A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W  

electron

Paper Title Other Keywords Page
MOYKI01 e+e- Factories factory, luminosity, storage-ring, vacuum 12
 
  • M. K. Sullivan
  Funding: Work supported by USDOE contract DE-AC02-76SF00515

The achievements of the e+e- Factories have been impressive. The KEK B- Factory has achieved a peak luminosity of 1.7x1034 cm2/s and the PEP-II B-Factory has reached 1.2x1034 cm2/s while the Dafne Phi-Factory has obtained 1.5x1032 cm2/s. Early in the B-Factory running, CP violation in the B meson system was found to be consistent with the prediction of the Standard Model. Now all three factories are integrating as much luminosity as they can in order to look for rare decay channels that may have a rate that differs from the value predicted by the Standard Model and therefore hint at New Physics. I will give a status report on the most recent accomplishments of all three factories PEP-II, KEKB and Dafne and will show what the three facilities have for plans to further improve performance.

 
slides icon Slides  
 
MOYKI03 Energy Recovery Linacs linac, emittance, gun, beam-losses 22
 
  • L. Merminga
  Energy recovey linacs have made great strides in the past decade and are now poised to revolutionize light sources, lepton-hadron colliders, electron coolers, high-power FELs, Compton sources and THz radiators. The status and direction of ERLS will be discussed.  
slides icon Slides  
 
MOOAKI01 Plans for Utilizing the Cornell Electron Storage Ring as a Test Accelerator for ILC Damping Ring Research and Development emittance, wiggler, damping, instrumentation 42
 
  • M. A. Palmer
  • J. P. Alexander, D. L. Hartill, R. W. Helms, D. L. Rubin, J. P. Shanks, M. Tigner, J. T. Urban
    CLASSE, Ithaca
  • M. Ehrlichman
    University of Minnesota, Minneapolis, Minnesota
  • D. H. Rice
    CESR-LEPP, Ithaca, New York
  • D. Sagan
    Cornell University, Department of Physics, Ithaca, New York
  • L. Schachter
    Technion, Haifa
  Funding: Funding provided by NSF grant PHY-0202078

In April 2008, we propose to begin operation of the Cornell Electron Storage Ring (CESR) as a test accelerator, CesrTA, for International Linear Collider (ILC) damping ring research. Utilizing 12 damping wigglers, the baseline CesrTA lattice at 2.0 GeV will offer a natural geometric emittance of 2.25 nm. An experimental program has been laid out which focuses on several key areas of damping rings R&D. First we will test vacuum chamber designs to suppress electron cloud growth in the wiggler magnets. Secondly, we will develop correction, tuning and emittance monitoring strategies to achieve vertical emittances of a few picometers. As part of this effort we will validate alignment and survey techniques being developed by the Linear Collider Alignment and Survey group (LiCAS) for curved tunnel applications. After achieving ultra-low emittance, we intend to explore the impact of the electron cloud, the fast ion instability and other beam dynamics effects on ultra-low emittance beams. Finally, we plan to test various technical systems required for the ILC damping rings. This paper provides an update on conceptual design issues for CesrTA and describes the experimental program in detail.

 
slides icon Slides  
 
MOZBKI01 CESR-C: A Wiggler-Dominated Collider wiggler, optics, damping, luminosity 48
 
  • D. H. Rice
  Funding: Work supported by US National Science Foundation grant PHY-0202078

CESR-c operates with twelve 2.1 Tesla wigglers that account for 90% of the synchrotron radiation with beam energy in the range of 1.8 to 2.1 GeV. The wigglers reduce the radiation damping time from 0.5 seconds to 50 milliseconds. The carefully designed wigglers restrict neither physical nor dynamic aperture of the storage ring, though both quadrupole and sextupole distributions must be tailored to compensate the primary optics effects of the wigglers. Colliding beam performance limits are determined by the numerous parasitic beam-beam interactions in the single ring. Several approaches taken to mitigate these limiting effects are described herein. The CESR-c wigglers are an excellent match to the requirements for future damping rings. We describe how with flexible optics, extensive infrastructure, and resource expertise, they form an effective test bed for assessment and solution of damping ring issues such as electron cloud and ion effects, and achieving ultra-low emittance beams.

 
slides icon Slides  
 
MOZBKI02 The BEPC II: Status and Early Commissioning injection, luminosity, linac, quadrupole 53
 
  • J. Q. Wang
  • L. Ma, C. Zhang
    IHEP Beijing, Beijing
  BEPCII is the upgrade project of Beijing Electron Positron Collider (BEPC). The installation of its storage ring components except the superconducting (SC) insertion magnets was completed in early November, 2006. While the improvement of the cryogenic system for SC magnets is in progress, the commissioning of the synchrotron radiation (SR) mode for the so called back-up scheme with conventional magnets adopted in the interaction region (IR), started on Nov. 13, 2006. The first electron beam was stored on Nov. 18 and later beam was provided to SR users for about 1 month starting from Dec. 25, 2006. The commissioning of the collision mode including the electron and positrion rings started in Feb. 2007. The first beam collision was realized on Mar. 25. Then optimization of the beam parameters was done. On May 14, a 100mA to 100mA beam collision was achieved with 20 bunches for each beam. The luminosity estimated from the measured beam-beam parameters has reached that of BEPC. From May 25 the machine turns to the second run of the SR mode. This paper provides an overview of the construction and introduce the commissioning results of the backup scheme of BEPCII.  
slides icon Slides  
 
MOZBKI03 The JLab 12 GeV Energy Upgrade of CEBAF for QCD and Hadronic Physics linac, controls, beam-transport, emittance 58
 
  • L. S. Cardman
  • L. Harwood
    Jefferson Lab, Newport News, Virginia
  Funding: Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177

CEBAF is a 5-pass, recirculating cw electron linac operating at ~6 GeV. The 12-GeV Upgrade is a $300M project anticipated to receive Critical Decision 2 approval in late summer of 2007 and begin construction activities in 2008; funding for the project is provided by the DOE Office of Nuclear Physics which will double the beam energy. The new energy reach will permit significant extensions in research into non-perturbative aspects of QCD. Areas of interest are Generalized Parton Distributions (GPDs), measurements at high-xBjorken, and the use of hybrid mesons to explore the nature of quark confinement. The upgrade includes: doubling the accelerating voltages of the linacs by adding 10 new high-performance cryomodules plus the requisite expansion of the 2K cryogenics plant and rf power systems, upgrading the beam transport system from 6 GeV to 12 GeV capability through extensive re-use of existing hardware, adding one recirculation arc, adding a new experimental area and the beamline to it, building new experimental equipment for the GPD, high-xBjorken, and hybrid mesons programs. The presentation will touch on the science and give some details of the accelerator plans.

 
slides icon Slides  
 
MOOBKI01 Central Mass Energy Determination in High Precision Experiments on VEPP-4M luminosity, positron, energy-calibration, sextupole 63
 
  • A. Bogomyagkov
  • S. A. Nikitin, I. B. Nikolaev, A. G. Shamov, A. N. Skrinsky, G. M. Tumaikin
    BINP SB RAS, Novosibirsk
  The series of experiments on mass measurements of J/Psi, Psi' and Psi'' mesons have been done on VEPP-4M collider. The accuracy of obtained mass values for JΨ- and Psi'- mesons exceeded more than 3 times the world values, based on experiments on VEPP-4* and E760**. The ongoing experiment on tau lepton mass measurement is expected to achieve accuracy 1.5-2 times better than the present world value. The present paper describes the process and uncertainties of luminosity weighted interaction energy definition. The errors of interaction energy include uncertainties due to beam energy calibration by resonant depolarization technique and errors of interaction energy calculation.

* A. A. Zholentz et al., Phys. Lett. B 96 (1980) 214-216.** T. A. Armstrong et al., Phys. Rev. D47 (1993) 772-783.

 
slides icon Slides  
 
MOZAAB01 Generation of Subpicosecond X-ray Pulses in Storage Rings laser, wiggler, radiation, synchrotron 69
 
  • A. Zholents
  Funding: This work was supported by DoE under contract No: DE-AC02-05CH11231

Subpicosecond x-ray pulses are now routinely obtained at the ALS, BESSY and SLS light sources using laser e-beam slicing technique. Other x-ray pulse shortening techniques were also proposed and are now under consideration for ALS, APS, DIAMOND and PETRA light sources. In this talk I review current results and discuss R&D plans and activity.

 
slides icon Slides  
 
MOOAAB02 Experimental Results with the SPARC Emittance-meter emittance, laser, simulation, cathode 80
 
  • M. Ferrario
  • D. Alesini, M. Bellaveglia, S. Bertolucci, R. Boni, M. Boscolo, M. Castellano, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, M. Incurvati, C. Ligi, M. Migliorati, A. Mostacci, E. Pace, L. Palumbo, L. Pellegrino, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, F. Tazzioli, S. Tomassini, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Bacci, S. Cialdi, A. R. Rossi, L. Serafini
    INFN-Milano, Milano
  • L. Catani, E. Chiadroni, A. Cianchi
    INFN-Roma II, Roma
  • A. M. Cook, M. P. Dunning, P. Frigola, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • L. Giannessi, M. Quattromini, C. Ronsivalle
    ENEA C. R. Frascati, Frascati (Roma)
  • P. Musumeci, M. Petrarca
    INFN-Roma, Roma
  The SPARC project foresees the realization of a high brightness photo-injector to produce a 150-200 MeV electron beam to drive a SASE-FEL in the visible light. As a first stage of the commissioning a complete characterization of the photoinjector has been done with a detailed study of the emittance compensation process downstream the gun-solenoid system. For this purpose a novel beam diagnostic device, called emittance meter, has been developed and used at SPARC. This device has allowed to measure the evolution of beam sizes, energy spread and rms transverse emittances at different location along the beamline, in the region where space-charge effects dominate the electron dynamics and the emittance compensation process takes place. In this paper we report our commissioning experience and the results obtained. In particular a comparison between the performances of a Gaussian laser pulse versus a Flat Top laser pulse will be discussed. We report also the first experimental observation of the double emittance minima effect on which is based the optimised matching with the SPARC linac.  
slides icon Slides  
 
MOOAAB03 High Power Operation of the JLab IR FEL Driver Accelerator laser, wiggler, vacuum, beam-losses 83
 
  • S. V. Benson
  • K. Beard, G. H. Biallas, J. Boyce, D. B. Bullard, J. L. Coleman, D. Douglas, H. F.D. Dylla, R. Evans, P. Evtushenko, C. W. Gould, A. C. Grippo, J. G. Gubeli, D. Hardy, C. Hernandez-Garcia, C. Hovater, K. Jordan, J. M. Klopf, R. Li, S. W. Moore, G. Neil, M. Poelker, T. Powers, J. P. Preble, R. A. Rimmer, D. W. Sexton, M. D. Shinn, C. Tennant, R. L. Walker, G. P. Williams, S. Zhang
    Jefferson Lab, Newport News, Virginia
  Funding: This work supported by the Off. of Naval Research, the Joint Technology Off., the Commonwealth of Virginia, the Air Force Research Lab, Army Night Vision Lab, and by DOE Contract DE-AC05-060R23177.

Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

 
slides icon Slides  
 
MOOAAB04 Quadruple-bend Achromatic Low Emittance Lattice Studies emittance, lattice, dipole, storage-ring 86
 
  • M.-H. Wang
  • H.-P. Chang, H. C. Chao, P. J. Chou, C.-C. Kuo
    NSRRC, Hsinchu
  • S.-Y. Lee, F. Wang
    IUCF, Bloomington, Indiana
  A quadruple-bend-achromatic (QBA) cell, defined as a super cell made of two double-bend (DB) cells with different outer and inner dipole bend angles, is found to provide a factor of two in lowering the beam emittance of electron synchrotron light sources. The ratio of bending angles of the inner dipoles to that of the outer dipoles is numerically found to be about 1.51.6 for an optimal low beam emittance in the isomagnetic condition. The QBA lattice provides an advantage over the double-bend achromat or the double-bend non-achromat in performance by providing some zero dispersion straight-sections and a small natural beam emittance. A lattice with 12 QBA cells with a preliminary dynamic aperture study serves as an example. The effects of the different types of insertion devices (ID) on the emittance in dispersive long straight and non-dispersive long straight are also simulated and reported.  
slides icon Slides  
 
MOZBAB01 Review of the Worldwide SASE FEL Development undulator, radiation, vacuum, cathode 89
 
  • T. Shintake
  Talk will review the worldwide efforts towards VUV and X-ray SASE FELs,including low emittance electron source, linear accelerator, bunch compressor, undulator, beam diagnostics, alignment, and control, facility building and seeding technology.  
slides icon Slides  
 
MOZBAB02 Short Wavelength SASE FEL: Experiment vs. Theory radiation, undulator, resonance, simulation 94
 
  • J. Rossbach
  Since 2005, the Free-Electron Laser FLASH at DESY delivers radiation pulses with unprecedented parameters to scientific users. Pulses in the 10 femtosecond range are produced at record wavelengths as short as 13 nanometers. Operating in the FEL saturation regime at the Gigawatt level, even higher harmonics are generated that are powerful enough to be attractive for users. Radiation pulses and the properties of electron bunches have been characterized in quite some detail. Based on these results, the state of the art of detailed comparison between the theory and experiment of short wavelength SASE FELs will be presented.  
slides icon Slides  
 
MOZBAB03 Compact Long Wavelength Free-Electron Lasers radiation, bunching, laser, simulation 99
 
  • H. L. Andrews
  • C. H. Boulware, C. A. Brau, J. D. Jarvis
    Vanderbilt University, Nashville, Tennessee
  The idea of using the Smith-Purcell effect to build a compact (table-top) long wavelength (0.1 -1 mm) free-electron laser is quite old. However, it is only recently that a complete theory for the operation of such devices has been proposed. The current state of the theoretical and experimental efforts to understand these devices will be summarized.  
slides icon Slides  
 
MOOBAB01 Time-Resolved Phase Space Tomography at Flash Using a Transverse Deflecting RF-Structure emittance, simulation, quadrupole, radiation 104
 
  • M. Roehrs
  • C. Gerth, H. Schlarb
    DESY, Hamburg
  To initiate Self-Amplification of Spontaneous Emission (SASE) in single-pass Free Electron Lasers (FEL), electron bunches with high peak current and small slice emittance and energy spread are necessary. At FLASH at DESY, this is accomplished by longitudinal bunch compression in two magnetic chicanes. The compression process may be accompanied by distortions from coherent synchrotron radiation and space charge forces. Their effect on the bunch properties can be studied with a vertically deflecting rf-structure (LOLA), which allows to measure the longitudinal phase space distribution and horizontal slice emittance of single bunches. In combination with tomographic methods the horizontal phase space distribution of time slices can be reconstructed. In this paper measurement results for SASE operation are presented and compared to simulations and bunch properties infered from the radiation signal.  
slides icon Slides  
 
MOOBAB02 Progress Toward an ERL Extension to CESR emittance, linac, ion, optics 107
 
  • G. Hoffstaetter
  • I. V. Bazarov, G. W. Codner, M. Forster, S. Greenwald, Y. Li, M. Liepe, C. E. Mayes, C. K. Sinclair, C. Song, A. Temnykh, M. Tigner, Y. Xie
    CLASSE, Ithaca
  • D. H. Bilderback, D. S. Dale, K. Finkelstein, S. M. Gruner
    CHESS, Ithaca, New York
  • B. M. Dunham
    Cornell University, Laboratory for Elementary-Particle Physics, Ithaca, New York
  • D. Sagan
    Cornell University, Department of Physics, Ithaca, New York
  Funding: Supported by Cornell University and NSF grant PHY 0131508

The status of plans for an Energy-Recovery Linac (ERL) X-ray facility at Cornell University is described. Currently, Cornell operates the Cornell High Energy Synchrotron Source (CHESS) at the CESR ring and the ERL is planned to be an extension to the CESR ring with the addition of a 5-GeV superconducting c.w. linac. Topics covered in this paper include the full layout on the Cornell campus, the different operation modes of the accelerator, methods to limit emittance growth, control of beam-ion effects and ways to limit transverse instabilities. As an upgrade of the CESR ring, special attention is given to reuse of many of the existing components. The very small electron-beam emittances would produce an x-ray source that is highly superior than any existing storage-ring light source. The ERL includes 18 X-ray beamlines optimized for specific areas of research that are currently being defined by an international group of scientists. This planned upgrade illustrates how other existing storage rings could be upgraded to work as ERL light sources with vastly improved beam qualities and with limited dark time for x-ray users.

 
slides icon Slides  
 
MOOAC02 A Short-Pulse Hard X-ray Source with Compact Electron LINAC Via Laser-Compton Scattering for Medical and Industrial Radiography laser, scattering, photon, cathode 121
 
  • H. Toyokawa
  • H. Ikeura-Sekiguchi, M. K. Koike, R. Kuroda, H. Ogawa, N. Sei, M. Tanaka, K. Y. Yamada, M. Y. Yasumoto
    AIST, Tsukuba, Ibaraki
  • T. Nakajyo, F. Sakai, T. Y. Yanagida
    SHI, Tokyo
  An intense, quasi-monochromatic hard X-ray beam has been generated via the laser-Compton scattering of a picosecond electron bunch with an intense femtosecond TW laser. A s-band linear accelerator of 40 MeV and Ti:Sa femtosecond TW laser were used to generate X-rays. We plan to increase the X-ray yield up to two-orders than the current one until FY2008. Our recent R&D for that purpose are generation of multi-pulse electron beam using a photo-cathode rf-gun, and multi-pulse laser cavity for Compton scattering. We briefly describe the specifications of the electron accelerator and the laser systems, together with the developments and modifications being undergone.  
slides icon Slides  
 
MOZBC03 Applications for Energy Recovering Free Electron Lasers laser, free-electron-laser, linac, controls 132
 
  • G. Neil
  The availability of high-power, high-brilliance sources of tunable photons from energy-recovered Free Electron Lasers is opening up whole new fields of application of accelerators in industry. This talk will review some of the ideas that are already being put into production, and some of the newer ideas that are still under development.  
slides icon Slides  
 
MOOBC01 Electron Accelerator Options for Photo-Detection of Fissile Materials photon, target, linac, laser 137
 
  • K. C.D. Chan
  • A. J. Jason, P. J. Turchi
    LANL, Los Alamos, New Mexico
  Funding: Work supported by DNDO of US Government

For national security, it is important to detect the presence of Special Nuclear Materials (SNM), especially Highly-Enriched Uranium (HEU). Generally used methods for such detection include interrogation by photons and neutrons. For example, photofission in HEU can be initiated with 14-MeV photons. The resulting delayed neutrons and photons from the fission fragments are clear signatures of the presence of HEU. One can generate high-energy photons using electron accelerators via various mechanisms. In this paper, we will describe two of them, namely electron bremsstrahlung and Compton-backscattered photons. We focus on these two mechanisms because they cover a wide range of accelerator requirements. Electron bremsstrahlung can be generated using a compact low-energy electron linac while the generation of Compton-backscattered photons requires a high-energy electron accelerator of a few hundred MeV. We review these two options, describe their accelerator requirements, and compare their relative merits.

 
slides icon Slides  
 
MOOBC02 Experiments in Warm Dense Matter using an Ion Beam Driver target, ion, diagnostics, plasma 140
 
  • F. M. Bieniosek
  • J. J. Barnard, M. Kireeff Covo, A. W. Molvik
    LLNL, Livermore, California
  • L. Grisham
    PPPL, Princeton, New Jersey
  • M. Leitner, B. G. Logan, R. More, P. N. Ni, P. K. Roy
    LBNL, Berkeley, California
  • H. Yoneda
    University of electro-communications, Tokyo
  Funding: Work performed under the auspices of the U. S. Dept. of Energy by LBNL, LLNL, and PPPL under Contracts No. W-7405-Eng-48, DE-AC02-05CH11231, and DE-AC02-76CH3073.

We describe near term heavy-ion beam-driven warm dense matter (WDM) experiments. Initial experiments are at low beam velocity, below the Bragg peak, increasing toward the Bragg peak in subsequent versions of the accelerator. The WDM conditions are envisioned to be achieved by combined longitudinal and transverse neutralized drift compression to provide a hot spot on the target with a beam spot size of about 1 mm, and pulse length about 1-2 ns. The range of the beams in solid matter targets is about 1 micron, which can be lengthened by using porous targets at reduced density. Initial candidate experiments include an experiment to study transient darkening in the WDM regime; and a thin target dE/dx experiment to study beam energy and charge state distribution in a heated target. Further experiments will explore target temperature and other properties such as electrical conductivity to investigate phase transitions and the critical point.

 
slides icon Slides  
 
MOPAN002 Active Shunts for the LNLS Storage Ring Quadrupoles power-supply, quadrupole, storage-ring, controls 143
 
  • C. Rodrigues
  • A. R. Silva
    LNLS, Campinas
  The quadrupoles of the LNLS storage ring are divided into families with two or six units, each one being supplied by an only current source. Some experiments performed by the accelerator physics team require different currents for quadrupoles of a same family. Moreover, there is an interest in obtaining lower steps in the control of their currents. These were the main reasons that required the development of an active shunt. A prototype was built with range of -3A to +3A, what is approximately 3% of the maximum quadrupole current (200A). It was tested with a two-quadrupole family power supply. The full bridge topology was chosen, where the pulse width for the positive and negative output voltages are not the same, which gives an average output current different from zero. Some waveforms and results are shown, such as the long-term stability and output current ripple. Some measurements made in the storage ring electron beam using the active shunt are also described.  
 
MOPAN012 Development of the Injection- and Extraction Systems for the Upgrade of SIS18 septum, injection, cathode, vacuum 167
 
  • U. B. Blell
  • A. V. Batrakov, S. A. Onischenko, G. E. Ozur
    Institute of High Current Electronics, Tomsk
  • J. Florenkowski, U. Kopf, C. Muehle, M. Petryk, I. J. Petzenhauser, P. J. Spiller
    GSI, Darmstadt
  SIS18 will serve as booster synchrotron for the proposed International Accelerator Facility FAIR at GSI. The aim is to provide high intensity proton and heavy ion beams of e.g. U28+-ions with a repetition rate of 2.7 - 4 cycles per second for injection into SIS100. The operation with low charge state heavy ions requires modifications of the injection and extraction systems. The goal is to minimize beam losses and thereby ion induced gas desorption during the injection and extraction processes. In order to increase the acceptance and for an injection at the reference energy it is necessary to build and install a new electrostatic inflector septum and a new inflector magnet. The electrostatic injection septum is designed for an operation at high field strength and enables a bake-out temperature of 300°C. This may be achieved by means of new cathode surface treatment procedures, e.g. with pulsed high intensity electron beams. Another technique is also under investigation, the coating of alumina by a plasma spray technique.  
 
MOPAN013 Wien Filter as a Spin Rotator at Low Energy simulation, emittance, focusing, polarization 170
 
  • B. Steiner
  • W. Ackermann, W. F.O. Muller, T. Weiland
    TEMF, Darmstadt
  Funding: Work supported by DFG under contract SFB 634

The Wien filter is well known as a common energy analyzer and is also used more and more as a compact variant of a spin rotator at low energy for electrons. The Wien filter based on a homogenous magnetic and electric field that are perpendicular to each other and transverse to the direction of the electrons. The rotation of the spin vector is caused by the magnetic field. If the force equilibrium condition is fulfilled the beam should not be deflected at the Wien filter. Simulations show that in the fringe fields the electrons get a kick. Therefore full 3D simulations of the electromagnetic fields and beam dynamics simulations are studied in detail at the example of the Wien filter at the new polarized 100 keV electron injector at the S-DALINAC. The results of the simulations with CST Design Environment(TM), MAFIA and V-Code are presented.

 
 
MOPAN017 Noise and drift characterization of direct laser to RF conversion scheme for the laser based synchronization system for FLASH at DESY laser, injection, controls, free-electron-laser 182
 
  • F. Ludwig
  • B. Lorbeer, H. Schlarb, A. Winter
    DESY, Hamburg
  Funding: This contribution is funded by the EUROFEL project.

The next generation of FEL's (Free Electron Lasers) require a long and short term stable synchronisation of RF reference signals with an accuracy of 10 fs. For that an optical synchronisation system is developed for FLASH at DESY, that is based on optical pulse train which carry the timing information encoded in its precise repetition rate. The optical pulse train has to be converted into an RF signal to provide a local reference for calibration and operation of RF based devices. The drift and jitter performance of the optical to RF converter influences directly the phase stability of the accelerator. Three different methods for optical to RF converters, namely the direct photodiode detection, injection locking and a sagnac loop interferometer are currently under investigation. In this paper we concentrate on the jitter and drift performance of the direct photodiode conversion and show its limitations from measurement results.

 
 
MOPAN020 Status of the Laser Master Oscillator System at FLASH laser, diagnostics, feedback, controls 191
 
  • A. Winter
  • W. J. Jalmuzna
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw
  • F. Loehl, H. Schlarb, P. Schmuser
    DESY, Hamburg
  An optical synchronization system based on the timing-stabilized distribution of ultra-short optical pulses has been proposed for next generation light sources, e.g. the European XFEL. The concept will be implemented and tested at FLASH at DESY. This paper describes the status of the optical master oscillator, which consists of two mode-locked Erbium-doped fiber lasers running in parallel.  
 
MOPAN024 Commissioning of the ELETTRA Fast Orbit Feedback System feedback, controls, power-supply, photon 203
 
  • M. Lonza
  • D. Bulfone, V. Forchi', G. Gaio
    ELETTRA, Basovizza, Trieste
  A fast orbit feedback system has been installed at ELETTRA. It globally corrects the closed orbit at 10 kHz rate using all the BPMs and corrector magnets of the storage ring. The Libera Electron device has been used to upgrade the original detectors in order to provide micrometric accuracy and fast data rate of the beam position measurements. The article reports the experience gained during the commissioning of the system and the first operational results.  
 
