrade details and plans are discussed.  
 
MOPLS124 The KEK Injector Upgrade for the Fast Beam-Mode Switch KEKB, linac, positron, electron 855
 
  • M. Satoh
    KEK, Ibaraki
  The KEK linac is a 600-m-long linear accelerator with maximum energy 8-GeV electron and 3.5-GeV positron, and it is used as an injector for 4-rings (KEKB e-/ e+, PF, PF-AR). To increase the operation efficiency, we have an injector upgrade plan for the quasi-simultaneous injection. In this paper, we will present the operation scheme and the construction of a new beam transport line in detail.  
 
MOPLS137 Tracking Studies to Determine the Required Wiggler Aperture for the ILC Damping Rings lattice, wiggler, damping, positron 879
 
  • I. Reichel
    LBNL, Berkeley, California
  • A. Wolski
    Liverpool University, Science Faculty, Liverpool
  The injection efficiency of an ILC damping ring is closely tied to its acceptance. To maximize both, one wants a physical aperture as large as possible in the wiggler magnets, as these are the limiting physical apertures in the ring. On the other hand, a small aperture in the wiggler magnets is needed to achieve the required field profile, a high magnetic field that is very linear over the whole physical aperture of the magnet. Tracking studies were done for all proposed ILC damping ring lattices to determine their required apertures. Although a half-aperture of 8 or 10 mm had been proposed, our studies showed that, for most lattices, a 16 mm half-aperture is required. (For some lattices a 12 mm half aperture might suffice.) We present here the results of our studies, which led to adopting a 16 mm half-aperture in the current ILC damping ring baseline design.  
 
TUXPA03 LHC Luminosity and Energy Upgrades luminosity, LHC, dipole, SPS 910
 
  • W. Scandale
    CERN, Geneva
  LHC upgrade studies are ongoing as part of the EU CARE-HHH network and in the US-LARP collaboration. The aim is a ten-fold increase of the LHC luminosity by about 2014 and a possible upgrade of the injector complex to inject at 1 TeV and, at a later stage, to raise the collider energy. This talk will provide an overview of the beam dynamics and technological challenges associated with the LHC upgrade, including magnet R&D plans, electron cloud and beam-beam limitations, preferred scenarios to maximize the integrated luminosity, and machine experiments on beam-beam compensation or crystal collimation.  
slides icon Transparencies
 
TUZAPA01 Present Status of the J-PARC Accelerator linac, quadrupole, acceleration, proton 930
 
  • H. Kobayashi
    KEK, Ibaraki
  The Japan Proton Accelerator Research Complex (J-PARC) is a joint project of High Energy Accelerator Research Organization (KEK) and Japan Atomic Energy Agency (JAEA), which started on April 1, 2001. The J-PARC accelerator complex is composed of a 400 MeV proton linac, a 3 GeV Rapid-Cycling Synchrotron (RCS), and a 50 GeV Proton Synchrotron (MR). A 180-MeV beam ( in the first stage) accelerated by the linac is to be injected into the RCS, and further accelerated there to 3 GeV. The RCS will operate at 25 Hz, and will provide the Materials and Life Science Facility (MLF) with a 1-MW beam (600 kW during 180 MeV injection). There are two extraction sections in the MR: fast extraction for neutrino experiment and slow extraction for the Hadron Facility. A linac beam with a peak current of 30 mA and an energy of 19.7 MeV was successfully accelerated in Sep. 2004 using the first tank of the Drift Tube Linac in KEK. Now three accelerators are under installation. The beam commissioning of the linac will start in this December and those of the RCS and the MR will start in Sep. 2007 and May 2008, respectively. Status of installation and plan for commissioning run will be presented.  
slides icon Transparencies
 
TUOAFI01 Development for New Carbon Cancer-therapy Facility and Future Plan of HIMAC linac, synchrotron, ion, rfq 955
 
  • K. Noda, T. Fujisawa, T. Furukawa, Y. Iwata, T. Kanai, M. Kanazawa, N. Kanematsu, A. Kitagawa, Y. Kobayashi, M. Komori, S. Minohara, T. Murakami, M. Muramatsu, S. Sato, E. Takada, M. Torikoshi, S. Yamada, K. Yoshida
    NIRS, Chiba-shi
  • C. Kobayashi, S. Shibuya, O. Takahashi, H. Tsubuku
    AEC, Chiba
  • Y. Sato, M. Tashiro, K. Yusa
    Gunma University, Heavy-Ion Medical Research Center, Maebashi-Gunma
  The first clinical trial with carbon beams generated from the HIMAC was conducted in June 1994. The total number of patients treated is now in excess of 2500 as of December 2005. Based on our 10 years of experience with the HIMAC, we have proposed a new carbon-ion therapy facility for widespread use in Japan. The key technologies of the accelerator and irradiation systems for the new facility have been developed since April 2004. The new carbon-therapy facility will be constructed at Gunma University from April 2006. As our future plan for the HIMAC, further, a new treatment facility will be constructed at NIRS from April 2006. The design work has already been initiated and will lead to the further development of the therapy with the HIMAC. The facility is connected with the HIMAC accelerator complex and has two treatment rooms with horizontal and a vertical beam-delivery systems and one room with a rotating gantry. We will report the development for new carbon therapy facility and the design study for new treatment facility with the HIMAC.  
slides icon Transparencies
 
TUPCH003 Diagnostics and Timing at the Australian Synchrotron diagnostics, storage-ring, synchrotron, kicker 995
 
  • M.J. Spencer, S. Banks, M.J. Boland, M. Clift, R.T. Dowd, R. Farnsworth, S. Hunt, G. LeBlanc, M. Mallis, B. Mountford, Y.E. Tan, A. Walsh, K. Zingre
    ASP, Clayton, Victoria
  The 3GeV Australian Synchrotron will begin operation in March 2007. This paper outlines the storage ring diagnostics systems and the injection timing system. The diagnostics system includes an optical beamline with streak camera, an x-ray beamline with pinhole array, a diagnostic straight with fast feedback kicker, stripline, direct current current transformer, and a four-fingered scraper. Over the 14 sectors there are 98 beam position monitors and 14 movable beam loss monitors. The timing system is based on a static injection system with the storage ring bucket to be filled targeted by delaying the firing of the electron gun.  
 
TUPCH009 Beam Measurements and Manipulation of the Electron Beam in the BESSY-II Transferline for Topping Up Studies emittance, synchrotron, quadrupole, booster 1010
 
  • T. Kamps, P. Kuske, D. Lipka
    BESSY GmbH, Berlin
  The BESSY-II storage ring based synchrotron radiation source will be upgraded to allow for continuous topping up operation. In order to achieve a high injection efficiency between the booster synchrotron and the storage ring, the transferline will be equipped with novel beam size monitors and collimators. This paper describes the collimator design and first beam measurements of the transverse emittance. The transverse emittance is measured using the quadrupole scan technique. The data taking and the analysis procedure is given together with results and comparision with simulations.  
 
TUPCH044 Turn-by-turn Data Acquisition and Post-processing for the Diamond Booster and Storage Ring booster, betatron, storage-ring, DIAMOND 1103
 
  • R. Bartolini, M.G. Abbott, I.P.S. Martin, G. Rehm, J.H. Rowland
    Diamond, Oxfordshire
  The Diamond booster and storage ring are equipped with Libera Electron Beam Position Processors with turn-by-turn capabilities. We describe here the turn-by-turn data acquisition system and the software used for post-processing the beam data. The signals from the Libera boxes are acquired and controlled with EPICS and then transferred to the MATLAB environment via the MATLAB Channel Access. Here they are post-processed using MATLAB capabilities and dedicated software linked to MATLAB. Examples of data acquired and measurements performed during Diamond booster and storage ring commissioning are reported.  
 
TUPCH045 First Use of Current and Charge Measurement Systems in the Commissioning of Diamond booster, linac, storage-ring, DIAMOND 1106
 
  • A.F.D. Morgan, M.G. Abbott, G. Rehm
    Diamond, Oxfordshire
  This paper will discuss the results obtained from the charge and current measurement systems installed in Diamond during the commissioning stage of operation. The charge measurements are gathered from integrating current transformers and Faraday cups, while the current is measured using a DC current transformer in each ring. The measured beam parameters will be investigated, as well as how well the devices performed against expectations.  
 
TUPCH046 Performance of Global Diagnostics Systems during the Commissioning of Diamond booster, storage-ring, DIAMOND, controls 1109
 
  • G. Rehm, M.G. Abbott
    Diamond, Oxfordshire
  This paper summarises data acquired with beam diagnostics systems distributed globally through Diamond's Linac, transfer paths, booster and storage ring. It shows results from the electron beam position monitors using their capabilities to monitor transient events, the booster ramp as well as stored beam. The performance derived from real beam measurements is compared to measurements obtained in the lab using signal and pulse generators. Other systems of widespread use are screens and synchrotron light monitors. Their performance and control system integration based on IEEE1394 camera technology is presented. Finally, first results from the fast and slow beam loss monitoring systems are described.  
 
TUPCH047 Diamond Optical Diagnostics: First Streak Camera Measurements electron, synchrotron, storage-ring, DIAMOND 1112
 
  • C.A. Thomas, G. Rehm
    Diamond, Oxfordshire
  We present in this paper a first set of measurements of the six-dimensional phase-space of the electron beam in the Diamond storage ring. We recall the predicted performance and compare it with our first measurements. The two pinhole cameras measure the beam size, from which we retrieve the energy spread and the emittance of the beam in both horizontal and vertical directions. We have designed a robust and simple UV-visible beamline, to measure the electron bunch profile and length with a streak camera, and to measure the beam quality using a state-of-the-art single photon counting technique.  
 
TUPCH050 Beam Profile Measurements with the 2-D Laser-wire laser, electron, photon, PETRA 1121
 
  • G.A. Blair, I.V. Agapov, S.T. Boogert, G.E. Boorman, A. Bosco, J. Carter, C. Driouichi, M.T. Price
    Royal Holloway, University of London, Surrey
  • K. Balewski, H.-C. Lewin, F. Poirier, S. Schreiber, K. Wittenburg
    DESY, Hamburg
  • N. Delerue, D.F. Howell
    OXFORDphysics, Oxford, Oxon
  • T. Kamps
    BESSY GmbH, Berlin
  A new laser-wire system has been installed at the PETRA ring at DESY, Hamburg. The system is set up to scan in two dimensions using piezo-driven mirrors and employs a newly acquired injection seeded Q-switched laser. The system is described and first results are presented.  
 
TUPCH052 Turn by Turn Measurements at DAFNE Based on the Libera Beam Position Processor betatron, pick-up, kicker, controls 1124
 
  • A. Stella, M. Serio
    INFN/LNF, Frascati (Roma)
  The BPM detection electronics developed by Instrumentation Techonologies implements digital receivers technology to measure beam position from the amplitude of pick-up signals. Besides the closed orbit mode, the Libera module can be operated also in the Turn-by-Turn mode. Operational experience with Libera at DAFNE, the Frascati e+ e- collider, has been focused on this functionality. Data obtained from DAFNE have been processed with well established extraction algorithms to accurately measure the betatron tunes from a small number of turns, providing instantaneous information on tune variations occurred also in fast damped decays after a kick. Hardware and software implementation together with experimental data are reported.  
 
TUPCH055 Beam Phase Measurement of Stored Bunch pick-up, controls, insertion, insertion-device 1133
 
  • T. Ohshima, A. Yamashita
    JASRI/SPring-8, Hyogo-ken
  • M. Yoshioka
    SES, Hyogo-pref.
  We developed a system to measure synchronous phase angles for all bunches stored in the storage ring using an oscilloscope with high sampling rate. Precise phase measurement of specific bunch is required from the synchrotron radiation (SR) users, especially from the time resolved spectroscopy users. In a pump and probe experiment, the trigger timing for pumping laser should be precisely adjusted to the probe SR light. The timing of SR light is affected by the accelerating RF voltages, filling pattern, bunch currents, gap positions of insertion devices and so on. At the SPring-8, the bunch currents and the synchronous phase angles for all stored bunches can be measured within 30seconds using newly developed system. The precision of the phase angle is less than 8ps. We are now preparing to deliver the information of synchronous phase angle to SR users. The detail of the measurement system and achieved performance will be presented.  
 
TUPCH059 Dual-mode Beam Current Monitor pick-up, impedance, feedback, shielding 1145
 
  • S. Ninomiya, T. Adachi, S. Fukumoto
    KEK, Ibaraki
  • S.H. Hatori, T. Kurita
    WERC, Tsuruga , Fukui
  A new type HEREWARD-transformer is developed. The original scheme connects pickup coil to the low impedance input of the amplifier to increase the time constant of the transformer. The new scheme employs negative impedance circuit which realizes perfect cancellation of the coil resistance. Therefore DC component of the beam current can be observed. Since number of winding of the pick up coil is only 100-turns, therefore by using the original scheme with a fast operational amplifier, the transformer can be operated at fast CT mode. Thus the dual mode operation can be realized by single core; the first mode is the slow beam intensity monitor, and the second is a fast response transformer. This operation mode realizes an accurate observation of the beam injection process. In order to make installation easy, the core is divided into two pieces. The magnetic shield from bending field is also installed. This monitor is developed at KEK, and installed into the accelerator at the WAKASA WAN Energy Research Center.  
 
TUPCH060 Beam Collimator System in the J-PARC 3-50BT Line emittance, LEFT, synchrotron, quadrupole 1148
 
  • M.J. Shirakata, H. Oki, T. Oogoe, Y. Takeuchi, M. Yoshioka
    KEK, Ibaraki
  For the J-PARC 50 GeV Main Ring Synchrotron (MR), the design beam emittance is 54 pi mm mrad. On the other hand, the 3 GeV beam from the Rapid Cycling Booster Synchrotron (RCS) may have a large halo component upto 216 pi mm mrad. In order to absorb the halo component, a beam collimator system will be installed in the beam transport line called as the 3-50BT, which connects the RCS and the MR. From the view of the hands-on maintenance, high endurance structure is adopted. The beam collimator design including the beam optics is reported in this paper.  
 
TUPCH063 Novel Method for Beam Dynamics using an Alpha Particle Source simulation, betatron, closed-orbit, lattice 1157
 
  • A. Sato, M. Aoki, Y. Arimoto, I. Itahashi, Y. Kuno, T. Oki, M. Yoshida
    Osaka University, Osaka
  PRISM is a future muon source which would provide high intense, monochromatic and pure muon beams. In order to achieve such muon beams we use a technique called Phase Rotation using an FFAG ring (PRISM-FFAG). The PRISM-FFAG ring is now under construction in Osaka university. The Commissioning will start in JFY 2007. In order to investigate the dynamical performances of the FFAG before the actual commissioning, we propose a novel experimental method. The principle of the method and its application to PRISM-FFAG will be described in this paper.  
 
TUPCH077 Beam Phase Measurement in a 200 MeV Cyclotron pick-up, cyclotron, extraction, controls 1187
 
  • J.L. Conradie, A.H. Botha, P.J. Celliers, J.L.G. Delsink, D.T. Fourie, P.T. Mansfield, P.F. Rohwer, M.J. Van Niekerk
    iThemba LABS, Somerset West
  • J. Dietrich, I. Mohos
    FZJ, Jülich
  New phase measuring equipment is being planned for the K 200 variable frequency, separated-sector cyclotron at iThemba LABS near Cape Town. A commercial lock-in amplifier is used to measure the beam phase over the full radial range. Measurements are made at the third and fifth harmonics of the main RF frequency to limit pick-up from the flat-topping and main dees. Computer-generated signals, with phase and amplitude control, at the same harmonics, are used to cancel the signals coupled from the dees to the phase probes. In addition the signals without beam are vectorially subtracted from those with beam to enhance the sensitivity and accuracy. Results of measurements, using these techniques, on existing phase probes in the cyclotron, will be presented.  
 
