Paper | Title | Other Keywords | Page |
---|---|---|---|
TUOPMA08 | Deformable RF Fingers with Axial Extension | vacuum, alignment, operation, GUI | 15 |
|
|||
RF fingers in a bellows assembly provide electrical continuity for the image current between adjacent vacuum chambers. They are required to absorb all misalignments between the two chambers while minimizing abrupt changes in the beam aperture. In addition, during bake-outs of the chambers the fingers are required to accommodate their large thermal expansions. The latter is achieved either by having a sliding-contact finger design or a deformable finger design. In this paper we describe a version of the deformable finger design which permits large compression, significant misalignments and axial extension. A novel method of fingers' fabrication, FE analysis and test results are presented. | |||
![]() |
Slides TUOPMA08 [9.954 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-TUOPMA08 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPH18 | Vacuum Performance Test of CuCrZr Photon Absorbers | vacuum, simulation, storage-ring, synchrotron | 66 |
|
|||
To test the pumping performance of NEG coated Cu-CrZr absorber, we performed a comparative experiment on the two absorbers, one with NGE coating and the other one without coating. First, we run the Monte Carlo simu-lation by using MolFlow+ code to estimate the pressure inside test chamber at different thermal outgassing rate. And then two absorbers are mounted inside the chamber for the pressure vs. time profiles testing. The experimental set-up and pressure profiles will be presented here. | |||
![]() |
Poster TUPH18 [0.852 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-TUPH18 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPH25 | Morphologies of Oxygen-Free Titanium and Palladium/Titanium Thin Films: New Non-Evaporable Getter (NEG) Coatings | vacuum, electron, interface, site | 84 |
|
|||
Funding: This research was partly supported by a TIA-Kakehashi grant and by the Global Research Center for Environment and Energy based on Nanomaterials Science. Non-evaporable getter (NEG) coatings are ideal for maintaining an ultrahigh vacuum (UHV) in the range 10'8 Pa and they are widely used for accelerators because they are oil free, magnetic-field free, vibration free, economical, space saving, and energy efficient. We recently fabricated new NEG coatings consisting of low-oxygen-content Ti or oxygen-free Pd/Ti by sublimation under a clean UHV in the range 10'8 to 10'7 Pa [*]. Here, we report the determination of the morphologies of these films by scanning electron microscopy, transmission electron microscopy, scanning transmission electron microscopy, and energy-dispersive X-ray spectroscopy. The Ti and Pd films had almost uniform thicknesses of about 1.3 'm and 50 nm, respectively, and the Pd film completely overcoated the Ti film. Both the Pd and Ti thin films were uniformly deposited in plane on the stainless steel 304L substrate and they had polycrystalline structures. The interface between the Pd and Ti thin films was not abrupt. * T. Miyazawa, K. Tobishima, H. Kato, M. Kurihara, S. Ohno, T. Kikuchi, and K. Mase, Vac. Surf. Sci. 61, 227 (2018). |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-TUPH25 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPH30 | ALBA Synchrotron Light Source Liquefaction Helium Plant | operation, synchrotron, MMI, ECR | 102 |
|
|||
ALBA is a 3rd generation Synchrotron Light facility with: 8 operational Beam Lines (BLs), a 2nd BL of Phase II under construction and 3 first Phase III BLs in design phase. Some user experiments require Liquid Helium (LHe) as a coolant. The resulting LHe consumption at ALBA is about 650 l/week. Thus far the vaporized helium, which results from the refrigeration of experiments and equipment, has been released into the atmosphere without being reused. Due to the increasing price of LHe, ALBA agreed with ICN2 (Catalan Institute of Nanoscience and Nanotechnology) to invest in a Liquefaction Helium Plant. Internal staff has carried out the project, installation and pressure equipment legalization of the plant, which is located in a new 80 m2 construction. Under operation the plant allows recycling up to 24960 litres of LHe per year, which is an 80% of the helium consumed at ALBA, by making the gaseous helium undergo through 3 main stages: recovery, purification and liquefaction. The plant, unique in Catalonia, will entail cost savings about 77% and will reduce vulnerability to supply disruptions. ICN2 will benefit from a part of the production due to their initial investment. | |||
![]() |
Poster TUPH30 [1.946 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-TUPH30 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPH33 | Vibration Measurement & Simulation of Magnet & Girder in SESAME | software, quadrupole, dipole, controls | 111 |
|
|||
Funding: IAEA SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) started operation in January 2017. During the design phase several FEA studies were performed to optimize the girder and the magnet design taking into account all the constraints such as the tight spacing between magnets, the vacuum chamber installation interactions with the magnets. In this paper the experimental and Numerical modal analysis are presented as well as the result comparison between the experimental and simulation work. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-TUPH33 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPH39 | The Design of LCLS-II Photon Beam Containment System | photon, FEL, synchrotron, operation | 133 |