MOPAN026 Critical Issues in Ensuring Reproducible and Reliable Deposition of NEG Coatings for Particle Accelerators cathode, vacuum, controls, ion 209
 
  • A. Bonucci
  • A. Conte, P. Manini, S. Raimondi
    SAES Getters S.p. A., Lainate
  Non Evaporable getter (NEG) coating technology, developed at CERN in the late 90s, is an effective pumping solution for conductance limited vacuum chambers. It reduces thermal out-gassing and provides distributed pumping ability, allowing the achievement of very low pressure. NEG films do show additional interesting features, like low secondary electron yield and low gas de-sorption rates under ions, electrons and photons bombardment. For these reasons, large scale adoption of NEG coated chambers is now a reality and several leading edge machines will soon benefit from it. A critical issue for the successful application of this technology is the ability to deposit NEG coatings in a reproducible and reliable way all along a pipe. This is particularly important for narrow-gap or specially shaped chambers which pose severe challenges in term of film thickness distribution, chemical composition and sorption properties. A dedicated study was carried out to fully understand the deposition process as a function of the sputtering parameters and the chamber geometry. Results obtained do allow to optimize the coating process and ensure that film requirements in a given application are met.  
 
MOPAN043 Beam Charge Feedback System for Thermionic Cathode RF-Gun cathode, feedback, controls, gun 254
 
  • H. Ohgaki
  • T. Kii, K. Masuda, T. Yamazaki, K. Yoshikawa, H. Zen
    Kyoto IAE, Kyoto
  A beam current feedback system to stabilize the long-time operation of thermionic cathode RF-Gun has been developed in Kyoto University FEL facility where a 4.5-cell thermionic cathode RF-gun provides electron beam to drive a mid-infrared free electron laser. However, the back-bomberdment effect seriously increases the temperature of the cathode surface, and thus the stable operation was quit difficult without continuous control of the cathode temperature or the beam current. We have tried to stabilize the beam current by using a feedback system. The beam current was monitored with current transformer, which was located at the exit of the gun or at the downstream of the energy analyzer, was read by oscilloscope. The total charge was calculated in a PC and the LabView PID-unit controlled the cathode heater current. As a result, the long term stability of the beam current dramatically improved.  
 
MOPAN054 Beam Instabilities Measurement and Cures at HLS feedback, injection, synchrotron, storage-ring 272
 
  • Y. L. Yang
  • Y. B. Chen, L. J. Huang, W. Li, L. Liu, B. Sun, J. H. Wang, K. Zheng, Z. R. Zhou
    USTC/NSRL, Hefei, Anhui
  In Hefei Light Source (HLS), coupled-bunch instabilities are major limiting factors in achieving higher beam intensity while maintaining good beam quality. To Measure and suppress beam instabilities, turn-by-turn (TBT) measurement and bunch-by-bunch(BxB) measurement & feedback system are under commission [1][2]. The design of the two systems and primary experiment results is presented. Measurement and detail analysing results in injection status will also be shown.  
 
MOPAN058 Control System for PEFP Instruments with Modbus Protocol controls, power-supply, proton, monitoring 284
 
  • I.-S. Hong
  • Y.-G. Song
    KAERI, Daejon
  Funding: This work was supported by the 21C Frontier R&D program sponsored by Ministry of Science and Technology, Korean Government.

20MeV proton linear accelerator of the PEFP(Proton Engineering Frontier Project) has above 10 magnet power supplies and getter pumps to interface with Modbus protocol. VME IOC(Input Output Controller) has been designed and constructed for the control system by using VME serial I/O. The driver support module of the VME IOC has been developed to initialize the IO board and communicate with the instruments through EPICS. Operating console and storage module for operators in the control room has been programmed on PC and SUN of the operator interface.

 
 
MOPAN060 Compensation of BPM Chamber Motion in PLS Orbit Feedback System feedback, vacuum, photon, controls 290
 
  • H.-S. Kang
  • J. Choi, K. M. Ha, E.-H. Lee, W. W. Lee, I. S. Park
    PAL, Pohang, Kyungbuk
  The false BPM reading resulting from the BPM vacuum chamber motion due to thermal load change by synchrotron radiation is compensated by the real-time monitoring of the chamber position in the PLS orbit feedback system. The BPM chamber moves up to 20 μm during the beam refill and the chamber motion has a time constant of about one and half hour, which is related to thermal equilibrium of the vacuum chamber. To monitor the BPM chamber motion, LVDTs with 0.2 μm reading accuracy were installed on all BPM chambers, and the measured data are used in the orbit feedback every 1 minute. In this paper, we will describe how serious the BPM chamber motion are and how well it is compensated.  
 
MOPAN093 Stability Improvement of the Cryogenic System at NSRRC cryogenics, superconducting-magnet, resonance, storage-ring 380
 
  • F. Z. Hsiao
  • S.-H. Chang, W.-S. Chiou, H. C. Li, H. H. Tsai
    NSRRC, Hsinchu
  Negative gauge pressure appears in the helium suction line during the period of compressor starting up. The negative pressure induces the risk of air leakage into the cryogenic system and the damage to the burst disk of cryostat. A buffer tank is connected to the suction line to avoid the negative gauge pressure. Variation of nitrogen pressure changes the thermal-shielding temperature of the cavity cryostat and thus changes the length and frequency of the cavity. A phase separator with pressure control is installed before the cryostat to isolate the fluctuation of nitrogen pressure at the source side and prevent the trip of electron beam due to the frequency change or the overpressure at the cavity side. The stability improvement after usage of the phase separator shows that variation of the nitrogen pressure to the cavity cryostat is reduced from +0.6/-0.4 bar to ±0.08 bar and the drift of nitrogen pressure is eliminated. The stability after usage of the buffer tank shows that the negative gauge pressure is avoided in the suction line and the peak pressure was reduced from 1.4 bar to 1.2 bar.  
 
MOPAN108 The FONT4 ILC Intra-train Beam-based Digital Feedback System Prototype feedback, kicker, linear-collider, positron 416
 
  • P. Burrows
  • G. B. Christian, C. I. Clarke, B. Constance, A. F. Hartin, H. D. Khah, C. Perry, C. Swinson, G. R. White
    JAI, Oxford
  • A. Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • S. Molloy
    SLAC, Menlo Park, California
  We present the design of the FONT4 intra-train beam-based digital position feedback system prototype. The system incorporates a fast analogue beam position monitor front-end signal processor, a digital feedback board, and a fast kicker-driver amplifier. The system latency goal is less than 150ns. We report preliminary results of beam tests at the Accelerator Test Facility (ATF) at KEK using electron bunches separated by c. 150ns.  
 
MOPAN110 A Technique for High-frequency Scanning of High Power Laser Light for Laser-wire Scanners at Electrons Accelerators laser, quadrupole, controls, multipole 422
 
  • A. Bosco
  • G. A. Blair, S. T. Boogert, G. E. Boorman
    Royal Holloway, University of London, Surrey
  Funding: Work supported in part by PPARC LC-ABD Collaboration and the Commission of European Communities under the 6th Framework Programme Structuring the European Research Area, contract number RIDS-011899.

Electro-optic techniques might allow implementing a laserwire scanner for intra-train scanning at the ILC with scanning speed in excess of 100 kHz. A scanner capable of running at such a rate would in fact provide information about the particle beam size in about one hundred different positions along the bunch train (approximately 1ms long for the ILC*). The design of an electro-optic deflector capable to scan within 10-100 microsecond is presented, discussed and analytically treated.

* ILC Baseline Conceptual Design (2006).: http://www.linearcollider.org/.

 
 
MOPAS017 Upgrade of the A0 Photoinjector Laser System for NML Accelerator Test Facility at Fermilab laser, controls, radiation, cathode 470
 
  • J. Ruan
  • H. Edwards, R. P. Fliller, J. K. Santucci
    Fermilab, Batavia, Illinois
  Funding: Operated by Universities Research Association, Inc. for the U. S. Department of Energy under contract DE-AC02-76CH03000

The current Fermilab A0 Photoinjector laser system includes a seed laser, a flashlamp pumped multipass amplifier cavity, a flashlamp pumped 2-pass amplifier system followed by an IR to UV conversion stage. However the current system can only deliver up to 800 pulses due to the low efficiency of Nd:Glass used inside multi-pass cavity. In this paper we will report the effort to develop a new multi pass cavity based on Nd:YLF crystal end-pumped by diode laser. We will also discuss the foreseen design of the laser system for the NML accelerator test facility at Fermilab.

 
 
MOPAS033 A Robust Orbit-Steering and Control Algorithm Using Quadrupole-scans as a Diagnostic quadrupole, controls, dipole, alignment 509
 
  • C. Wu
  • E. Abed, G. Bai, B. L. Beaudoin, S. Bernal, I. Haber, R. A. Kishek, P. G. O'Shea, M. Reiser, D. Stratakis, D. F. Sutter, K. Tian, M. Walter
    UMD, College Park, Maryland
  Funding: This work is funded by US Dept. of Energy.

Beam based alignment and control has been a critical issue for many accelerators. In this paper, we've developed a new approach that can correct the beam orbit using a systematic quad-scan method, where there is an insufficient number of beam position monitors. In this approach, we've proposed a calibrated response matrix. This matrix takes consideration of the different sensitivities of different quadrupoles in the lattice. With the calibrated response matrix, we can greatly enhance our ability to control the beam centroid motion and reduce the control effort.

 
 
MOPAS037 New Generation Digital Longitudinal Feedback System for Duke FEL and HIGS Facilities feedback, kicker, storage-ring, synchrotron 518
 
  • Y. Kim
  • M. D. Busch, P. Wang, W. Wu, Y. K. Wu
    FEL/Duke University, Durham, North Carolina
  • J. Choi, I. S. Ko, I. S. Park
    PAL, Pohang, Kyungbuk
  • D. Teytelman
    Dimtel, Redwood City, California
  To increase intensity of the High Intensity Gamma-ray Source (HIGS) which is driven by the Duke storage ring FEL via Compton scattering, stored beam current should be increased. However, high-current multi-bunch operation in the Duke storage ring is limited by strong longitudinal coupled-bunch beam instabilities. To control those instabilities, we have been developing an active longitudinal feedback system which is based on the Integrated Gigasample Processor (iGP) through collaboration with Dimtel, Inc. and Pohang Accelerator Laboratory. In this paper, we report the present status of our longitudinal feedback system.  
 
MOPAS044 The Laser System for the ERL Electron Source at Cornell University laser, brightness, gun, polarization 530
 
  • D. G. Ouzounov
  • I. V. Bazarov, B. M. Dunham, C. K. Sinclair
    Cornell University, Department of Physics, Ithaca, New York
  • F. W. Wise, S. Zhou
    Cornell University, Ithaca, New York
  Funding: Work Supported by the National Science Foundation under contract PHY 0131508

Cornell University is developing a high brightness, high average current electron source for the injector of an ERL based synchrotron radiation source. The source is a DC electron gun with a negative electron affinity photoemission cathode. The photocathode is illuminated by a 1300 MHz CW train of optical pulses to produce a 100 mA average current beam. The optical pulse train is generated by frequency doubling the output of a diode-pumped, mode-locked Yb-fiber oscillator-amplifier system. The 50 MHz fundamental frequency oscillator is locked on its 26th harmonic to produce the 1300 MHz train. The oscillator output is amplified in three stages and doubled to give 26 W in the green. The doubled beam is diffraction limited (M2 = 1.08) with a pulse width of 2.5 ps. This pulse is split and differentially delayed in a series of birefringent crystals to produce a flat top temporal profile with fast rise and fall times. The final pulse shape is measured by cross-correlation. The pulses are spatially shaped by a commercial aspheric lens system. A full power system operating at 50 MHz is in routine use for electron beam measurements. Detailed laser performance information will be presented.

 
 
MOPAS045 Fiber-Based, Spatially and Temporally Shaped Picosecond UV Laser for Advanced RF Gun Applications laser, gun, simulation, scattering 533
 
  • M. Shverdin
  • S. G. Anderson, C. P.J. Barty, M. Betts, D. J. Gibson, F. V. Hartemann, J. Hernandez, M. Johnson, I. Jovanovic, D. P. McNabb, M. J. Messerly, J. A. Pruet, C. Siders, A. M. Tremaine
    LLNL, Livermore, California
  Funding: This work was performed under auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7504-Eng-48.

The fiber-based, spatially and temporally shaped, picosecond UV laser system described here has been specifically designed for advanced rf gun applications, with a special emphasis on the production of high-brightness electron beams for free-electron lasers and Compton scattering light sources. The laser pulse can be shaped to a flat-top in both space and time with a duration of 10 ps FWHM and rise and fall times under 1 ps. The pulse energy is 100 micro-joules at 261.75 nm and the spot size diameter of the beam at the photocathode measures 2 mm. A fiber oscillator and amplifier system generates a chirped pump pulse at 1047 nm; stretching is achieved in a chirped fiber Bragg grating. A single multi-layer dielectric grating based compressor recompresses the input pulse to 250 fs FWHM and a two stage harmonic converter frequency quadruples the beam. A custom-designed diffractive optic reshapes the input pulse to a flat-top. Temporal shaping is achieved with a Michelson-based ultrafast pulse stacking device with nearly 100% throughput. The integration of the system, as well as preliminary electron beam measurements will be discussed.

 
 
MOPAS050 Active Damping of the e-p Instability at the LANL PSR damping, feedback, linac, proton 548
 
  • R. C. McCrady
  • S. Assadi, C. Deibele, S. Henderson, M. A. Plum
    ORNL, Oak Ridge, Tennessee
  • J. M. Byrd
    LBNL, Berkeley, California
  • S.-Y. Lee
    IUCF, Bloomington, Indiana
  • R. J. Macek, S. B. Walbridge, T. Zaugg
    LANL, Los Alamos, New Mexico
  • M. T.F. Pivi
    SLAC, Menlo Park, California
  Funding: This work was supported by the United States Department of Energy under contracts DE-AC52-06NA25396 and W-7405-ENG-36.

A prototype of an analog, transverse (vertical) feedback system for active damping of the two-stream (e-p) instability has been developed and successfully tested at the Los Alamos National Laboratory Proton Storage Ring (PSR). This system was able to improve the instability threshold by approximately 30% (as measured by the change in RF buncher voltage at instability threshold). Evidence obtained from these tests suggests that further improvement in performance is limited by beam leakage into the gap at lower RF buncher voltage and the onset of instability in the horizontal plane, which had no feedback. Here we describe the present system configuration, system optimization, results of several recent experimental tests, and results from studies of factors limiting its performance.

 
 
MOPAS073 700 MHz Low-Loss Electrically-Controlled Fast Ferroelectric Phase Shifter For ERL Application linac, controls, impedance, resonance 599
 
  • V. P. Yakovlev
  • J. L. Hirshfield
    Omega-P, Inc., New Haven, Connecticut
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • S. Kazakov
    KEK, Ibaraki
  • E. Nenasheva
    Ceramics Ltd., St. Petersburg
  Funding: Research supported by the Department of Energy, Division of High Energy Physics

A fast, electrically-controlled phase shifter is described with parameters suitable for operation with the SC acceleration structure of the electron cooling system of Relativistic Heavy Ion Collider (RHIC) at BNL. The phase shifter is a key element of the external RF vector modulator that is capable of fast tuning of the cavities against microphonics, Lorentz force and beam instabilities in a way that can possibly lead to an order of magnitude reduction in the required RF power. The phase shifter is based on a shortened low-impendence coaxial line with ferroelectric rings. The dielectric constant of the ferroelectric rings is altered by applying a 4.2 kV voltage that provides an RF phase shift from 0 to 180 deg.

 
 
MOPAS074 Combined Panofsky Quadrupole & Corrector Dipole quadrupole, dipole, power-supply, controls 602
 
  • G. H. Biallas
  • N. T. Belcher
    The College of William and Mary, Williamsburg
  • D. Douglas, T. Hiatt, K. Jordan
    Jefferson Lab, Newport News, Virginia
  Funding: Work supported by the US DOE Contract #DE-AC05-84ER40150, the Office of Naval Research, The Air Force Research Laboratory, the US Army Night Vision Laboratory and the Commonwealth of Virginia,

Two styles of Panofsky Quadrupoles with integral corrector dipole windings are in use in the electron beam line of the Free Electron Laser at Jefferson Lab. We combined the functions into single magnets, adding hundreds of Gauss-cm dipole corrector capability to existing quadrupoles because space is at a premium along the beam line. Superposing high quality dipole corrector field on a high quality, weak (600 to 1'000 Gauss) quadrupole is possible because the parallel slab iron yoke of the Panofsky Quadrupole acts as a window frame style dipole yoke. The dipole field is formed when two current sources, designed and made at Jlab, add and subtract current from the two opposite quadrupole current sheet windings parallel to the dipole field direction. The current sources also drive auxiliary coils at the yoke's inner corners that improve the dipole field. Magnet measurements yielded the control system field maps that characterize the two types of fields. Details of field analysis using OPERA, construction methods, wiring details, magnet measurements and the current sources are presented.

 
 
MOPAS077 A Beat Frequency RF Modulator for Generation of Low Repetition Rate Electron Microbunches for the CEBAF Polarized Source laser, gun, controls, feedback 608
 
  • J. Musson
  • J. M. Grames, J. Hansknecht, R. Kazimi, M. Poelker
    Jefferson Lab, Newport News, Virginia
  Funding: Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177

Recent upgrades to the CEBAF Polarized Source include a fiber-based seed laser, capable of producing pulses with frequency centered at 499 MHz. Combined with the existing three-beam Chopper, an aliasing, or beat frequency technique is used to produce long time intervals between individual electron microbunches (tens of nanoseconds) by merely varying the nominal 499 MHz drive laser frequency by <20%. This RF Laser modulator uses a divider and heterodyne scheme to maintain coherence with the accelerator Master Oscillator, while providing delay resolution in increments of 2ns. Laser repetition frequencies producing bunch repetition rates between 20 MHz and 100 MHz are demonstrated, resulting in time delays between 50 and 10 ns, respectively. Also, possible uses for such a beam are discussed as well as intended development. Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177

 
 
MOPAS081 Spallation Neutron Source (SNS) Diamond Stripper Foil Development proton, injection, beam-losses, plasma 620
 
  • R. W. Shaw
  • M. J. Borden, T. Spickermann
    LANL, Los Alamos, New Mexico
  • C. S. Feigerle
    University of Tennessee, Knoxville, Tennessee
  • Y. Irie
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • M. A. Plum, L. L. Wilson
    ORNL, Oak Ridge, Tennessee
  • I. Sugai, A. Takagi
    KEK, Ibaraki
  Funding: SNS is managed by UT-Battelle, LLC, for the U. S. DOE under contract DE-AC05-00OR22725. DOE contract W-7405-ENG-36 (LANL) and Japan SPS contract 18540303 (KEK) supported work at those institutions.

Diamond stripping foils are under development for the SNS. Free-standing, flat 350 microgram/cm2 foils as large as 17 x 25 mm have been prepared. These nano-textured polycrystalline foils are grown by microwave plasma-assisted chemical vapor deposition in a corrugated format to maintain their flatness. They are mechanically supported on a single edge by a residual portion of their silicon growth substrate; typical fine foil supporting wires are not required for diamond foils. Six foils were mounted on the SNS foil changer in early 2006 and have performed well in commissioning experiments at reduced operating power. A diamond foil was used during a recent experiment where 12 microCoulombs of protons, approximately 40% of the design value, were stored in the ring. A few diamond foils have been tested at LANSCE/PSR, where one foil was in service for a period of five months (820 Coulombs of integrated injected charge) before it was replaced. Diamond foils have also been tested in Japan at KEK (650 keV H-) where their lifetimes slightly surpassed those of evaporated carbon foils, but fell short of those for Sugai's new hybrid boron carbon (HBC) foils.

 
 
MOPAS097 Unique features in magnet designs for R&D Energy Recovery Linac at BNL dipole, emittance, quadrupole, linac 655
 
  • W. Meng
  • G. Ganetis, A. K. Jain, D. Kayran, V. Litvinenko, C. Longo, G. J. Mahler, E. Pozdeyev, J. E. Tuozzolo
    BNL, Upton, Long Island, New York
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886

In this paper we describe unique features of magnets for R&D ERL, which is under construction in Collider-Accelerator Department, BNL. The R&D ERL serves as a test-bed future BNL ERLs, such as electron-cooler-ERL for RHIC and 20 GeV ERL for future electron-hadron, eRHIC. We present selected designs of various dipole and quadrupole magnets, which are used in Z-bend merging systems and the returning loop, 3-D simulations of the fields in these magnets, particle tracking and analysis of magnet's influence on the beam parameters. We discuss an uncommon method of setting requirements on the quality of magnetic field and transferring them into measurable parameters as well as into manufacturing tolerances. We compare selected simulation with results magnetic measurements.

 
 
MOPAS101 Characterization of the RF System of NSLS X-ray Ring synchrotron, pick-up, storage-ring, controls 661
 
  • I. Pinayev
  The proper phasing is required for a storage ring with multiple RF cavities. In this paper we present method for simultaneous measurement of the accelerating voltage and relative phase for individual cavity at operational conditions. Theory and experimental results for NSLS X-ray synchrotron are presented.  
 
TUZAKI01 RHIC Plans Towards Higher Luminosity ion, luminosity, proton, heavy-ion 709
 
  • A. V. Fedotov
  Funding: Work supported by the U. S. Department of Energy under contract No. DE-AC02-98CH10886.

The Relativistic Heavy Ion Collider (RHIC) is designed to provide luminosity over a wide range of beam energies and species, including heavy ions, polarized protons, and asymmetric beam collisions. In the first seven years of operation there has been a rapid increase in the achieved peak and average luminosity, substantially exceeding design values. Work is presently underway to achieve the Enhanced Design parameters in about 2008. Planned major upgrades include the Electron Beam Ion Source (EBIS), the RHIC-II electron cooling upgrade, and construction of an electron-ion collider (eRHIC). We review the expected RHIC upgrade performance. Electron cooling and its impact on the luminosity at various collision energies both for heavy ions and protons are discussed in detail.

 
slides icon Slides  
 
TUOCKI01 Review of Recent Tevatron Operations luminosity, antiproton, proton, beam-beam-effects 719
 
  • R. S. Moore
  Fermilab's Tevatron proton-antiproton collider continues to improve its luminosity performance at the energy frontier root(s) = 1.96 TeV. The recent Tevatron operation will be reviewed and notable tasks leading to advancements will be highlighted. The topics to be covered include: work performed during the 14-week shutdown in 2006, improved helical orbits, automatic orbit stabilization during high-energy physics (HEP) stores, optics corrections, improvements in the quench protection system, and avenues to maximizing the integrated luminosity delivered to the CDF and D0 experiments.  
slides icon Slides  
 
TUOCKI04 Experimental Demonstration of Beam-Beam Compensation by Tevatron Electron Lenses and Prospects for the LHC proton, luminosity, collider, beam-beam-effects 728
 
  • V. D. Shiltsev
  • Y. Alexahin, V. Kamerdzhiev, G. F. Kuznetsov, X. Zhang
    Fermilab, Batavia, Illinois
  • K. Bishofberger
    LANL, Los Alamos, New Mexico
  We report the first experimental demonstration of compensation of beam-beam interaction effects with use of electron beams. Long-range and head-on interactions of high intensity proton and antiproton beams have been dominating sources of beam loss and lifetime limitations in the Tevatron in Collider Run II (2001-present). Electron lense acting on proton bunches has doubled their lifetime by compensating beam-beam interaction with antiprotons. We present results of the experiments, operational details and discuss possibilities of using electron lenses for beam-beam compensation in LHC.  
slides icon Slides  
 
TUXAB01 Absolute Measurement of Electron Cloud Density ion, background, quadrupole, simulation 754
 
  • M. Kireeff Covo
  • D. Baca, F. M. Bieniosek, B. G. Logan, P. A. Seidl, J.-L. Vay
    LBNL, Berkeley, California
  • R. H. Cohen, A. Friedman, A. W. Molvik
    LLNL, Livermore, California
  • J. L. Vujic
    UCB, Berkeley, California
  Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U. S. Department of Energy, LLNL and LBNL, under contracts No. W-7405-Eng-48 and DE-AC02-05CH11231.

Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 us duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.*

* M. Kireeff Covo, A. W. Molvik, A. Friedman, J.-L. Vay, P. A. Seidl, G. Logan, D. Baca, and J. L. Vujic, Phys. Rev. Lett. 97, 054801 (2006).

 
slides icon Slides  
 
TUXAB02 E-cloud experiments and cures at RHIC proton, injection, ion, emittance 759
 
  • W. Fischer
  • M. Blaskiewicz, J. M. Brennan, H.-C. Hseuh, H. Huang, V. Ptitsyn, T. Roser, P. Thieberger, D. Trbojevic, J. Wei, S. Y. Zhang
    BNL, Upton, Long Island, New York
  • U. Iriso
    ALBA, Bellaterra (Cerdanyola del Valles)
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886.

Since 2001 RHIC has experienced electron cloud effects, which have limited the beam intensity. These include dynamic pressure rises – including pressure instabilities, a reduction of the stability threshold for bunches crossing the transition energy, and possibly slow emittance growth. We report on the main observations in operation and dedicated experiments, as well as the effect of various countermeasures including baking, NEG coated warm pipes, pre-pumped cold pipes, bunch patterns, scrubbing, and anti-grazing rings.

 
slides icon Slides  
 
TUXAB03 Self-consistent 3D Modeling of Electron Cloud Dynamics and Beam Response simulation, lattice, proton, cyclotron 764
 
  • M. A. Furman
  • C. M. Celata, M. Kireeff Covo, K. G. Sonnad, J.-L. Vay, M. Venturini
    LBNL, Berkeley, California
  • R. H. Cohen, A. Friedman, D. P. Grote, A. W. Molvik
    LLNL, Livermore, California
  • P. Stoltz
    Tech-X, Boulder, Colorado
  Funding: Work supported by the U. S. DOE under Contracts DE-AC02-05CH11231 and W-7405-Eng-48, and by the US-LHC Accelerator Research Project (LARP).