TUPCH087 Beam Diagnostics with Schottky Noise in LEIR ion, pick-up, CERN, diagnostics 1214
 
  • J. Tan, G. Tranquille
    CERN, Geneva
  The high density Lead ion beams, needed for LHC, are obtained in the Low Energy Ion Ring (LEIR) at CERN by multi-turn injection followed by electron cooling and stacking. During this injection and stacking phases where the circulating beam is unbunched, diagnostics with Schottky noise are used for probing essential beam parameters, such as tune, momentum spread, emittance and their evolution with time… The hardware facility and first results obtained during the recent commissioning of LEIR are described.  
 
TUPCH088 High Dynamic Range Beam Profile Measurements CTF3, beam-losses, CLIC, site 1217
 
  • C.P. Welsch, E. Bravin, B. Burel, T. Lefevre
    CERN, Geneva
  • T. Chapman, M.J. Pilon
    Thermo, Liverpool, New York
  In future high intensity, high energy accelerators, beam loss has to be minimized to maximize performance and minimize activation of accelerator components. It is imperative to have a clear understanding of the mechanisms that can lead to halo formation and to have the possibility to test available theoretical models with an adequate experimental setup. Measurements based on optical transition radiation (OTR) provide an interesting opportunity for high resolution measurements of the transverse beam profile. In order to be applicable for measurements within the beam halo region, it is of utmost importance that a high dynamic range is covered by the image acquisition system. The existing camera system as it is installed in the CLIC Test Facility (CTF3) is compared to a step-by-step measurement with a photo multiplier tube (PMT) and measurements with a cooled charge injection device (CID) camera. The latter acquisition technique provides an innovative and highly flexible approach to high dynamic range measurements and is presented in some detail.  
 
TUPCH113 Construction of the ALPHA-X Photo-injector Cavity gun, vacuum, cathode, electron 1277
 
  • J. Rodier, T. Garvey
    LAL, Orsay
  • D.A. Jaroszynski, V.M. Pavlov, Y.M. Saveliev, M. Wiggins
    USTRAT/SUPA, Glasgow
  • M.J. de Loos, S.B. van der Geer
    PP, Soest
  We will describe the construction and low power testing of an RF cavity to be used as a photo-injector for the ALPHA-X project within the Department of Physics at the University of Strathclyde (UK). The gun is a two and a half cell S-band cavity, employing a metallic photo-cathode. RF power is coupled to the gun via a co-axial power coupler. The specification of the gun and the low power measurements made to achieve the correct mode frequency and field flatness will be presented.  
 
TUPCH117 Experience with the 208MHz and 52MHz RF Systems for the HERA Proton Accelerator feedback, beam-loading, controls, DESY 1289
 
  • R. Wagner, S. Choroba, A. Gamp, T.G. Grevsmuehl, G.M. Moeller
    DESY, Hamburg
  • A.B. Bienkowski
    The Andrzej Soltan Institute for Nuclear Studies, Centre Swierk, Swierk/Otwock
  The RF System for the Hera Proton Ring consists of four 208MHz systems and two 52MHz systems. At injection three of the 208MHz systems are at 70 kV and one System is at 190kV with a phase of 180 degree. The 52 MHz Systems are at 70kV each. During ramping the RF voltage of all cavities follows a ramp table. At flat top at 920GeV both 52 MHz systems are at 50kV and three of the 208MHz Systems are at 190kV while the 180 degree phased system is reduced to 30kV. The typical beam current is 100mA in 180 bunches with a bunch separation of 96 ns. About one year before shutdown of HERA this presentation gives an review of about 14 years operation of the Proton RF System. It is also an overview of the hardware including the beam loading compensation (fast feedback) the tuning system and the other components.  
 
TUPCH159 High Power Waveguide Switching System for SPring-8 Linac klystron, linac, vacuum, electron 1397
 
  • T. Taniuchi, T. Asaka, H. Dewa, H. Hanaki, T. Kobayashi, A. Mizuno, S. Suzuki, H. Tomizawa, K. Yanagida
    JASRI/SPring-8, Hyogo-ken
  • A. Miura
    Nihon Koshuha Co., Ltd., Yokohama
  A vacuum waveguide switch has been developed to build a backup system of an RF source for the electron injector system and the klystron drive line in the SPring-8 linac. A high power test of the waveguide switch was carried out, and the maximum RF power of 62 MW in peak, 1μsecond in pulse width and 10 pps in repetition rate was achieved without serious problems in RF and vacuum characteristics. The backup system utilizing this waveguide switch has been installed in the electron injector system.  
 
TUPCH183 H2 Equilibrium Pressure in a NEG-coated Vacuum Chamber as a Function of Temperature and H2 Concentration LHC, vacuum, instrumentation, collider 1444
 
  • A. Rossi
    CERN, Geneva
  Non Evaporable Getter (NEG) coating is used in the LHC room- temperature sections to ensure a low residual gas pressure for its properties of distributed pumping, low outgassing and desorption under particle bombardment; and to limit or cure electron cloud build-up due to its low secondary electron emission. In certain regions of the LHC, and in particular close to the beam collimators, the temperature of the vacuum chamber is expected to rise due to energy deposition from particle losses. Gas molecules are pumped by the NEG via dissociation on the surface, sorption at the superficial sites and diffusion into the NEG bulk. In the case of hydrogen, the sorption is thermally reversible, causing the residual pressure to increase with NEG temperature and amount of H2 pumped. Measurements were carried out on a stainless steel chamber coated with TiZrV NEG as a function of the H2 concentration and the chamber temperature, to estimate the residual gas pressure in the collimator regions for various LHC operation scenarios, corresponding to different particle loss rates and times between NEG regenerations. The results are presented in this paper and discussed.  
 
TUPCH195 The LHC Low Level RF feedback, klystron, controls, LHC 1471
 
  • P. Baudrenghien, G. Hagmann, J.C. Molendijk, R. Olsen, A. Rohlev, V. Rossi, D. Stellfeld, D. Valuch, U. Wehrle
    CERN, Geneva
  The LHC RF consists in eight 400 MHz superconducting cavities per ring, with each cavity independently powered by a 300 kW klystron, via a circulator. The challenge for the Low Level is to cope with both very high beam current (more than 1A RF component) and excellent beam lifetime (emittance growth time in excess of 25 hours). For each cavity we have a Cavity Controller rack with two VME crates implementing a strong RF Feedback, a Tuner Loop with a new algorithm, a Klystron Ripple Loop and a Conditioning system. In addition each ring has a Beam Control system (four VME crates) including Frequency Program, Phase Loop, Radial Loop and Synchronization Loop. A Longitudinal Damper (dipole and quadrupole mode) acting via the 400 MHz cavities is included to reduce emittance blow-up due to filamentation following phase and energy errors at injection. Finally an RF Synchronization system implements the bunch into bucket transfer from the SPS into each LHC ring. When fully installed in 2007 the whole system will count over three hundreds home-designed VME cards of twenty-three different models installed in fourty-five VME crates.  
 
TUPLS005 Preliminary Study of Using "Pipetron"-type Magnets for a Pre-accelerator for the LHC Collider LHC, dipole, lattice, SPS 1493
 
  • G. De Rijk, L. Rossi
    CERN, Geneva
  • H. Piekarz
    Fermilab, Batavia, Illinois
  One of the luminosity limitations of the LHC is the rather low injection energy (0.45 TeV) with respect to the collision energy (7 TeV). The magnetic multipoles in the main dipoles at low field and their dynamic behaviour are considered to limit the achievable bunch intensity and emittance. We report on a preliminary study to increase the injection energy to 1.5 TeV using a two beam pre-accelerator (LHCI) in the LHC tunnel. The LHCI is based on "Pipetron" magnets as originally proposed for the VLHC. The aim of the study is to assess the feasibility and to identify the critical processes or systems that need to be investigated and developed to render such a machine possible.  
 
TUPLS006 Optics of a 1.5 TeV Injector for the LHC LHC, dipole, optics, quadrupole 1496
 
  • J.A. Johnstone
    Fermilab, Batavia, Illinois
  A concept is being developed to install a second ring above the LHC to accelerate protons from 450 GeV to 1.5 TeV prior to injection into the LHC. The arc and dispersion suppressor optics of the LHC would be replicated in the injector using combined function 'transmission line' magnets orginally proposed for the VLHC. To avoid costly civil construction, in the straight sections housing detectors at least, the injector and LHC must share beampipes and some magnets through the detector portion of the straights. Creating the appropriate optics for these injector-LHC transition regions is very challenging: In addition to matching to the nominal LHC lattice functions at these locations, the changes in altitude of 1.1 m between the injector and LHC must be accomplished achromatically to avoid emittance blowup when the beams are transferred to the LHC.  
 
TUPLS009 Design and Tests of New Fast Kickers for the DAFNE Collider and the ILC Damping Rings kicker, impedance, damping, positron 1502
 
  • D. Alesini, S. Guiducci, F. Marcellini, P. Raimondi
    INFN/LNF, Frascati (Roma)
  In this paper we illustrate the design of new, fast stripline kickers to inject or extract bunches in electron/positron rings. The kickers have been designed for the injection upgrade of the Phi-factory DAFNE and as injection/extraction devices for the International Linear Collider (ILC) damping rings. The design is based on tapering the striplines in order to simultaneously obtain low impedance and an excellent uniformity of the deflecting field. The design has been done using 2D and 3D electromagnetic codes such as Superfish and HFSS. High voltage test results on prototypes are also shown.  
 
TUPLS010 New Beam Transport Line from LINAC to Photon Factory in KEK linac, KEKB, emittance, optics 1505
 
  • N. Iida, K. Furukawa, M. Ikeda, K. Kakihara, T. Kamitani, M. Kikuchi, Y. Kobayashi, T. Mitsuhashi, Y. Ogawa, M. Satoh, T. Suwada, M. Tawada, K. Yokoyama
    KEK, Ibaraki
  The e+/e- injector LINAC in KEK usually injects into four rings which are Low Energy Ring (LER) of KEKB (3.5GeV/e+), High Energy Ring (HER) of KEKB(8.0GeV/e-), Photon Factory (PF)(2.5GeV/e-) and Advanced Ring for pulse x-rays (PF-AR)(3.0GeV/e-). While LINAC continuously injects into LER and HER alternately about every five minutes, both of the KEKB rings usually store almost full operating currents. Time for PF or PF-AR, which includes switching time, took about 20 minutes several times a day. During this, the storage currents in KEKB rings decreased, and the optimum points of luminosity tuning had been lost. It had taken more than two hours to recover the luminosity. It is so useful for KEKB to shorten the time for switch LINAC KEKB to/from PF or PF-AR. In summer of 2005, the transport line from LINAC to PF were renewed, in which a DC bending magnet only for PF line apportions electron beam from the end of LINAC to the new line. We succeeded to reduce the occupancy time for PF injection to about five minutes. In this paper design of the new PF beam transport line and the practical performance achieved according to the design are described.  
 
TUPLS011 The Beam Screen for the LHC Injection Kicker Magnets impedance, LHC, kicker, vacuum 1508
 
  • M.J. Barnes, F. Caspers, L. Ducimetière, N. Garrel, T. Kroyer
    CERN, Geneva
  The two LHC injection kicker magnet systems must each produce a kick of 1.2 T.m with a flattop duration variable up to 7.86 μs, and rise and fall times of less than 0.9 μs and 3 μs, respectively. Each system is composed of four 5 Ω transmission line kicker magnets with matched terminating resistors and pulse forming networks (PFN). The LHC beam has a high intensity, hence a beam screen is required in the aperture of the magnets This screen consists of a ceramic tube with conducting "stripes" on the inner wall. The stripes provide a path for the image current of the beam and screen the magnet ferrites against Wake fields. The stripes initially used gave adequately low beam impedance however stripe discharges occured during pulsing of the magnet: hence further development of the beam screen was undertaken. This paper presents options considered to meet the often conflicting needs for low beam impedance, shielding of the ferrite, fast field rise time and good electrical and vacuum behaviour.  
 
TUPLS014 Optics Flexibility and Dispersion Matching at Injection into the LHC LHC, optics, emittance, controls 1517
 
  • A. Koschik, H. Burkhardt, B. Goddard, Y. Kadi, V. Kain, V. Mertens, T. Risselada
    CERN, Geneva
  The LHC requires very precise matching of transfer line and LHC optics to minimise emittance blow-up and tail repopulation at injection. The recent addition of a comprehensive transfer line collimation system to improve the protection against beam loss has created additional matching constraints and consumed a significant part of the flexibility contained in the initial optics design of the transfer lines. Optical errors, different injection configurations and possible future optics changes require however to preserve a certain tuning range. Here we present methods of tuning optics parameters at the injection point by using orbit correctors in the main ring, with the emphasis on dispersion matching. The benefit of alternative measures to enhance the flexibility is briefly discussed.  
 
TUPLS017 Optics Study for a Possible Crystal-based Collimation System for the LHC LHC, collimation, proton, extraction 1526
 
  • R.W. Assmann, S. Redaelli, W. Scandale
    CERN, Geneva
  The use of bent crystals as primary collimators has been long proposed as an option to improve the cleaning efficiency of the LHC betatron and momentum collimation systems. These systems are presently based on two-stage collimation with amorphous scatterers and absorbers. Crystals are expected to help by channeling and extracting the halo particles with large angles, resulting in higher cleaning efficiency. Independent of ongoing studies for crystal qualifications (not reported here), it is important to understand the required deflection angles and the possible locations of absorbers for the LHC layout. Optics studies have been performed in order to specify the required angles for various LHC beam energies and possible locations of absorbers for the deflected halo beam. A possible layout for crystal-assisted collimation at the LHC is discussed, aiming for a solution which would not change the LHC layout but would make use of the existing collimator location.  
 
TUPLS019 Critical Halo Loss Locations in the LHC optics, LHC, proton, insertion 1532
 
  • G. Robert-Demolaize, R.W. Assmann, C.B. Bracco, S. Redaelli, Th. Weiler
    CERN, Geneva
  The requirements on cleaning efficiency in the LHC are two to three orders of magnitude beyond the needs at existing super-conducting colliders. The LHC will therefore operate in unknown territory, which can only be assessed by powerful simulation tools. Such tools have been developed at CERN over the last years, making it possible to perform detailed simulations of the LHC cleaning processes and multi-turn loss patterns around the LHC ring. The simulation includes all collimators, diluters and absorbers in the LHC. Proton loss maps are generated with a 10 cm resolution, which allows performing advanced studies for quenches of super-conducting magnets along with the analysis of the deposited energy in the machine elements. The critical locations of beam halo losses are discussed, both for the ideal machine and for various scenarios of closed-orbit distortion and beta-beating. From these results it can be shown that it is sufficient to use a limited number of BLM's for the setup and optimization of the LHC collimation system.  
 
TUPLS027 A Non-scaling FFAG for Radioactive Beams Acceleration (RIA) acceleration, lattice, extraction, RIA 1547
 
  • D. Trbojevic, T. Roser, A.G. Ruggiero
    BNL, Upton, Long Island, New York
  One of the most expensive components of proposals to accelerate heavy radioactive beams is the superconducting linac. This is an attempt to design a non-scaling Fixed-Field Alternating-Gradient (FFAG) lattice to allow acceleration of heavy radioactive beams in a short time period with an acceptance in momentum of ±50%. As it had been previously reported the non-scaling FFAG has very small orbit offsets, very strong focusing, and large momentum acceptance. The lattice with small combined function magnets would provide substantial savings in the cost of the RF.  
 