|
|||
LCLS-II will produce very powerful photon beams. Unlike conventional synchrotrons, the LCLS-II beam containment components withstand not only the high average beam power and power density, but also the instantaneous thermal shocks from pulsed FEL beam, which can reach ~9mJ/pulse. With beam repetition rate up to 1MHz, regular metal based beam collimators and absorbers will no longer work, because of the likelihood of fatigue failure. And because of the poor thermal conductivity, the old LCLS B4C based absorber would need very shallow glancing angle and take valuable beamline space. Hence, a low-Z and high thermal conductivity CVD diamond based photon beam collimator and absorber systems have been developed in LCSL-II. The initial damage tests using LCLS FEL beam provided positive results that graphite coated CVD diamond can endure per pulse dose level to ~0.5eV/atom. For the beamline and personnel safety, in addition to the passive CVD diamond collimators and absorbers, newly developed photon diode beam mis-steer detection systems and conventional SLAC pressurized burnt-through monitors have been also introduced in the photon beamline system design. | |||
![]() |
Poster TUPH39 [1.251 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-TUPH39 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEOAMA01 | The Status of the New High-Dynamic DCM for Sirius | controls, operation, vacuum, synchrotron | 147 |
|
|||
Funding: Ministry of Science, Technology, Innovation and Communication (MCTIC) The monochromator is known to be one of the most critical optical elements of a synchrotron beamline, since it directly affects the beam quality with respect to energy and position. Naturally, the new 4th genera-tion machines, with their small emittances, start to bring higher stability performance requirements, in spite of factors as high power loads and variations, high radiation levels, ultra-high vacuum compatibility and vibration sources. In response to that, an innova-tive concept of a high-dynamic vertical DCM (Double Crystal Monochromator) with angular range between 3 and 60 degrees (equivalent to 2.3 to 38 keV with Si(111)) has been developed at the Brazilian Synchro-tron Light Laboratory. A highly repeatable dynamic system, with servo control bandwidth of 250 Hz, has been achieved and will be installed at Sirius macromo-lecular crystallography beamline ' MANACA ' still in 2018. The complete offline results of the in-vacuum cryocooled high-dynamic DCM, showing stability between crystals around 15 nrad RMS up to 2.5 kHz, even during the Bragg angle motion for flyscans, are presented. |
|||
![]() |
Slides WEOAMA01 [7.575 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEOAMA01 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEOAMA02 | Sample Stabilization for Tomography Experiments in Presence of Large Plant Uncertainty | controls, SRF, feedback, simulation | 153 |
|
|||
A new low emittance lattice storage ring is under construction at the ESRF. In this new instrument, an upgraded end station for ID31 beamline must allow to position the samples along complex trajectories with a nanometer precision. In order to reach these requirements, samples have to be mounted on high precision stages, combining a capability of large stroke, spin motion, and active rejection of disturbances. First, the end station will be presented with the associated requirements. However, the precision is limited by thermal expansion and various imperfections that are not actively compensated. Our approach is to add a Nano Active Stabilization System (NASS) which is composed of a 6DoF Stewart platform and a 6 DoF metrology system. A 3D model of the end station updated with experimental data is developed. As the mass of the samples may vary by up to two orders of magnitudes, robust control strategies are required to address such plant uncertainty. The proposed control strategy are presented and applied on the developed model by conducting time domain simulations of tomography experiment in presence of instrumentation noise and system uncertainty. | |||
![]() |
Slides WEOAMA02 [1.721 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEOAMA02 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEOAMA03 | High-Accuracy Small Roll Angle Measurement Method Based on Dual-Grating Diffraction Heterodyne Interferometer | laser, GUI, real-time, radiation | 163 |
|
|||
Funding: The work is supported by National Natural Science Foundation of China, NSFC (Grant No. 61505213). Small roll angle (ROLL) is an crucial parameter for the motion performances of ultra-precision guide way often applied in fine mechanics and instruments of synchrotron radiation, such as long trace profiler (LTP). However, it is difficult to be measured by conventional methods including interferometer and autocollimator owing to their low sensitivities in axial direction. There is an orthogonal dilemma between measured direction and angular displacement plane for ROLL measurement. Therefore, a novel method based on dual-grating diffraction heterodyne interferometer is presented, which uses the combining scheme of diffraction grating and heterodyne interferometer to overcome the orthogonal problem. Moreover, the design of differential structure with dual-grating and grating interferometer instead of pure interferometer, is adopted to improve the practicability against the environment, e. g. air fluctuation, inconstant rotation center. It has inherited advantages of high-resolution up to 2nrad, high sampling rate up to 50kHz, and contactless by mathematical modeling and analysis. So, theoretcial and experimental verifications are both implemented to its validation. |