We present recent advances in the modeling of beam-electron-cloud dynamics, including surface effects such as secondary electron emission, gas desorption, etc, and volumetric effects such as ionization of residual gas and charge-exchange reactions. Simulations for the HCX facility with the code WARP/POSINST will be described and their validity demonstrated by benchmarks against measurements. The code models a wide range of physical processes and uses a number of novel techniques, including a large-timestep electron mover that smoothly interpolates between direct orbit calculation and guiding-center drift equations, and a new computational technique, based on a Lorentz transformation to a moving frame, that allows the cost of a fully 3D simulation to be reduced to that of a quasi-static approximation.

 
slides icon Slides  
 
TUOAAB01 Self-Consistent Simulations of Multipacting in Superconducting Radio Frequencies simulation, vacuum, plasma, radio-frequency 769
 
  • C. Nieter
  • P. J. Mullowney, S. Ovtchinnikov, D. S. Smithe, P. Stoltz
    Tech-X, Boulder, Colorado
  Multipacting continues to be an important issue in Superconducting Radio Frequency (SRF) cavities, particularly near waveguide couplers. Most modern simulations of multipacting are not self-consistent, using the fields from a purely electromagnetic simulation to drive the motion of multipacting electrons. This approach works well for the onset on multipacting but as the electron density increases in the cavity it can have an effect on the cavity mode. Recently VORPAL* has demonstrated its ability to mode the electrodynamics of SRF cavities using finite difference time domain (FDTD) algorithms coupled with the Dey-Mittra** method for modeling conformal boundaries. The FDTD approach allows us to easily incorporate multipacting electrons as PIC particles in the simulations. To allow multipacting simulations to be done with EM-PIC we have been developing particle boundaries for the cut-cells. Recently we have added particle removal boundaries at the particle sinks which will correct the unphysical build up of image charge at the boundaries. Work has begun on incorporating secondary electron emission into these boundaries so VORPAL can model multipacting trajectories self-consistently.

* C. Nieter, J. R. Cary, J. Comp. Phys. 196 (2004) 448.** S. Dey, R. Mittra, IEEE Microwave and Guided Wave Letters 7 (1997) 273.

 
slides icon Slides  
 
TUYAB01 Transverse-transverse and Transverse-longitudinal Phase Space Converters for Tailoring Beam Phase Spaces emittance, radiation, coupling, linear-collider 775
 
  • K.-J. Kim
  This talk covers basic beam dynamics theory, including emittance converters and the flat beam technique, and also new ideas for transverse-longitudinal coupling. The work done in collaboration with SLAC, FNAL, and NIU, including a preliminary experiment performed at Fermilab, is to be presented.  
slides icon Slides  
 
TUYAB02 Generation and Control of High Precision Beams at Lepton Accelerators coupling, target, controls, feedback 780
 
  • Y.-C. Chao
  Parity violation experiments require precision manipulation of helicity-correlated beam coordinates on target at the nm/nrad-level. Achieving this unprecedented level of control requires a detailed understanding of the particle optics and careful tuning of the beam transport to keep anomalies from compromising the design adiabatic damping. Such efforts are often hindered by machine configuration and instrumentation limitations at the low energy end. A technique has been developed at CEBAF including high precision measurements, Mathematica-based analysis for obtaining corrective solutions, and control hardware/software developments for realizing such level of control at energies up to 5 GeV. Further, results on achieving rms energy stability at 10-5, rms relative energy spread below 3x10-5, and position control at micron level are presented. These results manifest the CW SRF electron linac stability capabilities and are valuable for a large range of applications, including ERLs and Electron-Ion Colliders for Nuclear and Particle Physics.  
slides icon Slides  
 
TUOBAB01 Beam Dynamics of the 250 MeV Injector Test Facility emittance, simulation, space-charge, linac 785
 
  • A. Adelmann
  • R. J. Bakker, C. Kraus, K. L. Li, B. S.C. Oswald, M. Pedrozzi, J.-Y. Raguin, T. Schietinger, F. Stulle, A. F. Wrulich
    PSI, Villigen
  • J. Qiang
    LBNL, Berkeley, California
  The PSI-FEL/LEG project aims for the development of a pulsed high-brightness, high-current electron source which is one of the cornerstones for a cost-efficient high-power laser-like X-ray light-source. Creating an ultra low emittance beam is a great challenge, transporting i.e. accelerating and compressing is equally difficult. We present a 3D start-to-end simulation of our planned 250 MeV injector test facility. The injector consists of a 2 cell standing wave l-band cavity followed by a ballistic bunching section. The following L-band and S-band structures accelerate the electron beam up to the final energy of 250 MeV. An X-band RF structure prepares the beam for the following bunch compressor in which the target current of 350 ampere is reached. The target value of the slice emittance is 0.10 [mm mrad] therefore precise beam dynamics simulations are needed. For the 3D simulations we use IMPACT-T, a time domain parallel particle tracking code in which the self fields are treated using electrostatic approximation . We discuss various issues such as projected and slice emittance preservation and shade light on some of the differences between an envelope and the 3D model.  
slides icon Slides  
 
TUOBAB02 Experimental Characterization of the Transverse Phase Space of a 60-MeV Electron Beam through a Compressor Chicane linac, synchrotron, synchrotron-radiation, simulation 788
 
  • F. Zhou
  • R. B. Agustsson, G. Andonian, D. B. Cline, A. Y. Murokh, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • A. C. Kabel
    SLAC, Menlo Park, California
  • V. Yakimenko
    BNL, Upton, Long Island, New York
  Funding: U. S. DOE of Sciences

Space charge and coherent synchrotron radiation may deteriorate electron beam quality when the beam passes through a magnetic bunch compressor. This paper presents the transverse phase-space tomographic measurements for a compressed beam at 60 MeV, around which energy the first stage of magnetic bunch compression takes place in most advanced linacs. Transverse phase-space bifurcation of a compressed beam is observed at that energy, but the degree of the space charge-induced bifurcation is appreciably lower than the one observed at 12 MeV. The Trafic4 simulation confirms the observation.

The paper was published at PRST-AB, November 2006

 
slides icon Slides  
 
TUOCAB02 Measurements of Compression and Emittance Growth after the First LCLS Bunch Compressor Chicane emittance, simulation, dipole, quadrupole 807
 
  • P. Emma
  • K. L.F. Bane, Y. T. Ding, J. C. Frisch, Z. Huang, H. Loos, G. V. Stupakov, J. Wu
    SLAC, Menlo Park, California
  • E. Prat
    DESY, Hamburg
  • F. Sannibale, K. G. Sonnad, M. S. Zolotorev
    LBNL, Berkeley, California
  Funding: U. S. Depertment of Energy contract #DE-AC02-76SF00515.

The Linac Coherent Light Source (LCLS) is a SASE x-ray free-electron laser project presently under construction at SLAC. The injector section from RF photocathode gun through the first bunch compressor chicane was installed during the Fall of 2006. The first bunch compressor chicane is located at 250 MeV and nominally compresses a 1-nC electron bunch from an rms length of about 1 mm to 0.2 mm. The degree of compression is highly adjustable using RF phasing and also chicane magnetic field variations. Transverse phase space and bunch length diagnostics are located immediately after the chicane. We present measurements and simulations of the longitudinal and transverse phase space after the chicane in various beam conditions, including extreme compression where coherent radiation effects are expected to be striking.

 
slides icon Slides  
 
TUZBAB03 The University of Maryland Electron Ring (UMER) Enters a New Regime of High-Tune-Shift Rings space-charge, emittance, injection, controls 820
 
  • R. A. Kishek
  • G. Bai, B. L. Beaudoin, S. Bernal, D. W. Feldman, R. Feldman, R. B. Fiorito, T. F. Godlove, I. Haber, T. Langford, P. G. O'Shea, C. Papadopoulos, B. Quinn, M. Reiser, D. Stratakis, D. F. Sutter, J. C.T. Thangaraj, K. Tian, M. Walter, C. Wu
    UMD, College Park, Maryland
  Funding: This work is funded by US Dept. of Energy and by the US Dept. of Defense Office of Naval Research.

Circular accelerators and storage rings have traditionally been designed with limited intensity in order to avoid resonances and instabilities. The possibility of operating a ring beyond the Laslett tune shift limit has been suggested but little tested, apart from a pioneering experiment by Maschke at the BNL AGS in the early 1980s. We have recently circulated the highest-space-charge beam in a ring to date in the University of Maryland Electron Ring (UMER), achieving a breakthrough both in the number of turns and in the amount of current propagated. At undepressed tunes of up to 7.6, the space charge in UMER is sufficient to depress the tune by nearly a factor of 2, resulting in tune shifts up to 3.6. This makes the UMER beam the most intense beam that has been propagated to date in a circular lattice. This is an exciting and promising result for future circular accelerators, and the UMER beam can now be used as a platform to study intense space charge dynamics in rings.

 
slides icon Slides  
 
TUODAB01 Variations of Betatron Tune Spectrum due to Electron Cloud Observed in KEKB damping, impedance, focusing, positron 825
 
  • T. Ieiri
  • H. Fukuma, Y. Ohnishi, M. Tobiyama
    KEK, Ibaraki
  In order to investigate the characteristics of electron clouds, the wake effects were measured at KEKB using a test bunch placed behind a bunch-train, where there was a rapid decay in the electron cloud density. The current-dependent tune-shift of the test bunch exhibited nonlinear behaviour in the vertical plane [1]. By observing the tune spectrum, we found that the spectrum width expanded and this was accompanied with a large negative tune slope at a low cloud density and at a low bunch current. However, as the cloud density increased, the spectrum width shrunk and this was accompanied with a positive tune slope. These experimental results suggested that a high electron cloud density caused an anti-damping effect in the tune spectrum. We believe that the variations in the tune slope and spectrum width might be related to the wake field in the resonator model, where the wavelength is comparable to the bunch length.

[1] T. Ieiri et al., Proc. of EPAC06, Edinburgh, Scotland, 2101 (2006).

 
slides icon Slides  
 
TUODAB02 Electron Cloud Generation and Trapping in a Quadrupole Magnet at the LANL PSR quadrupole, diagnostics, proton, beam-losses 828
 
  • R. J. Macek, M. J. Borden, A. A. Browman, R. J. Macek, R. C. McCrady, J. F. O'Hara, L. Rybarcyk, T. Spickermann, T. Zaugg
    LANL, Los Alamos, New Mexico
  • J. E. Ledford
    TechSource, Santa Fe, New Mexico
  • M. T.F. Pivi
    SLAC, Menlo Park, California
  Funding: Work supported by DOE SBIR Grant No. DE-FG02-04ER84105 and CRADA No. LA05C10535 between TechSource, Inc. and the Los Alamos National Laboratory.

Recent beam physics studies on the two-stream e-p instability at LANL proton storage ring (PSR) have focused on the role of the electron cloud generated in quadrupole magnets where electrons, which seed beam-induced multipacting, are expected to be largest due to grazing angle losses from the beam halo. A new diagnostic to measure electron cloud formation and trapping in a quadrupole magnet has been developed, installed, and successfully tested at PSR. Experimental results will be presented on various characteristics of electron cloud obtain from experiments using this diagnostic and compared with simulations. Results include data on flux and energy spectra of electrons striking the vacuum chamber, the line density and lifetime of electrons trapped in the quadrupole after the beam has been extracted as well as evidence regarding electrons ejected from the magnet during passage of the proton beam.

 
slides icon Slides  
 
TUXC01 Status of DARHT 2nd Axis Accelerator at the Los Alamos National Laboratory target, kicker, induction, beam-transport 831
 
  • R. D. Scarpetti
  • J. Barraza, C. Ekdahl, E. Jacquez, S. Nath, K. Nielsen, G. J. Seitz
    LANL, Los Alamos, New Mexico
  • F. M. Bieniosek, B. G. Logan
    LBNL, Berkeley, California
  • G. J. Caporaso, Y.-J. Chen
    LLNL, Livermore, California
  This presentation will provide a status report on the 2kA, 17MeV, 2-microsecond Dual-Axis Radiographic Hydrotest electron beam accelerator at Los Alamos National Laboratory, and will cover results from the cell refurbishment effort, commissioning experiments on beam transport and stability through the accelerator, and experiments exercising the beam chopper.  
slides icon Slides  
 
TUXC03 Design and Status of the XFEL RF System klystron, linac, controls, linear-collider 841
 
  • S. Choroba
  The RF system of the European XFEL under construction at present at DESY in Hamburg, Germany, consists of 27 RF stations. At a later point of time the number might be increased to 31. The RF system provides RF power at 1.3GHz for the superconducting cavities of the main linear accelerator, the cavities of the injector and the RF gun. Each station consists of a 10MW multiple beam klystron, a HV pulse modulator, HV pulse cables, a pulse transformer, an interlock system, a low level RF system, a waveguide distribution system and a number of auxiliary power supplies. This paper describes the layout of the RF system and summarizes the design and status of the main high power components.  
slides icon Slides  
 
TUYC02 High Gradient Induction Accelerator induction, proton, vacuum, linac 857
 
  • G. J. Caporaso
  • D. T. Blackfield, Y.-J. Chen, J. R. Harris, S. A. Hawkins, L. Holmes, S. D. Nelson, A. Paul, B. R. Poole, M. A. Rhodes, S. Sampayan, M. Sanders, S. Sullivan, L. Wang, J. A. Watson
    LLNL, Livermore, California
  • M. L. Krogh
    University of Missouri - Rolla, Rolla, Missouri
  • C. Nunnally
    University of Missouri, Columbia, Columbia, Missouri
  • K. Selenes
    TPL, Albuquerque, NM
  Funding: This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Progress in the development of compact induction accelerators employing advanced vacuum insulators and dielectrics will be described. These machines will have average accelerating gradients at least an order of magnitude higher than existing machines and can be used for a variety of applications including flash x-ray radiography and medical treatments. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described.

 
slides icon Slides  
 
TUOBC01 Synchronizable High Voltage Pulser with Laser-Photocathode Trigger laser, gun, vacuum, photon 862
 
  • P. Chen
  • M. Lundquist, R. Yi, D. Yu
    DULY Research Inc., Rancho Palos Verdes, California
  Funding: Work supported by DOE SBIR grant no. DE-FG02-03ER83878.

High-gradient electron guns can suppress space-charge induced transverse emittance growth when the electron beam is still in the low-energy injection stage. A synchronizable, high-voltage pulser can be used to power up a high-gradient gun. We propose to build a 200 kV pulser using a special trigger that utilizes a laser-photocathode sub-system. A laser trigger beam will first energize a spark gap, and then provide a second trigger signal from a photocathode using its leftover energy, to further close the gap. This system will not only raise the utilization efficiency of the laser beam energy, but also enhance the reliability of the trigger circuit. Our preliminary analysis shows that the proposed system will significantly improve the performance of the laser trigger pulse with the jitter on the order of hundreds of picoseconds. It is expected that the pulser can be used in the applications of high gradient guns as well as in other devices that need high precision trigger such as short pulse lasers, streak cameras, impulse radiating antennas, etc.

 
slides icon Slides  
 
TUOBC02 A New Type High Voltage Fast Rise/Fall Time Solid State Marx Pulse Modulator controls, induction, power-supply, damping 865
 
  • R. L. Cassel
  • S. Hitchcock
    Stangenes Industries, Palo Alto, California
  A new type of solid state Marx modulator developed by Stangenes Industries has the capability of producing high voltage pulses with fast rise and fall time at high repetition rates. In addition it has the ability to produce dynamically flexible output amplitude and pulse width. The pulse modulator was developed for the Fermi Labs Tevatron Electron Lens Tune Compensation System. It can produce a 14kV pulse with 200 nanosecond rise time and 600 nanosecond full pulse width at a 25 kilohertz repetition rate. It has no overshot or reverse voltage, making it ideal for beam bunch manipulation. It is designed to operate into a 200 pfd, 800 Ω load. This design permits all of the sources of power including the 1kV charging power supply to be connected at the grounded end of the pulser. A second generation pulser is under development to operate at above 50 kHz repetition rate with an arbitrary voltage waveform and faster rise/fall time. The pulser can accommodate load arcing and incorporates built in redundancy to insure high availability. The paper delineates the unique design of the modulator and its performance.  
slides icon Slides  
 
TUZAC02 Modern Accelerator Control Systems controls, linac, positron, injection 873
 
  • K. Furukawa
  Discussion of modern approaches to accelerator control systems including software and hardware implications, in view of maintaining reliability under changing requirements.  
slides icon Slides  
 
TUZBC02 SciDAC Frameworks and Solvers for Multi-physics Beam Dynamics Simulations simulation, space-charge, collective-effects, optics 894
 
  • J. F. Amundson
  • D. R. Dechow
    Tech-X, Boulder, Colorado
  • J. Qiang, R. D. Ryne
    LBNL, Berkeley, California
  • P. Spentzouris
    Fermilab, Batavia, Illinois
  The need for realistic accelerator simulations is greater than ever before due to the needs of design projects such as the ILC and optimization for existing machines. Sophisticated codes utilizing large-scale parallel computing have been developed to study collective beam effects such as space charge, electron cloud, beam-beam, etc. We will describe recent advances in the solvers for these effects and plans for enhancing them in the future. To date the codes have typically applied to a single collective effect and included just enough of the single-particle dynamics to support the collective effect at hand. We describe how we are developing a framework for realistic multi-physics simulations, i.e., simulations including the state-of-the-art calculations of all relevant physical processes.  
slides icon Slides  
 
TUZBC03 Self-Consistent Computation of Electromagnetic Fields and Phase Space Densities for Particles on Curved Planar Orbits space-charge, vacuum, shielding, synchrotron 899
 
  • J. A. Ellison
  • G. Bassi, K. A. Heinemann
    UNM, Albuquerque, New Mexico
  • M. Venturini
    LBNL, Berkeley, California
  • R. L. Warnock
    SLAC, Menlo Park, California
  Funding: Supported by DOE grant DE-FG02-99ER41104 and contracts DE-AC02-05CH11231 and DE-AC02-76SF00515.

We discuss our progress on integration of the coupled Vlasov-Maxwell equations in 4D. We emphasize Coherent Synchrotron Radiation from particle bunches moving on arbitrary curved planar orbits, with shielding from the vacuum chamber, but also include space charge forces. Our approach provides simulations with lower numerical noise than the macroparticle method, and will allow the study of emittance degradation and microbunching in bunch compressors. The 4D phase space density (PSD) is calculated in the beam frame with the method of local characteristics (PF). The excited fields are computed in the lab frame from a new double integral formula. Central issues are a fast evaluation of the fields and a deep understanding of the support of the 4D PSD. As intermediate steps, we have (1) developed a parallel self-consistent code using particles, where an important issue is the support of the charge density*; (2) studied carefully a 2D phase space Vlasov analogue; and (3) derived an improved expression of the field of a 1D charge/current distribution which accounts for the interference of different bends and other effects usually neglected**. Results for bunch compressors are presented.

* Self Consistent Particle Method to Study CSR Effects in Bunch Compressors, Bassi, et.al., this conference.** CSR from a 1-D Bunch on an Arbitrary Planar Orbit, Warnock, this conference.

 
slides icon Slides  
 
TUPMN003 Lifetime Contribution Measurements at the Australian Synchrotron scattering, vacuum, coupling, synchrotron 914
 
  • M. J. Spencer
  • M. J. Boland, R. T. Dowd, G. LeBlanc, Y. E. Tan
    ASP, Clayton, Victoria
  There are always a number of factors that contribute to the lifetime of a stored particle beam. Measurements presented here show the relative importance of these effects during the commissioning of the Australian Synchrotron storage ring.  
 
TUPMN006 Apple-II and TESLA FEL Undulators at Danfysik A/S undulator, insertion-device, insertion, multipole 923
 
  • C. W.O. Ostenfeld
  • F. Bødker, M. Bøttcher, H. Bach, E. B. Christensen, M. Pedersen
    Danfysik A/S, Jyllinge
  Danfysik A/S* has recently designed and produced a high-performance Apple-II type insertion device for the Australian Synchrotron Project, with low variation of the first integrals versus gap and phase, and minimal phase error. Thanks to software assistance, and an unconventional keeper design, the total time spent on magnet mounting, shimming and final magnetic testing was reduced to 5 weeks. Furthermore, in order to negate the second-order tune effect of the insertion device on the dynamic aperture, ESRF-type tune shims were designed and installed. Danfysik is manufacturing and assembling one of three undulator prototypes for the TESLA FEL project at DESY. The prototype is based on a design made by DESY, but with changes implemented by Danfysik. A major part of the project is to make an industrial study that will recommend where design efforts on the next prototype generation shall be focused.

* http://www.danfysik.com/

 
 
TUPMN010 Latest Developments of Insertion Devices at ACCEL Instruments undulator, insertion-device, insertion, storage-ring 935
 
  • D. Doelling
  • A. Hobl, H.-U. Klein, P. A. Komorowski, D. Krischel, M. Meyer-Reumers
    ACCEL, Bergisch Gladbach
  ACCEL Instruments GmbH has designed, manufactured, assembled, and tested several insertion devices for many synchrotron light sources and free electron lasers around the world. Besides the superconducting (sc) wavelength shifters, sc-wigglers and sc-Undulators, ACCEL has entered the pure permanent magnet based insertion device market. The latest progress of the ID group was the production of 6 identical PPM Undulators for the SPARC FEL project in Frascati (Italy), the production of a prototype Undulator and an industrial study on large scale Undulator production for the European X-FEL project in Hamburg (Germany). ACCEL has signed a know how and license agreement with the ID group of the ESRF in order to be able to supply customers with high quality insertion devices in short delivery times. Therefore ACCEL has setup an standard ESRF 7 m granite measuring bench. Design efforts, measurement techniques, and performance results will be presented.  
 
TUPMN012 STARS - A Two-Stage High-Gain Harmonic Generation FEL Demonstrator laser, free-electron-laser, simulation, acceleration 938
 
  • T. Kamps
  • M. Abo-Bakr, W. Anders, J. Bahrdt, P. Budz, K. B. Buerkmann-Gehrlein, O. Dressler, H. A. Duerr, V. Duerr, W. Eberhardt, S. Eisebitt, J. Feikes, R. Follath, A. Gaupp, R. Goergen, K. Goldammer, S. C. Hessler, K. Holldack, E. Jaeschke, S. Klauke, J. Knobloch, O. Kugeler, B. C. Kuske, P. Kuske, A. Meseck, R. Mitzner, R. Mueller, M. Neeb, A. Neumann, K. Ott, D. Pfluckhahn, T. Quast, M. Scheer, Th. Schroeter, M. Schuster, F. Senf, G. Wuestefeld
    BESSY GmbH, Berlin
  • D. Kramer
    GSI, Darmstadt
  • F. Marhauser
    JLAB, Newport News, Virginia
  Funding: Bundesministerium fur Bildung und Forschung and the Land Berlin

BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.

 
 
TUPMN014 Commissioning of the 100 MeV Racetrack Microtron of the Metrology Light Source microtron, gun, storage-ring, emittance 944
 
  • K. B. Buerkmann-Gehrlein
  • T. Birke, J. Borninkhof, P. Budz, R. Daum, V. Duerr, J. Feikes, W. Gericke, H. G. Glass, H. G. Hoberg, J. Kolbe, R. Lange, G. Mielczarek, I. Mueller, K. Ott, J. Rahn, G. Schindhelm, T. Schneegans, Th. Schroeter, D. Schueler, D. Simmering, T. Westphal
    BESSY GmbH, Berlin
  • R. Klein, G. Ulm
    PTB, Berlin
  Funding: Physikalisch-Technische Bundesanstalt, Abbestr. 2 - 12, 10587 Berlin, Germany

In 2003, the Metrology Light Source (MLS) was approved, a dedicated low energy electron storage ring of the Physikalisch-Technische-Bundesanstalt (PTB), the German national metrology institute. Design, construction and operation of the MLS are realized by BESSY, based on the PTB requirements for a permanent accessible radiometry source, optimized for the spectral range between UV up to VUV. The MLS is tunable in energy between 200 MeV and 600 MeV. Based on the experiences at BESSY, a highly stable and reliable Race Track Microtron for injection was realized by Danfysik. The commissioning of the 100 MeV microtron at the MLS started in December 2006. The concept and construction as well as the main parameters of the microtron are introduced.

 
 
TUPMN015 First Commissioning Results of the Metrology Light Source storage-ring, injection, kicker, radiation 947
 
  • J. Feikes
  • M. Abo-Bakr, T. Birke, J. Borninkhof, P. Budz, K. B. Buerkmann-Gehrlein, R. Daum, O. Dressler, V. Duerr, F. Falkenstern, H. G. Glass, H. G. Hoberg, J. Kolbe, J. Kuszynski, R. Lange, I. Mueller, R. Muller, J. Rahn, G. Schindhelm, T. Schneegans, Th. Schroeter, D. Schueler, E. Weihreter, G. Wuestefeld
    BESSY GmbH, Berlin
  • G. Brandt, R. Fliegauf, A. Hoehl, R. Klein, R. Muller, R. Thornagel, G. Ulm
    PTB, Berlin
  Funding: Physikalisch-Technische Bundesanstalt, Abbestr. 2 - 12, 10587 Berlin, Germany

The Physikalisch-Technische Bundesanstalt (PTB), the German national metrology institute, has built an electron storage ring in close cooperation with BESSY for energies between 200 MeV and 600 MeV. This storage ring, named Metrology Light Source (MLS), will mainly be used for radiometry and can be operated as a primary source standard. The spectral range of the MLS is optimized for UV, EUV and also for Terahertz radiation. Commissioning is planed for May 2007. First MLS commissioning results will be reported.

 
 
TUPMN016 Upgrade of the BESSY Femtoslicing Source laser, photon, undulator, background 950
 
  • T. Quast
  • A. Firsov, K. Holldack
    BESSY GmbH, Berlin
  • S. Khan
    Uni HH, Hamburg
  • R. Mitzner
    Universität Muenster, Physikalisches Institut, Muenster
  The BESSY femtoslicing source as the first undulator-based source has succesfully demonstrated its capabilities of providing ~100 fs x-ray pulses in an energy range from 300 to 1400 eV with linear and circular polarisation. With this type of slicing source exhibiting an excellent signal-to-noise ratio, the number of detected photons at the user frontend is still limited to ~103 / sec. Several improvements are underway to increase the photon flux and to improve the stability of the source. An upgrade of the present laser system will increase the pulse repetition rate from 1 to 3 kHz. Furthermore, a new evacuated laser beam path will be implemented to provide higher pointing stability and an automated postion feedback. The benefits and limitations of these improvements will be discussed, and new measurements will be presented.  
 