TUPLS068 LEIR Electron Cooler Status electron, ion, gun, vacuum 1651
 
  • G. Tranquille, V. Prieto, R. Sautier
    CERN, Geneva
  • A.V. Bubley, V.V. Parkhomchuk
    BINP SB RAS, Novosibirsk
  The electron cooler for LEIR is the first of a new generation of coolers being commissioned for fast phase space cooling of ion beams in storage rings. It is a state-of-the-art cooler incorporating all the recent developments in electron cooling technology (adiabatic expansion, electrostatic bend, variable density electron beam…) and is designed to deliver up to 600 mA of electron current for the cooling and stacking of Pb54+ ions in the frame of the ions for LHC project. In this paper we present our experience with the commissioning of the new device as well as the first results of ion beam cooling with a high-intensity variable-density electron beam.  
 
TUPLS078 Design Studies of the Compact Superconducting Cyclotron for Hadron Therapy cyclotron, ion, extraction, simulation 1678
 
  • Y. Jongen, W. Beeckman, W.J.G.M. Kleeven, D. Vandeplassche, S.E. Zaremba
    IBA, Louvain-la-Neuve
  • V. Aleksandrov, G.A. Karamysheva, Yu. Kazarinov, I.N. Kian, S.A. Kostromin, N.A. Morozov, E. Samsonov, V. Shevtsov, G. Shirkov, E. Syresin
    JINR, Dubna, Moscow Region
  An overview of the current status of the design of the compact superconducting isochronous cyclotron C400 able to deliver ion beams with a charge to mass ratio of 0.5 is given. This cyclotron is based on the design of the current PT (proton therapy) C230 cyclotron and will be used for radiotherapy with proton, helium or carbon ions. 12C6+ and 4He2+ ions will be accelerated to 400 MeV/u energy and extracted by electrostatic deflector, H2+ ions will be accelerated to the energy 260MeV and extracted by stripping. Computer modeling results on the axial injection system, magnetic system, inflector and center design are given. Results of simulations of the ion beam injection, acceleration and extraction are presented.  
 
TUPLS083 A Low Energy Accumulation Stage for a Beta-beam Facility ion, electron, accumulation, SPS 1693
 
  • A. Källberg, A. Simonsson
    MSL, Stockholm
  • M. Lindroos
    CERN, Geneva
  The EU supported EURISOL Design Study encompasses a beta-beam facility for neutrino physics. Intense electron (anti-)neutrino beams are in such a machine generated through the decay of radioactive ions in a high energy storage ring. The two main candidate isotopes for the generation of a neutrino and an anti-neutrino beam are 6He2+ and 18Ne10+. The intensities required are hard to reach, in particular for the neon case. A possible solution to increase the intensity is to use an accumulator ring with an electron cooler. Critical parameters such as cooling times and current limitations due to space charge and tune shifts are presently being optimized. We will in this presentation give an overview of the low energy accumulation stage and review recent work on this option.  
 
TUPLS085 Stacking Simulations in the Beta-beam Decay Ring ion, CERN, collimation, simulation 1699
 
  • S. Hancock
    CERN, Geneva
  • A. Chancé
    CEA, Gif-sur-Yvette
  The so-called beta-beam concept for accelerator-driven neutrino experiments envisages the production of a pure beam of electron neutrinos (or their antiparticles) through the beta-decay of radioactive ions circulating in a high-energy storage ring. An unprecedented number of ions must be collected in the decay ring and maintained in a few short bunches. Stacking is unavoidable to match the available source rates with this demand. A new stacking method makes use of off-momentum injection into the decay ring to approach the circulating beam without requiring ultra-fast injection elements, rotation in the longitudinal plane to bring the fresh bunches onto the central orbit and asymmetric merging to transport these ions into the centre of the large stack. Simulation results are presented for the complete repetitive stacking process for two candidate ion species of significantly different charge-to-mass ratio.  
 
TUPLS086 Charge Breeding Exploration with the MAXEBIS ion, electron, GSI, HITRAP 1702
 
  • H.Z. Zimmermann
    LMU, Garching
  • R. Becker, M.K. Kleinod
    IAP, Frankfurt-am-Main
  • O.K. Kester
    GSI, Darmstadt
  The demand of exotic ions prior to their injection into an accelerator has driven the development of the charge breeding method. Existing facilities like REX-ISOLDE or ISAC at TRIUMF are already using a charge state booster for the post acceleration of radioactive ions. Planned facilities like EURISOL for instance have identified the need of a breeding system. In order to be comparable to the efficiency to a brut force acceleration employing stripper, the efficiency of a charge breeder has to be maximized and the breeding time has to be shortened comparing the existing breeder systems. Therefore the exploration and optimization of the charge state breeding is mandatory and supported by the EU. The Frankfurt MAXEBIS has been modified within the past years towards high current electron beam and external injection of alkaline ions by a surface ionisation source. The electron gun, the inner electrode structure and the collector of the MAXEBIS have been modified. The system has been shipped to GSI and re-assembled. The goals of the following experiments will be systematic studies of the breeding efficiency. The new setup and first experimental results will be presented.  
 
TUPLS107 Operation of the Opposite-Field Septum Magnet for the J-PARC Main-Ring Injection septum, vacuum, power-supply, dipole 1750
 
  • I. Sakai, Y. Arakaki, K. Fan, Y. Saito, M. Tomizawa, M. Uota
    KEK, Ibaraki
  • A.K. Kawasaki, H. Mori, A. Tokuchi
    NICHICON, Shiga
  • Y. Morigaki, A. Nishikawa
    IHI/Yokohama, Kanagawa
  The opposite field septum magnet system has been applied to the injection system of the J-PARC 50-GeV proton synchrotron. The features of the system are a force-free structure, easy pulse excitation and the possibility of a large-aperture, thin-septum structure. The septum magnet has the structure of an inside-vacuum to eliminate the thickness of the vacuum-chamber walls and electric-insulation layer to make the septum thickness as thin as possible. However the magnet cores and return coils are outside of the vacuum to reduce the out-gassing rate of the vacuum system. Finally, the larger beam aperture than the full acceptance of the ring and larger separation angle can be obtained at the septum magnet for low-loss injection. In this paper we will introduce the methods to eliminate the error fields caused by fabrication errors and eddy current with pulse excitation and stability of high current power supply of 50 kA.  
 
TUPLS108 Realization of Thick Hybrid Type Carbon Stripper Foils with High Durability at 1800K for RCS of J-PARC DIAMOND, vacuum, ion, linac 1753
 
  • I. Sugai, K. Hara, H. Kawakami, M. Oyaizu, A. Takagi, Y. Takeda
    KEK, Ibaraki
  • T. Hattori, K.K. Kawasaki
    RLNR, Tokyo
  • Y. Irie, J. Kamiya, M. Kinsho
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  The J-PARC requires thick carbon stripper foils (250-500 ug/cm2) to strip electrons from the H-beam supplied by the linac before injection into a 3 GeV Rapid Cycling Synchrotron. The 200 MeV H- beam from the linac has a pulse length of 0.5 ms with a repetition rate of 25 Hz and an average beam current of 335 uA. By much energy deposition of these high-intensity H- and circulating bunched beams, commercially available best stripper foils (CM) will break in a very short time and even a diamond foil will rupture at around 1800K by MW class accelerators. We have realized for first time the hybrid boron doped carbon stripper foils with long life time for J-PARC. The foils of 250-500 ug/cm2 were made by a controlled DC arc-discharge method. The lifetime was tested by using 3.2 MeV Ne+ DC beam of 2.5 uA and 750 keV H- DC beam of 500 uA, in which a significant amount of energy was deposited in the foils. The maximum lifetime was extremely long, 120- and 480-times than those of diamond and CM foils. The foils were also free from any shrinkage, and showed low thickness reduction rate even at high temperature of 1800K during long time irradiation of 90h.  
 
TUPLS109 Present Status of the L3BT for J-PARC emittance, simulation, quadrupole, linac 1756
 
  • T. Ohkawa
    JAEA, Ibaraki-ken
  • M. Ikegami
    KEK, Ibaraki
  • J. Qiang
    LBNL, Berkeley, California
  L3BT is a beam transport line from J-PARC (Japan Proton Accelerator Research Complex) linac to the succeeding 3-GeV RCS (Rapid Cycling Synchrotron). The construction of the L3BT has been almost finished. The beam commissioning of the L3BT will be started soon. On the other hand we have performed 3D particle simulations with PARMILA and IMPACT to evaluate the performance of the halo scraping, momentum compaction and beam diagnostics. In this paper, results of the beam simulation of the L3BT are presented. The construction status of the L3BT is also presented in brief.  
 
TUPLS111 Experimental Results of the Shift Bump Magnet in the J-PARC 3-GeV RCS power-supply, extraction, linac, controls 1762
 
  • T. Takayanagi, Y. Irie, J. Kamiya, M. Kinsho, M. Kuramochi, O. Takeda, T. Ueno, M. Watanabe, Y. Yamazaki, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  The shift bump magnet produces a fixed main bump orbit to merge the injection beam into the circulating beam. In order to control the injection beam for the short injection time (500 microseconds) with sufficient accuracy, the shift bump magnet needs a wide uniform magnetic field and the high speed exciting pattern of the high current. The magnetic field design and the structural analysis of the shift bump magnets have been performed using three-dimensional electromagnetic analysis code and mechanical analysis code, respectively. The magnetic field distributions were measured with a long search coil, thus giving a BL product over a magnet gap area. The temperature distributions at the various points of the magnet were measured by thermocouples over 24 hours till they saturated. General trend of these measurements agrees well with calculations.  
 
TUPLS112 Present Status of Injection and Extraction System of 3 GeV RCS at J-PARC extraction, proton, vacuum, emittance 1765
 
  • M. Yoshimoto, Y. Irie, J. Kamiya, M. Kinsho, F. Noda, P.K. Saha, T. Takayanagi, O. Takeda, M. Watanabe
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  The injection and extraction system for 3GeV RCS (Rapid Cycling Synchrotron) at J-PARC (Japan Proton Accelerator Research Complex) have many challenging issues, in order to realize MW beam in the RCS ring. The system is consisted in 3 parts, such as the injection line, the dump line, and the extraction line. And they are constructed from many kinds of components, such as DC and pulse magnets, a charge exchange system, beam monitors, titanium and ceramic vacuum chamber, a beam dump, and so on. Up to now, final designs are accomplished and developments and experiments of some components are carried out. In this presentation, summary of the injection and extraction system, recent status of developments, and beam commissioning scheme for beam injection and extraction are introduced.  
 
TUPLS113 Designs of Septum Magnet at 3 GeV RCS in J-PARC septum, vacuum, shielding, extraction 1768
 
  • M. Yoshimoto, Y. Irie, J. Kamiya, M. Kinsho, T. Takayanagi, O. Takeda, M. Watanabe
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • H. Fujimori, S. Igarashi, H. Nakayama
    KEK, Ibaraki
  3 GeV RCS (Rapid Cycling Synchrotron) at J-PARC (Japan Proton Accelerator Research Complex) consists in many kinds of septum magnets. There are two septum magnets to inject the beam into the ring, three septum magnets to extract the beam for the users, and two septum magnets to dump the beam which can not be exchanged its charge at the first foil. In order to reduce the magnetic leakage field from the septum magnets at the beam orbit in the ring, the silicon steel sheets are set at the outside of the septum magnets for the magnetic shields. However sufficient spaces to set the thick magnetic shields are not securable at the divergent duct areas. Therefore the vacuum chambers are made by the magnetic stainless steel and the leakage fields in the chambers can be reduced. As results of the 3D field calculations by TOSCA, the magnetic leakage field can be suppressed to a few Gauss or less.  
 
TUPLS115 Transverse Phase Space Painting for the CSNS Injection emittance, space-charge, simulation, lattice 1774
 
  • J. Qiu, J. Tang, S. Wang
    IHEP Beijing, Beijing
  • J. Wei
    BNL, Upton, Long Island, New York
  The CSNS accelerators consist of an 80 MeV proton Linac, and a 1.6 GeV rapid cycling synchrotron (RCS). The ring accumulates 1.88*1013 protons via H-stripping injection in the phase CSNS-I. The injected beam is painted into the large transverse phase space to alleviate space-charge effects. The uniformity of beam emittance is important in reducing the tune shift/spread due to space charge effect. The paper introduces two parameters to evaluate the uniformity of a distribution. To satisfy the low-loss design criteria, extensive comparison of different painting scenarios has been carried out by using the simulation code ORBIT. This paper gives detailed studies on painting schemes and the dependence on the lattice tune, the injection peak current, and also chopping rate.  
 
TUPLS118 Injection System Design for the CSNS/RCS proton, emittance, electron, linac 1783
 
  • J. Tang, Y. Chen, Y.L. Chi, Y.L. Jiang, W. Kang, J.B. Pang, Q. Qin, J. Qiu, L. Shen, S. Wang
    IHEP Beijing, Beijing
  • J. Wei
    BNL, Upton, Long Island, New York
  The CSNS injection system is designed to take one uninterrupted long drift in one of the four dispersion-free straight sections to host all the injection devices. Painting bumper magnets are used for both horizontal and vertical phase space painting. Closed-orbit bumper magnets are used for facilitating the installation of the injection septa and decreasing proton traversal in the stripping foil. Even with large beam emittance of about 300 pmm.mrad used, BSNS/RCS still approaches the space charge limit during the injection/trapping phase for the accumulated particles of 1.9*1013 and at the low injection energy of 80 MeV. Uniform-like beam distribution by well-designed painting scheme is then obtained to decrease the tune shift/spread. ORBIT code is used for the 3D simulations. Upgrading to higher injection energy has also been considered.  
 
TUPLS119 Design Study of the Axial Injection System of C400 Cyclotron ion, cyclotron, quadrupole, ion-source 1786
 
  • V. Shevtsov, V. Aleksandrov, Yu. Kazarinov
    JINR, Dubna, Moscow Region
  • Y. Jongen, D. Vandeplassche
    IBA, Louvain-la-Neuve
  Computer modeling results on the axial injection system design are given. Results of simulations of the Carbon, Hydrogen and Helium ion beam injection are presented.  
 
TUPLS125 Spin Transport from AGS to RHIC with Two Partial Snakes in AGS AGS, RHIC, extraction, dipole 1795
 
  • W.W. MacKay, A.U. Luccio, N. Tsoupas
    BNL, Upton, Long Island, New York
  • J. Takano
    RIKEN, Saitama
  The stable spin direction in the RHIC rings is vertical. With one or two strong helical Siberian snakes in the AGS, the stable spin direction at extraction is not vertical. Interleaved vertical and horizontal bends in the transport line between AGS and the RHIC rings also tend to tip the spin away from the vertical. In order to preserve polarization in RHIC, we examine several options to improve the matching of the stable spin direction during beam transfer from the AGS to each of the RHIC rings. While the matching is not perfect, the most economical method appears to be a lowering of the injection energy by one unit of G*gamma to 45.5.  
 