|||
![]() |
Slides WEOAMA03 [2.304 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEOAMA03 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEOAMA05 | FE Model of a Nanopositioning Flexure Stage for Diagnosis of Trajectory Errors | photon, simulation, interface, laser | 179 |
|
|||
Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. The Advanced Photon Source Upgrade project includes upgrading several beamlines, which desire nanopositioning and fly-scan capabilities. A step towards achieving this is through the use of flexure stages with minimal trajectory errors. Typically, parasitic motion is on the order of micrometer-level displacements and tens of microradian-level rotations [1]. The cause of such errors is difficult to diagnosis due to the scale and complexity of the overall mechanism. Therefore, an FE model of a flexure pivot nanopositioning stage with centimeter-level travel range [1, 2] has been developed to aid in trajectory error diagnosis. Previous work used an FE model and relative error analysis to quantify the effects of assembly error on trajectory errors [3]. Relative error analysis was used due to the difficulty in validating a complex FE model. This study develops an experimentally validated FE model of a single joint to quantify the expected error in the full FE model. The full model is then compared experimentally to the flexure stage to assess the model accuracy and diagnosis trajectory errors. * D. Shu, et al. In Proc. SPIE, vol. 10371, 2017. ** U.S. Patent granted No. 8,957, 567, D. Shu, S. Kearney, and C. Preissner, 2015. *** S. Kearney and D. Shu. In Proc. SPIE, vol. 10371, 2017. |
|||
![]() |
Slides WEOAMA05 [5.137 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEOAMA05 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEOPMA05 | Application of Industry Recognised Development Tools and Methodologies, such as Six Sigma to Facilitate the Efficient Delivery of Innovative and Robust Engineering Solutions at Synchrotron Facilities | synchrotron, hardware, controls, factory | 184 |
|
|||
Synchrotron facilities play a key part in the delivery of world leading science to facilitate research and development across multiple fields. The enabling technology designed by engineers at these facilities is crucial to their success. The highly academic nature of Synchrotron facilities does not always lead to working in the same way as a commercial engineering company. However, are the engineering requirements at Synchrotrons different to commercial companies? Exploring the parallels between research and commercial companies, can we show that the tools and methodologies employed could benefit engineering development at Synchrotrons? This paper provides a theoretical discussion on the commonality between engineering developments at Synchrotron facilities compared to commercial companies. How methodologies such as Design for Six Sigma and in particular tools such as stakeholder analysis, functional tree analysis, FMEA and DoE could be utilised in the design process at Synchrotrons. It also seeks to demonstrate how implementation could aid the development of innovative, robust and efficient design of engineering solutions to meet the ever-increasing demands of our facilities. | |||
![]() |
Slides WEOPMA05 [1.633 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEOPMA05 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEOPMA06 | A Compact and Calibratable von Hamos X-Ray Spectrometer Based on Two Full-Cylinder HAPG Mosaic Crystals for High-Resolution XES | optics, GUI, radiation, FEL | 189 |
|
|||
In high-resolution X-ray Emission Spectroscopy (XES) crystal-based Wavelength-Dispersive Spectrometers (WDS) are being applied for characterization of nano- and microscaled materials. Thereby the so called von Hamos geometry provides high detection efficiency due to sagittal focusing using cylindrically bent crystals. To maximize the detection efficiency a full-cylinder optic can be applied. A novel calibratable von Hamos X-ray spectrometer based on up to two full-cylinder optics was developed at the PTB. To realize the full-cylinder geometry Highly Annealed Pyrolytic Graphite (HAPG) [1] was used. Besides its good bending properties this mosaic crystal shows highly integrated reflectivity while offering low mosaicity ensuring high resolving power [2]. The spectrometer enables chemical speciation of elements in an energy range from 2.4 keV up to 18 keV. The design and commissioning of the spectrometer will be presented together with first results using synchrotron radiation as excitation source. The spectrometer combines high efficiency with high spectral resolution (ten times better than in commercial WDS systems) in a compact arrangement also suitable for laboratory arrangements.