TUPMN017 ''Jitter Free'' FEL Pulses for Pump and Probe Experiments radiation, dipole, simulation, laser 953
 
  • G. Wuestefeld
  • R. Follath, A. Meseck
    BESSY GmbH, Berlin
  Funding: Bundesministerium fur Bildung und Forschung and the Land Berlin

The cascaded High Gain Harmonic Generation (HGHG) scheme proposed for the BESSY-FEL contains an inherent potential for providing jitter free radiation pulses for pump and probe experiments. In an HGHG stage an energy modulation is imprinted to the electron beam by a seeding radiation. A dispersive section converts this energy modulation to a spatial modulation which is optimized for a particular harmonic. The subsequent radiator is optimized for this harmonics and generates radiation with high power which is used as seeding radiation for the next stage. After passage through the modulator, the seeding radiation become redundant and can be separated from the prebunched electrons using a deflecting dispersive chicane. This radiation and the final FEL output will have a fixed temporal separation as the first one is the driving seeding radiation for the second one. Using the planned test facility for HGHG scheme at BESSY as an example, we present simulation studies for a sequences of two jitter free pump and probe pulses including the deflecting chicane and a suitable beam line.

 
 
TUPMN018 Dark Current Transport in the FLASH Linac gun, linac, simulation, undulator 956
 
  • L. Froehlich
  The free electron laser facility FLASH at DESY Hamburg operates a low-emittance photoinjector and several acceleration modules with superconducting cavities to produce a high quality electron beam of up to 700 MeV. Since few months, the accelerator is routinely operated with its design RF pulse length of 800 μs instead of the prior length of 70-200 μs. As a result, the activation of components due to dark current emitted by the gun has reached critical proportions. To improve the understanding of dark current transport through the linac, simulations have been conducted with the Astra tracking code. The generated phase space distributions are compared against a detailed 3-dimensional aperture model of the machine with the newly developed ApertureLib toolkit. The results are in agreement with direct measurements of the dark current and with the observed activities.  
 
TUPMN020 Velocity Bunching at the European XFEL emittance, bunching, laser, gun 959
 
  • T. Limberg
  • B. Beutner, W. Decking, M. Dohlus, K. Floettmann, M. Krasilnikov
    DESY, Hamburg
  This paper explores the possibility to employ velocity bunching in the first RF module of the European XFEL to increase the peak current at the injector exit. The current increase will reduce the total longitudinal bunch compression factor and loosen rf jitter tolerances by the same amount. The relation between rf tolerances and micro-bunching instability gain is discussed and the injector optimization for cases of velocity bunching to 100A and 200A peak current are presented in detail. Finally, plans for velocity bunching experiments at the FLASH facility (Free Electron Laser in Hamburg) are laid out.  
 
TUPMN021 Status of Nb-Pb Superconducting RF-Gun Cavities laser, dipole, cathode, emittance 962
 
  • J. S. Sekutowicz
  • M. Ferrario
    INFN/LNF, Frascati (Roma)
  • J. Iversen, D. Klinke, D. Kostin, W.-D. Moller, A. Muhs
    DESY, Hamburg
  • P. Kneisel
    Jefferson Lab, Newport News, Virginia
  • K. Ko, Z. Li, L. Xiao
    SLAC, Menlo Park, California
  • R. S. Lefferts, A. R. Lipski
    SBUNSL, Stony Brook, New York
  • T. Rao, J. Smedley
    BNL, Upton, Long Island, New York
  • P. Strzyzewski
    The Andrzej Soltan Institute for Nuclear Studies, Centre Swierk, Swierk/Otwock
  We report on the progress in the status of an electron RF-gun made of two superconductors: niobium and lead. The presented design combines the advantages of the RF performance of bulk niobium superconducting cavities and the reasonably high quantum efficiency of lead. Measured values of quantum efficiency for lead at 2K and the RF-performance of three half-cell niobium cavities with the lead spot exposed to high electric fields are reported in this contribution.  
 
TUPMN023 Status of the Optical Replica Synthesizer at FLASH laser, undulator, radiation, dipole 965
 
  • S. Khan
  • G. Angelova, V. G. Ziemann
    UU/ISV, Uppsala
  • J. Boedewadt, A. Winter
    Uni HH, Hamburg
  • M. Hamberg, N. X. Javahiraly, M. Larsson, P. Salen, P. van der Meulen
    FYSIKUM, AlbaNova, Stockholm University, Stockholm
  • A. Meseck
    BESSY GmbH, Berlin
  • E. Saldin, H. Schlarb, B. Schmidt, E. Schneidmiller, M. V. Yurkov
    DESY, Hamburg
  A novel laser-based method to measure the longitudinal profile of ultrashort electron bunches, known as Optical Replica Synthesizer*, will be implemented at the free-electron laser FLASH at DESY. The paper describes its technical layout and the status of the project.

* E. Saldin, E. Schneidmiller, M. Yurkov, NIM A 539 (2005), 499

 
 
TUPMN024 Measurements of the Beam Heat Load in the Cold Bore Superconductive Undulator Installed at ANKA vacuum, undulator, synchrotron, radiation 968
 
  • S. Casalbuoni
  • T. Baumbach, A. Bernhard, D. Wollmann
    University of Karlsruhe, Karlsruhe
  • A. W. Grau, M. Hagelstein, B. K. Kostka, R. Rossmanith
    FZK, Karlsruhe
  • E. Mashkina, E. Steffens
    University of Erlangen-Nurnberg, Physikalisches Institut II, Erlangen
  • F. Zimmermann
    CERN, Geneva
  The beam heat load in the cold bore superconductive undulator installed at ANKA has been monitored for almost two years. The possible sources of the observed heat load as synchrotron radiation from upstream magnets, image currents, photo-excited electrons and ions will be discussed and compared with the experimental results.  
 
TUPMN026 Conditioning of a New Gun Cavity Towards 60 MV/m at PITZ gun, cathode, vacuum, klystron 971
 
  • S. Lederer
  • G. Asova, J. W. Baehr, C. H. Boulware, H.-J. Grabosch, M. Hanel, S. Khodyachykh, S. A. Korepanov, M. Krasilnikov, B. Petrosyan, S. Rimjaem, T. A. Scholz, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • K. Boyanov
    INRNE, Sofia
  • L. H. Hakobyan
    YerPhI, Yerevan
  • P. Michelato, L. Monaco, C. Pagani, D. Sertore
    INFN/LASA, Segrate (MI)
  • R. Richter
    BESSY GmbH, Berlin
  • J. Roensch
    Uni HH, Hamburg
  Funding: This work has partly been supported by the European Community, contracts RII3-CT-2004-506008 and 011935, and by the 'Impuls- und Vernetzungsfonds' of the Helmholtz Association, contract VH-FZ-005.

Beginning 2007, a new gun cavity will be installed at the photo injector test facility at DESY in Zeuthen (PITZ). It will be conditioned towards gradients as high as 60 MV/m. This gradient is required for the operation of the European XFEL. Results from the conditioning for high peak power and high duty cycle will be reported.

 
 
TUPMN029 Linac Upgrading Program for the Fermi Project : Status and Perspectives linac, laser, undulator, controls 977
 
  • G. D'Auria
  • D. Bacescu, L. Badano, C. Bontoiu, F. Cianciosi, P. Craievich, M. B. Danailov, S. Di Mitri, M. Ferianis, G. C. Pappas, G. Penco, A. Rohlev, A. Rubino, L. Rumiz, S. Spampinati, M. Trovo, A. Turchet, D. Wang
    ELETTRA, Basovizza, Trieste
  FERMI@ELETTRA is a soft X-ray forth generation light source under development at the ELETTRA laboratory. It will be based on the existing 1.0 GeV Linac, revised and upgraded to fulfil the stringent requirements expected from the machine. The overall time schedule of the project is very tight and ambitious, foreseeing to supply 10 nm photons to users within 2010. Here the machine upgrading program and the ongoing activities are presented and discussed.  
 
TUPMN035 Generation of a Multipulse Comb Beam and a Relative Twin Pulse FEL radiation, simulation, emittance, undulator 989
 
  • M. Boscolo
  • I. Boscolo, S. Cialdi, V. Petrillo
    INFN-Milano, Milano
  • F. Castelli
    Universita degli Studi di Milano, Milano
  • M. Ferrario, C. Vaccarezza
    INFN/LNF, Frascati (Roma)
  A radiofrequency electron gun joined to a compressor generates trains of THz subpicosecond electron pulses. Assuming a prompt electron emission, the laser train generates a train of electron disks at the cathode, then the disk train evolves towards a slug with a slight density modulation but also with a peculiar sawtooth energy modulation. This kind of energy modulation is transformed into a density modulation by a velocity bunching compressor recovering at a good extent the initial intensity beam profile. We study here through simulations the process looking to its characteristics as function peak and frequency characteristics of the laser and the parameters of the accelerator.  
 
TUPMN038 Coherent Cherenkov Radiation as a Temporal Diagnostic for Microbunched Beams radiation, photon, diagnostics, vacuum 998
 
  • G. Gatti
  • A. M. Cook, J. B. Rosenzweig, R. Tikhoplav
    UCLA, Los Angeles, California
  Cherenkov radiation of a relativistic e-beam traversing a thin section of aerogel is analized, putting the stress on the coherent contribution due to the intra-beam, transverse and longitudinal structure. The use of this tool as a temporal diagnostic for micro-bunched beams makes possible to improve the amount of collected power at the microbunching frequency several orders of magnitude more respect to the uncoherent Cherenkov contribution. The non-idealities of a real beam are taken in account, and some techniques aimed on enhancing the coherent part of radiation are proposed and analized analitically and through simulation codes.  
 
TUPMN040 Drive Laser System for SPARC Photoinjector laser, emittance, cathode, simulation 1004
 
  • C. Vicario
  • M. Bellaveglia, D. Filippetto, A. Gallo, G. Gatti, A. Ghigo
    INFN/LNF, Frascati (Roma)
  • S. Cialdi
    INFN-Milano, Milano
  • P. Musumeci, M. Petrarca
    INFN-Roma, Roma
  In this paper we report the progress of the SPARC photoinjector laser system. In the high brightness photoinjector the quality of the electron beam is directly related to the photocathode drive laser. In fact the 3D distribution of the electron beam is determined by the incoming laser pulse. The SPARC laser is a 10 Hz frequency-tripled TW-class Ti:Sa commercial system. To achieve the required flat top temporal shape we perform a manipulation of the laser spectrum in the fundamental wavelength and in the third harmonic. The optical transfer-line has been implemented to limit the pointing instabilities and to preserve to the cathode the temporal and spatial features of the laser pulse. We present the recorded performances in terms of time pulse shape and rf-to-laser synchronization.  
 
TUPMN041 Three Dimensional Analysis of the X-Radiation Produced by a Collective Thomson Source laser, radiation, emittance, scattering 1007
 
  • V. Petrillo
  • A. Bacci, C. Maroli, A. R. Rossi, L. Serafini, P. Tomassini
    INFN-Milano, Milano
  • A. Colzato
    Universita degli Studi di Milano, Milano
  A set of 3-D equations that describes the collective head to head interaction between a laser pulse and a relativistic electron beam is presented and solved. The relevant dispersion relation is studied, as well as the gain properties of the system. The FEL instability dominates the radiation process. The radiation emitted is characterized by short wavelength, thin spectrum and high coherence. The most important three-dimensional effects are the emittance of the beam and the transverse distribution of the laser energy. The production of radiation wavelengths of 12 nm, 1nm, and 1 Angstron are presented.  
 
TUPMN043 Graphite Heater Optimized for a Low-emittance CeB6 Cathode cathode, radiation, gun, emittance 1013
 
  • K. Togawa
  • A. Higashiya, T. Shintake
    RIKEN Spring-8 Harima, Hyogo
  We developed a thermionic cathode assembly using a single-crystal CeB6 emitter for the x-ray free electron laser project at SPring-8. The CeB6 cathode has excellent emission properties, i.e., smooth surface, high emission density, uniform emission density, and high resistance to contamination. A cylindrical graphite heater was developed to heat the cathode up to the operational temperature as high as 1800 K. At this temperature, a 500 keV pulsed electron beam with more than 1 A peak current can be extracted from the small surface area (3 mm diameter). In this conference, we will report the design detail and operational experience of the graphite heater for the CeB6 cathode.  
 
TUPMN047 W-band Electromagnetic Wave Undulator for AIST 800 MeV Electron Storage Ring TERAS undulator, photon, storage-ring, synchrotron 1025
 
  • H. Toyokawa
  • R. Kuroda
    AIST, Tsukuba, Ibaraki
  • H. Ohgaki
    Kyoto IAE, Kyoto
  An electromagnetic-wave undulator based on a quasi-optical resonator operated in higher order TE mode is proposed to generate monochromatic X-rays. We plan to install it to an 800MeV electron storage ring TERAS of AIST. Mode propagation in the resonator was analysed with an electromagnetic-wave simulation code MAFIA and HFSS. Design parameters for the undulator operated in W-band (95 GHz) was presented. The peak electric field along the electron orbit was estimated to be 130 kV/m when we fed 1 kW of 95 GHz electromagnetic wave. The estimated X-ray flux density was 1 x 1011 photons/sec/mrad2/A for 3.4 keV X-rays.  
 
TUPMN048 Recent Developments at UVSOR-II laser, undulator, radiation, storage-ring 1028
 
  • M. Katoh
  • K. Hayashi, M. Hosaka, A. Mochihashi, M. Shimada, J. Yamazaki
    UVSOR, Okazaki
  • Y. Takashima
    Nagoya University, Nagoya
  UVSOR, a 750 MeV synchrotron light source of 53m circumference had been operated for more than 20 years. After a major upgrade in 2003, this machine was renamed to be UVSOR-II. The ring is now routinely operated with low emittance of 27 nm-rad and with four undulators, two in-vacuum ones and two variably polarized ones. The injector and the beam transport line are being upgraded to be compatible with full energy injection, preparing for the top up operation in near future. A resonator type free electron laser is successfully operational in very wide range, from visible to deep UV, with high average power exceeding 1 W. A femto-second laser bunch slicing system was constructed by utilizing a part of the FEL system. Intense coherent terahertz radiation was successfully produced by the slicing. Coherent harmonic generation was successfully demonstrated by using the same laser system.  
 
TUPMN049 Improvement of Soft X-ray Generation System Based on Laser Compton Scattering laser, photon, scattering, cathode 1031
 
  • T. Gowa
  • H. Hayano, J. Urakawa
    KEK, Ibaraki
  • Y. Kamiya, A. Masuda, R. Moriyama, K. Sakaue, M. Washio
    RISE, Tokyo
  • S. Kashiwagi
    ISIR, Osaka
  • R. Kuroda
    AIST, Tsukuba, Ibaraki
  • K. U. Ushida
    RIKEN, Saitama
  Funding: This work is supported by MECSST High Tech Research Center Project No. 707 and JSPS (B) (2) 18340079.

At Waseda University, we have succeeded in generating soft X-rays based on laser Compton scattering. The energies are within "Water Window" part (250~500eV) where the X-ray absorption coefficient of water is much less than that of constituent elements of living body such as carbon, hydrogen and nitrogen. For this reason, it is expected to apply to a bio-microscope with which we can observe living cells without dehydration. To improve the generation system, we remodeled our collision chamber and adopted 3-pass flash lamp amplifier system. With these modifications, we achieved high S/N ratio. The photon number detected by MCP was 278/pulse, tenfold increase of that in last year. Moreover, we succeeded in generating soft X-rays stably for more than 10 hours. Now we are planning to measure two-dimensional distribution of the X-rays by CCD. In this conference, experimental results and future plans will be reported.

 
 
TUPMN050 Development of Pulsed-Laser Super-Cavity for Compact X-Ray Source Based on Laser-Compton Scattering laser, feedback, photon, storage-ring 1034
 
  • K. Sakaue
  • S. Araki, M. K. Fukuda, Y. Higashi, Y. Honda, T. Taniguchi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • N. Sasao, H. Yokoyama
    Kyoto University, Kyoto
  • M. Takano
    Tsukuba-shi, Ibaraki-ken
  • M. Washio
    RISE, Tokyo
  A compact and high quality x-ray source is required from various field, such as medical diagnosis, drug manifacturing and biological sciences. Laser-Compton based x-ray source that consist of a compact electron storage ring and a pulsed-laser super-cavity is one of the solutions of compact x-ray source. Pulsed-laser super-cavity has been developed for a compact high brightness x-ray sources at KEK-ATF. The pulsed-laser super-cavity increases the laser power and stably makes small laser beam size at the collision point with the electron beam. Recently, 357MHz mode-locked Nd:VAN laser pulses can be stacked stably in a 420mm long Fabry-Perot cavity with 1'000 enhancement in our R&D. Therefore, we have planned a compact hard x-ray sources using 50MeV multi-bunch electrons and a pulse stacking technology with 42cm Fabry-Perot cavity. (LUCX Project at KEK) The photon flux is multiplied with the number of bunches by using multi-bunch beam and super-cavity. Development of the super-cavity and present result of LUCX will be presented at the conference.  
 
TUPMN051 Development of Photocathode RF Gun and Laser System for Multi-collision Laser Compton Scattering laser, photon, scattering, gun 1037
 
  • R. Kuroda
  • T. Gowa, Y. Kamiya, A. Masuda, R. Moriyama, K. Sakaue, M. Washio
    RISE, Tokyo
  • S. Kashiwagi
    ISIR, Osaka
  • M. K. Koike, H. Ogawa, N. Sei, H. Toyokawa, K. Y. Yamada, M. Y. Yasumoto
    AIST, Tsukuba, Ibaraki
  • T. Nakajyo, F. Sakai, T. Y. Yanagida
    SHI, Tokyo
  A compact soft and hard X-ray source via laser Compton scattering is required for biological, medical and industrial science because it has many benefits about generated X-rays such as short pulse, quasi-monochromatic, energy tunability and good directivity. Our X-ray source is conventionally the single collision system between an electron pulse and a laser pulse. To increase X-ray yield, we have developed a multi-collision system with a multi-bunch electron beam and a laser optical cavity. The multi-bunch beam will be generated from a Cs-Te photocathode rf gun sytem using a multi-pulse UV laser. The laser optical cavity will be built like the regenerative amplification including a collision point between the electron pulse and the laser pulse to enhance the laser peak power per 1 collision on laser Compton scattering. In this conference, we will describe the results of preliminary experiments for the multi-collision system and future plans.  
 
TUPMN053 Status of the Photocathode RF Gun at Tsinghua University laser, gun, cathode, emittance 1043
 
  • Y.-C. Du
  • W.-H. Huang, Y. Lin, C.-X. Tang, D. Xiang, L. X. Yan
    TUB, Beijing
  The photocathode RF gun at Tsinghua University was built to develop electron source for the Thomson Scattering X-ray source. The main goal is to produce minimum transverse emittance beams with short bunch length at medium charge (~1nC). It includes a 1.6 cell S-band BNL/KEK/SHI type cavity, a solenoid for space charge compensation, a laser system to generate UV light, and different diagnostics tools. In this paper, it will include measurements of the dark current, the charge and quantum efficiency, momentum, transverse electron beam profiles at different locations and the transverse emittance.

This work was supported by the Chinese National Foundation of Natural Sciences under Contract no. 10645002.

 
 
TUPMN054 Design of a Source to Supply Ultra-fast Electron and X-Ray Pulses laser, gun, linac, scattering 1046
 
  • W.-H. Huang
  • H. Chen, Y.-C. Du, Hua, J. F. Hua, R. K. Li, Y. Lin, J. Shi, C.-X. Tang, D. Xiang, L. X. Yan, P.-CH. Yu
    TUB, Beijing
  In this paper we report the preliminary design and considerations on a multi-discipline ultra-fast source, which is capable of providing the user community with femtosecond electron bunch and light pulses with the wavelength ranging from IR to X-ray. The facility is based on photocathode RF gun driven by a Ti:Sapphire laser system. The low emittance subpicosecond electron bunch at the gun exit can be used in femtosecond electron diffraction setup to visualize the ultrafast structural dynamics. After acceleration and compression, the electron beam with the energy of 50 MeV is further used to provide high peak brightness X-ray by inverse Compton scattering with TW laser. We also consider the possibility and reliability of storing the electron beam in a compact storage ring and the laser pulse in a super-cavity. Operating in this scheme may increase the average flux of the X-ray photons by orders of magnitude.  
 
TUPMN055 First Principle Measurements of Thermal Emittance for Copper and Magnesium emittance, laser, cathode, lattice 1049
 
  • D. Xiang
  • Y.-C. Du, W.-H. Huang, R. K. Li, Y. Lin, C.-X. Tang, L. X. Yan
    TUB, Beijing
  • J. H. Park, S. J. Park
    PAL, Pohang, Kyungbuk
  Funding: This work was supported by the Chinese National Foundation of Natural Sciences under Contract no. 10645002.

There are growing interests in generation, preservation and applications of high brightness electron beam. With the rapid development in the techniques for emittance compensation and laser shaping, we are approaching the limit-the uncorrelated thermal emittance. In this paper, we report the measurements of thermal emittance for Cu and Mg. The measurement is conducted in a field-free region. The energy spectrum and angular distribution of the electrons are measured immediately after its emission and further used to reconstruct the initial phase space and the corresponding thermal emittance. We also show how cathode surface roughness* and laser incidence angle as well as its polarization state** affect the quantum efficiency and thermal emittance.

*X. Z. He, High energy physics and nuclear physics,28(2004)1007.**Dao Xiang,et al, NIM A,562(2006)48.

 
 
TUPMN056 MEASUREMENTS OF LASER TEMPORAL PROFILE AND POLARIZATION-DEPENDENT QUANTUM EFFICIENCY laser, polarization, emittance, scattering 1052
 
  • L. X. Yan
  • J. P. Cheng, Y.-C. Du, W.-H. Huang, Y. Lin, C.-X. Tang
    TUB, Beijing
  Funding: The work was supported by the Program for New Century Excellent Talents in University and the National Natural Science Foundation of China (No.10645002)

The ultrashort ultraviolet (UV) laser system and the optical transport line for driving the photocathode RF gun at Accelerator Laboratory of Tsinghua University are introduced in the article. Temporal profile of the UV pulse was measured by non-colinear difference frequency generation (DFG) between the UV pulse itself and the jitter-free residual IR laser pulse after third harmonic generation (THG) process. Experiments to measure the dependence of quantum efficiency (QE) on laser polarization state are also performed. Results show that in our case the ratio of QE between p- and s- polarization is more than 2.6.

 
 
TUPMN073 First Operation of a Thermionic Cathode RF Gun at NSRRC gun, cathode, linac, brightness 1088
 
  • A. P. Lee
  • S.-S. Chang, J.-Y. Hwang, W. K. Lau, C. C. Liang, G.-H. Luo, T.-T. Yang
    NSRRC, Hsinchu
  An injector system that based on rf gun technology is being constructed at NSRRC. This will be a 100 MeV beam injector that consists of an rf linac with a thermionic cathode rf gun as electron source. The superior performance and special configuration of the thermionic rf gun system made it an attractive option as a reliable pre-injector booster synchrotron. In cooperation with an alpha-magnet as low energy bunch compressor, ultra-fast electron beam pulses as short as 100 fs can be generated from the thermionic cathode rf gun for generation of intense coherent short wavelength radiations, production of femto-second electron and wavelength tunable ultra-fast X-ray pulses. First operation of the thermionic rf gun will be presented.  
 
TUPMN075 BEAM LIFETIME ESTIMATION FOR TAIWAN 3GEV SYNCHROTRON LIGHT SOURCE lattice, scattering, emittance, synchrotron 1094
 
  • W. T. Liu
  • H.-P. Chang, H. C. Chao, P. J. Chou, C.-C. Kuo, G.-H. Luo, H.-J. Tsai, M.-H. Wang
    NSRRC, Hsinchu
  The demanding design features of Taiwan Photon Source (TPS), low emittance and small gap undulator vacuum vessels, cause Touschek scattering and gas scattering to play a major limitation role for beam lifetime. We calculate the Touschek lifetime based on the tracking procedure determining energy acceptance. The nonlinear synchrotron oscillation due to large second-order momentum compaction factor is included in the energy acceptance calculations. Small vertical ID gaps are imposed in the tracking procedure. Besides, the gas scattering lifetime is estimated with varying gas pressure. The possible improvement solutions for lifetime will be addressed.  
 
TUPMN082 Injector Design for the 4GLS High Average Current Loop emittance, gun, cathode, laser 1100
 
  • J. W. McKenzie
  • B. L. Militsyn
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • A. S. Terekhov
    ISP, Novosibirsk
  The proposed 4th Generation Light Source (4GLS) consists of three electron branches. We present the design of the injector for the High Average Current Loop which feeds spontaneous light sources and a Vacuum Ultra-Violet FEL. The injector aims to provide 77 pC bunches at a repetition rate of up to 1.3 GHz which corresponds to an average current of 100 mA. It consists of a 500 kV GaAs based DC photocathode electron gun equipped with a photocathode preparation facility, followed by a normal-conducting buncher cavity and a 10 MeV superconducting RF booster. Simulations are presented which show the injector provides a beam with a normalised rms transverse emittance of less than 3 π·mm·mrad and a bunch length of about 2 ps.  
 
TUPMN083 Electron Beam Dynamics in 4GLS linac, laser, sextupole, insertion 1103
 
  • P. H. Williams
  • G. J. Hirst
    STFC/RAL, Chilton, Didcot, Oxon
  • B. D. Muratori, H. L. Owen, S. L. Smith
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  Funding: Some of the work reported in this paper is supported by the EuroFEL programme.