WEOBPA02 LEIR Commissioning ion, LHC, controls, linac 1876
 
  • C. Carli, P. Beloshitsky, L. Bojtar, M. Chanel, K. Cornelis, B. Dupuy, J. Duran-Lopez, T. Eriksson, S.S. Gilardoni, D. Manglunki, E. Matli, S. Maury, C. Oliveira, S. Pasinelli, J. Pasternak, F. Roncarolo, G. Tranquille
    CERN, Geneva
  The Low Energy Ion Ring (LEIR) is a central piece of the injector chain for LHC ion operation, transforming long Linac 3 pulses into high density bunches needed for LHC. LEIR commissioning is scheduled to be completed at the time of the conference. A review of LEIR commissioning highlighting expected and unexpected problems and actions to tackle them will be given.  
slides icon Transparencies
 
WEPCH008 The Beta-beam Decay Ring Design lattice, insertion, resonance, ion 1933
 
  • A. Chancé, J. Payet
    CEA, Gif-sur-Yvette
  The aim of the beta-beams is to produce highly energetic beams of pure electron neutrino and anti-neutrino, coming from beta radioactive decays of the 18Ne10+ and 6He2+, both at gamma = 100, directed towards experimental halls situated in the Frejus tunnel. The high intensity ion beams are stored in a ring until the ions decay. Consequently, all the injected particles will be lost anywhere in the ring, generating a high level of losses. The ring circumference has to be a multiple of the SPS circumference. The straight sections must be as long as possible in order to maximize the useful neutrino flux. The straight section length is chosen to be about 35% of the circumference length, which gives 1-km-long arcs. The bend field in the arcs is then reasonable. The arc has been chosen as a 2Pi phase advance insertion, which improves the optical properties (dynamic aperture and momentum acceptance) and allows the easy determination of the working point by the optics of the straight sections.  
 
WEPCH009 Loss Management in the Beta-beam Decay Ring dipole, ion, collimation, lattice 1936
 
  • A. Chancé, J. Payet
    CEA, Gif-sur-Yvette
  The aim of the beta-beams is to produce pure electronic neutrino and anti-neutrino highly energetic beams, coming from beta radioactive disintegration of the 18Ne10+ and 6He2+, both at gamma = 100, directed towards experimental halls situated in the Frijus tunnel. The high intensity ion beams are stored in a ring, until the ions decay. Consequently, all the injected particles will be lost anywhere around the ring generating a high level of losses. In order to keep a constant neutrino flux, the losses due to the decay of the radioactive ions are compensated with regular injections. The new ion beam is then merged with the stored beam with a specific RF program Two sources of losses have been considered: -The beta-decay products: their magnetic rigidity being different from the reference one, they are bent differently and lost. -The losses during the injection merging process. The first one needs a particular ring design in order to insert appropriate beam stoppers at the right place. The second one needs a specific collimation system which allows beam longitudinal halo cleaning between two successive injections.  
 
WEPCH012 Comparison of Betatron Function Measurement Methods and Consideration of Hysteresis Effects betatron, quadrupole, optics, storage-ring 1945
 
  • O. Kopitetzki, D. Schirmer, G. Schmidt, K. Wille
    DELTA, Dortmund
  Two methods for determining the betatron functions in a storage ring were used to survey the linear optics at Delta. The fast orbit response analysis is used to gain betatron functions at the beam position monitors (BPMs) and dipole correctors. These are compared to betatron functions measured by the tune scan method which gives the beta functions in the quadrupoles. To improve the accuracy of the betatron functions obtained by the tune scan method a measuring procedure is introduced which considers the hysteresis effects in the quadrupole magnets. Systematic deviations in the beta functions measured between the two methods have been observed. The calibration errors of the BPMs can explain the observed deviations. With the orbit response analysis also the betatron phase advances between the measurement points can be calculated. Because these do not depend on the calibration errors, unlike the betatron functions, the differences between measurement and model can be determined more precise. A comparison of both methods with the optics model will be presented.  
 
WEPCH013 Electron Transport Line Optimization using Neural Networks and Genetic Algorithms booster, synchrotron, electron, storage-ring 1948
 
  • D. Schirmer, T. Buening, P. Hartmann, D. Mueller
    DELTA, Dortmund
  Methods of computational intelligence (CI) were investigated to support the optimization of the electron transfer efficiency from the booster synchrotron BoDo to the electron storage ring DELTA. Neural networks and genetic algorithms were analysed alternatively. At first both types of methods were trained on the basis of a theoretical model of the transport line. After the training various algorithms were used to improve the magnet settings of the real transport line elements with respect to the electron transfer efficiency. The results of different strategies are compared and prospects as well as limitations of CI-methods to the application of typical optimization problems in accelerator operation are discussed.  
 
WEPCH029 Injection and Extraction Orbit of the J-PARC Main Ring extraction, beam-losses, kicker, quadrupole 1987
 
  • M. Tomizawa, Y. Kamiya, H. Kobayashi, I. Sakai, Y. Shirakabe
    KEK, Ibaraki
  • S. Machida
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  The J-PARC main ring (MR) accelerates a high intensity proton beam and deliver to the neutrino experimental hall by the fast extraction and to the hadron experimental facility by the slow extraction. The beam from the rapid cycle synchrotron (RCS) is injected by the bunch to bucket transfer into the MR. The MR has two beam dump lines, the first one is used to dump the beam at injection energy and the second one can be used to abort accelerated beam. The beam loss at the injection and extraction is one of the critical issue for high intensity proton accelerators. We report designed injection and extraction orbits and discuss about the beam apertures and the beam loss.  
 
WEPCH033 Single Particle Beam Dynamics Design of CSNS/RCS dipole, lattice, collimation, extraction 1996
 
  • S. Wang, S.X. Fang, Q. Qin, J. Tang
    IHEP Beijing, Beijing
  • J. Wei
    BNL, Upton, Long Island, New York
  Rapid Cycling Synchrotron (RCS) is a key component of Beijing Spallation Neutron Source (BSNS). It accumulates and accelerates protons to design energy of 1.6 GeV and extracts high energy beam to the target. As a high beam density and high beam power machine, low beam loss is also a basic requirement. An optimal lattice design is essential for the cost and the future operation. The lattice design of BSNS is presented, and the related dynamics issues are discussed. The injection/extraction scheme and the beam collimation system design are introduced.  
 
WEPCH041 Analytic Study of Longitudinal Dynamics in Race-track Microtrons synchrotron, longitudinal-dynamics, electron, microtron 2008
 
  • Yu.A. Kubyshin
    UPC, Barcelona
  • A.V. Poseryaev, V.I. Shvedunov
    MSU, Moscow
  Implementation of low energy injection schemes in the race-track microtron (RTM) design requires a better understanding of the longitudinal beam dynamics. Differently to the high energy case a low-energy beam will slip in phase relative to the accelerating structure phase. We generalize the concept of equilibrium or synchronous particle for the case of non-relativistic energies and introduce the notion of transition energy for RTMs. An analytical approach for the description of the synchronous phase slip is developed and explicit, though approximate, formulas which allow to define the equilibrium injection phase and fix the parameters of the accelerator are derived. The approximation can be improved in a systematic way by calculating higher order corrections. The precision of the analytical approach is checked by direct numerical computations using the RTMTrace code and was shown to be quite satisfactory. Explicit examples of injection schemes and fixing of RTM global parameters are presented.  
 
WEPCH043 On the Implementation of Experimental Solenoids in MAD-X and their Effect on Coupling in the LHC LHC, coupling, optics, quadrupole 2011
 
  • A. Koschik, H. Burkhardt, T. Risselada, F. Schmidt
    CERN, Geneva
  The betatron coupling introduced by the experimental solenoids in the LHC is small at injection and negligible at collision energy. We present a study of these effects and look at possible corrections. Additionally we report about the implementation of solenoids in the MAD-X program. A thin solenoid version is also made available for tracking purposes.  
 
WEPCH048 Measurement and Modeling of Magnetic Hysteresis in the LHC Superconducting Correctors LHC, CERN, sextupole, controls 2026
 
  • W. Venturini Delsolaro, L. Bottura, Y. C. Chaudhari, M. Karppinen
    CERN, Geneva
  • N.J. Sammut
    University of Malta, Faculty of Engineering, Msida
  The Large Hadron Collider, now under construction at CERN, relies heavily on superconducting magnets for its optics layout: besides the main magnets, almost all the correcting magnets are superconducting. Along with clear advantages, this brings about complications due to the effects of persistent currents in the superconducting filaments. Correcting magnets that trim key beam parameters or compensate field errors of the main magnets (among others those due to hysteresis), are in their turn hysteretic. The measured magnetic hysteresis and its possible influence on accelerator operation will be presented, in particular the real-time compensation of decay and snapback in the main magnets, and the reproducibility between runs. A detailed characterization of minor hysteresis loops is given, as well as degaussing cycles and modeling work.  
 
WEPCH051 Isochronous Magneto-optical Structure of the Recirculator SALO quadrupole, dipole, recirculation, site 2035
 
  • I.S. Guk, A. Dovbnya, S.G. Kononenko, F.A. Peev, A.S. Tarasenko
    NSC/KIPT, Kharkov
  • J.I.M. Botman, M.J. Van der Wiel
    TUE, Eindhoven
  With the goal to provide low energy spread of electron beam, the magneto-optical structure of the recirculator SALO has been modified. All of its parts (an injection tract and arcs) were made isochronous and achromatic. Besides, with the purpose of the accelerating structure arrangement, the length of straight sections was enlarged. The amplitude and dispersion functions on various recirculator sections and design characteristics of the beam are submitted.  
 
WEPCH052 Injection System for Kharkov X-ray Source NESTOR alignment, quadrupole, storage-ring, lattice 2038
 
  • A.Y. Zelinsky, P. Gladkikh, I.M. Karnaukhov, A. Mytsykov
    NSC/KIPT, Kharkov
  During the last three years a Kharkov X-ray generator NESTOR is under design and construction in NSC KIPT. According to the design report, electrons are injected in the storage ring at 100 MeV and ramped up to final energy 225 MeV. Due to compact design of the ring the injection trajectory of the beam will pass through fringe field of a NESTOR bending magnet. It brings additional difficulties on design of an injection channel. In the paper the layout, results of design and calculations of NESTOR injector channel are presented. The channel consists of two bending magnets, five-lens, asymmetrical, objective and two-lens matching cell to compensate dispersion and focusing effects of a dipole magnet fringe field and injection system elements (inflector). Presented results shows that designed lattice provides matching of injected beam parameters with the storage ring acceptance, is stable to element alignment errors and is easy controlled. The final values of the channel lens gradients can be defined only after measurements of inflector field profile.  
 
WEPCH057 Measurement and Optimization of the Lattice Functions in the Debuncher Ring at Fermilab lattice, optics, antiproton, kicker 2050
 
  • V.P. Nagaslaev, K. Gollwitzer, V.A. Lebedev, A. Valishev
    Fermilab, Batavia, Illinois
  • V. Sajaev
    ANL, Argonne, Illinois
  A goal of the Tevatron Run-II upgrade requires substantial increase of antiproton production. The central step towards this goal is increasing the Debuncher ring admittance. Detailed understanding of the Debuncher's optics, aperture limitations and lattice functions is necessary. The method of the response matrix optimization has been used to determine quadrupole errors and corrections to the design functions. The measurement accuracy is about 5% due to the Beam Position Monitor system resolution and the small number of steering elements in the machine. We have used these accurate measurements to redesign the machine optics to maximize the acceptance of the Debuncher where the main limiting apertures are the stochastic cooling pickups and kickers. Accuracy of the measurements and the limitations are discussed as well as details of the optics modification.  
 
WEPCH064 Fast Compensation of Global Linear Coupling in RHIC using AC Dipoles coupling, quadrupole, RHIC, resonance 2071
 
  • F. Franchi
    GSI, Darmstadt
  • R. Calaga
    BNL, Upton, Long Island, New York
  • R. Tomas
    CERN, Geneva
  Global linear coupling has been extensively studied in accelerators and several methods have been developed to compensate the coupling vector C using skew quadrupole families scans. However, scanning techniques can become very time consuming especially during the commissioning of an energy ramp. In this paper we illustrate a new technique to measure and compensate, in a single machine cycle, global linear coupling from turn-by-turn BPM data without the need of a skew quadrupole scan. The algorithm is applied to RHIC BPM data using AC dipoles and compared with traditional methods.  
 
WEPCH074 Progress with Non-linear Beam Dynamic Studies of the Diamond Storage Ring lattice, sextupole, dynamic-aperture, DIAMOND 2089
 
  • R. Bartolini, I.P.S. Martin, B. Singh
    Diamond, Oxfordshire
  • J.K. Jones
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  The conflicting requirements of high-brightness photon beams combined with adequate beam lifetime and high injection efficiency mean careful control of the non-linear lattice is crucial to achieving optimum performance. As part of the optimisation of the Diamond storage ring, studies have been made of both the Touschek lifetime and storage ring injection process, with the help of on-momentum and off-momentum frequency maps. The effect of chromaticity on Touschek lifetime has also been investigated and several new sextupole settings were identified achieving good Touschek lifetime and injection efficiency.  
 
WEPCH075 Effect of Insertion Devices on Beam Dynamics of the Diamond Storage Ring Using Kick Maps lattice, resonance, coupling, storage-ring 2092
 
  • B. Singh, A.I. Baldwin, R. Bartolini, I.P.S. Martin
    Diamond, Oxfordshire
  The effect of the all Phase-I Insertion Devices (IDs) on the beam dynamic of the Diamond storage ring has been investigated using the kick map modelisation of the IDs. Kick maps have been produced with high accuracy using the computer code RADIA, considering many longitudinal harmonics. The effect of IDs on the dynamic aperture, Touschek lifetime and injection efficiency in the low emittance lattice, was investigated considering both coupling errors and physical engineering apertures. Harmful resonances have been identified using Frequency Map Analysis (FMA) and full 6D tracking was performed to estimate the Touschek lifetime and the injection efficiency. Additionally, the kick maps have been used to generate feed-forward tables for compensation of linear optics distortion.  
 
WEPCH079 Effects of Intrinsic Nonlinear Fields in the J-PARC RCS resonance, sextupole, simulation, space-charge 2104
 
  • H. Hotchi, Y. Irie, F. Noda
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Machida
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • A.Y. Molodozhentsev
    KEK, Ibaraki
  In order to accelerate a high intense proton beam with small particle losses, the J-PARC RCS, which is being constructed at JAEA, has a large acceptance. In such synchrotrons, the nonlinear motion of the beam particles, especially moving away from the axis of the elements, is a common issue, and it becomes essential to consider intrinsic field nonlinearities. The main sources of nonlinear magnetic fields in the RCS are as follows: fringes of the main dipole and quadrupole magnets, sextupole fields used for the chromatic correction, leak fields from the injection and extraction beam lines, etc. In this paper, we will discuss influences of the intrinsic field nonlinearities and a cure for the induced betatron resonances, based on single-particle and multi-particle tracking simulations.  
 
WEPCH080 Beam Simulation of SQQ Injection System in KIRAMS-30 Cyclotron cyclotron, ion-source, simulation, space-charge 2107
 
  • D.H. An, J.-S. Chai, H.B. Hong, S.S. Hong, M.G. Hur, W.T. Hwang, H.S. Jang, I.S. Jung, J. Kang, J.H. Kim, Y.S. Kim, M.Y. Lee, T.K. Yang
    KIRAMS, Seoul
  The injection system of KIRAMS-30 cyclotron consists of a double gap buncher, an SQQ, and a spiral inflector. Initial beam with 100 mmmrad has been generated by random Gaussian function in the transverse plane and random uniform function in the longitudinal direction. Using the 3D electric and magnetic fields of a buncher, SQQ, inflector, and return-yoke bore, the characteristics of the beam injected into the KIRAMS-30 cyclotron's central region has been obtained. This paper presents the results of its beam characteristics and parameters of each beam element.  
 
WEPCH081 Injection of The Proton Beam Into The Compact Cyclotron with Solenoid cyclotron, simulation, emittance, space-charge 2110
 
  • L.M. Onischenko, E. Samsonov
    JINR, Dubna, Moscow Region
  The proton (H-) low (100 mkA) intensity beam injected by means of the solenoid comes to the first cyclotron orbit without the beam emittance deterioration. This is demonstrated by computer simulation.  
 