[1] H. Legall et al. (2006). Proc. FEL, BESSY FRAAU04, 798-801 [2] M. Gerlach et al. (2015). J. Appl. Cryst. 48, 2015, 1381-1390 |
|||
![]() |
Slides WEOPMA06 [7.630 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEOPMA06 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPH04 | Finite Element Analysis of a Combined White Beam Filter and Visual Screen Using CVD Diamond for the BXDS Beamline | undulator, photon, storage-ring, simulation | 208 |
|
|||
A white beam filter and visual screen are required for the undulator beamline at the Brockhouse X-Ray Diffraction and Scattering Sector. Reusing a water-cooled copper paddle with a 0.1 mm thick chemical vapor deposition (CVD) diamond foil, a combined filter and screen design is presented. The Canadian Light Source previously experienced failure of CVD diamond filters when exposed to high flux density white beam. Finite element analysis (FEA) was done to determine if the CVD diamond will fracture under the undulator heat load. Conservative failure criteria are selected for CVD diamond based on available literature for the following failure mechanisms: high temperature, thermal fatigue, and temperature induced stress. Four designs are analyzed using FEA models simulating effects of clamping pressure and heat load on the CVD diamond. The simulations are verified by optimizing the model mesh, comparing results against hand calculations, and comparing theoretical absorbed heat load to simulated values. Details of the modeling method are reviewed and results for the different designs evaluated. Suggestions for future testing of CVD diamond in a synchrotron setting will be discussed. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEPH04 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPH09 | Vibrational Stability of a Cryocooled Double Crystal Monochromator at SSRF | SRF, radiation, laser, synchrotron-radiation | 220 |
|
|||
There is an increasingly critical demand on the angular stability of double crystal monochromator (DCM). This work focuses on a method to measure angular vibration directly at the DCM crystals using a dual-frequency interferometer. This method was applied to the off-line test of a newly developed cryocooled DCM at Shanghai Syn-chrotron Radiation Facility (SSRF), which can obtain a resolution of 8 nrad. The DCM was then tested on the X-ray Test Line. Both off-line and on-line results were referenced for DCM structure optimizations. In this paper, the DCM angular stability measuring method is presented, and detailed information of the results are shown. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEPH09 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPH15 | Experimental Modal Analysis Vibration Measurement to Inform Engineering Design | resonance, software, damping, background | 235 |
|
|||
Experimental Modal Analysis was performed on an existing 5 degree of freedom mirror system on beamline I08 at The Diamond Light Source, by impacting the structure and measuring the response at locations of interest. Commercial software was used to generate the frequency response functions and mode shape animations. This experimental information was used to inform and optimise a design iteration for a new mirror system. The new mechanism was designed, installed and tested on the J08 branch line at The Diamond Light Source to validate the expected improvements in stability, stiffness and resonant frequency. The mirror system fundamental resonant frequency was significantly increased from 20 Hz to 49 Hz. | |||
![]() |
Poster WEPH15 [0.411 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEPH15 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPH26 | High Rigidity Girder System for the Sirius Machine | synchrotron, alignment, damping, storage-ring | 261 |
|
|||
Sirius is a 4th generation synchrotron light source under construction in Brazil, with a bare emittance of 250 picometer rad, scheduled to have the first beam late this year. One of the most important aspects for this ultra-low emittance machine is the stability of the components, especially the magnets. This paper describes the main characteristics of the girder system, including the concrete pedestal, the leveling units, the girder itself, the clamping mechanism for the magnets and the measurements procedures. Each detail was considered in the design phase and the result is a high rigidity setup with a first horizontal mode close to 170 Hz. | |||
![]() |
Poster WEPH26 [1.313 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEPH26 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPH29 | NSLS-II Vibration Studies to Characterize Beamline Stability | operation, detector, ion-source, power-supply | 267 |
|
|||
High performance goals of NSLS-II require stringent mechanical stability of its instruments such as BPMs, slits, mirrors, monochromators, and detectors. Mechanical stability of these components can be compromised by site-wide as well as local vibration sources (pumps, compressors, etc.). Several vibration studies have been performed at NSLS-II at the request of beamline users. This paper presents the results of these studies highlighting sources of vibration and mitigation strategies. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEPH29 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPH36 | From Plate Screening to Artificial Intelligence: Innovative developments on PROXIMA 2A at Synchrotron SOLEIL | synchrotron, detector, GUI, instrumentation | 283 |
|
|||
