Paper | Title | Other Keywords | Page |
---|---|---|---|
TUPH29 | Next Generation X-ray Beam Position Monitor System for the Advanced Photon Source MBA Upgrade | photon, undulator, scattering, monitoring | 99 |
|
|||
Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-D6CH11357 The Advanced Photon Source (APS) upgrade from double-bend achromats (DBA) to multi-bend achromats (MBA) lattice has increased the need for reliable diagnos-tic systems. This upgrade will decrease the size of the photon beam drastically and beam current will be in-creased from 100 mA to 200 mA. The small beam and intense heat loads provided by the upgraded APS requires unique and innovative approaches to beam position monitoring. To meet the need for a reliable diagnostic system for the APS upgrade, the next generation X-ray Beam Position Monitoring System (XBPM) is required which includes the first XBPM (XBPM1), the Intensity Monitor (IM1) and the second XBPM (XBPM2). This paper presents progress and status of the current configu-ration of the XBPM system especially the development work involving the IM1 and XBPM2. The R&D work to develop an alternative XBPM1 using the Compton scattering principle is also presented. |
|||
![]() |
Poster TUPH29 [1.817 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-TUPH29 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPH34 | The Use of AM Technologies for HV and UHV Components and Vessels | vacuum, operation, cavity, HOM | 114 |
|
|||
AM technology (3D Printing) in plastics and metals has now been in commercial use for over 30 years. However, the application of this technology in vacuum environments has been limited, due to the material porosity and additives used in the manufacturing techniques. This paper reports on the testing and use of FDM (Fused Deposition Modelling) PEEK and DMLS (Direct Metal Laser Sintering) metal components inside a UHV environment. Specifically covering the use of DMLS to successfully produce a complex vacuum vessel operating at 10-6 mbar, as used on the new VMXm beamline at Diamond Light Source. Vacuum testing the vessel has demonstrated that this manufacturing technique has the potential to produce vessels that are capable of holding 10-10mbar. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-TUPH34 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEOPMA04 | Mechanical Design of a New Precision Alignment Apparatus for Compact X-ray Compound Refractive Lens Manipulator | alignment, HOM, GUI, operation | 168 |
|
|||
Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357. A prototype of compact x-ray compound refractive lens (CRL) manipulator system has been developed at the Argonne National Laboratory for dark-field imaging of multi-scale structures. This novel full-field imaging modality uses Bragg peaks to reconstruct 3D distribution of mesoscopic and microscopic structures that govern the behavior of functional materials, in particular, thermodynamic phase transitions in magnetic systems. At the heart of this microscopy technique is a CRL-based x-ray objective lens* with an easily adjustable focal length to isolate any region of interest, typically in the energy range of 5-100 keV or higher, with high precision positional and angular reproducibility. Since the x-ray CRL manipulator system for this technique will be implemented on a high-resolution diffractometer detector arm that rotates during diffraction studies, compactness and system stability, along with the ability to change focal length (zooming), became key design requirements for this new CRL manipulator system. The mechanical design of the compact x-ray CRL manipulator system, as well as finite element analyses for its precision alignment apparatus are described in this paper. * http://www.rxoptics.de/intro.html |
|||
![]() |
Slides WEOPMA04 [4.189 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEOPMA04 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPH12 | Thermo-Mechanical Aspects of the MOBIPIX, a Compact X-Ray Imaging System with Embedded GPU | simulation, electron, synchrotron, electronics | 223 |
|
|||