Studies of the electron beam dynamics for the 4GLS design are presented. 4GLS will provide three different electron bunch trains to a variety of user synchrotron sources. The 1 kHz XUV-FEL and 100 mA High Average Current branches share a common 540 MeV linac, whilst the 13 MHz IR-FEL must be well-synchronised to them. An overview of the injector designs, electron transport, and energy recovery is given, including ongoing studies of coherent synchrotron radiation, beam break-up and wakefields. This work is being pursued for the forthcoming Technical Design Report due in 2008.

 
 
TUPMN084 The Status of the Daresbury Energy Recovery Linac Prototype gun, linac, laser, diagnostics 1106
 
  • S. L. Smith
  • N. Bliss
    STFC/DL, Daresbury, Warrington, Cheshire
  • A. R. Goulden, G. Priebe
    STFC/DL/SRD, Daresbury, Warrington, Cheshire
  • D. J. Holder, P. A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  As part of the UK's R&D programme to develop an advanced energy recovery linac-based light source (4GLS); a 35 MeV technology demonstrator called the Energy Recovery Linac Prototype (ERLP) has been constructed. It is based on a combination of a DC photocathode electron gun, a superconducting injector linac and main linac operating in energy recovery mode, driving an IR-FEL. The priorities for this machine are to gain experience of operating a photoinjector gun and superconducting linacs; to produce and maintain high-brightness electron beams; achieving energy recovery from an FEL-disrupted beam and studying important synchronisation issues. The current status of this project is presented, including construction and commissioning progress, including plans for the future exploitation of this scientific and technical R&D facility.  
 
TUPMN104 A Design Study for Photon Diagnostics for the APS Storage Ring Short-Pulse X-ray Source diagnostics, photon, undulator, laser 1156
 
  • B. X. Yang
  • E. M. Dufresne, E. C. Landahl, A. H. Lumpkin
    ANL, Argonne, Illinois
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

A short x-ray pulse source based on the crab cavity scheme proposed by Zholents* is being developed at the Advanced Photon Source (APS). Photon diagnostics that visualizes the electron bunches with transverse momentum chirp and verifies the performance of the short x-ray pulse is required. We present a design study for the imaging diagnostics inside and outside of the crab cavity zone, utilizing both x-ray and visible synchrotron radiation. Several design options of monochromatic and polychromatic x-ray optics will be explored for their compatibility with the short-pulse source. The diagnostics outside of the crab cavity zone will be used to map out stable operation parameters of the storage ring with crab cavities, and to perform single-bunch single-pass imaging of the chirped bunch, which facilitates the tuning of the crab cavity rf phase and amplitude so the performance of the short pulse source can be optimized while other users around the ring will not be disturbed.

* A. Zholents et al., NIM A 425, 385 (1999).

 
 
TUPMN106 MCP based Electron Gun gun, proton, cathode, vacuum 1159
 
  • V. D. Shiltsev
  We propose to use micro-channel plate (MCP) as a cathode for electron guns. We suggest possible arrangement of MCP in DC and RF guns and discuss feasibility and possible advantages of the method.  
 
TUPMN108 Particle-in-Cell Calculations of the Electron Cloud in the ILC Positron Damping Ring Wigglers wiggler, damping, positron, simulation 1164
 
  • C. M. Celata
  • M. A. Furman, J.-L. Vay
    LBNL, Berkeley, California
  • D. P. Grote
    LLNL, Livermore, California
  Funding: This work was supported by the Office of High Energy Physics of the U. S. Department of Energy under contract number No. DE-AC02-05CH11231.

Due to copious synchrotron radiation from the beam, electron cloud effects are predicted to be important in the wiggler sections of the ILC positron damping ring. In this area of the ring, the physics is inherently 3D. Moreover, a self-consistent calculation of the physics of the electron cloud/beam system is necessary for examining such phenomena as emittance growth in the beam. We present the first calculations of this system with the self-consistent 3D particle-in-cell code WARP/POSINST. The code includes self-consistent space charge for both species, mesh refinement, and detailed models of primary and secondary electron production. Interaction with electrons is assumed to occur only in the wigglers in this model– the beam is moved using maps between wiggler sections.

 
 
TUPMN109 A High Repetition Rate VUV-Soft X-Ray FEL Concept emittance, gun, laser, photon 1167
 
  • J. N. Corlett
  • J. M. Byrd, W. M. Fawley, M. Gullans, D. Li, S. M. Lidia, H. A. Padmore, G. Penn, I. V. Pogorelov, J. Qiang, D. Robin, F. Sannibale, J. W. Staples, C. Steier, M. Venturini, S. P. Virostek, W. Wan, R. P. Wells, R. B. Wilcox, J. S. Wurtele, A. Zholents
    LBNL, Berkeley, California
  Funding: This work was supported by the Director, Office of Science, High Energy Physics, U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

The FEL process increases radiation flux by several orders of magnitude above existing incoherent sources, and offers the additional enhancements attainable by optical manipulations of the electron beam: control of the temporal duration and bandwidth of the coherent output, and wavelength; utilization of harmonics to attain shorter wavelengths; and precise synchronization of the x-ray pulse with laser systems. We describe an FEL facility concept based on a high repetition rate RF photocathode gun, that would allow simultaneous operation of multiple independent FELs, each producing high average brightness, tunable over the soft x-ray-VUV range, and each with individual performance characteristics determined by the configuration of the FEL SASE, enhanced-SASE (ESASE), seeded, self-seeded, harmonic generation, and other configurations making use of optical manipulations of the electron beam may be employed, providing a wide range of photon beam properties to meet varied user demands. FELs would be tailored to specific experimental needs, including production of ultrafast pulses even into the attosecond domain, and high temporal coherence (i.e. high resolving power) beams.

 
 
TUPMN113 A Plasma Channel Beam Conditioner for Free electron Lasers plasma, emittance, focusing, acceleration 1176
 
  • G. Penn
  • A. Sessler, J. S. Wurtele
    LBNL, Berkeley, California
  Funding: Work supported by the U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-05CH11231.

By "conditioning" an electron beam, through establishing a correlation between transverse action and energy within the beam, the performance of free electron lasers (FELs) can be dramatically improved. Under certain conditions, the FEL can perform as if the transverse emittances of the beam were substantially lower than the actual values. After a brief review of the benefits of beam conditioning, we present a method to generate this correlation through the use of a plasma channel. The strong transverse focusing produced by a dense plasma (near standard gas density) allows the optimal correlation to be achieved in a reasonable length channel, of order 1 m. This appears to be a convenient and practical method for achieving conditioned beams, especially in comparison with other methods which require either a long beamline or multiple passes through some type of ring.

 
 
TUPMN114 Simulation of the Microbunching Instability in Beam Delivery Systems for Free Electron Lasers simulation, laser, space-charge, impedance 1179
 
  • I. V. Pogorelov
  • J. Qiang, R. D. Ryne, M. Venturini, A. Zholents
    LBNL, Berkeley, California
  • R. L. Warnock
    SLAC, Menlo Park, California
  In this paper, we examine the growth of the microbunching instability in the chain of linac sections and bunch compressor chicanes used in the electron beam delivery system of a free electron laser. We compare the results of two sets of simulations, one conducted using a direct Vlasov solver, the other using a particle-in-cell code Impact-Z with the number of simulation macroparticles ranging up to 100 million. The comparison is focused on the values of uncorrelated (slice) energy spread at different points in the lattice. In particular, we discuss the interplay between physical and numerical noise in particle-based simulations, and assess the agreement between the simulation results and theoretical predictions.  
 
TUPMN116 Numerical Study of Coulomb Scattering Effects on Electron Beam from a Nano-tip emittance, scattering, simulation, space-charge 1185
 
  • J. Qiang
  • A. Adelmann
    PSI, Villigen
  • J. N. Corlett, S. M. Lidia, H. A. Padmore, W. Wan, A. Zholents, M. S. Zolotorev
    LBNL, Berkeley, California
  Funding: This work was supported by the U. S. Department of Energy under Contract no. DE-AC02-05CH11231.

Nano-tips with high acceleration gradient around the emission surface have been proposed to generate high brightness beams. However, due to the small size of the tip, the charge density near the tip is very high even for a small number of electrons. The Coulomb scattering near the tip can significantly degrade the beam quality and cause extra emittance growth and energy spread. In the paper, we present a numerical study of these effects using a direct relativistic N-body model. We found that emittance growth and energy spread, due to Coulomb scattering, can be significantly enhanced with respect to mean-field space-charge calculations in different parameter regimes.

 
 
TUPMN119 Energy Recovery Transport Design for Peking University FEL wiggler, recirculation, beam-transport, laser 1191
 
  • G. M. Wang
  • Y.-C. Chao
    Jefferson Lab, Newport News, Virginia
  • J.-E. Chen, C. Liu, Z. C. Liu, X. Y. Lu, K. Zhao, J. Zhuang
    PKU/IHIP, Beijing
  Funding: supported by National 973 Projects and the U. S. Department of Energy Contract No. DE-AC05-06OR23177

A free-electron laser based on a superconducting linac is under construction in Peking University. To increase FEL output power, energy recovery is chosen as one of the most potential and popular ways. The design of a beam transport system for energy recovery is presented, which is suitable for the Peking University construction area. Especially, a chicane structure is chosen to change path length at ±20 degree and M56 in the arc is adjusted for fully bunch compression.

 
 
TUPMS005 Quiet Start Method in HGHG Simulation simulation, bunching, radiation, resonance 1200
 
  • Y. Hao
  • L.-H. Yu
    BNL, Upton, Long Island, New York
  Funding: Work supported by U. S. DOE under contract No DE-FG02-92ER40747 and U. S NSF under contract No PHY-0552389

Quiet start scheme is broadly utilized in Self Amplified Spontaneous Radiation (SASE) FEL simulations, which is proven to be correct and efficient. Nevertheless, due to the existing of energy modulation effect and the dispersion section, the High Gain Harmonic Generation (HGHG) FEL simulation will not be improved by the traditional quiet start method. A new approach is presented to largely decrease the macro-particles per slice that can be implemented in both time-independent and time-dependent simulation, accordingly expedites the HGHG FEL simulation especially high order harmonic cascade case and makes the multi-parameter scanning be possible.

 
 
TUPMS010 Fabrication and Measurement of Efficient, Robust Cesiated Dispenser Photocathodes cathode, laser, ion, free-electron-laser 1206
 
  • E. J. Montgomery
  • D. W. Feldman, N. A. Moody, P. G. O'Shea, Z. Pan
    UMD, College Park, Maryland
  • K. Jensen
    NRL, Washington, DC
  Funding: This work is funded by the Office of Naval Research and the Joint Technology Office.

Photocathodes for high power free electron lasers face significant engineering and physics challenges in the quest for efficient, robust, long-lived, prompt laser-switched operation. The most efficient semiconductor photocathodes, notably those responsive to visible wavelengths, suffer from poor lifetime due to surface layer degradation, contamination, and desorption. Using a novel dispenser photocathode design, rejuvenation of cesiated surface layers in situ is investigated for semiconductor coatings building on previous results for cesiated metals. Cesium from a sub-surface reservoir diffuses to the surface through a microscopically porous, sintered tungsten matrix to repair the degraded surface layer. The goal of this research is to engineer and demonstrate efficient, robust, long-lived regenerable photocathodes in support of predictive photocathode modeling efforts and suitable for photoinjection applications.

 
 
TUPMS014 Commissioning of the Booster Injector Synchrotron for the HIGS Facility at Duke University booster, extraction, injection, synchrotron 1209
 
  • S. F. Mikhailov
  • O. Anchugov, N. Gavrilov, G. Y. Kurkin, Yu. Matveev, D. Shvedov, N. Vinokurov
    BINP SB RAS, Novosibirsk
  • M. D. Busch, M. Emamian, S. M. Hartman, Y. Kim, J. Li, V. Popov, G. Swift, P. W. Wallace, P. Wang, Y. K. Wu
    FEL/Duke University, Durham, North Carolina
  • C. R. Howell
    TUNL, Durham, North Carolina
  Funding: This work is supported by the US DoE grant #DE-FG02-01ER41175

A booster synchrotron has been built and recently commissioned at Duke University Free Electron Laser Laboratory (DFELL) as part of the High Intensity Gamma-ray Source (HIGS) facility upgrade. HIGS is developed collaboratively by the DFELL and Triangular Universities Nuclear Laboratory (TUNL). The booster will provide top-off injection into the Duke FEL storage ring in the energy range of 0.27 - 1.2 GeV. When operating the Duke storage ring to produce high energy Compton gamma ray beams above 20 MeV, continuous electron beam loss occurs. The lost electrons will be replenished by the booster injector operating in the top-off mode. The compactness of the booster posed a challenge for its development and commissioning. The booster has been successfully commissioned in 2006. This paper reports experience of commissioning and initial operation of the booster.

 
 
TUPMS017 Accelerator Physics Research and Light Source Development Programs at Duke University booster, storage-ring, synchrotron, wiggler 1215
 
  • Y. K. Wu
  Funding: This work is supported by the US AFOSR MFEL grant #FA9550-04-01-0086 and by U. S. DoE grant DE-FG05-91ER40665.

The Duke Free-Electron Laser Laboratory (DFELL) has recently completed two major accelerator/light source development projects - we successfully commissioned the world's first distributed optical klystron FEL (DOK-1 FEL) and a new 0.27-1.2 GeV booster synchrotron. The DOK-1 FEL has a much improved FEL gain compared with traditional optical klystrons. This allows the DOK-1 FEL to become a versatile light source for UV-VUV operation and as a driver for a high-intensity Compton gamma-source. The top-off booster injector for the Duke storage ring is part of the upgrade project of High Intensity Gamma-ray Source (HIGS), a facility jointly developed by the DFELL and Triangle Universities Nuclear Laboratory (TUNL). The accelerator and light source development has created new opportunities for the accelerator physics research. In this paper, we will report our recent progress in accelerator and light source development as well as the ongoing accelerator physics research programs to meet the new challenges in the areas of beam dynamics and beam instability.

 
 
TUPMS019 Ion Effects and Ion Elimination in the Cornell ERL ion, linac, emittance, simulation 1218
 
  • G. Hoffstaetter
  • Ch. Spethmann, Y. Xie
    CLASSE, Ithaca
  Funding: Supported by Cornell University and NSF grant PHY 0131508

In an energy recovery linac (ERL) where beam-loss has to be minimal, and where beam positions and emittances have to be very stable in time, optic errors and beam instabilities due to ion effects have to be avoided. Here we explain why ion clearing electrodes are the least unattractive way of eliminating ions in an ERL and we present calculations of the remnant ion density and its effect on the beam. We also show a design of the clearing electrodes that should be distributed around the accelerator and illustrate their wake-field properties.

 
 
TUPMS020 Thermal Emittance Measurements from Negative Electron Affinity Photocathodes emittance, laser, gun, cathode 1221
 
  • C. K. Sinclair
  • I. V. Bazarov, B. M. Dunham, Y. Li, X. G. Liu, D. G. Ouzounov
    Cornell University, Department of Physics, Ithaca, New York
  • F. E. Hannon
    Cockcroft Institute, Lancaster University, Lancaster
  • T. Miyajima
    KEK, Ibaraki
  Funding: Work supported by the National Science Foundation under contract PHY 0131508

Recent computational optimizations have demonstrated that it should be possible to construct electron injectors based on photoemission cathodes in very high voltage DC electron guns in which the beam emittance is dominated by the thermal emittance from the cathode. Negative electron affinity photocathodes have been shown to have a naturally low thermal emittance. However, the thermal emittance depends on the illuminating wavelength; the degree of negative affinity; and the band structure of the photocathode material. As part of the development of a high brightness, high average current photoemission electron gun for the injector of an ERL light source, we have measured the thermal emittance from negative affinity GaAs and GaAsP photocathodes. The measurements were made by measuring the electron beam spot size downstream of a counter-wound solenoid lens as a function of the lens strength. Electron beam spot sizes were measured by two techniques - a 20 micron wire scanner, and a CVD diamond screen. Both Gaussian and 'tophat' spatial profiles were used, and measurements were made at several wavelengths. Results will be presented for both cathode types.

 
 
TUPMS021 Performance of a Very High Voltage Photoemission Electron Gun for a High Brightness, High Average Current ERL Injector gun, cathode, vacuum, emittance 1224
 
  • C. K. Sinclair
  • I. V. Bazarov, B. M. Dunham, Y. Li, X. G. Liu
    Cornell University, Department of Physics, Ithaca, New York
  • K. W. Smolenski
    CLASSE, Ithaca
  Funding: Work supported by the National Science Foundation under contract PHY 0131508

We have constructed a very high voltage photoemission electron gun as the electron source of a high brightness, high average current injector for an energy recovery linac (ERL) synchrotron radiation light source. The source is designed to deliver 100 mA average current in a CW 1300 MHz pulse train (77 pC/bunch). The cathode voltage may be as high as 750 kV. Negative electron affinity photocathodes are employed to obtain small thermal emittances. The electrode structure is assembled without touching any electrode surface. A load-lock system allows cleaning and activation of cathode samples prior to installation in the electron gun. Cathodes are cleaned by heating and exposure to atomic hydrogen, and activated with cesium and nitrogen trifluoride. Two cathode electrode sets, of 316LN stainless steel and Ti4V6Al alloy, have been used. The anode is beryllium. The internal surface of the ceramic insulator of the gun has a high resistivity fired coating, providing a path to drain away charge from field emission. Non-evaporable getters provide a very high pumping speed for hydrogen. Operating experience with this gun will be presented.

 
 
TUPMS022 Beam Breakup Simulations for the Cornell X-ray ERL linac, simulation, quadrupole, lattice 1227
 
  • C. Song
  • G. Hoffstaetter
    CLASSE, Ithaca
  Funding: Supported by Cornell University and NSF grant PHY 0131508

Multi-pass, multi-bunch beam-breakup (BBU) can limit the current in linac-based recirculating accelerators. We have therefore made the computation of the transverse and longitudinal BBU-threshold current available in Cornell's main optics design and beam simulation library BMAD. The coupling of horizontal and vertical motion as well as time of flight effects are automatically contained. Subsequently we present a detailed simulation study of transverse and longitudinal BBU in the proposed 5GeV Energy Recovery Linac light source at Cornell University, including the use of frequency randomization, polarized cavities and optical manipulations to improve the threshold current.

 
 
TUPMS023 Measurement of Permanent Magnet Material Demagnetization Due to Irradiation by High Energy Electrons radiation, undulator, synchrotron, permanent-magnet 1230
 
  • A. Temnykh
  Funding: Work supported by the National Science Foundation under contract PHY 0202078

The design of insertion device depends on the properties of the permanent magnet material used. While magnetic material properties such as coercive force, residual induction and magnetization variation with temperature are provided by manufacturer, demagnetization caused by radiation can be only roughly estimated based on very few published data. To obtain data which can be reliably used in ERL insertion device design, we irradiated two materials of very different coercive forces and measured their demagnetization as function of radiation dose. For irradiation we used 5GeV electron beam from Cornell 12GeV Synchrotron. Radiation dose was measured using the calorimetric technique. One of the materials was similar to what we plan to use in construction of ERL undulators. Detailed information on experimental setup, radiation dose measurement techniques, results and analysis will be presented.

 
 
TUPMS024 Development of a 100 mm Period Hybrid Wiggler for the Australian Synchrotron Project wiggler, multipole, synchrotron, background 1233
 
  • J. Kulesza
  • K. I. Blomqvist
    MAX-lab, Lund
  • A. Deyhim, E. A. Johnson, D. J. Waterman
    Advanced Design Consulting, Inc, Lansing, New York
  • C. Glover
    ASP, Clayton, Victoria
  Funding: Australian Synchrotron Project

This paper summarizes the final magnetic measurement for a hybrid wiggler installed at the Australian Synchrotron Project (ASP). This device uses an anti-symmetric, hybrid design with a period of 100 mm and 40 full-strength Vanadium-Permendur poles surrounded by Neodynium-Iron-Boron magnets. It is designed to operate at two gaps with critical energies of 11.4 (14mm) and 9.6 keV (18.16mm) and to have a maximum gap with the field strength By ≤ 50 G. The wiggler's drive mechanism is capable of moving from minimum to maximum gap in 96 seconds. End terminations are designed to maintain the electron trajectory on-axis. The straightness of the electron orbit is controlled by moving the poles vertically and horizontally. The integrated multipoles are controlled over the interval |x| < 25 mm and all gap sizes by moving the side magnets, installing correction magnets at the wiggler entrance and exit and using correction coils. All adjustments have been made using threaded fasteners. No shims have been used.

 
 
TUPMS028 Commissioning of a High-Brightness Photoinjector for Compton Scattering X-Ray Sources laser, emittance, gun, cathode 1242
 
  • S. G. Anderson
  • H. Badakov, P. Frigola, A. Fukasawa, B. D. O'Shea, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • C. P.J. Barty, D. J. Gibson, F. V. Hartemann, M. J. Messerly, M. Shverdin, C. Siders, A. M. Tremaine
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U. S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Compton scattering of intense laser pulses with ultra-relativistic electron beams has proven to be an attractive source of high-brightness x-rays with keV to MeV energies. This type of x-ray source requires the electron beam brightness to be comparable with that used in x-ray free-electron lasers and laser and plasma based advanced accelerators. We describe the development and commissioning of a 1.6 cell RF photoinjector for use in Compton scattering experiments at LLNL. Injector development issues such as RF cavity design, beam dynamics simulations, emittance diagnostic development, results of sputtered magnesium photo-cathode experiments, and UV laser pulse shaping are discussed. Initial operation of the photoinjector is described and transverse phase space measurements are presented.

 
 
TUPMS029 Gamma-Ray Compton Light Source Development at LLNL laser, scattering, brightness, gun 1245
 
  • F. V. Hartemann
  • S. G. Anderson, C. P.J. Barty, D. J. Gibson, C. Hagmann, M. Johnson, I. Jovanovic, D. P. McNabb, M. J. Messerly, J. A. Pruet, M. Shverdin, C. Siders, A. M. Tremaine
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

A new class of tunable, monochromatic gamma-ray sources capable of operating at high peak and average brightness is currently being developed at LLNL for nuclear photo-science and applications. These novel systems are based on Compton scattering of laser photons by a high brightness relativistic electron beam produced by an rf photoinjector. Key technologies, basic scaling laws, and recent experimental results will be presented, along with an overview of future research and development directions.

 
 
TUPMS030 Optimal Design of a Tunable Thomson-Scattering Based Gamma-Ray Source laser, photon, emittance, scattering 1248
 
  • D. J. Gibson
  • S. G. Anderson, C. P.J. Barty, S. M. Betts, F. V. Hartemann, I. Jovanovic, D. P. McNabb, M. J. Messerly, J. A. Pruet, M. Shverdin, C. Siders, A. M. Tremaine
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U. S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Thomson-Scattering based systems offer a path to high-brightness high-energy (> 1 MeV) x-ray & gamma-ray sources due to their favorable scaling with electron energy. LLNL is currently engaged in an effort to optimize such a device, dubbed the "Thomson-Radiated Extreme X-Ray" (T-REX) source, targeting up to 680 keV photon energy. Such a system requires precise design of the interaction between a high-intensity laser pulse and a high-brightness electron beam. Presented here are the optimal design parameters for such an interaction, including factors such as the collision angle, focal spot size, optimal bunch charge and laser intensity, pulse duration, and laser beam path. These parameters were chosen based on extensive modelling using PARMELA and in-house, well-benchmarked scattering simulation codes. Also discussed are early experimental results from the newly commissioned system.

 
 
TUPMS031 High-energy Picosecond Laser Pulse Recirculation for Compton Scattering laser, recirculation, scattering, accumulation 1251
 
  • I. Jovanovic
  • S. G. Anderson, C. P.J. Barty, C. G. Brown, D. J. Gibson, F. V. Hartemann, J. Hernandez, M. Johnson, D. P. McNabb, M. J. Messerly, J. A. Pruet, M. Shverdin, C. Siders, A. M. Tremaine
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U. S Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Frequency upconversion of laser-generated photons by inverse Compton scattering for applications such as nuclear spectroscopy and gamma-gamma collider concepts on the future ILC would benefit from an increase of average source brightness. The primary obstacle to higher average brightness is the relatively small Thomson scattering cross section. It has been proposed that this limitation can be partially overcome by use of laser pulse recirculation. The traditional approach to laser recirculation entails resonant coupling of low-energy pulse train to a cavity through a partially reflective mirror.* Here we present an alternative, passive approach that is akin to "burst-mode" operation and does not require interferometeric alignment accuracy. Injection of a short and energetic laser pulse is achieved by placing a thin frequency converter, such as a nonlinear optical crystal, into the cavity in the path of the incident laser pulse. This method leads to the increase of x-ray/gamma-ray energy proportional to the increase in photon energy in frequency conversion. Furthermore, frequency tunability can be achieved by utilizing parametric amplifier in place of the frequency converter.

* G. Klemz, K. Monig, and I. Will, "Design study of an optical cavity for a future photon-collider at ILC", Nucl. Instrum. Meth. A 564, 212-224 (2006).

 
 
TUPMS033 Chicane Radiation Measurements with a Compressed Electron Beam at the BNL ATF radiation, diagnostics, dipole, polarization 1254
 
  • G. Andonian
  • R. B. Agustsson, A. M. Cook, M. P. Dunning, E. Hemsing, A. Y. Murokh, S. Reiche, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • M. Babzien, K. Kusche, R. Malone, V. Yakimenko
    BNL, Upton, Long Island, New York
  The radiation emitted from a chicane compressor has been studied at the Brookhaven National Laboratory (BNL) Accelerator Test Facility (ATF). Coherent edge radiation (CER)is emitted from a compressed electron beam as it traverses sharp edge regions of a magnet. The compression is accompanied by strong self-fields, which are manifested as distortions in the momentum space called beam bifurcation. Recent measurements indicate that the bunch length is approximately 100 fs rms. The emitted THz chicane radiation displays strong signatures of CER. This paper reports on the experimental characterization and subsequent analysis of the chicane radiation measurements at the BNL ATF with a discussion of diagnostics development and implementation. The characterization includes spectral analysis, far-field intensity distribution, and polarization effects. Experimental data is benchmarked to a custom developed start-to-end simulation suite.  
 
