A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W   X    

PETRA

Paper Title Other Keywords Page
MOPCH012 FEL Disturbance by Ambient Magnetic Field Changes DESY, proton, linac, electron 74
 
  • H. Kapitza, P. Göttlicher, N. Heidbrook, H. Schlarb
    DESY, Hamburg
  The VUV-FEL at DESY in Hamburg (Germany) is mostly located inside the circular accelerator PETRA which serves as an injector for the electron proton collider HERA. SASE was regularly lost in the VUV-FEL when protons were ramped to the injection energy in PETRA. This effect was mediated by magnetic field changes in the order of 1 microtesla, caused by time-dependent uncompensated magnet currents of more than 800 A which made PETRA act like a large current loop. The resulting beam displacements of several hundred micrometers in the undulators proved to be enough to make SASE fail. This serious disturbance of user runs was eliminated by introducing an improved compensation scheme which further limits residual currents in PETRA during proton injection. The consequences of this observation for the design of the XFEL are briefly discussed.  
 
TUPCH049 Proposal for a Fast Scanning System Based on Electro-optics for Use at the ILC Laser-wire laser, electron, focusing, positron 1118
 
  • A. Bosco, G.A. Blair, S.T. Boogert, G.E. Boorman, L. Deacon, C. Driouichi, M.T. Price
    Royal Holloway, University of London, Surrey
  Electro-optic devices open the possibility of ultra-fast scanning systems for use in intra-train scanning at the ILC, where scanning rates in excess of 100 kHz may be required. A first study of the possibilities is presented together with the first results from a prototype system.  
 
TUPCH050 Beam Profile Measurements with the 2-D Laser-wire laser, electron, photon, injection 1121
 
  • G.A. Blair, I.V. Agapov, S.T. Boogert, G.E. Boorman, A. Bosco, J. Carter, C. Driouichi, M.T. Price
    Royal Holloway, University of London, Surrey
  • K. Balewski, H.-C. Lewin, F. Poirier, S. Schreiber, K. Wittenburg
    DESY, Hamburg
  • N. Delerue, D.F. Howell
    OXFORDphysics, Oxford, Oxon
  • T. Kamps
    BESSY GmbH, Berlin
  A new laser-wire system has been installed at the PETRA ring at DESY, Hamburg. The system is set up to scan in two dimensions using piezo-driven mirrors and employs a newly acquired injection seeded Q-switched laser. The system is described and first results are presented.  
 
TUPLS134 Managing the Quality Assurance Documentation of Accelerator Components Using an EDMS quadrupole, DESY, XFEL, TTF 1819
 
  • L. Hagge, J. Buerger, J.A. Dammann, J. Kreutzkamp, K. Lappe
    DESY, Hamburg
  Quality assurance (QA) documents are often collected locally on a per-component basis by the manufacturing teams, while project engineers require global evaluations of the QA documents e.g. for production control or during installation and commissioning of the machine. DESY is using an Engineering Data Management System (EDMS) for supporting and unifying the QA documentation of different accelerator components. The EDMS provides dedicated user interfaces which are optimized for the needs of the specific engineering teams which are working on the components (including industrial manufacturers), and at the same time integrates the QA documents into a central database for further overall analysis and applications. The poster introduces the general structure of QA procedures, describes the benefits of using an EDMS for QA documentation and describes examples from different applications at XFEL and PETRA III.  
 
THPCH110 The New Control System for the Future Low-emittance Light Source PETRA 3 at DESY controls, DESY, linac, synchrotron 3059
 
  • R. Bacher
    DESY, Hamburg
  At DESY, the existing high-energy physics booster synchrotron PETRA 2 will be transformed into a 3rd-generation light source (PETRA 3) after the final shutdowm of HERA operation mid 2007. In addition, the technical systems and components of the pre-accelerators LINAC 2 and DESY 2 will be improved. Within the scope of this project, the control system and the front-end electronics will be upgraded. Key elements of the conceptual design are TINE (Threefold Integrated Network Environment) as integrating software bus to provide efficient data communication mechanisms and support services, control room applications based on the thick-client model for optimum visualization and performance and Java as programming language to ensure platform independence, server-side control APIs in various languages to allow choice of the language that is best suited for the control task to be done, a common device interface for generic access to various field buses, and CANopen as interface standard for device electronics to ensure long-term maintenance. The complete conceptual design and the current project status will be presented.  
 
