
FAST COMPENSATION OF GLOBAL LINEAR COUPLING IN RHIC
USING AC DIPOLES

A. Franchi, GSI, Planckstrasse 1 Darmstadt, Germany
R. Calaga, BNL, Uptown NY, USA R. Tomás, CERN, Geneve, Switzerland

Abstract

Global linear coupling has been extensively studied in
accelerators and several methods have been developed
to compensate the coupling coefficient C using skew
quadrupole families scans. However, scanning techniques
can become very time consuming especially during the
commissioning of an energy ramp. In this paper we illus-
trate a new technique to measure and compensate, in a sin-
gle machine cycle, global linear coupling from turn-by-turn
BPM data without the need of a skew quadrupole scan. The
algorithm is applied to RHIC BPM data using AC dipoles
and compared with traditional methods.

INTRODUCTION

The complex linear coupling coefficient is defined as [1]

C = |C|eiΘ = (1)

− 1
2π

∮
ds j(s)

√
βx(s)βy(s)e−i(φx(s)−φy(s))+is/RΔ ,

where R is the machine radius, Δ = Qx − Qy is the
difference of the bare tunes (fractional part), β and φ are
the Twiss functions and j(s) is the skew quadrupolar force
along the ring. The coupling strength |C|, also known in
the American literature as ΔQmin, is the tune separation
on the resonance, whereas Θ denotes the phase of the cou-
pling coefficient. |C| is usually inferred from tune mea-
surement against Δ (closest-tune approach). A repeated
tune measurement is therefore needed for different work-
ing points. Other techniques such as first turn analysis and
beam response after kick are described in [1]. Alternative
methods using beam profile monitors are illustrated in [2].

None of the above technique provides any information
on the phase of C. In [3] both amplitude and phase were
measured observing the time evolution of the transverse
beam profile after exciting the beam with a fast horizon-
tal kick. In [4] the same measurement was carried out
from turn-by-turn BPM data and a fit of the corresponding
Poincaré map.

In machine with unsplit tunes and working point close to
the difference resonance, φx(s)− φy(s) � 0 along the en-
tire ring. This results in Θ � 0 and a real C: one family of
skew quadrupole is therefore enough for the correction. In
machine with split tunes instead φx(s)−φy(s) varies from
0 to 2π along the ring, resulting in Θ �= 0. The correc-
tion is performed by means of at least two families of skew
quadrupoles, each one them represented by a complex co-

efficient Csq , whose phase Θsq is given by

Csq = |Csq|eiΘsq =
1
2π

Jsq

∑
w

√
βw

x βw
y e−i(φw

x −φw
y ) (2)

where the sum is over all the skew quadrupoles in the fam-
ily, Jsq is the integrated strength (assuming a shared power
supply), βw and φw are the Twiss functions at the skew
quadrupole locations. If Θ is unknown a scan of the two
families is necessary to drive an external coupling and min-
imize C+Csq,1+Csq,2. The same goal is achieved without
any scan, by measuring Θ, decomposing C on the direc-
tions Θsq,1 and Θsq,2, and making the families drive the
opposite strengths as shown in Fig. 1.
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Figure 1: Left: complex plane with the measured |C| and
the directions of the two corrector families. Right: case
with measurement of C, its decomposition along the two
lines and corresponding correction setting.

FROM F1001 TO |C| ( ΔQMIN )

In [5] it is shown that the linear coupling resonance driv-
ing term (RDT) f1001 = |f1001|eiq is an observable, as it
is measurable from the FFT of turn-by-turn BPM data of a
transversely excited beam according to

|f1001| =
1
2

√
|V (1, 0)||H(0, 1)|
|H(1, 0)||V (0, 1)| (3)

q = ΦH(0,1) − ΦV (0,1) +
π

2
, (4)

where H(1, 0) and V (0, 1) are the horizontal and ver-
tical tune peaks respectively (i.e. the fundamental har-
monic in the horizontal and vertical FFT space respec-
tively), whereas H(0, 1) and V (1, 0) are the secondary
harmonics excited by linear coupling close to the differ-
ence resonance. Amplitude and phase of each harmonic,
in the horizontal spectrum for example, read H(m, n) =
|H(m, n)|eiΦH(m,n) .

In [2] it is shown how to measure |C| from two measure-
ments of |f1001| (at any location) at two different working
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points. Introducing the difference of the tunes (fractional
part) Δ = Qx −Qy, it can be shown that

4|f1001Δ| � |C|+ C′
oΔ, for |C| < Δ << 1 . (5)

A linear fit against Δ is therefore enough to infer |C|. In
the upper plot of Fig. 2 the inferred |C| from two simulated
measurements of |f1001| according to Eq. (5) is shown.
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Figure 2: Examples of |C| inferred from two simulated
measurements of |f1001| according to Eq. (5) at one loca-
tion (top) and at several locations (bottom).

Variation of |f1001| along the ring due to localized cou-
pling sources results in different lines having nearly the
same values at Δ = 0, as shown in the bottom plot of
Fig. 2 [5, 6]. There single particle simulations of the SIS-
18 of GSI with distributed skew quadrupole kicks along the
ring are run for two working points and 4|f1001Δ| is com-
puted from the FFT of turn-by-turn data. The picture in-
dicates that a single measurement of 4|f1001Δ| at different
locations provides already a good estimation of |C|, being

|C| � 4|Δ| 1
N

N∑
w

|fw
1001|, for |C| < Δ << 1 , (6)

where the normalized sum denotes the average over the
BPMs (i.e. along the ring), N is the number of available
monitors, and the latter condition is required for making
use of Eq. (5). In simulations shown in the bottom plot
of Fig. 2 the accuracy in computing |C| is of about 0.5%.
For an effective measurement the available BPMs should
be distributed uniformly along ring: regions with large cou-
pling uncovered by BPMs would prevent the average from
describing the global amount of coupling.