WEPCH113 Numerical Impedance Calculations for the GSI SIS-100/300 Kickers kicker, impedance, coupling, simulation 2179
 
  • B. Doliwa, H. De Gersem, T. Weiland
    TEMF, Darmstadt
  Fast kicker modules represent a potential source for beam instabilities in the planned Facility for Antiproton and Ion Research (FAIR) at the Gesellschaft für Schwerionenforschung (GSI), Darmstadt. In particular, the more than fifty kicker modules to be installed in the SIS-100 and SIS-300 synchrotrons are expected to have a considerable parasitic influence on the high-current beam dynamics. Here we present our numerical investigations of the longitudinal and transverse kicker coupling impedances using a specialized electromagnetic field software. Besides the coupling to the external network, particular attention is paid to the question whether a resistively-coated ceramic beam pipe is able to reduce coupling impedances and ferrite heating significantly.  
 
WEPCH125 New Design Tools for a Cyclotron Central Region cyclotron, emittance, ion, simulation 2215
 
  • D. Battaglia, L. Calabretta, D. Campo, M.M. Maggiore, L.A.C. Piazza, D. Rifuggiato
    INFN/LNS, Catania
  A code that allows us to design the spiral inflector and the central region of the SCENT cyclotron was implemented. The code integrates the main equations of motion of a particle in an electromagnetic field and provides an useful interface to describe the geometry and the physical constraints of the inflector and the central region to be simulated. The mechanical drawings of the inflector and the central region is made using a standard CAD. These drawings are then imported in OPERA 3D to produce the maps of the electric and magnetic field. An application interface allows us to enter the emittance and the particles’ distributions to be transported through the inflector. An iterative process to design the central region was also developed and tested.  
 
WEPCH136 Monte Carlo Simulation Model of Internal Pellet Targets target, scattering, simulation, storage-ring 2239
 
  • O.A. Bezshyyko, K.A. Bezshyyko, I.M. Kadenko, R.V. Yermolenko
    National Taras Shevchenko University of Kyiv, The Faculty of Physics, Kyiv
  • A. Dolinskii
    NASU/INR, Kiev
  • V.G. Ziemann
    UU/ISV, Uppsala
  We develop a numerical model of a pellet target and use it for Monte Carlo simulations of the interaction of a circulating beam with a pellet target. Real geometry details of the pellet beam and the beam are taken into account. We emphasize the role of tails of non-Gaussian distributions for transverse scattering and energy loss. These effects are especially important for simultaneous calculations of electron cooling, intrabeam scattering and target influence. Black-box algorithms for the generation of automatic nonuniform random variate distributions are used for the effective time averaging of scattering angle and energy loss distributions.  
 
WEPCH154 SPS Access System Upgrade SPS, LHC, controls, extraction 2287
 
  • E. Manola-Poggioli, PL. Lienard, T. Pettersson
    CERN, Geneva
  The present SPS access system is not entirely compatible with the formal requirements of the French Radioprotection Authorities, and a project has been launched to remedy this situation. The upgrade project is split into three phases that will be implemented, in the present planning, in the shutdowns 2006, 2007 and after the first physics run of the LHC, respectively. This paper presents the results of the safety study, the upgrade strategy and the architecture of the upgraded system.  
 
WEPCH155 Tune-stabilized Linear-field FFAG for Carbon Therapy acceleration, extraction, focusing, multipole 2290
 
  • C. Johnstone
    Fermilab, Batavia, Illinois
  • S.R. Koscielniak
    TRIUMF, Vancouver
  The simplicity, smaller aperture, and reduced ring size associated with linear-field, nonscaling FFAGs have made them attractive to investigate for a broad range of applications. Significant progress has recently been made towards understanding and modeling this new type of accelerator. The merits, drawbacks and challenges of the linear-field FFAG are discussed here, in particular its suitability for proton and carbon cancer therapy as compared with conventional synchrotrons and cyclotrons. Specifically, tune stabilization and dynamic aperture, a problem with both scaling and non-scaling FFAGs, will be addressed in detail.  
 
WEPCH160 A Novel Proton and Light Ion Synchrotron for Particle Therapy synchrotron, extraction, septum, dipole 2305
 
  • S.P. Møller, F.S. Albrechtsen, T. Andersen, A. Elkjaer, N. Hauge, T. Holst, I. Jensen, S.M. Madsen
    Danfysik A/S, Jyllinge
  • K. Blasche, B. Franczak
    GSI, Darmstadt
  A compact and simple synchrotron for a cancer particle therapy system has been designed and is presently under construction. A lattice with six regular superperiods, twelve dipole and twelve quadrupole magnets, is used. The optimized lattice configuration, including the design of injection and extraction systems, provides large transverse phase space acceptance with minimum magnet apertures. The result is a synchrotron for PT with light magnets (5t dipoles), low values of peak power for pulsed operation and minimum dc power consumption. In addition, industrial production principles are used, keeping ease of construction, installation, and operation in mind. The beam, injected at 7 MeV/amu, can be accelerated to the maximum magnetic rigidity of 6.6 Tm in less than 1 s. A beam of 48-250 MeV protons and 88-430 MeV/u carbon ions can be slowly extracted during up to 10s. The intensity for protons and carbon ions will be well beyond the needs of scanning beam applications. The design and performance specifications of the synchrotron will be described in detail.  
 
WEPCH188 Compact Picosecond Pulse Radiolysis System Using Photo-cathode RF Gun laser, electron, emittance, gun 2373
 
  • M. Washio, Y. Hama, Y. Kamiya, M. Kawaguchi, R. Moriyama, H. Nagai, K. Sakaue
    RISE, Tokyo
  • H. Hayano, J. Urakawa
    KEK, Ibaraki
  • S. Kashiwagi
    ISIR, Osaka
  • R. Kuroda
    AIST, Tsukuba, Ibaraki
  • K.U. Ushida
    RIKEN, Saitama
  A very compact picosecond pulse radiolysis system has been installed and operated at Waseda University. The system is composed of a laser photo-cathode RF gun as the pump source and stable Nd:YLF laser as the white light source to probe the reaction in the picosecond region. The white light generation is performed by the non-linear effect of intense laser light with the wavelength of 1047 nm into the water cell. The experimental results with the time resolution of 18 ps by examining the time profile of hydrated electron have been obtained. The system configuration will be also presented at the conference.  
 
WEPLS010 20 - 50 GeV Muon Storage Rings for a Neutrino Factory lattice, site, sextupole, storage-ring 2415
 
  • G. Rees
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  • C. Johnstone
    Fermilab, Batavia, Illinois
  • F. Meot
    CEA, Gif-sur-Yvette
  Muon decay ring studies are being undertaken as part of the International Scoping Study (ISS) for a Neutrino Factory. A racetrack and an isosceles triangle shaped ring are under design, initially for a muon energy of 20 GeV, but with an upgrade potential for 50 GeV. Both rings are designed with long straights to optimize directional muon decay. The neutrinos from the muon decays pass to one or two distant detectors; the racetrack ring has one very long production straight, aligned with one detector, while the triangular ring has two straights, each half as long, which can be aligned with two detectors. Lattice studies, injection, collimation, and RF system design for the large acceptance, high intensity rings are discussed and the performance of the two rings compared.  
 
WEPLS011 General Design Considerations for a High-intensity Muon Storage Ring for a Neutrino Factory site, storage-ring, proton, target 2418
 
  • C. Johnstone
    Fermilab, Batavia, Illinois
  • F. Meot
    CEA, Gif-sur-Yvette
  • G. Rees
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  Muon decay ring design, shielding, and compatibility with potential neutrino detector sites are a critical part of the International Scoping Study (ISS) for a neutrino factory. Two rings are under development: a racetrack and an isosceles-triangle ring initially for muon energy of 20 GeV, but upgradable to 50 GeV. Neutrinos from the muon decays in specially designed production straights can be directed to one or two distant detectors; the racetrack ring has one very long production straight, aligned with one detector, while the triangular ring has two straights, each half as long, aligned with two detectors. An initial site survey of accelerators and distant detectors has been made, along with the required tilt angles from the horizontal will be discussed here. (Lattice studies, injection, collimation, and RF system design are covered in a separate contribution to these proceedings.) Heating and activation effects of beam loss in the chamber walls and components will also be presented.  
 
WEPLS050 Experiments with Electron Cloud and Sources electron, plasma, ion, laser 2490
 
  • M. Cavenago
    INFN/LNL, Legnaro, Padova
  • G. Bettega, F. Cavaliere, D. Ghezzi, A. Illiberi, R. Pozzoli, M. Rome
    INFN-Milano, Milano
  The Penning-Malmberg trap ELTRAP installed at University of Milano can provide electron clouds of several sizes for study of non-linear physics: length ranges from 0.15 to 1 m, while diameter is varied between 25 mm and 70 mm by changing the electron source: filament or planar spiral. Vortices develop both in trapped and flowing electron beams. Slow instabilities, due to the accumulation of ions inside the trap are observed and cured by clearing fields. Results as a function of plasma size are described. Plan to install a third laser modulated electron source and additional diagnostic are also summarized.  
 
WEPLS057 Equivalent Velocity Spectroscopy Based on Femtosecond Electron Beam Accelerator electron, laser, gun, linac 2511
 
  • S. Takemoto, T. Kondoh, J. Yang, Y. Yoshida
    ISIR, Osaka
  A new femtosecond pulse radiolysis system, which is called as "Equivalent Velocity Spectroscopy (EVS)" based on a photocathode rf linear accelerator and a femtosecond laser, is developed in ISIR for the study of primly process and ultrafast electron-induced reactions for the nanofabrication. In order to achieve a high time resolution on femtosecond scale, a femtosecond electron beam bunch produced by a photocathode accelerator and a synchronized femtosecond laser were used. The electron bunch and laser pulse were injected with an angle determined by the refractive index of the sample. The electron bunch was also rotated with a same angle, resulting in the time resolution degradation due to the velocity difference between light and the electron in the sample is thus avoided. A jitter compensation technique with a femtosecond streak camera was used to reduce the time jitter between the electron bunch and laser pulse. Moreover, in EVS, a technique of double laser pulse injection was used to improve the signal to noise ratio due to the fluctuation of the laser intensity during the measurement.  
 
WEPLS071 Design Method for a Large Aperture Opposite-field Septum Magnet septum, magnet-design, vacuum, proton 2544
 
  • K. Fan, Y. Arakaki, I. Sugai
    KEK, Ibaraki
  A novel design septum for Japan Proton Accelerator Research Center (J-PARC) delivers high intensity 3GeV proton beam to the 50GeV main ring is presented. The project requires the construction of the large aperture septum to accommodate the large size and high intensity injection beam. As there limitations due to the lattice size and restricted installation space, the septum must provide a large kick angle to the injection beam. Sufficient clearance between the circulating beam and the injection beam is also needed to reduce the beam loss to an acceptable level to avoid the serious radiation problem. To meet these challenging requirements, a large aperture, thin septum, opposite-field septum magnet has been developed. In this paper, we present the detail studies done for the optimization of the magnet, including DC and pulse magnet.  
 
WEPLS072 Results of Field Measurements for J-PARC Main Ring Magnets quadrupole, sextupole, multipole, optics 2547
 
  • K. Niki, K. Ishii, Y. Nemoto, E. Yanaoka
    KEK, Ibaraki
  • M. Muto
    New Affiliation Request Pending, -TBS-
  The mass production of J-PARC main ring magnets had been completed till the end of fiscal year 2004. Those magnets consists of 97 bending magnets with 6-m in length, 216 quadrupole magnets with 11 families and 72 sextupole magnets. We have been measured the magnetic field for all of these magnets and we will finish it in March, 2006. The obtained distributions for the BL products of bending magnets and the GL products of quadrupole magnets are within the required tolerance limits, values of which are estimated by the beam optics for COD correction, etc. The measured multi-pole components for these magnets, and so on, will be also reported.  
 
WEPLS078 Design Study of the 30 MeV Cyclotron Magnet cyclotron, extraction, acceleration, proton 2559
 
  • J. Kang, D.H. An, J.-S. Chai, H.S. Chang, H.B. Hong, M.G. Hur, I.S. Jung, Y.-S. Kim, T.K. Yang
    KIRAMS, Seoul
  Korea Institute of RAdiological & Medical Sciences (KIRAMS) has been developing a 30 MeV cyclotron that is planned to be installed at Advanced Radiation Technology Institute, Jeongeup in late 2006. The AVF (Azimuthally Varying Field) magnet of the cyclotron was designed to produce 15-30 MeV proton beam with movable stripper foil. Four directions of extractions are available with two switching magnets. The overall shape of the magnet is cylindrical. The magnet has three kinds of holes for beam injection, vacuum pumps and RF system. The valley and hill gap ratio is about 20 for higher axial focusing. The designed magnet model and its magnetic properties of the KIRAMS-30 are presented.  
 
WEPLS082 The Septa for LEIR Extraction and PS Injection septum, vacuum, extraction, ion 2568
 
  • J. Borburgh, M. Hourican, T. Masson, A. Prost
    CERN, Geneva
  The Low Energy Ion Ring (LEIR) is part of the CERN LHC injector chain for ions. The LEIR extraction uses a pulsed magnetic septum, clamped around a metallic vacuum chamber. Apart from separating the ultra high vacuum in the LEIR ring from the less good vacuum in the transfer line to the PS this chamber also serves as magnetic screen and retains the septum conductor in place. The PS ion injection septum consists of a pulsed laminated magnet under vacuum, featuring a single-turn water cooled coil and a remote positioning system. The design, the construction and the commissioning of both septa are described.  
 
WEPLS092 Computer Modeling of Magnetic System for C400 Superconducting Cyclotron cyclotron, extraction, simulation, focusing 2589
 
  • Y. Jongen, D. Vandeplassche, S.E. Zaremba
    IBA, Louvain-la-Neuve
  • G.A. Karamysheva, N.A. Morozov, E. Samsonov
    JINR, Dubna, Moscow Region
  The superconducting cyclotron (C400) is designed at IBA (Belgium) able to accelerate carbon ions at 400 MeV/nucleon. By computer simulation with 3D TOSCA code, the cyclotron magnetic system principal parameters were estimated (pole radius 187 cm, outer diameter 606 cm, valley depth 60 cm, height 276 cm). The required isochronous magnetic field was shaped with an accuracy of ± 2 mT. Four-fold symmetry and spiralized sectors with elliptical gap (minimal 12 mm at extraction) provide the stable beam acceleration till 15 mm from the pole edge.  
 
WEPLS104 The Dependence of the Field Decay on the Powering History of the LHC Superconducting Dipole Magnets LHC, dipole, CERN, collider 2622
 
  • N.J. Sammut, L. Bottura, S. Sanfilippo
    CERN, Geneva
  • J. Micallef
    University of Malta, Faculty of Engineering, Msida
  The decay amplitude of the allowed multipoles in the LHC dipoles is expected to perturb the beam stability during the injection phase and is strongly dependent on the powering history of the magnet. The effect is particularly large for the pre-cycle nominal flat-top current and duration. With possible prospects of having different genres of cycles during the LHC operation, the powering history effect must be taken into account in the Field Description Model for the LHC (FIDEL) and must hence be corrected for during machine operation. This paper presents the results of the modelling of this phenomenon. We also discuss the statistic of magnetic measurements required to guarantee that the current history effect is predicted within the specified accuracy.  
 