TUPMS034 Seeded VISA: A 1064 nm Laser-Seeded FEL Amplifier at the BNL ATF radiation, undulator, laser, simulation 1257
 
  • M. P. Dunning
  • G. Andonian, E. Hemsing, S. Reiche, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • M. Babzien, V. Yakimenko
    BNL, Upton, Long Island, New York
  An experimental study of a seeded free electron laser (FEL) using the VISA undulator and a Nd:YAG seed laser will be performed at the Accelerator Test Facility at Brookhaven National Laboratory. The study is motivated by the demand for a short Rayleigh length FEL amplifier at 1 micron for high power transmission with minimal damage of transport optics. Planned measurements include transverse and longitudinal coherence, angular distribution, and wavelength spectrum of the FEL radiation. The effects of detuning the electron beam energy will be studied, with an emphasis on control of the radiation emission angles and increase of the amplifier efficiency. Results of start-to-end simulations will be presented with preliminary experimental results.  
 
TUPMS037 Simulation of an Iris-guided Inverse Free-electron Laser Micro-bunching Experiment bunching, radiation, laser, plasma 1266
 
  • J. T. Frederico
  • G. Gatti
    INFN/LNF, Frascati (Roma)
  • S. Reiche, R. Tikhoplav
    UCLA, Los Angeles, California
  The Free-Electron Laser code Genesis 1.3 has been modified to include waveguides within the undulator, reducing the diffraction effects for long wavelength FELs. Several types of waveguides are considered, which are rectangular and circular waveguides as well as iris-loaded open waveguides. Studies are presented here on the enhancement of FEL and IFEL with these wave-guiding structures in comparison to free-space propagation of the radiation wave.  
 
TUPMS038 Recent Upgrade to the Free-electron Laser Code Genesis 1.3 undulator, radiation, coupling, simulation 1269
 
  • S. Reiche
  • K. Goldammer
    BESSY GmbH, Berlin
  • P. Musumeci
    Rome University La Sapienza, Roma
  The time-dependent code GENESIS 1.3 has be modified to address new problems in modeling Free-electron Lasers. The functionality has been extended to include higher harmonics and to allow for a smoother modeling of cascading FELs. The code has been also exported to a parallel computer architecture for faster execution using the MPI protocol.  
 
TUPMS039 Coherence Properties of the LCLS X-ray Beam radiation, undulator, simulation, emittance 1272
 
  • S. Reiche
  Self-amplifying spontaneous radiation free-electron lasers, such as the LCLS or the European X-FEL, rely on the incoherent, spontaneous radiation as the seed for the amplifying process. Though this method overcomes the need for an external seed source one drawback is the incoherence of the effective seed signal. The FEL process allows for a natural growth of the coherence because the radiation phase information is spread out within the bunch due to slippage and diffraction of the radiation field. However, at short wavelengths this spreading is not sufficient to achieve complete coherence. In this presentation we report on the results of numerical simulations of the LCLS X-ray FEL. From the obtained radiation field distribution the coherence properties are extracted to help to characterize the FEL as a light source.  
 
TUPMS040 Development of a THz Seed Source for FEL Microbunching Experiment at the Neptune Laboratory laser, radiation, plasma, injection 1275
 
  • S. Tochitsky
  • C. Joshi, C. Sung
    UCLA, Los Angeles, California
  Funding: This work is supported by US Department of Energy Grant No. DE-FG03-92ER40727

Seeded FEL/IFEL techniques can be used for modulation of a relativistic electron beam longitudinally on the radiation wavelength. However, in the 1-10 THz range, which is of particular importance for matched injection of prebunched electrons into a laser-driven plasma accelerating structure, a suitable radiation source is not available. At the UCLA Neptune Laboratory we have built and fully characterized a radiation source tunable in the range of 1-3 THz. The THz pulse is produced by mixing two CO2 laser lines in a noncollinear phase-matched GaAs crystal at room temperature. The crystal is pumped by 200 ns pulses of a dual beam TEA CO2 laser running at 1 Hz. A grating placed in each lasing section allowed to cover the spectral range for the difference frequency from 0.5-4.5 THz with a step of 30-40 GHz. The achieved narrow bandwidth of ~10-5 and the output power of 2kW are sufficient for seeding a single-pass, waveguide FEL amplifier-prebuncher*. These pulses were used to measure the coupling efficiency and the attenuation for different types of THz waveguides and the results will be reported.

* C. Sung et al. "Seeded FEL/IFEL techniques for radiation amplification and electron microbunching in the terahertz range" Phys. Rev. STAB, 2006 (to be published)

 
 
TUPMS041 The Wisconsin VUV/Soft X-ray Free Electron Laser Project laser, linac, scattering, photon 1278
 
  • J. Bisognano
  • R. A. Bosch, M. A. Green, H. Hoechst, K. Jacobs, K. J. Kleman, R. A. Legg, R. Reininger, R. Wehlitz
    UW-Madison/SRC, Madison, Wisconsin
  • J. Chen, W. Graves, F. X. Kaertner, J. Kim, D. E. Moncton
    MIT, Cambridge, Massachusetts
  Funding: Work supported by the University of Wisconsin - Madison. SRC is supported by the U. S. National Science Foundation under Award No. DMR-0537588.

The University of Wisconsin-Madison and its partners are developing a design for an FEL operating in the UV to soft x-ray range that will be proposed as a new multidisciplinary user facility. Key features of this facility include seeded, fully coherent output with tunable photon energy and polarization over the range 5 eV to 1240 eV, and simultaneous, independent operation of multiple beamlines. The different beamlines will support a wide range of science from femto-chemistry requiring ultrashort pulses with kHz repetition rates to photoemission and spectroscopy requiring high average flux and narrow bandwidth at MHz rates. The facility will take advantage of the flexibility, stability, and high average pulse rates available from a CW superconducting linac driven by a photoinjector. This unique facility is expected to enable new science through ultra-high resolution in the time and frequency domains, as well as coherent imaging and nano-fabrication. This project is being developed through collaboration between the UW Synchrotron Radiation Center and MIT. We present an overview of the facility, including the motivating science, and its laser, accelerator, and experimental systems.

 
 
TUPMS042 A Superconducting Linac Driver for the Wisconsin Free Electron Laser laser, linac, gun, cathode 1281
 
  • J. Bisognano
  • R. A. Bosch, M. A. Green, K. Jacobs, K. J. Kleman, R. A. Legg
    UW-Madison/SRC, Madison, Wisconsin
  • J. Chen, W. Graves, F. X. Kaertner, J. Kim
    MIT, Cambridge, Massachusetts
  Funding: Work supported by the University of Wisconsin - Madison. SRC is supported by the U. S. National Science Foundation under Award No. DMR-0537588.

We present an initial design of the driver for the Wisconsin VUV/Soft Xray FEL facility, which will provide high intensity coherent photons from 5 eV to 1.2 keV. It uses a 2.5 GeV, L-band CW superconducting linac with a 1.7 GeV tap-off to feed the lower energy FELs. In order to support multiple high rep-rate FELs, the average design current is 1 mA. Sub-nanocoulomb bunches with normalized transverse emittances of order 1 micron are generated in a photoinjector for beamlines operating at repetition rates from kHz to MHz. Multi-stage bunch compression provides 1 kA peak current to the FELs, with low energy spread and a suitable current profile. Compressed bunch lengths of several hundred femtoseconds will allow generation of photon pulses in the range 10 to 100 fs using cascaded FELs. Consideration has been given to removing the residual energy chirp from the beam, and minimizing the effects of space charge, coherent synchrotron radiation, and microbunching instabilities. A beam switchyard using RF separators and fast kickers delivers the desired electron bunches to each of the FELs. Details of the design will be presented, including those areas requiring the most development work.

 
 
TUPMS046 Integration of the Optical Replica Ultrashort Electron Bunch Diagnostics with the Current-Enhanced SASE in the LCLS laser, radiation, wiggler, diagnostics 1293
 
  • Y. T. Ding
  • P. Emma, Z. Huang
    SLAC, Menlo Park, California
  In this paper, we present a feasibility study of integrating the optical replica (OR) ultrashort electron bunch diagnostics * with the current-enhanced SASE (ESASE) scheme ** in the LCLS. Both techniques involve using an external laser to energy-modulate the electron beam in a short wiggler and converting the energy modulation to a density modulation in a dispersive section. While ESASE proposes to use the high-current spikes to enhance the FEL signal, the OR method extracts the optical coherent radiation produced by a density modulated electron beam for frequency resolved optical gating (FROG) diagnostics. We discuss the optimization studies of combining the OR method with the ESASE after the second bunch compressor in the LCLS. Simulation results show that the OR method is capable of reproducing the expected double-horn current profile of a 200-fs bunch. The possibilities and limitations of reconstructing the longitudinal phase space profile are also explored.

* E. Saldin et al, Nucl. Instr. and Meth. A 539, 499 (2005).** A. Zholents, Phys. Rev. ST Accel. Beams 8, 040701 (2005); A. Zholents et al., in Proceedings of FEL2004, 582 (2004).

 
 
TUPMS047 Results of the SLAC LCLS Gun High-Power RF Tests gun, cathode, coupling, klystron 1296
 
  • D. Dowell
  • E. N. Jongewaard, J. R. Lewandowski, Z. Li, C. Limborg-Deprey, J. F. Schmerge, A. E. Vlieks, J. W. Wang, L. Xiao
    SLAC, Menlo Park, California
  Funding: SLAC is operated by Stanford University for the Department of Energy under contract number DE-AC03-76SF00515.

The beam quality and operational requirements for the Linac Coherent Light Source (LCLS) currently being constructed at SLAC are exceptional, requiring the design of a new RF photocathode gun for the electron source. Based on operational experience at GTF at SLAC, SDL and ATF at BNL and other laboratories, the 1.6cell s-band (2856MHz) gun was chosen to be the best electron source for the LCLS injector, however a significant re-design was necessary to achieve the challenging parameters. Detailed 3-D analysis and design was used to produce nearly-perfect rotationally symmetric rf fields to achieve the emittance requirement. In addition, the thermo-mechanical design allows the gun to operate at 120Hz and a 140MV/m cathode field, or to an average power dissipation of 4kW. Both average and pulsed heating issues are addressed in the LCLS gun design. The first LCLS gun is now fabricated and has been operated with high-power RF. The results and analysis of these high-power tests will be presented.

 
 
TUPMS048 Measurement and Analysis of Field Emission Electrons in the LCLS Gun gun, cathode, vacuum, transverse-dynamics 1299
 
  • D. Dowell
  • E. N. Jongewaard, C. Limborg-Deprey, J. F. Schmerge, A. E. Vlieks
    SLAC, Menlo Park, California
  Funding: SLAC is operated by Stanford University for the Department of Energy under contract number DE-AC03-76SF00515.

The field emission was measured during the high-power testing of the LCLS photocathode RF gun. A careful study and analysis of the field emission electrons, or dark current is important in assessing the gun's internal surface quality in actual operation, especially those surfaces with high fields. The charge per 2 microsecond long RF pulse (the dark charge) was measured as a function of the peak cathode field for the 1.6 cell, 2.856GHz LCLS RF gun. Faraday cup data was taken for cathode peak RF fields up to 120MV/m producing a maximum of 0.6nC/RF pulse for a diamond-turned polycrystalline copper cathode installed in the gun. The field dependence of the dark charge is analyzed using a temperature-dependent Fowler-Nordheim (FN) theory to obtain the field enhancement factor and other emitter parameters. Digitized images of the dark charge were taken using a 100 micron thick YAG crystal for a range of solenoid fields to determine the location and angular distribution of the field emitters. The FN plots and emitter image analysis will be described in this paper.

 
 
TUPMS050 Simulation of Ultra-Short Pulses in a Storage Ring simulation, shielding, lattice, synchrotron 1305
 
  • X. Huang
  Simulation study was performed with the tracking code Elegant [M. Borland, APS Report LS-287] to show beam quality evolution for a short, intense electron bunch after being injected to the SPEAR3 storage ring. The electron bunch with an intensity of 1mA (0.78nC) and a length of nearly 1ps (FWHM) is found to degrade rapidly due to coherent synchrotron radiation (CSR) which causes large uneven longitudinal phase space distortion. The bunch length remains short and the longitudinal line density remains smooth for about 10 turns. For such a beam to circulate in the ring, a total of 10MV rf power is needed to compensate for the energy loss.

* M. Borland, APS Report LS-287

 
 
TUPMS051 Low Alpha Mode for SPEAR3 lattice, sextupole, injection, synchrotron 1308
 
  • X. Huang
  • W. J. Corbett, Y. Nosochkov, J. A. Safranek, J. J. Sebek, A. Terebilo
    SLAC, Menlo Park, California
  In the interest of obtaining shorter bunch length for shorter X-ray pulses, we have developed a low-alpha operational mode for SPEAR3. In this mode the momentum compaction factor is reduced by a factor of 21 or more from the usual achromat mode by introducing negative dispersion at the straight sections. We successfully stored 100~mA with the normal fill pattern at a lifetime of 30hrs. The bunch length was measured to be 6.9ps, compared to 17ps in the normal mode. In this paper we report our studies on the lattice design and calibration, orbit stability, higher order alpha measurement, lifetime measurement and its dependence on the sextupoles, injection efficiency and bunch lengths.  
 
TUPMS055 SPEAR3 Accelerator Physics Update photon, optics, feedback, injection 1311
 
  • J. A. Safranek
  • W. J. Corbett, S. M. Gierman, R. O. Hettel, X. Huang, J. J. Sebek, A. Terebilo
    SLAC, Menlo Park, California
  The SPEAR3 storage ring at Stanford Synchrotron Radiation Laboratory has been delivering photon beams for three years. We will give an overview of recent and ongoing accelerator physics activities, including 500 mA fills, work toward top-off injection, long-term orbit stability characterization & improvement, fast orbit feedback, new chicane optics, low alpha optics & short bunches, low emittance optics, and new insertion devices. The accelerator physics group has a strong program to characterize and improve SPEAR3 performance.  
 
TUPMS057 An Efficient 95-GHz, RF-Coupled Antenna radiation, undulator, impedance, laser 1314
 
  • J. E. Spencer
  • Y. A. Hussein
    SLAC, Menlo Park, California
  Funding: Work supported by U. S. Dept. of Energy contract DE-AC02-76SF00515.

This paper presents an efficient, RF-coupled, 95-GHz undulatory (snake-like) antenna that can be fabricated using IC technology. While there are many uses for directed power at this frequency our interest is in understanding the propagation of the input power through the circuit and its radiative characteristics for comparison to earlier work in the THz range (see PAC05). 95 GHz was chosen because test equipment was available (WR-10 waveguide and HP network analyzer). Different materials, heights and widths of the circuit were considered on a low-loss, 0.10-mm thick quartz substrate e.g. 0.75 microns of elevated gold corresponding to three skin depths. The design is compared to more conventional RF technology using a low energy, high power electron beam and to higher energy, lower power Smith Purcell gratings and free-electron-lasers (FELs). The FDTD results show narrow-band, 80% radiation efficiency with a dipole-like radiation pattern that is enhanced by adding periods. The radiated power was calculated using two different techniques that agreed quite well i.e. by integrating the far-field Poynting vector as well as subtracting the output power from input power.

 
 
TUPMS059 LCLS Undulator Tuning And Fiducialization undulator, alignment, linac, free-electron-laser 1320
 
  • Z. R. Wolf
  • V. Kaplounenko, Yu. I. Levashov, A. W. Weidemann
    SLAC, Menlo Park, California
  Funding: Work supported in part by the DOE Contract DE-AC02-76SF00515.

The LCLS x-ray free electron laser project at SLAC requires 40 undulators: 33 in the beamline, 6 spares, and one reference undulator. A new facility was constructed at SLAC for tuning and fiducializing the undulators. The throughput of the facility must be approximately one undulator per week. Much effort has gone into automating the undulator tuning. Because of tight alignment tolerances, accurate techniques were developed to fiducialize the undulators. The new facility, the tuning techniques, and the fiducialization techniques will be discussed.

 
 
TUPMS062 National High Magnetic Field Laboratory FEL Injector Design Consideration emittance, simulation, gun, radiation 1323
 
  • P. Evtushenko
  • S. V. Benson, D. Douglas, G. Neil
    Jefferson Lab, Newport News, Virginia
  A Numerical study of beam dynamics was performed for two injector systems for the proposed National High Magnetic Field Laboratory at the Florida State University (FSU) Free Electron Laser (FEL) facility. The first considered a system consisting of a thermionic DC gun, two buncher cavities operated at 260 MHz and 1.3 GHz and two TESLA type cavities, and is very similar to the injector of the ELBE Radiation Source. The second system we studied uses a DC photogun (a copy of JLab FEL electron gun), one buncher cavity operated at 1.3 GHz and two TESLA type cavities. The study is based on PARMELA simulations and takes into account operational experience of both the JLab FEL and the Radiation Source ELBE. The simulations predict the second system will have a much smaller longitudinal emittance. For this reason the DC photo gun based injector is preferred for the proposed FSU FEL facility.  
 
TUPMS064 RF Gun Optimization Study emittance, gun, simulation, cathode 1326
 
  • A. S. Hofler
  • P. Evtushenko
    Jefferson Lab, Newport News, Virginia
  • M. Krasilnikov
    DESY Zeuthen, Zeuthen
  Funding: Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.

Injector gun design is an iterative process where the designer optimizes a few nonlinearly interdependent beam parameters to achieve the required beam quality for a particle accelerator. Few tools exist to automate the optimization process and thoroughly explore the parameter space. The challenging beam requirements of new accelerator applications such as light sources and electron cooling devices drive the development of RF and SRF photo injectors. RF and SRF gun design is further complicated because the bunches are space charge dominated and require additional emittance compensation. A genetic algorithm has been successfully used to optimize DC photo injector designs for Cornell* and Jefferson Lab**, and we propose studying how the genetic algorithm techniques can be applied to the design of RF and SRF gun injectors. In this paper, we report on the initial phase of the study where we model and optimize gun designs that have been benchmarked with beam measurements and simulation.

* I. Bazarov, et al., "Multivariate Optimization of a High Brightness DC Gun Photoinjector", PRST-AB 2005.** F. Hannon, et al., "Simulation and Optimisation of a 100 mA DC Photoinjector", EPAC 2006.

 
 
TUPMS065 JLAMP: An Amplifier Based FEL in the JLab SRF ERL Driver wiggler, injection, emittance, undulator 1329
 
  • K. Jordan
  • S. V. Benson, D. Douglas, P. Evtushenko, C. Hernandez-Garcia, G. Neil
    Jefferson Lab, Newport News, Virginia
  Funding: This work supported by the Off. of Naval Research, the Joint Technology Off., the Commonwealth of Virginia, the Air Force Research Lab, Army Night Vision Lab, and by DOE Contract DE-AC05-060R23177.

Notional designs for ERL-driven high average power free electron lasers often invoke amplifier-based architectures. To date, however, amplifier FELs have been limited in average power output to values several orders of magnitude lower than those demonstrated in optical-resonator based systems; this is due at least in part to the limited electron beam powers available from their driver accelerators. In order to directly contrast the performance available from amplifiers to that provided by high-power cavity-based resonators, we have developed a scheme to test an amplifier FEL in the JLab SRF ERL driver. We describe an accelerator system design that can seamlessly and non-invasively integrate a 10 m wiggler into the existing system and which provides, at least in principle, performance that would support high-efficiency lasing in an amplifier configuration. Details of the design and an accelerator performance analysis will be presented.

 
 
TUPMS069 Proposed Tabletop Laser-driven Coherent X-Ray Source undulator, laser, vacuum, polarization 1332
 
  • T. Plettner
  • R. L. Byer
    Stanford University, Stanford, Califormia
  Laser-driven particle acceleration shows promise for compact ultra-low emittance, GeV/m electron sources. The first proof-of-principle demonstration for this particle acceleration technique has been carried out and a comprehensive experimental program to develop dielectric based micro-accelerator structures is under way. Therefore it is natural to explore the possibility for applying these future accelerators for SASE-FEL based X-ray generation. We employ well-established numerical models based on the standard SASE-FEL theory to find a plausible set of undulator and electron beam parameters to accomplish the desired X-ray pulse structure.  
 
TUPMS079 Ion Trapping and Cathode Bombardment by Trapped Ions in DC Photoguns ion, cathode, gun, laser 1356
 
  • E. Pozdeyev
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886, Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.

DC photoguns are used to produce high-quality, high-intensity electron beams for accelerator driven applications. Ion bombardment is credited as the major cause of degradation of the photocathode efficiency. Additionally to ions produced in the accelerating cathode-anode gap, the electron beam can ionize the residual gas in the transport line. These ions are trapped transversely within the beam and can drift back to the accelerating gap and contribute to the bombardment rate of the cathode. This paper proposes a method to reduce the flow of ions produced in the beam transport line and drifting back to the cathode-anode gap by introducing a positive potential barrier that repels the trapped ions. The reduced ion bombardment rate and increased life time of photocathodes will reduce the downtime required to service photoinjectors and associated costs.

 
 
TUPMS085 Photoemission Tests of a Pb/Nb Superconducting Photoinjector laser, cathode, linac, optics 1365
 
  • J. Smedley
  • J. Iversen, D. Klinke, D. Kostin, W.-D. Moller, A. Muhs, J. S. Sekutowicz
    DESY, Hamburg
  • P. Kneisel
    Jefferson Lab, Newport News, Virginia
  • R. S. Lefferts, A. R. Lipski
    SBUNSL, Stony Brook, New York
  • T. Rao
    BNL, Upton, Long Island, New York
  Funding: This work has been partially supported by the EU Commission, contract no. 011935 EUROFEL-DS5, US DOE under contract number DE-AC02-98CH10886.

We report recent progress in the development of a hybrid lead/niobium superconducting (SC) injector. The goal of this effort is to produce an all-SC injector with the SCRF properties of a niobium cavity along with the superior quantum efficiency (QE) of a lead photocathode. Two prototype hybrid injectors have been constructed, one utilizing a cavity with a removable cathode plug, and a second consisting of an all-niobium cavity arc-deposited with lead in the cathode region. We present the results of QE measurements on these cavities, along with tests of the effect of the laser on the cavity RF performance.

 
 
TUPMS088 Efficiency Enhancement Experiment with a Tapered Undulator in a Single-pass Seeded FEL at the NSLS SDL undulator, simulation, laser, radiation 1371
 
  • T. Watanabe
  • D. A. Harder, R. K. Li, J. B. Murphy, G. Rakowsky, Y. Shen, X. J. Wang
    BNL, Upton, Long Island, New York
  Funding: This work is supported by the Office of Naval Research under contract No. N0002405MP70325 and U. S. Department of Energy under contract No. DE-AC02-98CH1-886.

We report the experimental characterization of the FEL efficiency enhancement using a tapered undulator in a single-pass seeded FEL amplifier at the NSLS SDL. The last 3 m of the 10 m NISUS undulator was linearly tapered so that the magnetic field strength at the end of the undulator was reduced by 5 %. The FEL energy gain along the undulator was measured for both the tapered and un-tapered undulator. The FEL energy with the taper was measured to be about 3.2 times higher than that without the taper. We also experimentally characterized the spectrum and the transverse distribution of the FEL light for both the tapered and un-tapered undulator. The experimental results are compared with the numerical simulation code, GENESIS 1.3.

 
 
TUPMS089 Thermal Emittance Measurement Design for Diamond Secondary Emission emittance, simulation, shielding, alignment 1374
 
  • Q. Wu
  • I. Ben-Zvi, A. Burrill, X. Chang, D. Kayran, T. Rao, J. Smedley
    BNL, Upton, Long Island, New York
  Thermal emittance is a very important characteristic of cathodes. A lower thermal emittance cathode has a better performance in limiting emittance for transport down the beam line. A diamond amplified photocathode, being a negative electron affinity (NEA) cathode, promises to deliver a very small thermal emittance. A carefully designed method of measuring the emittance of secondary emission from diamond is presented for the first time. Comparison of possible schemes is carried out by simulation, and the most accessible and accurate method and values are chosen. Systematic errors can be controlled within a very small range, and are carefully evaluated. Aberration and limitations of all equipment are taken into account.  
 
TUPMS091 A Theoretical Photocathode Emittance Model Including Temperature and Field Effects emittance, brightness, laser, photon 1377
 
  • K. Jensen
  • D. W. Feldman, P. G. O'Shea
    UMD, College Park, Maryland
  • N. A. Moody
    LANL, Los Alamos, New Mexico
  • J. J. Petillo
    SAIC, Burlington, Massachusetts
  Funding: We gratefully acknowledge funding by the Joint Technology Office and the Office of Naval Research.

A recently developed model* of the emittance and brightness of a photocathode based on the evaluation of the moments of the electron emission distribution function admits an analytical solution for the zero-field and zero-temperature asymptotic model. Here, the model has been extended to account for the critical modifications of temperature and field dependence, which are tied to material issues with the cathode. Temperature impacts the nature of scattering within the photoemitter material and therefore affects quantum efficiency significantly. Field changes the emission probability at the surface barrier, and is particularly important for low work function coatings, as occur for the cesiated surfaces characteristic of our controlled porosity dispenser photocathodes. Extensions of the theoretical models shall be given, followed by an analysis of their comparison with numerical simulations of the intrinsic emittance and brightness of a photocathode. The methodology is designed to facilitate the development of photoemission models into comprehensive particle-in-cell (PIC) codes to address issues otherwise not readily treated, e.g., variation in surface coverage and topology.

* K. L. Jensen, P. G. O'Shea, D. W. Feldman, and N. A. Moody, Applied Physics Letters 89, 224103 (2006).

 
 
TUPAN016 Rare Isotope Accumulation and Deceleration in the NESR Storage Ring of the FAIR Project ion, injection, antiproton, secondary-beams 1425
 
  • M. Steck
  • C. Dimopoulou, A. Dolinskii, F. Nolden
    GSI, Darmstadt
  The storage ring NESR of the FAIR project can be operated with rare isotope beams which are produced by projectile fragmentation of a fast heavy ion beam. After stochastic pre-cooling at 740 MeV/u in a dedicated collector ring (CR) the rare isotopes will be accumulated in the NESR by a longitudinal accumulation technique in combination with electron cooling. Various schemes for the accumulation have been considered and evaluated. For experiments with stored beams and for transfer to an ion trap the ion beams can be decelerated to a minimum energy of 4 MeV/u. The deceleration mode of the NESR will also be available for deceleration of antiprotons to a minimum energy of 30 MeV. Fast extraction to a trap and slow extraction to fixed target are foreseen.  
 