PROXIMA 2A is a high performance 3rd generation synchrotron beamline dedicated to X-ray micro-crystallography on biological macromolecules. Since opening in March 2013, the experimental station has hosted a large number of users who have collected vast amounts of X-ray diffraction images from literally thousands of crystals. In order to streamline the throughput, enhance performance and add functionality, a number of innovative developments have been launched on PROXIMA 2A. These cover all aspects of the beamline, from the practical to the visionary: such as the design, fabrication and implementation of a dedicated high-precision motorized stage to screen crystallization plates for in situ X-ray data collections, and the employment artificial intelligence and computer vision technologies for the detection of samples under liquid nitrogen. Other notable beamline projects include the addition of a vertical translation table for the EIGER X 9M detector to permit the acquisition of ultrahigh (0.6 Å) resolution X-ray data, the incorporation of a miniaturized YAG-coupled photodiode within a beamstop and the determination of the SOC of a recently added kappa arm to the goniometer. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEPH36 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THOAMA03 | Mechanical Engineering Design and Simulation for SPIRAL2 Accelerator @GANIL | simulation, target, linac, beam-transport | 302 |
|
|||
The SPIRAL2 project at GANIL is based on a superconducting ion continuous wave LINAC with two associated experimental areas named S3 (Super Separator Spectrometer) and NFS (Neutron For Science). This paper will report the main contributions of Mechanical Design Group at GANIL to the project. Mechanical engineers have been highly involved since 2005 from the pre-design of the accelerator and its development until present to finalize the installation. During the development phase, design and numerical simulation were used throughout the complete process: from the ion sources, to the LINAC accelerator, then through beam transport lines to experimental halls equipped with detectors. The entire installation (process, buildings and systems) is integrated in 3D CAD models. The paper focuses on three equipments designed in collaboration with electronics engineers and physicists : the Rebuncher in Mean Energy Beam Transport line; the Instrumentation Profiler SEM and the Target Chamber in S3. SPIRAL2 also has to meet safety requirements, such as seismic hazard, therefore the dynamic simulations performed to demonstrate the mechanical strength in case of earthquake will also be detailed. | |||
![]() |
Slides THOAMA03 [5.836 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THOAMA03 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH06 | TMO - a New Soft X-Ray Beamline at LCLS II | laser, vacuum, optics, diagnostics | 349 |
|
|||
LCLS is building 4 new soft X-ray beamlines with the LCLS-II upgrade. The TMO (Time resolved Molecular Optical science) beamline aka NEH 1.1 will support many ex-perimental techniques not currently available at LCLS. The beamline hinges around 2 main end stations, LAMP a multi configurable end station and DREAM, dedicated to COLTRIM type of experimentation. Both the existing LAMP as well as the newly built DREAM end-station will be configured to take full advantage of both the high per pulse energy from the copper accelerator (120 Hz) as well as high average intensity and high repetition rate (up to 100 kHz) from the superconducting accelera-tor. Each end station will have its own focusing optic systems (KB Mirrors) which can focus the beam down to 300 nm, and have laser pump probe experiments capability. Very demanding requirements for IR and X-ray overlap as well as beam stability, make the TMO beamline a major engineering challenge. The main components of the beamline (KB optics, DREAM end stations and diagnostics components) are built on granite stands. The building struc-ture is being reviewed for thermal stability. First light on TMO is expected in February 2020 | |||
![]() |
Poster THPH06 [0.624 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH06 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH09 | Design of Indirect X-Ray Detectors for Tomography on the Anatomix Beamline | detector, synchrotron, photon, SRF | 355 |
|
|||
ANATOMIX* is a long beamline for full-field tomography techniques at the French synchrotron SOLEIL [1]. It will operate in the energy range from 5 to 30 keV, and feature several operation modes via versatile optics configurations, including direct white beam propagation. Two methodologically different experimental stations will be used: parallel-beam X-ray shadowgraphy, for spatial resolution down to the sub-micron range, and full-field transmission X-ray microscopy down to a spatial resolution of less than 100 nm. To cover this large panel of experimental possibilities, the Detector Group, the Mechanical Engineering Group and beamline team have designed four dedicated indirect X-ray detector. For pixels in the sub-micron size range : a micro-tomography revolver camera for versatility, a high-efficiency camera for flux-limited experiments, and a high-resolution camera for the largest optical magnifications will be available. For experiments with a large X-ray beam and pixel sizes from several microns upward, a "large-field" camera completes the set. We describe these different assemblies with the detailed components and expected specification of each solution.