WEPLS110 New Measurements of Sextupole Field Decay and Snapback Effect on Tevatron Dipole Magnets dipole, sextupole, LHC, LEFT 2640
 
  • G. Velev, P. Bauer, R.H. Carcagno, J. DiMarco, M.J. Lamm, D.F. Orris, P. Schlabach, C. Sylvester, M. Tartaglia, J. Tompkins
    Fermilab, Batavia, Illinois
  To perform detailed studies of the dynamic effects in superconducting accelerator magnets, a fast continuous harmonics measurement system based on the application of a digital signal processor (DSP) has been built at Fermilab. Using this new system the dynamic effects in the sextupole field, such as the field decay during the dwell at injection and the rapid subsequent "snapback" during the first few seconds of the energy ramp, are evaluated for more than ten Tevatron dipoles from the spares pool. The results confirm the previously observed fast drift in the first several seconds of the sextupole decay and provided additional information on a scaling law for predicting snapback duration. The presented information can be used for an optimization of the Tevatron and for future LHC operations.  
 
WEPLS136 Pulsed Magnet Power Supplies for Improved Beam Trajectory Stability at the APS septum, booster, power-supply, extraction 2697
 
  • B. Deriy, L. Emery, A.L. Hillman, G.S. Sprau, J. Wang
    ANL, Argonne, Illinois
  New power circuit and control electronics have been implemented in the septum power supplies at the Advanced Photon Source (APS). The goal was to meet a low pulse-to-pulse relative amplitude jitter of about ± 5·10-4 for trajectory stability in the booster-to-storage ring transport line. The original power supply design produced a jitter of ± 15e-4, which made injection tuning difficult. The jitter for the two new booster pulsed magnet supplies is now 1.1e-4, as inferred by a beam-based statistical analysis. A common design was made for all of the septum magnet power supplies at the APS. The system, regulation algorithms, the results achieved, and the current regulation stability issues will be discussed.  
 
WEPLS138 Operation Status and Statistics of the KEK Electron/Positron Linac linac, KEKB, positron, klystron 2700
 
  • Y. Ogawa, A. Enomoto, K. Furukawa, T. Kamitani, M. Satoh, T. Sugimura, T. Suwada, Y. Yano, K. Yokoyama, M. Yoshida
    KEK, Ibaraki
  • Y. Imai, T. Kudou, S. Kusano, K. Suzuki, T. Toufuku
    MELCO SC, Tsukuba
  The KEK electron/positron linac has been operated since 1982, surpassing the total operation time of more than 100,000 hours. It delivers four different beams to four different rings quite stably, even frequently switching beam modes. The operation time per year has reached 7,000 hours since 1999 when the KEKB entered a normal operation mode. Operation status and statistics will be reported with the emphasis on continuing efforts in various kinds of machine improvements, which have ensured the stable operation.  
 
THXPA01 Overview of the Status of the Diamond Project DIAMOND, storage-ring, booster, vacuum 2718
 
  • R.P. Walker
    Diamond, Oxfordshire
  The presentation will outline the status of the Diamond project including an overview of the major areas of technical challenge including reference to the physics issues and their impact on design and performance. The majority of the talk will present the status and challenges of first commissioning, outlining the current performance and the challenges in achieving operational status.  
slides icon Transparencies
 
THYFI01 Tevatron Ionization Profile Monitoring electron, proton, antiproton, IPM 2777
 
  • A. Jansson, K. Bowie, T. Fitzpatrick, R. Kwarciany, C. Lundberg, D. Slimmer, L. Valerio, J.R. Zagel
    Fermilab, Batavia, Illinois
  Ionization Profile monitors have been used in almost all machines at Fermilab. However, the Tevatron presents some particular challenges with its two counter-rotating, small beams, and stringent vacuum requirements. In order to obtain adequate beam size accuracy with the small signals available, custom made electronics from particle physics experiments was employed. This provides a fast (single bunch) and dead-timeless charge integration with a sensitivity in the femto-Coulomb range, bringing the system close to the single ionization electron detection threshold. The detector itself is based on a previous Main Injector prototype, albeit with many modifications and improvements. The first detector was installed at the end of 2005, with a second detector to follow during the spring shutdown. The ultimate is to continuously monitor beam size oscillations at injection, as well as the beam size evolution during ramp and squeeze.  
slides icon Transparencies
 
THPCH011 Wire Compensation of Parasitic Crossings in DAFNE luminosity, positron, simulation, collider 2808
 
  • M. Zobov, D. Alesini, C. Milardi, M.A. Preger, P. Raimondi
    INFN/LNF, Frascati (Roma)
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk
  Long-range beam-beam interactions (parasitic crossings) are one of the main luminosity performance limitations for the Frascati e+e- Phi-factory DAFNE. In particular, the parasitic crossings (PC) lead to a substantial lifetime reduction of both beams in collision. This puts a limit on the maximum storable current and, as a consequence, on achievable peak and integrated luminosity. In order to alleviate the problem numerical and experimental studies of the PC compensation with current-carrying wires have been performed at DAFNE. Two such wires have been installed at both ends of the KLOE interaction region. Switching on the wires in accordance with the numerical predictions, improvement in the lifetime of the "weak" beam (positrons) has been obtained at the maximum current of the "strong" one (electrons) without luminosity loss. In this paper we describe the PC effects in DAFNE, summarize the results of numerical simulations on the PC compensation with the wires and discuss the experimental measurements and observations.  
 
THPCH013 Study of Particle Losses Mechanism for J-PARC Main Ring resonance, space-charge, sextupole, emittance 2811
 
  • A.Y. Molodozhentsev, M. Tomizawa
    KEK, Ibaraki
  Detailed understanding as well as confidence in simulation modeling of long-term effects (~ 100'000 turns) of high intensity proton beam is crucial for Main Ring (MR) of the J-PARC project, where it is necessary to hold the high-intensity beam over typically ~ 2 sec with a loss level less than 1%. The major focus of such study is the combined effect of space charge and nonlinear resonances and its impact on halo formation and/or beam loss. In frame of this report, the tracking results for the injection process including realistic representation of the ring's focusing structure are discussed. Optimization of the working point during the injection process is presented. The halo formation and particle losses during the injection and acceleration for MR have been estimated for realistic magnetic field errors.  
 
THPCH042 Numerical Estimations of Wakefields and Impedances for Diamond Collimators impedance, simulation, DIAMOND, storage-ring 2877
 
  • S.A. Pande, R. Bartolini, R. T. Fielder, M. Jensen
    Diamond, Oxfordshire
  The storage ring of the Diamond light source will use two collimators, one in horizontal and one in the vertical planes in the injection straight to protect the IDs from the injection and Touschek losses. These collimators, in the form of tapered metallic intrusions in to the vacuum chamber, will generate considerable wake fields and will contribute to the overall machine impedance. In this paper we present the results of ABCI and MAFIA numerical simulations to estimate these effects.  
 
THPCH053 Numerical and Experimental Study of Cooling-stacking Injection in HIMAC Synchrotron ion, electron, scattering, simulation 2907
 
  • E. Syresin
    JINR, Dubna, Moscow Region
  • K. Noda
    NIRS, Chiba-shi
  • S. Shibuya
    AEC, Chiba
  • T. Uesugi
    KEK, Ibaraki
  The cooling-stacking injection at the HIMAC synchrotron was used to increase the intensity of Ar18+ ion beam. The beam stacking was realized in a horizontal free phase-space, which was created by the HIMAC electron cooler. The stack intensity of (1.5~2.5)·109 ppp was accumulated at an injection intensity of (0.3~1.0)e9. The stack intensity was limitted by the ion lifetime. A peculiarity of present cooling-stacking experiments is related to lifetime difference by a factor of 2~3 of the stack and injected ions. The lifetime of stack ions is determined by vacuum pressure. The new injected ions were slowly lost at multiple scattering on residual gas atoms at diffusion heating in the vertical direction caused by the acceptance of 30pi-mm-mrad and a reduction of cooling force at large betatron amplitudes. The results of numerical simulations and experimental study of cooling-stacking injection on the HIMAC synchrotron are presented.  
 
THPCH054 SIMPSONS with Wake Field Effects kicker, extraction, impedance, emittance 2910
 
  • Y. Shobuda, F. Noda
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • Y.H. Chin, K. Takata, T. Toyama
    KEK, Ibaraki
  • S. Machida
    CCLRC/RAL/ASTeC, Chilton, Didcot, Oxon
  Simpsons, which is originally developed by S. Machida, is the program which calculates the space charge effect to the beam in the ring. The wake field effect to the beam is also installed in this program, because the emittance growth not only due to the space charge effect, but also due to the wake field effect is the important issue. The results of the simulation in J-PARC case are also represented.  
 
THPCH067 Coherent Synchrotron Radiation Studies at the Accelerator Test Facility synchrotron, radiation, synchrotron-radiation, CSR 2940
 
  • S. De Santis, J.M. Byrd
    LBNL, Berkeley, California
  • A. Aryshev, T. Naito, J. Urakawa
    KEK, Ibaraki
  • M.C. Ross
    SLAC, Menlo Park, California
  Coherent Synchrotron Radiation (CSR) has been the object of recent experiments and is a topic of great importance for several accelerator currently in their design phase (LCLS, ILC, CIRCE). We present the results of several experimental sessions performed at the Advanced Test Facility - KEK (ATF). An infrared bolometer was used to detect the emitted infrared radiation in the 1-0.05 mm wavelength range as a function of several beam parameters (beam current, RF power, extraction timing, photoinjector laser phase). The beam energy spread was also recorded. We found that the mismatch between injected and equilibrium beam is the source of the coherent signal detected concurrently with the bunch injection.  
 
THPCH095 Transverse Damping System at SIS100 feedback, damping, kicker, GSI 3014
 
  • V. Zhabitsky, E. Gorbachev, N.I. Lebedev
    JINR, Dubna, Moscow Region
  • U. Blell, P.J. Spiller
    GSI, Darmstadt
  The basic concept and main design features of the transverse damping system at the SIS100 synchrotron are presented. SIS100 with five times the circumference of the current SIS18 accelerator is a part of the Facility for Antiproton and Ion Research (FAIR) which is the next accelerator complex being constructed on the GSI site. The existing GSI accelerators serve as injector for SIS100. The SIS100 synchrotron will provide ion beams of high intensities which can lead to transversal and longitudinal beam instabilities. In order to damp the coherent transverse beam oscillations, a transverse feedback system (TFS) is going to be implemented in SIS100. The TFS presented is a feedback with a real-time digital signal processing for damping of transverse injection oscillations, feedback curing transverse coupled bunch instabilities, and excitation of transverse oscillations for beam measurements and other applications. The data on the bandwidth and gain of the TFS as well as the general description of the central processing unit are presented.  
 
THPCH099 A Turn-by-turn, Bunch-by-bunch Diagnostics System for the PEP-II Transverse Feedback Systems feedback, controls, SLAC, damping 3026
 
  • R. Akre, W.S. Colocho, A. Krasnykh, V. Pacak, R. Steele, U. Wienands
    SLAC, Menlo Park, California
  A diagnostics system centered around commercial fast 8-bit digitizer boards has been implemented for the transverse feedback systems at PEP-II. The boards can accumulate bunch-by-bunch position data for 4800 turns (35 ms) in the x plane and the y plane. A dedicated trigger chassis allows to trigger the data acquisition on demand, or on an injection shot to diagnose injection problems, and provides gating signals for grow-damp measurements. Usually, the boards constantly acquire data and a beam abort stops data acquitision, thus preserving the last 4800 turns of position information before a beam abort. Software in a local PC reads out the boards and transfers data to a fileserver. Matlab-based data analysis software allows to present the raw data but also higher-level functions like spectra, modal analysis, spectrograms and other functions. The system has been instrumental in diagnosing beam instabilities in PEP. This paper will describe the architecture of the system and its applications.  
 
THPCH103 Design and Testing of Gproto Bunch-by-bunch Signal Processor feedback, diagnostics, luminosity, damping 3038
 
  • D. Teytelman, R. Akre, J.D. Fox, A. Krasnykh, C.H. Rivetta, D. Van Winkle
    SLAC, Menlo Park, California
  • A. Drago
    INFN/LNF, Frascati (Roma)
  • J.W. Flanagan, T. Naito, M. Tobiyama
    KEK, Ibaraki
  A prototype programmable bunch-by-bunch signal acquisition and processing channel with multiple applications in storage rings has been developed at SLAC. The processing channel supports up to 5120 bunches with bunch spacings as close as 1.9 ns. The prototype has been tested and operated in five storage rings: SPEAR-3, DAFNE, PEP-II, KEKB, and ATF damping ring. The testing included such applications as transverse and longitudinal coupled-bunch instability control, bunch-by-bunch luminosity monitoring, and injection diagnostic. In this contribution the prototype design will be described and its operation will be illustrated with the data measured at the abovementioned accelerators.  
 
THPCH115 Timing System Upgrade for Top-up Injection at KEK Linac linac, KEKB, KEK, controls 3071
 
  • K. Furukawa, E. Kadokura, A. Kazakov, M. Satoh, T. Suwada
    KEK, Ibaraki
  KEK Linac provides electrons and positrons to Photon Factory (PF) and B-Factory (KEKB). Because of the nature of those factory machines both quantity and quality of the beams are required. In order to improve the injections, quasi top-up injections of electrons to PF and KEKB rings have been planned and a new beam transport line was built. Fast beam switching mechanisms are being developed and installed. The timing and control system is also reinforced to realize fast (50Hz) switching of rf timing pulses, low-level rf, beam instrumentation parameters, and beam feedback parameters. The present timing system provides precise (jitters down to 5ps) timing pulses to 150 devices. Many of the signals will be upgraded to enable the fast switching scheme with an event system. At the same time a double-fold synchronization between asynchronous Linac and PF rf signals was developed to achieve precise injection timing mainly because both rings have independent circumference correction systems.  
 
THPCH116 Continuous Circumference Control and Timing System for Simultaneous Electron-positron Injection at the KEKB linac, KEKB, controls, positron 3074
 
  • M. Suetake, H. Koiso, Y. Ohnishi, K. Oide
    KEK, Ibaraki
  We have continuously controlled ring circumference with a new method of synthesizer control at the KEKB. The new method stands for continuous controlling of reference frequency of synthesizers. Due to the new circumference control, we stabilized the KEKB circumference within about 6 micrometers. In Fall 2006, KEKB will introduce simultaneous electron-positron injection scheme. We have to change the timing system of KEKB to control the injection phase with pulse-to-pulse injection. We show the plan of the new timing system due to the simultaneous injection scheme.  
 
THPCH121 Development of Machine Interlock System HMI for PLS controls, storage-ring, vacuum, linac 3086
 
  • B.R. Park, J. Choi, H.-S. Kang, J.-W. Lee, J.C. Yoon
    PAL, Pohang, Kyungbuk
  The Machine Interlock System (MIS) for the Pohang Light Source (PLS) is used for the monitoring and control of machine devices and equipments for operation and maintenance, and protects machine devices and equipments by interlock chain program at fault status. The MIS consists of one central system unit and seven remote local system units, and is implemented mainly using GE-FANUC's Programmable Logic Controller (PLC). Using information and data in the MIS, a human-machine interface (HMI) for the MIS is developed for the operator and system manager to efficiently control and monitor the MIS and also to log various event, trip, fault data automatically. Wonder's FactorySuite is used for the HMI development software. The HMI is developed under PC environments, which communicates with the MIS through RS-485 serial link.  
 
THPCH128 Portable SDA (Sequenced Data Acquisition) with a Native XML Database collider, controls, LEFT, proton 3101
 
  • T.B. Bolshakov, E.S. McCrory
    Fermilab, Batavia, Illinois
  SDA is a general logging system for a repeated, complex process. It has been used as one of the main logging facility for the Tevatron Collider during Run II. It creates a time abstraction in terms understood by everyone and allows for common time tick across different subsystems. In this article we discuss a plan to re-implement this highly successful FNAL system in a more general way so it can be used elsewhere. Latest technologies, namely a native XML database and AJAX, are used in the project and discussed in the article.  
 