TUPAN024 HESR at FAIR: Status of Technical Planning dipole, target, antiproton, cryogenics 1442
 
  • R. Tolle
  • T. Bergmark, S. Johnson, T. Johnson, T. Lofnes, G. Norman, T. Peterson
    Uppsala University, Uppsala
  • K. Bongardt, J. Dietrich, F. M. Esser, O. Felden, R. Greven, G. Hansen, F. Klehr, A. Lehrach, B. Lorentz, R. Maier, D. Prasuhn, A. Raccanelli, M. Schmitt, Y. Senichev, E. Senicheva, R. Stassen, H. Stockhorst
    FZJ, Julich
  • B. Gålnander, D. Reistad
    TSL, Uppsala
  • F. Hinterberger
    Universität Bonn, Helmholtz-Institut für Strahlen- und Kernphysik, Bonn
  • K. Rathsman
    UU/ISV, Uppsala
  • M. Steck
    GSI, Darmstadt
  The High-Energy Storage Ring (HESR) of the international Facility for Antiproton and Ion Research (FAIR) at GSI in Darmstadt is dedicated to Strong Interaction studies with antiprotons in the momentum range from 1.5 to 15 GeV/c. Powerful phase-space cooling is needed to reach demanding experimental requirements in terms of luminosity and beam quality. Status and details of technical planning including cryogenic concept will be presented.  
 
TUPAN025 Selective Containment Measurements on Xe with the RF Charge Breeder Device BRIC ion, vacuum, simulation, injection 1445
 
  • V. Variale
  • P. A. Bak, G. I. Kuznetsov, B. A. Skarbo, M. A. Tiunov
    BINP SB RAS, Novosibirsk
  • A. Boggia
    Universita e Politecnico di Bari, Bari
  • T. Clauser, V. Valentino
    INFN-Bari, Bari
  • A. C. Raino
    Bari University, Science Faculty, Bari
  Funding: INFN and UE contract no. 515768 EURISOL_DS (RIDS)

The Radioactive Ion Beam (RIB) production with ISOL technique should require a charge breeder device to increase the ion acceleration efficiency and reduce greatly the production cost. The "charge breeder" is a device designed to accept RIB with charge state +1 and in order to increase their charge state up to +n. Recently, at the INFN section of Bari first and at LNL (Italy) then, a new charge breeder device, based on an EBIS ion source called BRIC, has been developed. The new feature of BRIC, with respect to the classical EBIS, is given by the insertion, in the ion drift chamber, of a Radio Frequency (RF) - Quadrupole aiming to filtering the unwanted masses and then making a selective more efficient containment of the wanted ions. The RF test measurements for Ar gas confirm, as foreseen by simulation results* that the selective containment can be obtained. More measurements on the selective containment of heavier element ions (more close to the radioactive ion produced with ISOL technique) like Xe are needed to study with more details that effect. In this contribution new measurements on the rf selective containement in BRIC for Xe gas will be presented and discussed.

* V. Variale and M. Claudione, "BRICTEST: a code for charge breeding simulations in RF quadrupolar field", NIM in Phys. res. A 543 (2005) 403-414.

 
 
TUPAN039 Profile Measurement and Transverse Matching in J-PARC Linac beam-losses, linac, simulation, scattering 1472
 
  • H. Akikawa
  • Z. Igarashi, M. Ikegami, S. Lee
    KEK, Ibaraki
  • S. Sato, T. Tomisawa, A. Ueno
    JAEA/LINAC, Ibaraki-ken
  • G. B. Shen
    JAEA, Ibaraki-ken
  Beam commissioning of J-PARC linac has been performed since November 2006. In the beam commissioning, transverse matching has been performed by measurement of beam profiles and emittance with wire scanners. In this presentation, detail of wire scanners and the method of matching are described.  
 
TUPAN065 Proton Beam Quality Improvement by a Tailored Target Illuminated by an Intense Short-Pulse Laser proton, target, laser, ion 1538
 
  • S. Kawata
  • T. Kikuchi, M. Nakamura, Y. Nodera, N. Onuma
    Utsunomiya University, Utsunomiya
  Suppression of a transverse proton divergence is focused by using a controlled electron cloud. When an intense short pulse laser illuminates a foil plasma target, first electrons are accelerated and they form a strong electric field at the target surface, then protons can be accelerated by the strong field created. An electron cloud is limited in the transverse direction by plasma at the protuberant part, if the target has a hole at the opposite side of the laser illumination*. The proton beam is accelerated and also controlled by the transverse shaped electron cloud, and consequently the transverse divergence of the beam can be suppressed. In 2.5D particle-in-cell simulations, the transverse shape of the electron cloud is controlled well.

* R. Sonobe, S. Kawata, et. al., Phys. Plasmas 12 (2005) 073104.

 
 
TUPAN091 LHC Beam-beam Compensation Using Wires and Electron Lenses optics, emittance, simulation, feedback 1589
 
  • U. Dorda
  • W. Fischer
    BNL, Upton, Long Island, New York
  • V. D. Shiltsev
    Fermilab, Batavia, Illinois
  • F. Zimmermann
    CERN, Geneva
  We present weak-strong simulation results for a possible application of current-carrying wires and electron lenses to compensate the LHC long-range and head-on beam-beam interaction, respectively, for nominal and Pacman bunches. We show that these measures have the potential to considerably increase the beam-beam limit, allowing for a corresponding increase in peak luminosity  
 
TUPAN110 On Feasibility Study of 8 MeV H- Cyclotron to Charge the Electron Cooling System for HESR cyclotron, extraction, ion, ion-source 1631
 
  • N. Yu. Kazarinov
  • A. I. Papash
    NASU/INR, Kiev
  • V. V. Parkhomchuk
    BINP SB RAS, Novosibirsk
  A compact cyclotron to accelerate negative Hydrogen ions up to 8 MeV is considered the optimal solution to the problem of charging the high voltage terminal of the Electron Cooling System for High Energy Storage Ring at GSI (HESR Project, Darmstadt). Physical as well as technical parameters of the accelerator are estimated. Different types of commercially available cyclotrons are compared as a possible source of a 1 mA H- beam for HESR. An original design based on the application of well-established technical solutions for commercial accelerators is proposed.  
 
TUPAS013 Some Physics Issues of Carbon Stripping Foils injection, proton, ion, booster 1679
 
  • W. Chou
  • M. A. Kostin
    NSCL, East Lansing, Michigan
  • J. R. Lackey, Z. Tang
    Fermilab, Batavia, Illinois
  • R. J. Macek
    LANL, Los Alamos, New Mexico
  • P. S. Yoon
    Rochester University, Rochester, New York
  Funding: Work supported by Universities Research Association, Inc. under contract No. DE-AC02-76CH03000 with the U. S. Dept. of Energy.

Carbon foils are widely used in charge-exchange injection in high intensity hadron accelerators. There are a variety of physics issues associated with the use of carbon foils, including stripping efficiency, energy deposition, foil lifetime (temperature rise, mechanical stress and buckling), multiple Coulomb scattering, large angle single Coulomb scattering, energy straggling and radiation activation. This paper will give a brief discussion of these issues based on the study of the Proton Driver and experience of the Fermilab Booster. Details can be found in Ref*.

* W. Chou et al., "Transport and Injection of 8 GeV H- Ions," Fermilab-TM-2285 (2007).

 
 
TUPAS024 Experimental and Simulation Studies of Beam-Beam Compensation with Tevatron Electron Lenses proton, simulation, antiproton, beam-beam-effects 1703
 
  • V. Kamerdzhiev
  • Y. Alexahin, V. D. Shiltsev, A. Valishev, X. Zhang
    Fermilab, Batavia, Illinois
  • D. N. Shatilov
    BINP SB RAS, Novosibirsk
  Initially the Tevatron Electron Lenses (TELs) were intended for compensation of the beam-beam effect on the antiproton beam. Owing to recent increase in the number of antiprotons and reduction in their emittance, it is the proton beam now that suffers most from the beam-beam effect. We present results of beam studies, compare them with the results of computer simulations using LIFETRAC code and discuss possibilities of further improvements of the Beam-Beam Compensation efficiency in the Tevatron.  
 
TUPAS025 Commissioning of the Second Tevatron Electron Lens and Beam Study Results vacuum, gun, proton, antiproton 1706
 
  • V. Kamerdzhiev
  • R. J. Hively, G. F. Kuznetsov, H. Pfeffer, G. W. Saewert, V. D. Shiltsev, X. Zhang
    Fermilab, Batavia, Illinois
  In the framework of Fermilab's Beam-Beam Compensation project the second Tevatron Electron Lens (TEL2) has been installed in the Tevatron during Spring 2006 shutdown. After successful commissioning a series of beam studies has been carried out in single bunch mode. The paper describes the commissioning process and first beam studies results.  
 
TUPAS030 Electron Cooling Rates Characterization at Fermilab's Recycler antiproton, emittance, injection, diagnostics 1715
 
  • L. R. Prost
  • A. V. Shemyakin
    Fermilab, Batavia, Illinois
  Funding: Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

A 0.1 A, 4.3 MeV DC electron beam is routinely used to cool 8 GeV antiprotons in Fermilab's Recycler storage ring. While the primary function of the electron cooler is to increase the longitudinal phase-space density of the antiprotons, significant transverse cooling rates have been observed as well. Numerical characterization of electron cooling is done by two types of measurements: friction force measurements by the voltage jump method and diffusion/cooling rates measurements. The paper will present the recent measurement results and will compare them to a non-magnetized model.

 
 
TUPAS047 Multi-turn Operation of the University of Maryland Electron Ring (UMER) quadrupole, injection, dipole, space-charge 1751
 
  • M. Walter
  • G. Bai, B. L. Beaudoin, S. Bernal, D. W. Feldman, T. F. Godlove, I. Haber, R. A. Kishek, P. G. O'Shea, C. Papadopoulos, M. Reiser, D. Stratakis, D. F. Sutter, J. C.T. Thangaraj, C. Wu
    UMD, College Park, Maryland
  Funding: This work is funded by US Dept. of Energy grant numbers DE-FG02-94ER40855 and DE-FG02-92ER54178.

The University of Maryland Electron Ring (UMER) is a low energy, high current recirculator for beam physics research. The electron beam current is adjustable from 0.7 mA, an emittance dominated beam, to 100 mA, a strongly space charge dominated beam. UMER is addressing issues in beam physics relevant to many applications that require intense beams of high quality such as advanced concept accelerators, free electron lasers, spallation neutron sources, and future heavy-ion drivers for inertial fusion. The primary focus of this presentation is experimental results and improvements in multi-turn operation of the electron ring. Transport of a low current beam over 100 turns (3600 full lattice periods) has been achieved. Results of high current, space charge dominated multi-turn transport will also be presented.

 
 
TUPAS048 Beam Extraction Concepts and Design for the University of Maryland Electron Ring (UMER) extraction, dipole, quadrupole, injection 1754
 
  • M. Walter
  • G. Bai, B. L. Beaudoin, S. Bernal, D. W. Feldman, T. F. Godlove, I. Haber, R. A. Kishek, P. G. O'Shea, C. Papadopoulos, M. Reiser, D. Stratakis, D. F. Sutter, J. C.T. Thangaraj, C. Wu
    UMD, College Park, Maryland
  Funding: This work is funded by US Dept. of Energy grant numbers DE-FG02-94ER40855 and DE-FG02-92ER54178.

The University of Maryland Electron Ring (UMER) is a low energy, high current recirculator for beam physics research. The electron storage ring has been closed and recent operations have been focused on achieving multi-turn transport. An entire suite of terminal diagnostics is available for time-resolved phase space measurements of the beam. These diagnostics have been mounted and tested at several points on the ring before it was closed. UMER utilizes a unique injection scheme which uses the fringe fields of an offset quadrupole to assist a pulsed dipole in bending the beam into the ring. Similar concepts, along with more traditional electrostatic methods, are being considered for beam extraction. This presentation will focus on the recent efforts to design and deploy these major subsystems required for beam extraction.

 
 
TUPAS056 Compensation Strategy for Optical Distortions Arising from the Beam-Beam Interaction at CESR positron, optics, controls, dynamic-aperture 1778
 
  • J. A. Crittenden
  • M. G. Billing
    CESR-LEPP, Ithaca, New York
  Funding: National Science Foundation grant PHY-0202078

Following two decades of operation at 5 GeV beam energy for studies of bottom quark bound states, the Cornell Electron Storage Ring (CESR) converted to 2 GeV operation in 2001 for the purpose of investigating bound states of charm quarks. This reduction of beam energy resulted in increased relative contributions of the beam-beam force. The beam-beam interaction has been found to have considerable consequences for the optics and for the injection aperture. We describe recent developments in our modelling of the beam-beam interaction, experimental validation techniques, and investigations into compensation strategies.

 
 
TUPAS057 Injector Particle Simulation and Beam Transport in a Compact Linear Proton Accelerator proton, simulation, extraction, beam-transport 1781
 
  • D. T. Blackfield
  • Y.-J. Chen, J. R. Harris, S. D. Nelson, A. Paul, B. R. Poole
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

A compact Dielectric Wall Accelerator (DWA), with field gradient up to 100 MV/m, is being developed to accelerate proton bunches for use in cancer therapy treatment. The injector first generates a few nanosecond long and 40 pQ proton bunch, which is then compressed in the compression section at the end of the injector. Finally the bunch is accelerated in the high-gradient DWA accelerator to energy up to 70 - 250 MeV. The Particle-In-Cell (PIC) code LSP is used to model several aspects of this design. First, we use LSP to determine the needed voltage waveform in the A-K gap that will produce a proton bunch with the requisite charge. We then model pulse compression and shaping in the section between the A-K gap and the DWA. We finally use LSP to model the beam transport through the DWA.

 
 
TUPAS064 Helicon Plasma Generator-assisted H- Ion Source Development at Los Alamos Neutron Science Center plasma, ion, ion-source, permanent-magnet 1802
 
  • O. A. Tarvainen
  • R. Keller, G. Rouleau
    LANL, Los Alamos, New Mexico
  Funding: Work supported by the US Department of Energy under contract DE-AC52-06NA25396

The aim of the helicon plasma generator-assisted negative ion source development at Los Alamos Neutron Science Center (LANSCE) is to use high-density helicon plasmas for producing intense beams of H- ions. Our work consists of two development paths, construction of a hybrid ion source and replacement of the LANSCE surface converter ion source filaments by helicon plasma generators. The hybrid ion source is a combination of a long-life plasma cathode, sustained by a helicon plasma generator, with a stationary, pulsed main discharge (multi-cusp H- production chamber) directly coupled to each other. The electrons are transferred from the helicon plasma to the cusp-chamber by thermal flow process to ignite and sustain the main discharge. Replacing the filaments of the surface converter source by two helicon plasma generators is a low-cost solution, building upon the well-proven converter-type ion sources. Both development paths are aimed at meeting the beam production goals of the LANSCE 800 MeV linear accelerator refurbishment project. The design and status of both ion source types is discussed.

 
 
TUPAS067 Electron Cloud in the Wigglers of The Positron Damping Ring of the International Linear Collider wiggler, dipole, damping, simulation 1808
 
  • L. Wang
  • F. Zimmermann
    CERN, Geneva
  Funding: Work supported by the U. S. Department of Energy under contract DE-AC02-76SF00515

The ILC positron damping ring comprises hundreds of meters of wiggler sections, where many more photons than in the arcs are emitted, and with the smallest beam-pipe aperture of the ring. A significant electron-cloud density can therefore be accumulated via photo-emission and via beam-induced multipacting. In field-free regions the electron-cloud build up may be suppressed by adding weak solenoid fields, but the electron cloud remaining in the wigglers as well as in the arc dipole magnets can still drive single-bunch and multi-bunch beam instabilities. This paper studies the electron-cloud formation in an ILC wiggler section for various scenarios, as well as its character, and possible mitigation schemes.

 
 
TUPAS077 Modeling Ion Extraction from an ECR Ion Source ion, plasma, extraction, emittance 1826
 
  • B. Cluggish
  • S. Galkin, J. S. Kim
    Far-Tech, Inc., San Diego, California
  Funding: This research was performed under a U. S. Dept. of Energy SBIR grant.

Electron cyclotron resonance ion sources (ECRIS) that generate multiply charged ions reduce the cost to produce radioactive ion beams by reducing the accelerating voltage needed to achieve the desired beam energy. FAR-TECH, Inc. is developing an integrated suite of numerical codes to simulate ECRIS ion capture, charge breeding, and ion extraction. Ion extraction is modeled with a particle in cell (PIC) code. Since the ion dynamics are strongly dependent on the behavior of the plasma sheath at the boundary between the ECRIS plasma and the ion optics, the PIC code uses an adaptive Poisson solver to accurately resolve the potential drop in the sheath. Results of the integrated ECRIS model will be presented, including calculations of extraction efficiency with multiple ion species.

 
 
TUPAS078 Status of FAR-TECH's ECR Ion Source Optimization Modeling ion, plasma, simulation, extraction 1829
 
  • J. S. Kim
  • I. N. Bogatu, B. Cluggish, S. Galkin, L. Zhao
    Far-Tech, Inc., San Diego, California
  • R. C. Pardo
    ANL, Argonne, Illinois
  • V. Tangri
    UW-Madison/PD, Madison, Wisconsin
  Funding: Work supported by the US Department of Energy, under a SBIR grant No. DE-FG02-04ER83954.

The electron cyclotron-resonance ion source (ECRIS) is one of the most efficient ways to provide high-quality, high-charge-state ion beam for research and development of particle accelerators and atomic physics experiments. For ECR ion source performance optimization, FAR-TECH Inc. is developing an integrated suite of computer codes: the Generalized ECRIS plasma Modeling code (GEM), the MCBC (Monte Carlo Beam Capture) module, to study beam capture and charge-breeding processes in ECRIS, and the extraction section code. Our recent progress includes the following: algorithm update of Coulomb collision in MCBC for more accurate calculations of the beam capture efficiency, which depends on beam energy and the background plasma, 2D extension of GEM by adding the radial dimension, and the ion extraction section modeling using an adaptive technique.

 
 
TUPAS079 2D Extension of GEM (The Generalized ECR Ion Source Modeling Code) plasma, ion, resonance, extraction 1832
 
  • L. Zhao
  • B. Cluggish, J. S. Kim
    Far-Tech, Inc., San Diego, California
  Funding: Work supported by the US Department of Energy, under a SBIR grant No. DE-FG02-04ER83954

To model ECRIS, GEM is being extended to 2D by adding radial dimension. The electron distribution function (EDF) is calculated on each magnetic flux surface using a bounce-averaged Fokker-Planck code with 2D ECR heating (ECRH) modeling. The ion fluid model is also being extended to 2D by adding collisional radial transport terms. All species in ECRIS are balanced by keeping the neutrality in each cell and the plasma potential is calculated by maintaining the ambipolarity globally. The graphical user interface (GUI) and parallel computing ability of GEM make it an easy-to-use tool for ECRIS research. Numerical results and comparisons with experimental data will be presented.

 
 
TUPAS097 Studies of Electron-Proton Beam-Beam Interactions in eRHIC proton, emittance, simulation, beam-losses 1865
 
  • Y. Hao
  • V. Litvinenko, C. Montag, E. Pozdeyev, V. Ptitsyn
    BNL, Upton, Long Island, New York
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886, DE-FG02-92ER40747 and U. S. NSF under contract PHY-0552389.

Beam-beam effects present one of major factors limiting the luminosity of colliders. In the linac-ring option of eRHIC design, an electron beam accelerated in a superconducting energy recovery linac collides with a proton beam circulating in the RHIC ring. There are some features of beam-beam effects which require careful examination in linac-ring configuration. First, the beam-beam interaction can induce specific head-tail type instability of the proton beam referred to as kink instability. Thus, beam stability conditions should be established to avoid proton beam loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure beam quality is good enough for the energy recovery pass. In addition, fluctuations of electron beam current and/or electron beam size, as well as transverse offset, can cause proton beam emittance growth. The tolerances for those factors should be determined and possible countermeasures should be developed to mitigate the emittance growth. In this paper, a soft Gaussian strong-strong simulation is used to study all of mentioned beam-beam interaction features and possible techniques to reduce the emittance growth.

 
 
TUPAS103 RHIC Challenges for Low Energy Operations injection, luminosity, proton, power-supply 1877
 
  • T. Satogata
  • L. Ahrens, M. Bai, J. M. Brennan, D. Bruno, J. J. Butler, K. A. Drees, A. V. Fedotov, W. Fischer, M. Harvey, T. Hayes, W. Jappe, R. C. Lee, W. W. MacKay, G. J. Marr, R. J. Michnoff, B. Oerter, E. Pozdeyev, T. Roser, F. Severino, K. Smith, S. Tepikian, N. Tsoupas
    BNL, Upton, Long Island, New York
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886

There is significant interest in RHIC heavy ion collisions at c.m. energies of 5-50 GeV/u, motivated by a search for the QCD phase transition critical point. The low end of this energy range is well below the nominal RHIC injection c.m. energy of 19.6 GeV/u. There are several challenges that face RHIC operations in this regime, including longitudinal acceptance, magnet field quality, lattice control, and luminosity monitoring. We report on the status of work to address these challenges and include results from beam tests of low-energy RHIC operations with protons and gold.

 
 
TUPAS107 Proton Beam Emittance Growth at RHIC emittance, proton, luminosity, injection 1886
 
  • S. Y. Zhang
  • V. Ptitsyn
    BNL, Upton, Long Island, New York
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886

The beam emittance growth in RHIC polarized proton runs has a dependence on the dynamic pressure rise, which is caused by the electron cloud and peaked at the end of the beam injection and the early energy acceleration. This emittance growth is usually presented without beam instability, and it is slower than the ones above the instability threshold. The effect on the machine luminosity, nevertheless, is significant, and it is currently a limiting factor in machine performance. The electron cloud is substantially reduced at the store, the emittance growth there has no dependence on the bunch spacing and instead it has a clear dependence on the beam-beam parameter. The results of the machine operation and beam studies will be reported.

 
 
WEXKI01 First Experimental Evidence for PASER: Particle Acceleration by Stimulated Emission of Radiation acceleration, laser, radiation, resonance 1889
 
  • S. Banna
  • V. Berezovsky, L. Schachter
    Technion, Haifa
  Funding: Israel Science Foundation - ISF and United States Department of Energy -DoE

Franck and Hertz in 1914 were the first to demonstrate that free electrons can be decelerated by mercury atoms in discrete energy quanta. In 1930 Latyscheff and Leipunsky have demonstrated the inverse effect namely; free electrons can be accelerated by energy stored in the mercury atoms (collision of the second kind). It was only in 1958 that Townes has used multiple collisions between photons and excited atoms to amplify radiation (MASER & LASER). In 1995 Schachter suggested to use excited atoms for coherently accelerate particles. The results of a proof-of-principle experiment (2006) demonstrating the PASER scheme are reported here. Performed at the BNL-ATF, the essence of the experiment is to inject a 45MeV density modulated beam into an excited CO2 gas mixture. Resonance is insured by having the beam bunched by its interaction with a high-power CO2 laser pulse within a wiggler. The electrons experienced 0.15% relative change in their kinetic energy, in less than 40cm long interaction region. The experimental results indicate that a fraction of these electrons have gained 200keV each, implying that such an electron has undergone 2,000,000 collisions of the second kind.

 
slides icon Slides  
 
WEXKI02 Demonstration of Optical Microbunching and Net Acceleration at 0.8 microns laser, acceleration, simulation, undulator 1894
 
  • C. M.S. Sears
  • R. L. Byer, T. Plettner
    Stanford University, Stanford, Califormia
  • E. R. Colby, R. Ischebeck, C. Mcguinness, R. Siemann, J. E. Spencer, D. R. Walz
    SLAC, Menlo Park, California
  Formation, diagnosis, and acceleration of electron microbunches from an rf linac generated beam is presented. A PM-EM hybrid IFEL/chicane buncher was designed and commissioned to produce optical bunch trains suitable for injection into solid-state laser accelerators. Microbunching is independently diagnosed via coherent optical tranisition radiation (COTR). Net acceleration is obtained by splitting the laser power between the IFEL and an inverse transition radiation (ITR) accelerator.  
slides icon Slides  
 
WEXKI03 Survey of Advanced Dielectric Wakefield Accelerators acceleration, gun, simulation, linac 1899
 
  • M. E. Conde
  Funding: Work supported by the US Department of Energy under contract # DE-AC02-06CH11357.

There has been continued interest in the development of dielectric-loaded wakefield structures that can be used to accelerate particle beams. The present search for materials able to withstand very intense RF fields has renewed this interest. Recent experiments at the Argonne Wakefield Accelerator have generated short RF pulses with accelerating fields in excess of 80 MV/m. These experiments used ceramic-lined cylindrical waveguides, operating at frequencies between 10 and 15 GHz. Other important experiments, at different RF frequencies and using planar or cylindrical geometries, have been carried out at various other facilities. A number of new experiments are planned in the near future to explore the capabilities of this class of structures. This presentation will provide an up-to-date survey of the activities in this area of research.

 
slides icon Slides  
 
WEOAKI01 Optical Stochastic Cooling Proof-of-Principle Experiment radiation, undulator, damping, scattering 1904
 
  • W. A. Franklin
  Cooling of charged particle beams plays a key role in achieving peak luminosity in high-energy colliders. The presently undemonstrated technique of optical stochastic cooling (OSC)* holds promise for fast cooling of high energy protons and heavy ions. A proof-of-principle experiment with electrons is proposed at relatively modest cost using the MIT-Bates South Hall Ring, which is well suited for such a test due to its energy range, layout, and RF system, as well as its present availability. An overview of the experiment will be presented. The design of key systems for the achievement of OSC will be disucussed along with beam requirements and cooling projections.