* Beamline largely funded by the French National Research Agency through the EQUIPEX investment program, NanoimagesX. [1] T Weitkamp et al 2017 J. Phys.: Conf. Ser. 849 012037 |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH09 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH12 | Granite Benches for Sirius X-ray Optical Systems | alignment, GUI, interface, synchrotron | 361 |
|
|||
Funding: Ministry of Science, Technology, Innovation and Communication (MCTIC) The first set of Sirius beamlines is expected to start operating in early 2019 and over the last few years many optical systems for the X-ray beamlines have been developed in-house at the Brazilian Synchrotron Light Laboratory (LNLS). Starting with the High-Dynamic Double Crystal Monochromator (HD-DCM), passing by the Double Channel-Cut Monochromator (4CM) and continuing with new standard mirror sys-tems, a series of granite benches, based on high-resolution levellers, and a combination of embedded and commercial air-bearings, has been designed for high mechanical and thermal stability. Specifications, designs, and partial results are presented, showing the progressive increase in complexity according to a deterministic design approach. |
|||
![]() |
Poster THPH12 [3.907 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH12 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH17 | NCD-SWEET Beamline Upgrade | detector, optics, controls, electronics | 374 |
|
|||
The SAXS/WAXS Experimental End sTation (NCD-SWEET) at ALBA Synchrotron has undergone major improvements in three main areas, beam performance, SAXS detector data quality and beamline operability, in order to perform state-of-the-art SAXS/WAXS experi-ments. A new channel-cut monochromator system has improved the beam quality and stability, with current vibration amplitudes under 1% of the beam size. Two sets of refractive beryllium lenses have been installed for focussing the beam. One of the sets allows to microfocus the beam size. Besides this, the former SAXS CCD detector has been replaced by a single-photon counting pixel detector, a Piltatus3 S 1M. In the end station, a full re-design of the mechanical elements with sub-micron resolution movements together with the installation of new equipment has been completed, resulting in an improved beamline configuration, and a faster and safer rearrangement of the flight tube length. New upgraded configuration also allows for GISAXS experiments. Finally, other auxiliary improvements have been done in areas like radiation protection, air conditioning, health and safety, cable management, electronics and control. | |||
![]() |
Poster THPH17 [5.848 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH17 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH19 | Engineering Design of the XPD & PDF Beamline Sample Environment for Safe Experimental Use of Hazardous Gases | FEL, operation, controls, GUI | 379 |
|
|||
Funding: U.S. Department of Energy The X-ray Powder Diffraction (XPD) and Pair Distribution Function (PDF) beamlines located at the 28-ID beam port at NSLS-II require a means for safely supplying, containing, and exhausting hazardous gases to and from experimental samples. These beamlines plan to use a wide range of flammable, toxic, and reactive gases for in-situ studies of catalytic and chemical reactions. Since many of the gases are hazardous, a low-cost, robust means is needed to safely supply gases to samples, position the samples quickly, accurately, and remotely, collect scattered X-rays over a wide-angle without distortion, and exhaust the gases safely. Ideally, the sample environment should also allow rapid sample set-up and change-out. The PDF/XPD system includes a sample holder, internal beam stop, sample chamber, and stages that provide eight degrees of freedom. A specially-designed window is also included for maximum X-ray transmission at minimum cost. Sensors, flow metering devices, and circuitry are included to provide proper purging, control hazardous and dilution gas flows, and integrate all of the safeguards needed to assure safe operation. Note to MEDSI reviewers: "Contributed Oral" presentation is indicated above, however a poster presentation can be generated by contacting the author via email at haas@bnl.gov if this is preferred. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH19 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH28 | The Development of PAL-XFEL Beamline | FEL, detector, vacuum, electron | 397 |
|
|||