Funding: The MOBIPIX project is part of Sirius project funded by the Brazilian Ministry of Science, Technology, Innovations and Communications. In the light of the high brilliance fourth generation syn-chrotron light sources, real-time imaging techniques be-came possible, boosting the demand for fast and reliable detectors. Mobipix project is a compact X-ray imaging camera based on Medipix3RX* ASIC designed for Sirius**. The control and acquisition system uses Sys-tem-On-a-Chip technology with embedded GPUs where data processing algorithms will run in real time. The Mobipix X-ray detector is de-signed to perform as a video camera, enabling X-ray imaging experiments and beam diagnose, at thousands of frames per second, without external computers. This paper presents the development of the Mobipix detector mechanics. The authors describe the path taken to design the structural aspects, ensuring robustness and versatility in the device installation to the beamlines, and the thermal aspects, regarding forced air cooling, high heat density, and small volume through which the flow will occur. The latter aspects were developed by exploiting CFD modelling. The Mobipix has 28 x 28 mm² active area, composed by 260k pixels of 55 x 55 'm2, and is planned to achieve continuous readout up to 2000 FPS. * LNLS is a member of CERN Medipix3 Collaboration. https://medipix.web.cern.ch/collaboration/medipix3-collaboration ** Sirius is the new Brazilian Synchrotron Light Source under construction |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEPH12 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPH29 | NSLS-II Vibration Studies to Characterize Beamline Stability | experiment, operation, ion-source, power-supply | 267 |
|
|||
High performance goals of NSLS-II require stringent mechanical stability of its instruments such as BPMs, slits, mirrors, monochromators, and detectors. Mechanical stability of these components can be compromised by site-wide as well as local vibration sources (pumps, compressors, etc.). Several vibration studies have been performed at NSLS-II at the request of beamline users. This paper presents the results of these studies highlighting sources of vibration and mitigation strategies. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEPH29 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPH36 | From Plate Screening to Artificial Intelligence: Innovative developments on PROXIMA 2A at Synchrotron SOLEIL | experiment, synchrotron, GUI, instrumentation | 283 |
|
|||
PROXIMA 2A is a high performance 3rd generation synchrotron beamline dedicated to X-ray micro-crystallography on biological macromolecules. Since opening in March 2013, the experimental station has hosted a large number of users who have collected vast amounts of X-ray diffraction images from literally thousands of crystals. In order to streamline the throughput, enhance performance and add functionality, a number of innovative developments have been launched on PROXIMA 2A. These cover all aspects of the beamline, from the practical to the visionary: such as the design, fabrication and implementation of a dedicated high-precision motorized stage to screen crystallization plates for in situ X-ray data collections, and the employment artificial intelligence and computer vision technologies for the detection of samples under liquid nitrogen. Other notable beamline projects include the addition of a vertical translation table for the EIGER X 9M detector to permit the acquisition of ultrahigh (0.6 Å) resolution X-ray data, the incorporation of a miniaturized YAG-coupled photodiode within a beamstop and the determination of the SOC of a recently added kappa arm to the goniometer. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEPH36 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPH41 | The Detector Adjustment System of Taiwan Photon Source 24A | GUI, alignment, photon, vacuum | 294 |
|
|||
The soft X-ray tomography endstation of TPS has the ability to provide 3D biological cell images by fluores-cence structured-illumination microscopy (SIM) and soft x-ray tomography (SXT). The electron energy is design to be in the range of 200 eV to 3 keV. The detector system equipped with an Andor® iKon-L Series imaging CCD, X-Z-roll-pitch adjustment stage, and long stroke bellows system. The detector system can adjust the CCD about 10 mm in both X and Z direction, and ±5 degree of roll. Moreover, the long stroke bellows system gives the CCD an extra degree of freedom in the Y direction and its range is up to 2500 mm. That can locate the CCD close to the sample to get a larger field of view, and far from the sample to get higher image resolution. In this study, the design and commission status of the detector system is studied and the mechanical structures are also presented.
