

Development of New Carbon Therapy Facility and Future Plan of HIMAC

Koji Noda

Research Center for Charged Particle Therapy National Institute of Radiological Sciences

1. Introduction

2. New Carbon-Therapy Facility (Compact Facility)

3. Future Plan of HIMAC

4. Summary

SYNCHROTRON

IPPER

SYNCHROTRON (LOWER)

Motivation of Compact Facility

Patients Number of Carbon Therapy

(June '94 ~ Feb. '05) Highly Advanced Medical Therapy from Nov. '03

Since 1994, Cancer treatment with HIMAC has been successfully progressed. Owing to accumulation of treatment number and good result of the clinical trials, the Japanese government approved the HIMAC treatment as the highly advanced medical therapy in Nov. '03.

RFQ LINAC

HYSICS EX

SECONDARY BEAM EXP.

HORIZONTAL BEAM

ALVARE7

MEDIUM

ENERGY

ACCELERATOR CONTROL ROOM SOURCES

OOM VERTICAL

BIOLOGY EXP.

THERAPY CONTROL ROOM

ROOM

REATMENT

TREATMENT ROOM B

Design Consideration for Compact Facility

- How high Energy ?
- How large Irradiation-Field Size?
- How much Intensity delivered?
- How large Facility?

Based on experience at HIMAC, the specification is determined!!

How high beam energy?

Residual range of 250 mm covers almost all treatments at HIMAC.

Required energy: 400 MeV/n, under range loss of 25 mm due to scatterer etc.

How large field size?

The field diameter more than 200 mm is large enough to cover almost all treatments in HIMAC.

The SOBP more than 150 mm covers treatments more than 95%.

Specification

- 1. Ion species: high LET (100keV/µm) charged particle Carbon
- 2. Range: Max. 25cm in water
- 3. Maximum irradiation area: 15cm square
- 4. Dose rate: 5GyE/min// → 1.2×10⁹pps (C ions)
- 5. Irradiation direction : horizontal, vertical
- 6. Treatment rooms: 3 (H&V, H, V)
- 7. Irradiation technique: gating & layer stacking irradiation

Design and R&D for Compact Facility

Compact Injector Linac Cascade

The injector linac cascade consists of RFQ and APH-IH linac. The RFQ accelerates C^{4+} ions from 10 to 600 keV/n. The APF-IH accelerates them to 4 MeV/n. Both the operation frequencies are 200 MHz.

Beam Test of Compact Injector

Main parameters of the synchrotron.

Lattice Type	FODO	
Maximum intensity of C ⁶⁺	2×10 ⁹ pps	
Cell number	6	
Long straight section	3.0m×6	
Circumference	61.5m	
Injection energy	4 MeV/u	
Extraction energy	140-400 MeV/u	
Revolution frequency	0.450	
Emittance and Δp/p of injection beam	T. Furun	
Acceptance (after COD correction)	240/30 π mm mrad	
Momentum acceptance	±0.4%	
Qx /Qy	1.68-1.72/1.13	
Maximum β function	11.5/13.4	
transition gamma	1.72	
ξx/ξy	-0.5/-1.5	

BM filling factor of 43% is much larger than that of 31% in HIMAC, which brings a compact synchrotron.

Compact RF Cavity

Un-tuned RF cavity with Co-based MA

Comparison between HIMAC cavity

CE103	HIMAC	New cavity
TUOCH124 -	1~8	0.4 ~ 7
	6	4.5
Power [kW]	15	8
Cavity size [cm]	277×89	150×140
Size of PS etc	Amp. with Tetrode 70×40×60 250×150×250 70×70×90 Bias PS 100×100×200	Transister Amp. 60×85×220

Intensity Modulation

The spot scanning and layer stacking methods require an intensity modulation. Therefore, we have studied the dynamically intensity control. This figure shows three intensity steps during 50 ms. This figure shows sinusoidal intensity wave.

Beam Delivery System

Komori M. et al; J Jpn Appl Phys.

Spiral Wobbler & Raster Scanning

The spiral wobbler and raster scanning method can form the irradiation field by thin

scatterer compared in patient.

Conventional Wobbl

Spiral Wobbler

Raster Scanning

er residual range

The spiral wobbler and raster scanning can be available a larger field even under thin scatterer.

Longer residual range

For High Accurate Treatment 3D scanning on a moving target for reducing the margin of 5 - 10 mm Repainting with Raster Scan & Layer Stacking Method 3D scanning on a fixed target for fitting irregular shape Spot Scanning or Raster Scanning Method

v For Flexible Treatment and One-day Treatment

Rotating Gantry

Repainting with Raster Scan & Layer Stacking Method

- Compact carbon-therapy facility was initiated at Gunma University from April 2006: 3 years project
- New treatment facility with HIMAC was also initiated at NIRS from April 2006: 7 years project
 Attention !!

Future Plan of HIMAC (3)

400 MeV/n Rotating Gantry

- Field size: 15cm x 15cm
- SOBP : 15cm
- Range : 25cm
- Repainting raster scan with layer stacking

Compensation of asymmetry distribution

Future Plan of HIMAC (2)

Experiment of spot scan for irregular shape target

One fraction irradiation on lung cancer

The treatment period and the number of fractions have been successively reduced from 18 fractions over 6 weeks to 9 fractions over 3 weeks and further 4 fractions over one week. The end-point is single fraction. It has been carried out since April 2003.

- Irradiation system of coincident with a patient's respiratory motion -

Layer stacking irradiation

Improvement of the irradiation accuracy

Procedure

- 1. Mini SOBP is produced by ridge filter.
- 2. The target volume is longitudinally divided into slices.
- 3. The mini SOBP is longitudinally scanned over the target volume in stepwise manner by using range shifter.
- 4. At same time, the lateral field is shaped by MLC in each slice.