Pohang Accelerator Laboratory X-ray Free Electron Laser(PAL-XFEL) is a research facility, which is designed to generate extremely intense (assuming 1x1012 photon/pulse at 12.4 keV) and ultra-short (10-200 femtosecond) pulsed X-rays. Now two beamlines were constructed, the one is hard X-ray and the other is soft X-ray. The beamline is consist of UH (Undulator hall) and OH (Optical hall), EH (Experimental hall). The UH is usually the same as the front end of a beamline, and OH has the same function as PTL (Photon Transfer Line). We have two hutches including HXPP and HCXI in hard X-ray beamline. The two hutches are connected each other, and sharing main optics (Mirrors and DCM, etc). PAL-XFEL is a very precise facility and has very large heat power, so thermal and structural analysis as well as vibration analysis is essential. Now many vacuum components of beamline were installed and completed the test of performance. | |||
![]() |
Poster THPH28 [1.888 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH28 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH31 | Design of a flexible RIXS Setup | detector, alignment, vacuum, photon | 400 |
|
|||
We present a new mechanical design for a RIXS experiment setup consisting of a sample environment vacuum chamber and corresponding spectrometer. It allows variable beam incidence angles to the sample as well as observation angles of the spectrometer. The dispersive element of the spectrometer can be aligned in five DOF by motors inside the UHV chamber. The alignment of the CCD detector can be adjusted independently in the lateral and longitudinal position as well as incidence angle. In combination with a tiltable detector chamber this design allows for multiple observation methods, not limited to variable energies but also for use of different optics or direct observations of the sample. | |||
![]() |
Poster THPH31 [0.859 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH31 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH36 | Engineering Challenges for the NEH2.2 Beamline at LCLS-II | laser, detector, scattering, photon | 409 |
|
|||
SLAC National Accelerator Laboratory is developing LCLS-II, a superconducting linear accelerator based FEL capable of repetition rates up to 1MHz. The NEH2.2 Instrument at LCLS-II will use this combination of exceptionally high flux of monochromatic photons to achieve multidimensional and coherent X-ray techniques that are possible only with X-ray lasers. The challenges, which emanate from delivering the beam from the sub-basement level to the basement of the Near Experimental Hall (NEH) along with the stringent requirements for providing a stable beam at the interaction points, necessitate unique engineering solutions. With this paper we present the conceptual design for the NEH2.2 Instrument along with an overview of the R&D program required to validate design performance. Furthermore, it will additionally show the design of the proposed Liquid Jet Endstation (LJE) and Resonant Inelastic X-Ray Scattering Endstation (RIXS) that will be installed on the beamline. After introducing the context and layout of the beamline, this paper will focus on the technical challenges and present the mechanical design solutions adopted for beam delivery and other strategic components. | |||
![]() |
Poster THPH36 [2.220 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH36 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH38 | Design & Development of an Innovative 6 Axis Sample Manipulator. | FEL, shielding, vacuum, ISOL | 415 |
|
|||
The accurate positioning & alignment of sample specimens within the experimental test chamber on a beam line is always a challenge. The ability to move in any direction and angle to very precise increments with repeatable positioning is crucial for being able to focus on the exact part of the sample required in the correct orientation. It can be made even more difficult when the sample is required to work within the UHV vacuum environment and be cooled to cryogenic temperatures. Initially in conjunction with St Andrews University, Diamond Light Source Ltd. have been developing their own manipulator for this purpose, it has six degrees of freedom for alignment of the sample and easy remote sample plate loading via a transfer arm system. This paper describes the developments made from the initial design to working manipulators with increased functionality for bespoke requirements on four different beamline within Diamond. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH38 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||