FROM F1001 TO PHASE OF C ( Θ )

In [2] it is shown how the phase of the coupling strength
Θ is related to the phase of f1001

Θ � 1
N

N∑
w

[qw − (φw
x − φw

y )] + π

[
1− sgn(Δ)

1
2

]
(7)

where the normalized sum denotes the same average over
the BPMs of Eq. (6), qw is the phase of f1001 measured at
the wth BPM, and φw are the BPM betatron phases (taken
from the lattice model). The above approximation has a
reminder proportional to Δ. It can be shown that on the
resonance (Δ = 0) both |f1001| and q − (φx − φy) are
constant along the ring. Note that also the betatron phases
could be in principle inferred from the BPM spectra after
choosing one BPM as reference. Nevertheless the correc-
tion relies on the model skew quadrupole Twiss parameters
as shown in Eq. (2). The latters are not measurable in a
straightforward and reasonably fast way. Therefore a more
refined measurement of Θ would not be of help finding the
best corrector setting.

In Fig. 3 the variation along the RHIC Yellow ring (in-
jection energy) of qw − (φw

x − φw
y ) + π

(
1− sgn(Δ) 1

2

)
was simulated (MADX tracking) and is plotted for differ-
ent working points. Five skew quadrupoles generate a cou-
pling of |C| = 0.01. For Δ > |C| jumps are visible in
correspondence of skew quadrupolar kicks. As you move
closer to the difference resonance, Δ → 0, the jumps be-
come less visible. From simulations at Δ = ±0.05, Eq. (7)
provides Θ = 2.79 and Θ = 3.10 respectively. The devia-
tion from the correct value Θ = 3.0 is therefore ∼ 5% as
expected.
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Figure 3: MADX tracking simulation of the RHIC Yellow
ring at injection energy with betatron coupling |C| = 0.01:
the quantity qw − (φw

x − φw
y ) + π

(
1− sgn(Δ) 1

2

)
at the

BPM locations is plotted for different working points.

MEASUREMENT AND CORRECTION OF
C IN RHIC DURING 2005

Eq. (6) is applied to RHIC BPM data taken during
2005 [7]. The beam was transversely excited by two AC
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dipoles. The inferred |C| are listed in Tab. 1 and compared
with the one obtained applying the N-turn map algorithm
described in [8]. The standard deviation of |f1001| along
the ring is used as error indicator. The use for several BPMs
and the average make the formula be robust against failure
of few BPMs (isolated large jumps in upper plot of Fig. 4).
During the measurement of May 30 and June 13 2005 two

date < |f1001| > Δ |C| Eq. (6) |C| [8]

May 30 20± 8 13 1.1± 0.4 1.6
May 30 50± 9 48 10± 1.7 10
June 8 25± 9 39 4± 1 3.1
June 13 30± 9 41 4.9± 1 4.4
June 13 40± 10 30 4.8± 1 4.4
June 13 25± 8 45 4.5± 1 4.4

Table 1: |C| of the RHIC yellow ring at injection energy
from f1001 measurement during 2005 using Eq. (6) com-
pared with the ones obtained with the N-turn map algo-
rithm [8]. All the numbers are in units of 10−3.

sets of BPM data were taken turning off the three families
of corrector skew quadrupoles. The corresponding |C| and
Θ are therefore the amplitude and the phase respectively of
the natural global coupling coefficient C (see Fig. 4 for the
data of May 30). Eqs. (6) and (7) yield

|C| = (9.6± 1.7)× 10−3 May 30 (8)

|C| = ( 16 ± 1 )× 10−3 June 13 (9)

Θ = (5.56± 0.19) rad = (319± 16) o May 30 (10)

Θ = (5.58± 0.17) rad = (320± 10) o June 13 (11)

The standard deviation of q − (φx − φy) along the ring is
used to estimate the error.

In May 30 a traditional scan using two independent skew
quadrupoles (SQ11C2Y and SQ01C2Y) was performed to
minimize |C|, providing the following best setting

J1, SQ01C2Y � 6× 10−4 m−1 (scan)

J1, SQ11C2Y � 7× 10−4 m−1 (scan) .

A similar result is obtained without any scan by just
decomposing C on the axes defined by the skew
quadrupoles. Their directions in the complex plane, de-
fined by e−i(φx−φy) according to Eq. (2), are plotted in
Fig. 5 together with C and its decomposition on the two
axes. The gradient Jsq are obtained by Csq using the model
beta functions and inverting Eq. (2). The best corrector set-
ting eventually reads

J1, SQ01C2Y � (5.2± 1.9)× 10−4 m−1 (RDT)

J1, SQ11C2Y � (6.3± 1.9)× 10−4 m−1 (RDT) .

The error is inferred from the decompositions of the upper
and lower values of both |C| and Θ defined by their error
bars.
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Figure 4: Variation along the Yellow ring at injection of
|f1001| (top) and qw−(φw
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2 (bottom). The
corrector skew. Data points (i.e. BPMs) with fluctuation
larger than 30% were rejected.
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Figure 5: Scketch of the measured C decomposed on the
axis defined by the two skew quadrupoles used for correc-
tion.
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