soft X-ray tomography, Detector system |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-WEPH41 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THOPMA04 | A New Procurement Strategy to Challenge the Supplier Constraints Created When Using a Fully Developed Reference Design | lattice, optics, SRF, scattering | 327 |
|
|||
A common procurement strategy is to produce a fully optimised reference design that makes assumptions about the manufacturing process and supplier capability. This approach can restrict the opportunities for some companies to include their own specialist manufacturing capability to provide a more effective and cost efficient solution. A new approach is suggested following the recent experience at Diamond Light Source. The manufacture of high stiffness welded fabrications up to 13m in length for the I21 RIXS Spectrometer is used as an example. The I21 RIXS Spectrometer design was optimised for stiffness and control of vibration. The use of Finite Element Analysis enabled different design options and compromises to be explored utilising the supplier's capabilities. The final design was tested during manufacture to verify the FEA model. With the I21 RIXS Spectrometer commissioned the data collected shows the final stability performance of the system including detector stability over full experiment durations has met the scientific goals of the design. | |||
![]() |
Slides THOPMA04 [3.918 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THOPMA04 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH05 | An Improved Polarisation Analyser for the I16 Beamline at Diamond | vacuum, polarization, scattering, factory | 346 |
|
|||
The project to upgrade the I16 polarisation analyser was necessary to increase its functionality and to introduce a more robust construction. The requirement that the analyser was to be mounted on a diffractometer meant the construction needed to be as lightweight and as compact as possible. This provided opportunities to explore new collaborative ways of working with both in-house and external suppliers. The paper describes the approach taken to develop lightweight aluminium vacuum chambers working with a company specialising in additive layer manufacturing. In addition, the design of lightweight and compact slit assemblies are detailed; these were developed in collaboration with a supplier of driven linear stages. A novel requirement for the analyser is to have a detector mounted on a rotation axis in vacuum. The results of working with the in-house detector group to develop a design to with all the necessary thermal and electrical connections are described. The paper also describes further use of additive layer manufacturing to produce prototypes that allows the design of a cable management system to be optimised where previously using 3d CAD models had proved unsatisfactory. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH05 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH09 | Design of Indirect X-Ray Detectors for Tomography on the Anatomix Beamline | synchrotron, experiment, photon, SRF | 355 |
|
|||
ANATOMIX* is a long beamline for full-field tomography techniques at the French synchrotron SOLEIL [1]. It will operate in the energy range from 5 to 30 keV, and feature several operation modes via versatile optics configurations, including direct white beam propagation. Two methodologically different experimental stations will be used: parallel-beam X-ray shadowgraphy, for spatial resolution down to the sub-micron range, and full-field transmission X-ray microscopy down to a spatial resolution of less than 100 nm. To cover this large panel of experimental possibilities, the Detector Group, the Mechanical Engineering Group and beamline team have designed four dedicated indirect X-ray detector. For pixels in the sub-micron size range : a micro-tomography revolver camera for versatility, a high-efficiency camera for flux-limited experiments, and a high-resolution camera for the largest optical magnifications will be available. For experiments with a large X-ray beam and pixel sizes from several microns upward, a "large-field" camera completes the set. We describe these different assemblies with the detailed components and expected specification of each solution.
* Beamline largely funded by the French National Research Agency through the EQUIPEX investment program, NanoimagesX. [1] T Weitkamp et al 2017 J. Phys.: Conf. Ser. 849 012037 |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH09 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH17 | NCD-SWEET Beamline Upgrade | optics, experiment, controls, electronics | 374 |
|
|||
The SAXS/WAXS Experimental End sTation (NCD-SWEET) at ALBA Synchrotron has undergone major improvements in three main areas, beam performance, SAXS detector data quality and beamline operability, in order to perform state-of-the-art SAXS/WAXS experi-ments. A new channel-cut monochromator system has improved the beam quality and stability, with current vibration amplitudes under 1% of the beam size. Two sets of refractive beryllium lenses have been installed for focussing the beam. One of the sets allows to microfocus the beam size. Besides this, the former SAXS CCD detector has been replaced by a single-photon counting pixel detector, a Piltatus3 S 1M. In the end station, a full re-design of the mechanical elements with sub-micron resolution movements together with the installation of new equipment has been completed, resulting in an improved beamline configuration, and a faster and safer rearrangement of the flight tube length. New upgraded configuration also allows for GISAXS experiments. Finally, other auxiliary improvements have been done in areas like radiation protection, air conditioning, health and safety, cable management, electronics and control. | |||