THPCH148 Tests of a High Voltage Pulser for ILC Damping Ring Kickers kicker, damping, extraction, linac 3137
 
  • M.A. Palmer, G. Dugan, D. L. Rubin
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • R. Meller
    Cornell University, Department of Physics, Ithaca, New York
  The baseline configuration for the International Linear Collider (ILC) damping rings specifies a single 6 km damping ring for electrons and two 6 km rings for positrons. Kicker requirements are determined by the damping ring circumference and the train structure in the main linac. The nominal bunch train parameters in the ILC main linac are trains of 2820 bunches with 308 ns spacing and a train repetition rate of 5 Hz. This means that the pulsers for the damping ring kickers must have rise and fall times suitable for bunch spacings of ~6 ns, must be able to operate with 3.25 Mhz bursts, and must support an average pulse rate of 14.1 kHz. We describe bench and beam tests of a pulser based on fast ionization dynistor technology whose specifications roughly meet these requirements. We then discuss the implications of our results for the ILC damping ring kickers.  
 
THPCH175 Automatic Resonant Excitation Based System for Lorentz Force Compensation for Flash controls, radio-frequency, resonance, DESY 3206
 
  • P.M. Sekalski, A. Napieralski
    TUL-DMCS, Lodz
  • S. Simrock
    DESY, Hamburg
  The cavity is the key element of each linear accelerator used for high-energy physics purpose. The resonant frequency of cavities depends on its shape. Due to the pulse operation, they are deformed by dynamic Lorentz force (LF) caused by accelerating electromechanical field. As a consequence, the cavities are not working on resonance but they are detuned from master oscillator frequency by few hundreds of Hertz depending on accelerating field gradient. The paper presents an automatic control system for LF compensation applied to fast tuning mechanism CTS. The active element is multilayer low-voltage piezoelectric stack (EPCOS). The resonant excitation with adaptive feed forward algorithm is used to drive the actuator. Test performed at FLASH (former name VUV-FEL) on cav5/ACC1 showed that detuning during flat-top period (800us) might remain below 10Hz for accelerating field gradient of 20MV/m.  
 
THPCH186 Magnetic Field Measurement and Fine-tuning of Kickers kicker, storage-ring, synchrotron, synchrotron-radiation 3236
 
  • T.-C. Fan, C.-H. Chang, C.-S. Fann, C.-S. Hwang, F.-Y. Lin
    NSRRC, Hsinchu
  We have demonstrated an algorithm which promisingly can tune the pulse shape of current and magnetic field of kicker systems in-situ. This algorithm includes gap shimming of the ferrite magnets to adjust the pulse width of the excitation current and changing the resistance of the secondary coils to modify the pulse curvatures of each kicker. With the empirical formula derived from the systematic measurement on the magnetic field and the pulse current in laboratory, we can reduce the pulse-shape difference among the kicker magnets in the injection section of the storage ring, with no need to do anything on the pulsers and high voltage power suppliers. This approach can efficiently increase the injection efficiency which is demanding in the top-up injection mode adopted by many new facilities of synchrotron radiation.  
 
THPCH187 Analysis and Reduction Electromagnetic Interference to ICTs Caused by Pulsed Power Supply Excitation in NSRRC kicker, electron, power-supply, storage-ring 3239
 
  • Y.-H. Liu, J.-C. Chang, J.-R. Chen, Y.-C. Lin
    NSRRC, Hsinchu
  The purpose of this paper is to eliminate the Electromagnetic Interference (EMI) from kicker power supply. Analyses of the EMI source and the propagation path are the beginning missions. The radiated and conducted EMI both affected the Integral Current Transformer (ICT) normal operation because of the space limitation for TLS in NSRRC. The ICT is to measure injection efficiency, thus, ICT located just behind the kickers and using the common girder. The EMI signals therefore are much higher than the electron beam currents, and the integral values of the sensor are not correct. For reducing and eliminating the interference of electromagnetic waves, a hybrid segregation and grounding method was used. The EMI wrapper was enclosed the ICT and its high frequency amplifier separately to prevent the radiated EMI from the space. The grounding paths provided the possible stray current dredge to the ground loop. It reduced the stray current spread to the subsystems next to the kickers. The EMI therefore reduced 99%, and the injection efficiency could be calculated successfully. The elimination of the EMI from kicker itself will be the next step in the future.  
 
THPLS003 When Less is More - Construction of the Australian Synchrotron storage-ring, synchrotron, undulator, linac 3266
 
  • D. Morris
    ASP, Clayton, Victoria
  The Australian Synchrotron is a 3 GeV facility under construction next to Monash University in Melbourne. The project was launched in January 2003 and is scheduled for completion in March 2007. The funding of Aus$206M (about 125 MEuros) covers all costs associated with the site, building, accelerators and the first nine beamlines. The building contract was placed in July 2003 and completed in February 2005. Installation of the accelerators began in April 2005 and should be complete by May 2006. Commissioning of the injection system began in October 2005, and storage ring commissioning will begin mid-2006, with beamline commissioning beginning January 2007 and facility handover in March 2007. The project is being delivered with a staff of less than 50, which has meant that much of the detailed design work and project management for major systems (e.g., the injection system, RF system, support girders, vacuum vessels and front ends) has been performed by commercial suppliers under turn-key contracts. The presentation will discuss the main technical challenges, and results will be presented of the commissioning of the linac, booster and storage ring.  
 
THPLS005 Commissioning Results from the Injection System for the Australian Synchrotron Project booster, synchrotron, quadrupole, emittance 3272
 
  • S. Friis-Nielsen, H. Bach, F. Bødker, A. Elkjaer, N. Hauge, J. Kristensen, L.K. Kruse, S.M. Madsen, S.P. Møller
    Danfysik A/S, Jyllinge
  • M.J. Boland, R.T. Dowd, G. LeBlanc, M.J. Spencer, Y.E. Tan
    ASP, Clayton, Victoria
  • N.H. Hertel, J.S. Nielsen
    ISA, Aarhus
  Danfysik has built a full-energy turnkey injection system for the Australian Synchrotron. The system consists of a 100 MeV LINAC, a low-energy transfer beamline, a full-energy booster and a high energy transfer beamline. The booster synchrotron will deliver a 3-GeV beam with an emittance of 33 nm. The lattice is designed to have many cells with combined-function magnets (dipole, quadrupole and sextupole fields) in order to reach this very small emittance. The current in single- and multi-bunch mode will be in excess of 0.5 and 5 mA, respectively. The repetition frequency will be 1 Hz. At the time of writing this abstract, the LINAC beam has been injected into the low-energy transfer beamline. The project is on schedule for delivery in April 2006. Results from the commissioning of the system will be presented together with its performance.  
 
THPLS008 Commissioning of the SOLEIL Booster booster, SOLEIL, extraction, emittance 3281
 
  • A. Loulergue
    SOLEIL, Gif-sur-Yvette
  SOLEIL is a 2.75 GeV new third generation synchrotron radiation facility under construction near Paris. The injector system is composed of a 100 MeV electron Linac pre-accelerator followed by a full energy (2.75 GeV) booster synchrotron. The booster lattice is based on a FODO structure with missing magnet. With a circumference of 157 m and low field magnets (0.74 T), the emittance is in the range of 110 to 150 nm.rad at 2.75 GeV. The magnets are excited at 3 Hz, using switched mode power supplies, with digital regulation. The LEP type RF cavity is powered by a 35 kW-352 MHz solid state amplifier. Closed orbits are measured turn by turn, using the BPM Libera digital electronics. The commissioning took place in October 2005, and an acceleration efficiency of 75% was obtained at the maximum energy. The main results achieved during that commissioning will be reported.  
 
THPLS009 First Results of the Commissioning of SOLEIL Storage Rings storage-ring, SOLEIL, quadrupole, closed-orbit 3284
 
  • A. Nadji, J.C. Besson, P. Betinelli, P. Brunelle, A. Buteau, L. Cassinari, M.-E. Couprie, J.-C. Denard, J.-M. Filhol, P. Gros, C. Herbeaux, J.-F. Lamarre, P. Lebasque, M.-P. Level, A. Loulergue, A. Madur, P. Marchand, L.S. Nadolski, R. Nagaoka, B. Pottin, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette
  The commissioning of SOLEIL's storage ring will start in April 2006. The objective is to reach, within a first phase of two months, stable beam conditions at 100 mA in the multi-bunch mode that can be used for the commissioning of the beamlines. This is a challenging objective, especially because the SOLEIL's ring is incorporating some innovative techniques such as the use of a superconducting RF cavity, NEG coating for all straight parts of the machine and new BPM electronics. Prior to the start of the commissioning, some insertion devices and most of the insertion devices low gap vacuum vessels, including 10 mm inner vertical aperture vessels for the Apple-II type, will be installed on the ring. This paper will review the performances of all these equipment in presence of the beam. The results of the first commissioning runs will be presented.  
 
THPLS014 Status of the Metrology Light Source microtron, storage-ring, electron, synchrotron 3299
 
  • K. Buerkmann-Gehrlein, M. Abo-Bakr, W. Anders, P. Budz, O. Dressler, V. Duerr, J. Feikes, H.G. Hoberg, D. Krämer, P. Kuske, R. Lange, J. Rahn, T. Schneegans, D. Schueler, E. Weihreter, G. Wuestefeld
    BESSY GmbH, Berlin
  • R. Klein, G. Ulm
    PTB, Berlin
  For more than 25 years, the Physikalisch-Technische-Bundesanstalt (PTB) uses synchrotron radiation at the storage rings BESSY I and II for photon metrology in the spectral range of UV to x-rays. Since decommissioning of BESSY I (1999), there is a gap in the spectral range of UV and EUV wavelength due to the higher electron energy of BESSY II. Thus, in 2003, the Metrology Light Source (MLS), a low energy electron storage ring, was approved, as central instrument in the future Willy Wien Laboratory (WWL). Design, construction and operation of the MLS are realized by BESSY, based on the PTB requirements for a permanent accessible radiometry source, optimized for the spectral range between UV up to VUV. The MLS is tuneable in energy between 200 MeV and 600 MeV, designed for currents between 1pA up to 200mA. Civil construction of WWL in the close vicinity to BESSY is nearing completion. The first MLS components will be installed in spring 2006, commissioning of the 100MeV Microtron is scheduled for summer 2006, while commissioning of the storage ring will start in spring 2007. Regular user operation will begin in January 2008. A status and an overview on the construction of the MLS are  
 
THPLS022 Radiation Dose Related to ANKA Operation Mode radiation, storage-ring, optics, emittance 3323
 
  • I. Birkel, MH. Hagelstein, E. Huttel, A.-S. Müller, P. Wesolowski
    FZK, Karlsruhe
  Radiation doses in the ANKA hall are measured by area monitoring and Albedo dosimeters. In August 2004 the machine optics was replaced by a new optics with reduced emittance and higher brightness. Measurements of the beam lifetime and the related radiation doses show a strong correlation between the operation mode of the machine and the dose distribution in the hall.  
 
THPLS028 Pulsed Magnets and Pulser Units for the Booster and Storage Ring of the Diamond Light Source booster, septum, storage-ring, kicker 3341
 
  • V.C. Kempson, J.A. Dobbing
    Diamond, Oxfordshire
  • C.E. Hansen, N. Hauge, G. Hilleke
    Danfysik A/S, Jyllinge
  The Diamond booster and storage ring complex require ten pulsed magnet systems, five for the booster (injection and extraction) and five for the storage ring injection. Each has its own specific design criteria, although commonality of approach has been applied wherever possible. This paper describes the design principles and construction method for the various systems and presents the results of power supply tests and magnetic measurements. Finally, initial experience during the Diamond beam commissioning is discussed.  
 
THPLS029 Commissioning of the Booster Synchrotron for the Diamond Light Source booster, DIAMOND, extraction, dipole 3344
 
  • V.C. Kempson, R. Bartolini, C. Christou, J.A. Dobbing, G.M.A. Duller, M.T. Heron, I.P.S. Martin, G. Rehm, J.H. Rowland, B. Singh
    Diamond, Oxfordshire
  The Diamond booster is a 158 m circumference, 5 Hz synchrotron which accelerates the 100 MeV electron beam from a linac to 3 GeV for full-energy injection into the Diamond storage ring. The booster has been commissioned in the first few months of 2006, following successful initial 100 MeV trials at the very end of 2005. The injection and ramping process, orbit correction and essential beam physics measurements are discussed as are extraction and beam transport to the storage ring.  
 
THPLS030 Beam Optic Measurements for the Booster Synchrotron of the Diamond Light Source booster, lattice, DIAMOND, quadrupole 3347
 
  • B. Singh, R. Bartolini, C. Christou, V.C. Kempson, I.P.S. Martin
    Diamond, Oxfordshire
  • J.K. Jones
    CCLRC/DL/ASTeC, Daresbury, Warrington, Cheshire
  The booster synchrotron of the Diamond Light Source is a full energy injector ramping from 100 MeV to 3 GeV with a repetition rate of 5 Hz. As part of the booster commissioning, beam optic measurements were performed to characterize the booster performance. Through the use of the beam position monitors, orbit corrections, tune and chromaticity measurements were performed at injection energy and during the ramp. A first comparison with the booster model is also discussed.  
 
THPLS031 Elettra Top-up Requirements and Design Status electron, insertion, insertion-device, ELETTRA 3350
 
  • F. Iazzourene, S. Bassanese, A. Carniel, K. Casarin, R. De Monte, M. Ferianis, F. Giacuzzo, M. Lonza, G. Tromba, A. Vascotto
    ELETTRA, Basovizza, Trieste
  Elettra is a 2.5 GeV third generation light source in operation since 1993. To provide more stable beams to the users, we plan to operate in the so-called top-up injection mode. The first step is the substitution of the present 1GeV linac by a 100 MeV pre-injector linac and a fast cycling 2.5 GeV synchrotron booster foreseen to be in operation in 2007*. The present paper will report on the requirements for the top-up operation in terms of radiation safety, diagnostics H/S, timing, modality, etc. and the design status. In particular, a new BPM system, based on the log-ratio detectors, has been successfully commissioned on the present transfer line and linac and is ready to be deployed on the new injector and to be used by the new foreseen shot to shot transfer line booster to storage trajectory feedback system. Furthermore, in order to flatten the storage ring filling, the top-up charge will be integrated where needed. Preliminary measurements on the bunch by bunch measurement methods of the storage ring bunch charge are reported.

*“Elettra New Full Energy Injector Status Report”, these proceedings.

 
 
THPLS034 Top-up Operation of SPring-8 Storage Ring with Low Emittance Optics optics, emittance, electron, brilliance 3359
 
  • H. Tanaka, N. Kumagai, M. Masaki, S. Matsui, H. Ohkuma, T. Ohshima, M. Oishi, J. Schimizu, K. Soutome, S. Takano, M. Takao, H. Takebe, K. Tsumaki, H. Yonehara, T. Yorita, C. Zhang
    JASRI/SPring-8, Hyogo-ken
  We have succeeded in providing stable and three-times more brilliant x-ray to users by combining top-up operation with low emittance optics. The optics with the low emittance of 3nmrad was first applied to the user operation in November 2002. Although the low emittance provided the brilliant x-ray, the extremely short beam lifetime much disturbed the precise experiments. Moreover, the aborted electron beam damaged the part of vacuum chamber at the beam injection section. The low emittance operation was thus suspended in October 2003. By improving design of the vacuum chamber and introducing the top-up injection, the problems for the stable operation were resolved, and then the top-up operation with the low emittance optics has been first achieved at SPring-8. This paper illustrates how we achieved this sophisticated operation by explaining the following three essential investigations: (1) reduction of natural emittance for a storage ring with four magnet-free long straight sections, (2) protection of vacuum chamber from aborted electron beam, and (3) consistency to the top-up operation. The obtained performance is also described in the paper.  
 