THPLS020 Progress Report on PETRA III wiggler, DESY, vacuum, emittance 3317
 
  • K. Balewski
    DESY, Hamburg
  Starting from the middle of 2007, the existing storage ring PETRA II at DESY will be converted into the hard x-ray light source PETRA III. The project was launched in 2002, and in preparation of the conversion a technical design report was published in 2004. Since then detailed design and construction of technical components have begun. Prototypes have been built and tested and the procurement of major parts of the machine components such as magnets and vacuum chambers has started. The project is well underway and in line with the goal of starting the rebuilding in 2007 and the commissioning in 2009. In addition to an overall status report, the development of components and measurement results of prototypes will be presented.  
 
THPLS021 Dynamic Aperture Studies for PETRA III sextupole, dynamic-aperture, undulator, wiggler 3320
 
  • Y.J. Li, K. Balewski, W. Decking
    DESY, Hamburg
  PETRA III is a low-emittance storage ring dedicated to synchrotron radiation. For efficient injection in the top-up mode, the dynamic aperture has to be larger than 30 mm-mrad in the horizontal plane. This paper presents the choice of tunes and the optimization of the sextupole configuration. Tracking simulations have been performed, including the non-linear effects of 20 four-meters-long damping wigglers and a representative set of undulators. Misalignment and multipole errors are considered as well, leading to specifications for the magnet design and alignment procedure.  
 
THPLS023 Wake Computations for the Beam Positioning Monitors of PETRA III simulation, electromagnetic-fields, vacuum, insertion 3326
 
  • A.K. Bandyopadhyay, A. Joestingmeier, A.S. Omar
    Otto-Von-Guericke University, Magdeburg
  • K. Balewski, R. Wanzenberg
    DESY, Hamburg
  At DESY it is planned to convert the PETRA ring into a synchrotron radiation facility, called PETRA III, in 2007. For proper design of PETRA III it is very important to estimate the wakes due to various discontinuities along the beam pipe. This article is on the wake computations for the beam positioning monitors (BPMs) in the PETRA III beam pipe. Two computer codes, namely MAFIA and Microwave Studio, were used for the electromagnetic field computations. Convergence tests and the agreement between the results of both softwares were taken as criteria in order to validate the results.  
 
THPLS121 Status of the PETRA III Damping Wigglers wiggler, damping, vacuum, DESY 3565
 
  • M. Tischer, K. Balewski, M. Seidel, L. Yongjun
    DESY, Hamburg
  • A.A. Krasnov, V. Kuzminykh, E. Levichev, P. Vobly, K. Zolotarev
    BINP SB RAS, Novosibirsk
  After mid-2007, the present PETRA storage ring at DESY will be reconstructed towards a dedicated third generation light source operating at 6 GeV. An emittance reduction down to 1 nm can be achieved by means of damping wigglers. 20 permanent magnet wigglers will be installed in two of the long straights of the machine. The wiggler segments are compact fixed gap devices surrounded by iron enclosures to reduce the leakage flux. Each device will provide a damping integral of 4 T2m per segment and generate a synchrotron radiation power of 42 kW. Every wiggler segment will be followed by an SR-absorber to protect all downstream components, the accumulated on-axis power of about 200 kW will be taken up by a final absorber at the damping section end. The wiggler's magnetic design, field properties and correction schemes have previously been proven by a one period long prototype. At present, the first full length (4m) prototype wiggler has been assembled and characterized magnetically.