![]() |
Poster THPH17 [5.848 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH17 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH24 | Front End Designs for the Advanced Photon Source Multi-bend Achromats Upgrade | photon, storage-ring, shielding, undulator | 388 |
|
|||
Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357 The Advanced Photon Source (APS) upgrade from double-bend achromats (DBA) to multi-bend achromats (MBA) lattice is underway. This upgrade will change the storage ring energy from 7 GeV to 6 GeV and beam current from 100 mA to 200 mA. All front ends must be upgraded to fulfill the following requirements: 1) Include a clearing magnet in all front ends to deflect and dump any electrons in case the electrons escape from the storage ring during swap-out injection with the safety shutters open, 2) Incorporate the next generation x-ray beam position monitors (XBPMs) into the front ends to meet the new stringent beam stability requirements, 3) For insertion device (ID) front ends, handle the high heat load from two undulators in either inline or canted configuration. The upgraded APS ID front ends will only have two types: High Heat Load Front End (HHLFE) for single beam and Canted Undulator Front End (CUFE) for canted beam. This paper presents the final design of the HHLFE and preliminary design of the CUFE. |
|||
![]() |
Poster THPH24 [1.279 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH24 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH28 | The Development of PAL-XFEL Beamline | FEL, experiment, vacuum, electron | 397 |
|
|||
Pohang Accelerator Laboratory X-ray Free Electron Laser(PAL-XFEL) is a research facility, which is designed to generate extremely intense (assuming 1x1012 photon/pulse at 12.4 keV) and ultra-short (10-200 femtosecond) pulsed X-rays. Now two beamlines were constructed, the one is hard X-ray and the other is soft X-ray. The beamline is consist of UH (Undulator hall) and OH (Optical hall), EH (Experimental hall). The UH is usually the same as the front end of a beamline, and OH has the same function as PTL (Photon Transfer Line). We have two hutches including HXPP and HCXI in hard X-ray beamline. The two hutches are connected each other, and sharing main optics (Mirrors and DCM, etc). PAL-XFEL is a very precise facility and has very large heat power, so thermal and structural analysis as well as vibration analysis is essential. Now many vacuum components of beamline were installed and completed the test of performance. | |||
![]() |
Poster THPH28 [1.888 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH28 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH31 | Design of a flexible RIXS Setup | alignment, vacuum, experiment, photon | 400 |
|
|||
We present a new mechanical design for a RIXS experiment setup consisting of a sample environment vacuum chamber and corresponding spectrometer. It allows variable beam incidence angles to the sample as well as observation angles of the spectrometer. The dispersive element of the spectrometer can be aligned in five DOF by motors inside the UHV chamber. The alignment of the CCD detector can be adjusted independently in the lateral and longitudinal position as well as incidence angle. In combination with a tiltable detector chamber this design allows for multiple observation methods, not limited to variable energies but also for use of different optics or direct observations of the sample. | |||
![]() |
Poster THPH31 [0.859 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH31 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPH36 | Engineering Challenges for the NEH2.2 Beamline at LCLS-II | laser, experiment, scattering, photon | 409 |
|
|||
SLAC National Accelerator Laboratory is developing LCLS-II, a superconducting linear accelerator based FEL capable of repetition rates up to 1MHz. The NEH2.2 Instrument at LCLS-II will use this combination of exceptionally high flux of monochromatic photons to achieve multidimensional and coherent X-ray techniques that are possible only with X-ray lasers. The challenges, which emanate from delivering the beam from the sub-basement level to the basement of the Near Experimental Hall (NEH) along with the stringent requirements for providing a stable beam at the interaction points, necessitate unique engineering solutions. With this paper we present the conceptual design for the NEH2.2 Instrument along with an overview of the R&D program required to validate design performance. Furthermore, it will additionally show the design of the proposed Liquid Jet Endstation (LJE) and Resonant Inelastic X-Ray Scattering Endstation (RIXS) that will be installed on the beamline. After introducing the context and layout of the beamline, this paper will focus on the technical challenges and present the mechanical design solutions adopted for beam delivery and other strategic components. | |||
![]() |
Poster THPH36 [2.220 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2018-THPH36 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||