THPLS037 Beam Position and Angular Monitor for Undulator by Using SR Monitor Technique electron, undulator, focusing, radiation 3368
 
  • T. Mitsuhashi, M. Tadano
    KEK, Ibaraki
  We presented a beam position monitor by using SR monitor technique in the last PAC05. In this monitor, a visible SR in far tail of the undulator spectrum is extracted by a water-cooled beryllium mirror. We applied a focusing system to observe a beam position in the undulator through an optical image of beam. We continue further study of this monitor, and this time, we add the afocal system like a Kepler type telescope to measure the angular deviation of the beam. This system converts the angular deviation of optical axis of input ray into position deviation, and we can measure an angular deviation of the beam through its position deviation on the CCD. The results show us this method is applicable to monitor an angular deviation of beam in the undulator independent from position deviation, and gap change of undulator has no effect for the beam position monitoring.  
 
THPLS058 MAX III Commissioning vacuum, dipole, electron, betatron 3416
 
  • M. Eriksson, M. Bergqvist, M. Brandin, L.-J. Lindgren, M. Sjöström, S. Thorin
    MAX-lab, Lund
  Some of the features of the 700 MeV MAX III synchrotron radiation storage ring are presented, and the commissioning of this ring is described.  
 
THPLS061 Status of the Swiss Light Source SLS, feedback, coupling, booster 3424
 
  • A. Lüdeke, Å. Andersson, M. Böge, B. Kalantari, B. Keil, M. Pedrozzi, T. Schilcher, V. Schlott, A. Streun
    PSI, Villigen
  The Swiss Light Source (SLS) is a 3rd generation synchrotron light source in operation since 2001. The paper will point out the recent activities to enhance machine operation and provides an overview about the new beamlines currently under construction at the SLS.  
 
THPLS063 Nonlinear Beam Dynamics of TPS lattice, dynamic-aperture, sextupole, resonance 3430
 
  • H.-P. Chang, P.J. Chou, C.-C. Kuo, G.-H. Luo, H.-J. Tsai, M.-H. Wang
    NSRRC, Hsinchu
  A design study of 3.0 GeV high performance low emittance storage ring Taiwan Photon Source has been conducted recently The natural emittance of the storage ring can be as low as 1.7 nm-rad in our design and its lattice structure is a 24-cell double bend achromat type with circumference of 518.4 m, which will be located in the existing NSRRC site in Hsinchu. The strong focusing requires strong aberration correction with nonlinear sextupole magnets. The distribution of the sextupoles and number of families are studied to ensure a good dynamic aperture. The nonlinear effects in both betatron and synchrotron motions are investigated. Nonlinear beam dynamics effects in the presence of magnetic field imperfections as well as the insertion devices are simulated. The physical aperture limitations are included in the study too, and the Touschek lifetime is calculated. The tracking data are analyzed using frequency map analysis method and corresponding beam dynamics behavior can be revealed more precisely.  
 
THPLS069 Preliminary Design of the TPS Linac to Booster Transfer Line booster, linac, electron, focusing 3448
 
  • Y.-C. Liu, H.-P. Chang, C.-S. Fann, K.-T. Hsu, S.Y. Hsu, K.-K. Lin, K.-B. Liu, G.-H. Luo
    NSRRC, Hsinchu
  The preliminary design of the LTB (linac to booster) transfer line of the proposed TPS (Taiwan Photon Source) project is considered in this study. The layout presented in this report is based on the booster lattice and the choice of linac parameters. These parameters are adopted from previous report of booster design and typical commercial available products of linac. The simulation result indicates that the desired optical functions at a given location can be readily obtained by varying the appropriate focusing strength of quadrupoles. It provides tuning capability to match various possible options of optical functions at injection location. This report is presented together with design consideration of a set of beam diagnostics instruments.  
 
THPLS075 Progress in Development of Kharkov X-Ray Generator storage-ring, quadrupole, electron, lattice 3457
 
  • A.Y. Zelinsky, V.P. Androsov, E.V. Bulyak, A. Dovbnya, I.V. Drebot, P. Gladkikh, V.A. Grevtsev, Yu.N. Grigor'ev, A. Gvozd, V.E. Ivashchenko, I.M. Karnaukhov, N. Kovalyova, V.P. Kozin, V. Lapshin, V.P. Lyashchenko, V. Markov, N.I. Mocheshnikov, V.B. Molodkin, A. Mytsykov, I.M. Necklyudov, F.A. Peev, O.V. Ryezayev, A.A. Shcherbakov, A. Shpak, V.L. Skirda, V.A. Skomorokhov, Y.N. Telegin, V.I. Trotsenko, O.D. Zvonarjova
    NSC/KIPT, Kharkov
  • A. Agafonov, A.N. Lebedev
    LPI, Moscow
  • J.I.M. Botman
    TUE, Eindhoven
  • R. Tatchyn
    SLAC, Menlo Park, California
  Over the past year the design, development and construction of NSC KIPT X-ray generator NESTOR has been in progress. NESTOR is a new type radiation source on the base of Compton scattering and a 40 - 225 MeV electron storage ring. Electrons are injected in the storage ring at 100 MeV and ramped up to final energy 225 MeV. It is supposed that stored electron beam current will be of about 200 mA. Along with use of Nd:Yag laser of 10 W average power which was developed by High-Q laser firm and optical resonator with accumulation gain of about 1000 it allows to provide X-ray radiation flux up to 1011 phot/s. NESTOR is the cooperative facility and is supported both as well Ukrainian government as NATO SfP project #977982. It is supposed that NESTOR will be in operation in the middle of 2007 year. The status of the project and main facility systems are described in the report.  
 
THPLS078 Tests of a New Bunch Cleaning Technique for the Advanced Light Source storage-ring, kicker, betatron, controls 3463
 
  • F. Sannibale, W. Barry, M.J. Chin
    LBNL, Berkeley, California
  A new bunch cleaning technique is being tested at the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory. The new procedure allows for high purity, arbitrary filling patterns and is potentially compatible with standard user operation and with the incoming top-off injection mode. The description of the new system and the results of the first tests at the ALS are presented.  
 
THPLS079 Bunch Diffusion Measurements at the Advanced Light Source photon, storage-ring, electron, lattice 3466
 
  • F. Sannibale, W.E. Byrne, C.-W. Chiu, J. Guo
    LBNL, Berkeley, California
  • J.S. Hull, O.H.W. Siegmund, A.S. Tremsin, J. Vallerga
    UCB, Berkeley, California
  In storage ring based synchrotron light sources, a long beam lifetime is usually a fundamental requirement for a high integrated brightness. The dynamic aperture and the momentum acceptance of lattices are carefully studied and maximized as much as possible for a long lifetime performance. On the other hand, large momentum acceptance and dynamic aperture increase the probability that a particle diffuses from one bunch to another. Diffusion can represent a severe limitation for those experiments where the samples have long relaxation times requiring empty buckets between bunches. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory we have characterized the particle diffusion for the present lattice in order to evaluate its impact on a special user operation dedicated to these long relaxation time experiments and on the incoming top-off injection mode for the ALS.  
 
THPLS082 Status of the Top-off Upgrade of the ALS radiation, brightness, storage-ring, undulator 3469
 
  • C. Steier, D. Robin, T. Scarvie
    LBNL, Berkeley, California
  In order to provide higher brightness and better stability, the ALS is being upgraded to top-off injection. One main part of the top-off modifications is an upgrade of the booster as well as extraction and injection elements and the transfer line for full energy. Further upgrades include new diagnostics, improved controls and timing system, and new radiation safety systems (monitors and interlocks).  
 
THPLS085 Nonlinear Dynamics in the SPEAR 3 Double-waist Chicane optics, dynamic-aperture, insertion, SLAC 3475
 
  • J.A. Safranek, X. Huang, A. Terebilo
    SLAC, Menlo Park, California
  A quadrupole triplet has been included in the center of a 7.6 m long chicane in SPEAR 3 to create a novel and technically challenging 'double waist' optics with betay=1.6m at the center of each of two future small-gap insertion devices. The new optics also reduces betay to 2.5m in the four adjacent 4.8m straight sections. In this paper, we discuss key issues associated with design of the machine optics, insertion device compatibility issues, optimization of dynamic aperture and initial measurements of machine performance in the new configuration.  
 
THPLS099 Fast Kicker Systems for the SOLEIL Booster Injection and Extraction, with Full Solid-state Pulsed Power Supplies kicker, extraction, power-supply, vacuum 3505
 
  • P. Lebasque, M. Bol, C. Herbeaux, J.-P. Lavieville, J.L. Marlats
    SOLEIL, Gif-sur-Yvette
  The Booster of SOLEIL needs injection and extraction kicker systems with fast transition times, good flat top and low jitter, to allow a satisfactory injection efficiency of the Storage Ring injection. So all the kicker systems have been optimised, to fulfil specifications and to permit the use of solid state switching electronics. This contribution presents the ceramic vacuum chambers and magnets design, the specific pulse forming scheme and the realisation of the pulsed power supplies working up to 20 kV. Electrical and magnetic measurements results of kickers systems are given, and also its operation status from the first SOLEIL Booster injection in July 2005.  
 
THPLS100 Four Matched Kicker Systems for the SOLEIL Storage Ring Injection, a Full Solid State Solution of Pulsed Power Supplies Working at High Current kicker, storage-ring, SOLEIL, vacuum 3508
 
  • P. Lebasque, R. Ben El Fekih, C. Herbeaux, J.-P. Lavieville, J.L. Marlats
    SOLEIL, Gif-sur-Yvette
  The Top Up injection mode of the SOLEIL Storage Ring needs a very good matching of the four kicker magnet fields. But their implantation inside the straight section dedicated to SR injection imposed high level forces on each of the four kickers. This contribution describes the ceramic vacuum chambers and magnets design optimised to provide a very good identity of the four magnets. The pulsed power supplies, based on IGBT high voltage modules, designed to work at high current (5250 A-9000 V) could be located outside the SR tunnel. We highlight the specific development on all components specification and electrical scheme that permits to reach such a challenge. The electrical and magnetic measurement results are reported.  
 
THPLS101 Eddy Current Septum Magnets for Booster Injection and Extraction and Storage Ring Injection at Synchrotron SOLEIL septum, booster, vacuum, storage-ring 3511
 
  • P. Lebasque, J. Da Silva, P. Gros, J.-P. Lavieville, A. Mary, D. Muller
    SOLEIL, Gif-sur-Yvette
  Eddy current thin septum magnets are used to inject or extract the electron beam to/from the Booster and to the Storage Ring of SOLEIL. Good transverse homogeneity in the gap for injected beam, and low leakage field on circulating beam is needed, as well as pulse stability. The Top Up injection mode of the Storage Ring needs a very low level of leakage field on the stored beam path. Operating currents are from 2000 A and 3000 A for Booster injection and extraction, to 5100 A for SR injection. This contribution will describe the magnets and the pulsed power supplies design. The electrical and magnetic measurement results will be presented, with a specific emphasis on the improvements needed to reduce the level of leakage field of the SR septum magnet.  
 
THPLS102 Optimisation of the Coating Thickness on the Ceramic Chambers of the SOLEIL Storage Ring kicker, SOLEIL, vacuum, storage-ring 3514
 
  • P. Lebasque, L. Cassinari, J.P. Daguerre, C. Herbeaux, M.-P. Level, C. Mariette, R. Nagaoka
    SOLEIL, Gif-sur-Yvette
  The SOLEIL storage ring injection section integrates four matched injection kicker magnets, two diagnostics kicker magnets and a beam shaker, which need ceramic vacuum chambers with an inner titanium coating. For each utilisation (according with its field amplitude and its time or frequency domain), the coating thickness has been evaluated from the different points of view: field attenuation, beam deposited power, magnet excitation deposited power, and cooling efficiency. So we could determine the different coating thicknesses and tolerances needed according to the different magnetic field shapes. The realised ceramic chambers have adequate coating resistances, with in particular a low non-uniformity among the matched injection kicker magnets chambers.  
 
THPLS107 Possibility of the Beam Injection Using a Single Pulsed Sextupole Magnet in Electron Storage Rings sextupole, electron, storage-ring, quadrupole 3526
 
  • Y. Kobayashi, K. Harada
    KEK, Ibaraki
  Recently, we succeeded in the beam injection using a single pulsed quadrupole magnet (PQM) at the Photon Factory Advanced Ring (PF-AR). The PQM enables us to inject the beam into the storage ring without the local bump by several pulsed dipole magnets. In addition, since the stored beam is not kicked when the beam passes through the magnetic center of the PQM, we can avoid the coherent beam oscillation, which is often produced by the unclosed local bump. It is important for the top-up injection in electron storage rings as synchrotron radiation sources. However, in the case of the PQM, we have the problem that the beam profile slightly changes turn-by-turn after the excitation of the PQM. In order to solve it, we investigated the possibility of the beam injection using a single pulsed sextupole magnet (PSM) instead of the PQM. Here, we will present the simulation of the beam injection using the PSM.  
 
THPLS109 Measurements and Diagnostics on the MAX Recirculator electron, radiation, linac, FEL 3532
 
  • M. Brandin, B. Nelander, S. Werin
    MAX-lab, Lund
  The MAX Recirculator is a unique accelerator, a two-pass linac at 500 MeV, that operates as injector for three storage rings. Here are presented some discussions on measurments of beam parameters such as emittance, energy spread, and bunch length. We describe what measurements are done, by wich methods, results, and how they can be improved. Also, we make an analysis of What methods and hardware are needed to perform the measurements that can't be done with the equipment in place today.  
 
THPLS110 Injection Scheme for TPS Storage Ring storage-ring, kicker, septum, lattice 3535
 
  • M.-H. Wang, H.-P. Chang, C.-C. Kuo, G.-H. Luo
    NSRRC, Hsinchu
  Taiwan Photon Source(TPS), a 3~3.3 GeV synchrotron light source with full energy injection is proposed to be built at NSRRC in Taiwan. In this paper we report the design of injection scheme for TPS. The space allocation of the injection components, the bumper design, the aperture consideration and the injection dynamics of injected and stored beam will all be discussed. The particle tracking of first few turns of injection is performed to evaluate the injection efficiency with the errors caused by the time jitter and amplitude stability of injection kickers. The issue of constant current operation will be also addressed.  
 
THPLS111 Beam Loading Measurement and its Application to the Harmonic RF Control of the APS PAR beam-loading, synchrotron, controls, photon 3538
 
  • C. Yao, E.E. Cherbak, N.P. Di Monte, A. Grelick, T. Smith, B.X. Yang
    ANL, Argonne, Illinois
  The particle accumulator ring (PAR) has dual rf systems: a CW mode fundamental rf system (RF1) operating at 9.77 MHz that accumulates multiple linac pulses into a 0.8-ns bunch, and a 12th harmonic rf (RF12) that compresses the bunch length further to 0.34 ns for injection into the booster. The RF12 capture process is critical for optimal performance of the PAR. We investigated the effects of beam loading during the RF12 capture and bunch length compression process with both spectrum analysis and streak camera imaging. Based on these observations, a new timing scheme for the RF12 tuner and power control was implemented, which has substantially improved the performance of the PAR. We report our observation, the new timing scheme, and beam parameters after optimization.