*M. Zolotorev and A. Zholents, Phys Rev. E 50 (1994) 3087.

 
slides icon Slides  
 
WEOAKI02 Observations of Underdense Plasma Lens Focusing of Relativistic Electron Beams plasma, focusing, ion, emittance 1907
 
  • M. C. Thompson, H. Badakov, J. B. Rosenzweig, M. C. Thompson, R. Tikhoplav, G. Travish
    UCLA, Los Angeles, California
  • R. P. Fliller, G. M. Kazakevich, J. K. Santucci
    Fermilab, Batavia, Illinois
  • J. L. Li
    Rochester University, Rochester, New York
  • P. Piot
    Northern Illinois University, DeKalb, Illinois
  Funding: This work was performed under the auspices of the US Department of Energy under Contract No. DE-FG03-92ER40693 and W-7405-ENG-48.

Focusing of a 15 MeV, 19 nC electron bunch by an underdense plasma lens operated just beyond the threshold of the underdense condition has been demonstrated in experiments at the Fermilab NICADD Photoinjector Laboratory (FNPL). The strong 1.9 cm focal-length plasma-lens focused both transverse directions simultaneously and reduced the minimum area of the beam spot by a factor of 23. Analysis of the beam-envelope evolution observed near the beam waist shows that the spherical aberrations of this underdense lens are lower than those of an overdense plasma lens, as predicted by theory. Correlations between the beam charge and the properties of the beam focus corroborate this conclusion. Time resolved measurements of the focused electron bunch are also reported and all results are compared to simulations.

 
slides icon Slides  
 
WEYKI01 Results of the Energy Doubler Experiment at SLAC plasma, collider, laser 1910
 
  • M. J. Hogan
  • I. Blumenfeld, F.-J. Decker, R. Ischebeck, R. H. Iverson, N. A. Kirby, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • C. E. Clayton, C. Huang, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • T. C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
  Funding: This work was supported by the Department of Energy contracts DE-AC02-76SF00515, DE-FG02-92ER40727, DE-FG02-92-ER40745. DE-FG02-03ER54721, DE-FC02-01ER41179 and NSF grant Phy-0321345.

The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam at the Stanford Linear Accelerator Center (SLAC). Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of ~52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a metre for a small fraction of the electrons in the injected bunch.

 
slides icon Slides  
 
WEYKI02 Experimental Demonstration of 1 GeV Energy Gain in a Laser Wakefield Accelerator laser, plasma, injection, simulation 1911
 
  • A. J. Gonsalves
  • D. L. Bruhwiler, J. R. Cary
    Tech-X, Boulder, Colorado
  • E. Cormier-Michel
    University of Nevada, Reno, Reno, Nevada
  • E. Esarey, C. G.R. Geddes, W. Leemans, K. Nakamura, C. B. Schroeder, C. Toth
    LBNL, Berkeley, California
  • S. M. Hooker
    OXFORDphysics, Oxford, Oxon
  GeV-class electron accelerators have a broad range of uses, including synchrotron facilities, free electron lasers, and high-energy particle physics. The accelerating gradient achievable with conventional radio frequency (RF) accelerators is limited by electrical breakdown within the accelerating cavity to a few tens of MeV, so the production of energetic beams requires large, expensive accelerators. One promising technology to reduce the cost and size of these accelerators (and to push the energy frontier for high-energy physics) is the laser-wakefield accelerator (LWFA), since these devices can sustain electric fields of hundreds of GV/m. In this talk, results will be presented on the first demonstration of GeV-class beams using an intense laser beam. Laser pulses with peak power ranging from 10-40TW were guided in a 3.3 cm long gas-filled capillary discharge waveguide, allowing the production of high-quality electron beams with energy up to 1 GeV. The electron beam characteristics and laser guiding, and their dependence on laser and plasma parameters will be discussed and compared to simulations.  
slides icon Slides  
 
WEOBKI01 Stable Electron Beams with Low Absolute Energy Spread from a Laser Wakefield Accelerator with Plasma Density Ramp Controlled Injection laser, plasma, simulation, injection 1916
 
  • C. G.R. Geddes
  • J. R. Cary
    Tech-X, Boulder, Colorado
  • E. Cormier-Michel
    University of Nevada, Reno, Reno, Nevada
  • E. Esarey, W. Leemans, K. Nakamura, D. Panasenko, G. R.D. Plateau, C. B. Schroeder, C. Toth
    LBNL, Berkeley, California
  Funding: Supported by DOE, including grant DE-AC02-05CH11231, DARPA, and by an INCITE computational award.

Laser wakefield accelerators produce accelerating gradients up to hundreds of GeV/m and narrow energy spread, and have recently demonstrated energies up to GeV and improved stability [*,**] using electrons self trapped from the plasma. Controlled injection and staging can further improve beam quality by circumventing tradeoffs between energy, stability, and energy spread/emittance. We present experiments demonstrating production of a stable electron beam near 1 MeV with 100 keV level energy spread and central energy stability by using the plasma density profile to control self injection, and supporting simulations. A 10 TW laser pulse was focused near the downstream edge of a mm-long hydrogen gas jet. The plasma density near focus is decreasing in the laser propagation direction, which changes the wake phase velocity and reduces the trapping threshold. This allows stable self trapping and low absolute energy spread. Simulations indicate that such beams can be post accelerated to form high energy, high quality, stable beams, and experiments are under investigation.

* Geddes et al, Nature v431 no7008, 538 (2004).** Leemans et al, Nature Physics v2 no10, p696 (2006)

 
slides icon Slides  
 
WEOBKI02 Evolution of Relativistic Plasma Wave-Front in LWFA plasma, laser, diagnostics, scattering 1919
 
  • C. E. Clayton
  • F. Fang, C. Joshi, K. A. Marsh, A. E. Pak, J. E. Ralph
    UCLA, Los Angeles, California
  • N. C. Lopes
    Instituto Superior Tecnico, Lisbon
  Funding: Work supported by DOE Grant Nos. DE-FG52-03NA00138 and DE-FG02-92ER40727, and Grant POCI/FIS/58776/2004 (FCT-Portugal)

In a laser wakefield accelerator experiment where the length of the pump laser pulse is several plasma period long, the leading edge of the laser pulse undergoes frequency downshifting as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of of the pump pulse–and therefore of the driven electron plasma wave–will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity vf of the 'wave-front' of the plasma wave driven by a nominally 50fs (FWHM), intense (a0~1), 0.8 micron laser pulse. To determine the speed of the wave front, time- and space-resolved shadowgraphy, interferometry, and Thomson scattering were used. Although low density data (ne ~ 1018 cm-3) showed no significant changes in vf over 1.5mm (and no accelerated electrons), high-density data shows accelerated electrons and an approximately 5% drop in vf after a propagation distance of about 800 microns.

 
slides icon Slides  
 
WEZAKI01 Run II Luminosity Progress antiproton, luminosity, target, proton 1922
 
  • K. Gollwitzer
  Funding: Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

The Fermilab Tevatron Collider Run II program continues at the energy and luminosity frontier of high energy particle physics. The presentation will cover major improvements in the performance of the collider complex which lead to the record-breaking luminosity.

 
slides icon Slides  
 
WEZAKI02 From HERA to Future Electron-ion Colliders ion, collider, lepton, proton 1927
 
  • V. Ptitsyn
  An overview of the proposals of new electron-ion colliders - e-RHIC at BNL, EIC at JLab and e-LHC at CERN - in the light of experience with HERA will be presented.  
slides icon Slides  
 
WEOCKI01 Operational Experience with HERA luminosity, proton, feedback, polarization 1932
 
  • J. Keil
  The electron-proton collider HERA (Hadron Electron Ring Accelerator) at DESY which collides 920 GeV protons with polarized electrons or positrons with an energy of 27.5 GeV will conclude operations in July 2007 after 16 successful years. After an upgrade of the interaction regions in the year 2001 the luminosity of HERA has been increased by a factor of 2.5 resulting in a peak value of 5.1*1031 cm-2 s-1. For a special experiment, HERA will run in the last three month of operation with a reduced proton energy of 460 GeV. An overview of the accelerator physics and operational challenges, the performance over the last years, the continuous efforts to upgrade and improve the accelerator and an assessment of reliability and availability issues of HERA will be presented.  
slides icon Slides  
 
WEOCKI02 Design of High Luminosity Ring-Ring Electron-Light Ion Collider at CEBAF ion, collider, luminosity, emittance 1935
 
  • Y. Zhang
  • S. A. Bogacz, P. B. Brindza, A. Bruell, L. S. Cardman, J. R. Delayen, Y. S. Derbenev, R. Ent, P. Evtushenko, J. M. Grames, A. Hutton, G. A. Krafft, R. Li, L. Merminga, J. Musson, M. Poelker, A. W. Thomas, B. Wojtsekhowski, B. C. Yunn
    Jefferson Lab, Newport News, Virginia
  • V. P. Derenchuk
    IUCF, Bloomington, Indiana
  • V. G. Dudnikov
    BTG, New York
  • W. Fischer, C. Montag
    BNL, Upton, Long Island, New York
  • P. N. Ostroumov
    ANL, Argonne, Illinois
  Funding: Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.

Experiments on the study of fundamental quark-gluon structure of nucleons require an electron-light ion collider of a center of mass energy from 20 to 65 GeV at luminosity level of 1035 cm-2s-1 with both beams polarized. A CEBAF accelerator based ring-ring collider of 7 GeV electrons/positrons and 150 GeV light ions is envisioned as a possible next step after the 12 GeV CEBAF Upgrade. The developed ring-ring scheme takes advantage of the existing polarized continuous electron beam and SRF linac, the green-field design of the collider rings and the ion accelerator complex with electron cooling. We report results of our design studies of the ring-ring version of an electron-light ion collider of the required luminosity.

 
slides icon Slides  
 
WEOCKI03 Status of the R&D Towards Electron Cooling of RHIC emittance, simulation, ion, gun 1938
 
  • I. Ben-Zvi
  • D. T. Abell, G. I. Bell, D. L. Bruhwiler, R. Busby, J. R. Cary, D. A. Dimitrov, P. Messmer, V. H. Ranjbar, D. S. Smithe, A. V. Sobol, P. Stoltz
    Tech-X, Boulder, Colorado
  • J. Alduino, D. S. Barton, D. Beavis, M. Blaskiewicz, J. M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, A. V. Fedotov, W. Fischer, G. Ganetis, D. M. Gassner, J. G. Grimes, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, D. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, V. Litvinenko, C. Longo, W. W. MacKay, G. J. Mahler, G. T. McIntyre, W. Meng, B. Oerter, C. Pai, G. Parzen, D. Pate, D. Phillips, S. R. Plate, E. Pozdeyev, T. Rao, J. Reich, T. Roser, A. G. Ruggiero, T. Russo, C. Schultheiss, Z. Segalov, J. Smedley, K. Smith, T. Tallerico, S. Tepikian, R. Than, R. J. Todd, D. Trbojevic, J. E. Tuozzolo, P. Wanderer, G. Wang, D. Weiss, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • A. V. Aleksandrov, D. L. Douglas, Y. W. Kang
    ORNL, Oak Ridge, Tennessee
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss, J. J. Sredniawski, A. M.M. Todd
    AES, Princeton, New Jersey
  • A. V. Burov, S. Nagaitsev, L. R. Prost
    Fermilab, Batavia, Illinois
  • Y. S. Derbenev, P. Kneisel, J. Mammosser, H. L. Phillips, J. P. Preble, C. E. Reece, R. A. Rimmer, J. Saunders, M. Stirbet, H. Wang
    Jefferson Lab, Newport News, Virginia
  • V. V. Parkhomchuk, V. B. Reva
    BINP SB RAS, Novosibirsk
  • A. O. Sidorin, A. V. Smirnov
    JINR, Dubna, Moscow Region
  Funding: Work done under the auspices of the US DOE with support from the US DOD.

The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R&D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components.

 
slides icon Slides  
 
WEXAB02 Critical R&D Issues for the ILC Damping Rings and New Test Facilities damping, emittance, wiggler, kicker 1945
 
  • A. Wolski
  The damping rings for the International Linear Collider will be required to accept large beams from the electron and positron sources, and produce highly stable, very low emittance beams for tuning and operation of downstream systems. While many of the parameters for the damping rings are within range of storage rings presently operating, beams meeting the full quality and stability specifications have not been demonstrated. In addition, the requirements for some of the subsystems (for example, the injection and extraction kickers) push the limits of available technology. We discuss the principal goals and challenges of the damping rings research and development program, and the role that could be played by some proposed future damping rings test facilities.  
slides icon Slides  
 
WEYAB01 Overview of Industrialization Strategies for ILC linear-collider, superconducting-RF, linac, collider 1961
 
  • D. Proch
  ILC is by far the largest and most challenging application of superconducting RF accelerator technology. Starting from the experience with TESLA and XFEL I will describe the level of industrial competence in the three global regions (Asia, America and Europe). In particular I will refer to the state of the art of cavity fabrication, module assembly and auxiliary components as well as to the synergy with the XFEL project. I will use the fabrication experience with SC magnets for LHC at CERN as benchmark for industrialization strategies for ILC.  
 
WEOBAB01 Electromagnetic Background Tests for the ILC Interaction Point Feedback System feedback, background, luminosity, extraction 1970
 
  • P. Burrows
  • R. Arnold, S. Molloy, S. Smith, G. R. White, M. Woods
    SLAC, Menlo Park, California
  • G. B. Christian, C. I. Clarke, B. Constance, A. F. Hartin, H. D. Khah, C. Perry, C. Swinson, G. R. White
    JAI, Oxford
  • A. Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  We present results obtained with the T-488 experiment at SLAC Endstation A (ESA). A material model of the ILC extraction-line design was assembled and installed in ESA. The module includes materials representing the mask, beamline calorimeter, and first extraction quadrupole, encompassing a stripline interaction-point feedback system beam position monitor (BPM). The SLAC high-energy electron beam was used to irradiate the module in order to mimic the electromagnetic (EM) backgrounds expected in the ILC interaction region. The impact upon the performance of the feedback BPM was measured, and compared with detailed simulations of its expected response.  
slides icon Slides  
 
WEZAB01 ILC Undulator Based Positron Source, Tests and Simulations positron, undulator, target, polarization 1974
 
  • A. A. Mikhailichenko
  Funding: NSF

An undulator based positron source allows generation of polarized positrons in quantities required by ILC. Here we describe the results of modeling and testing of elements for such a system.

 
slides icon Slides  
 
WEXC01 Experimental Tests of a Prototype System for Active Damping of the E-P Instability at the LANL PSR feedback, proton, damping, pick-up 1991
 
  • C. Deibele
  • S. Assadi, V. V. Danilov, S. Henderson, M. A. Plum, A. K. Polisetti
    ORNL, Oak Ridge, Tennessee
  • J. M. Byrd
    LBNL, Berkeley, California
  • J. D. Gilpatrick, R. C. McCrady, J. F. Power, T. Zaugg
    LANL, Los Alamos, New Mexico
  • S.-Y. Lee
    IUCF, Bloomington, Indiana
  • M. T.F. Pivi
    SLAC, Menlo Park, California
  • M. J. Schulte, Z. P. Xie
    UW-Madison, Madison, Wisconsin
  Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725.

A prototype of an analog, transverse (vertical) feedback system for active damping of the two-stream (e-p) instability has been developed and successfully tested at the Los Alamos Proton Storage Ring (PSR). This talk describes the system configuration, results of several experimental tests and studies of system optimization along with studies of the factors limiting its performance.

 
slides icon Slides  
 
WEOAC01 Secondary Electron Yield and Rectangular Groove Chamber Tests in PEP-II radiation, synchrotron, synchrotron-radiation, vacuum 1997
 
  • M. T.F. Pivi
  • R. E. Kirby, T. W. Markiewicz, T. O. Raubenheimer, J. Seeman, L. Wang
    SLAC, Menlo Park, California
  • F. Le Pimpec
    PSI, Villigen
  Funding: Work supported by the Director, Office of Science, High Energy Physics, U. S. DOE under Contract No. DE-AC02-76SF00515.

Possible remedies for the electron cloud in the Damping Ring of the International Linear collider includes conditioning of the surface and chamber with grooves. We installed chambers in PEP-II to test the secondary electron yield (SEY) of coated TiN and TiZrV NEG samples and study the effect of electron and photon conditioning in situ. We have also installed vacuum chambers with rectangular groove profile in straight sections to test this possible mitigation technique. In this paper, we will describe the PEP-II test layout, results and impact on impedance.

 
 
WEOAC02 A New Type of Distributed Enamel Based Clearing Electrode impedance, simulation, vacuum, coupling 2000
 
  • F. Caspers
  • F.-J. Behler
    Eisenwerke Fried. Wilh. Dueker GmbH & Co. KGaA, Laufach
  • P. P. Hellmold
    Clausthal, Inst für Nichtmetall. Werkstoffe, Clausthal-Zellerfeld
  • T. Kroyer, E. Metral, F. Zimmermann
    CERN, Geneva
  • J. Wendel
    Wendel GmbH, Dillenburg
  A practical technology for implanting thin strip-like enamel structures in metallic beam-pipes, to be used for e-cloud clearing, has been developed. We discuss the technical and technological issues of this method. Parameters of particular interest are the beam coupling impedance as a function of the conductive coating resistivity and also the secondary electron yield. A test-stand for multipactoring measurements on a first prototype using the coaxial resonator method is described.  
slides icon Slides  
 
WEYC01 Instabilities of Cooled Antiproton Beam in Recycler antiproton, coupling, resonance, damping 2009
 
  • A. V. Burov
  • V. A. Lebedev
    Fermilab, Batavia, Illinois
  Funding: Work supported by the US DoE under contract DE-AC02-07CH11359

The more beam is cooled, the less stable it is. In the Recycler Ring, antiprotons are cooled both with stochastic and electron cooling. To stabilize it against the resistive wall instability, a digital damper is successfully used. Digital dampers can be described as linear operators with explicit time dependence, and that makes a principle difference with analogous dampers. Theoretical description of the digital dampers is presented. Electron cooling makes possible a two-beam instability of the cooled beam with the electron beam. Special features of this instability are described, and the remedy is discussed.

 
slides icon Slides  
 
WEOBC01 Beam Instability Observations and Analysis at SOLEIL impedance, feedback, single-bunch, ion 2019
 
  • R. Nagaoka
  • L. Cassinari, M.-E. Couprie, M. Labat, M.-P. Level, C. Mariette, R. Sreedharan
    SOLEIL, Gif-sur-Yvette
  Due to reduced vertical chamber aperture around the machine, the impedance was systematically evaluated and optimized 3D-wise at SOLEIL during the design stage, whose budget was then utilized to predict instability thresholds for multi and single bunches. These theoretical calculations are compared with observed instabilities. Transverse multibunch current thresholds are followed as a function of chromaticity, identifying the transition of different head-tail regimes that reflects the broadband impedance spectrum. Although low thresholds due to resistive-wall are basically confirmed, its combined effect with ion-induced instability is found to be significant, exhibiting a strong beam filling pattern dependence. To analyse the involved dynamics, a multibunch tracking code is developed in a structure that allows parallel computations with a cluster of processors. The obtained results are compared with empirical data. Analysis of single bunch instabilities is also made with an aim to identify the enhanced reactive impedance due to NEG coating.  
slides icon Slides  
 
WEZC01 Phase Space Tomography of Beams with Extreme Space Charge space-charge, quadrupole, simulation, emittance 2025
 
  • D. Stratakis
  • S. Bernal, R. B. Fiorito, I. Haber, R. A. Kishek, P. G. O'Shea, C. Papadopoulos, M. Reiser, J. C.T. Thangaraj, K. Tian, M. Walter
    UMD, College Park, Maryland
  Funding: This work is funded by US Dept. of Energy grant numbers DE-FG02-94ER40855 and DE-FG02-92ER54178, and the office of Naval Research grant N00014-02-1-0914.

A common challenge for accelerator systems is to maintain beam quality and brightness over the usually long distance from the source to the target. In order to do so, knowledge of the beam distribution in both configuration and velocity space along the beam line is needed. However, measurement of the velocity distribution can be difficult, especially for beams with strong space charge. Here we present a simple and portable tomographic method to map the beam phase space, which can be used in the majority of accelerators. The tomographic reconstruction process has first been compared with results from simulations using the particle-in-cell code WARP. Results show excellent agreement even for beams with extreme space charge and exotic distributions. Our diagnostic has also been successfully demonstrated experimentally on the University of Maryland Electron Ring, a compact ring designed to study the transverse dynamics of beams in both emittance and space charge dominated regimes. Special emphasis is given to intense beams where our phase space tomography diagnostic is used to shed light on the consequences of the space charge forces on the transport of these beams.

 
slides icon Slides  
 
WEOCC01 Experimental Approach to Ultra-Cold Ion Beam at S-LSR laser, proton, ion, beam-cooling 2035
 
  • A. Noda
  • H. Fadil, M. Grieser
    MPI-K, Heidelberg
  • M. Ikegami, T. Ishikawa, M. Nakao, T. Shirai, H. Souda, M. Tanabe, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • I. N. Meshkov, A. V. Smirnov
    JINR, Dubna, Moscow Region
  • K. Noda
    NIRS, Chiba-shi
  Funding: The present work was supported from Advanced Compact Accelerator project by MEXT, Japan. Support from the 21COE at Kyoto University-Diversity and Universality in Physics- is also greatly appreciated.

S-LSR is a storage and cooler ring with the circumference of 22.56 m applied for an electron beam cooling of 7 MeV proton beam and laser cooling of 24Mg+ beam with 35 keV. From the measurement with the use of Schottky pich-up of the momentum spread of 7 MeV proton beam reducing the particle number to suppress the effect of intra-beam scattering,abrupt jump in fractional momentum spread and Schottky power has been observed, which is considered the 1 dimensional phase transition to the ordered state*. The situation has also been expected from numerical simulation**. Laser cooling with much stronger cooling force is expected to realize 2Dand 3D crystalline states if the maintenance condition can be satisfied. Experimental approaches to realize such a condition at S-LSR as dispersion free lattice and "tapered cooling" are also decribed in the present paper.

* A Noda, et al., , New Journal of Physics, 8 (2006)288.** A. Smirnov et al., Beam Science and Technology, 10 (2006) 6*** J. Wei, X-P, Li and A. M. Sessler, , Phys. Rev. Lett. 73 (1994) 3089.

 
slides icon Slides  
 
WEOCC03 Halo Estimates and Simulations for Linear Colliders scattering, simulation, linac, photon 2041
 
  • H. Burkhardt
  • I. V. Agapov, G. A. Blair
    Royal Holloway, University of London, Surrey
  • F. Jackson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • A. Latina, L. Neukermans, D. Schulte
    CERN, Geneva
  Funding: This work is supported by the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area", contract number RIDS-011899.

Halo simulations and estimates are important for the design of future linear accelerators. We present simulations performed for the ILC and CLIC and compare these with semi-analytical estimates and other simulations.

 
slides icon Slides  
 
WEOCC04 Recent Progress on the Diamond Amplified Photo-cathode Experiment emittance, laser, vacuum, lattice 2044
 
  • X. Chang
  • I. Ben-Zvi, A. Burrill, J. G. Grimes, T. Rao, Z. Segalov, J. Smedley
    BNL, Upton, Long Island, New York
  • Q. Wu
    IUCF, Bloomington, Indiana
  We report recent progress on the Diamond Amplified Photo-cathode (DAP). The use of a pulsed electron gun provides detailed information about the DAP physics. The secondary electron gain has been measured under various electric fields. We have achieved gains of a few hundred in the transmission mode and observed evidence of emission of electrons from the surface. A model based on recombination of electrons and holes during generation well describes the field dependence of the gain. The emittance measurement system for the DAP has been designed, constructed and is ready for use. The capsule design of the DAP is also being studied in parallel.  
slides icon Slides  
 
WEPMN005 The SSRF Booster Cavity System booster, vacuum, controls, synchrotron 2053
 
  • K. Dunkel
  • B. A. Aminov
    CRE, Wuppertal
  • J. Hottenbacher, C. Piel
    ACCEL, Bergisch Gladbach
  In February 2007 a system consisting out of two 5 cell 500MHz cavities has been delivered to SSRF to accelerate the electrons in their booster ring. The two cavities are controlled by a low level RF system, which forms part of the delivery. The paper will describe the general layout of the booster RF system and the architecture of the low level RF system controlling one amplifier and two cavities. Results of the commissioning phase will be presented and compared with expected and guaranteed values of the system.  
 
WEPMN011 Multichannel Downconverter for the Next Generation RF Field Control for VUV- and X-Ray Free Electron Lasers controls, free-electron-laser, laser, insertion 2071
 
  • M. Hoffmann
  • F. Ludwig, H. Schlarb, S. Simrock
    DESY, Hamburg
  Funding: We acknowledge financial support by DESY Hamburg and the EUROFEL project.

For pump- and probe experiments at VUV- and X-ray free-electron lasers the stability of the electron beam and timing reference must be guaranteed in phase for the injector and bunch compression section within a resolution of 0.01 degree (rms) and in amplitude within 1 10-4 (rms). The performance of the field detection and regulation of the acceleration RF critically influences the phase and amplitude stability. For the RF field control, a multichannel RF downconverter is used to detect the field vectors and control the vectorsum of 32 cavities. In this paper a new design of an 8 channel downconverter is presented. The downconverter frontend consists of a passive rf double balanced mixer input stage, intermediate filters and an integrated 16bit analog-to-digital converter (ADC). The design includes a digital motherboard for data preprocessing and communication with the controller. In addition we characterize the downconverter performance in amplitude and phase jitter, temperature drifts and channel crosstalk in laboratory environment as well as for accelerator operation.

 
 
WEPMN023 Development of 10 MW L-Band Multi-Beam Klystron (MBK) for European X-FEL Project klystron, cathode, gun, simulation 2098
 
  • Y. H. Chin
  • K. Hayashi
    TETD, Otawara
  • M. Y. Miyake, Y. Yano
    Toshiba, Yokohama
  A 10MW L-band Multi-Beam Klystron (MBK) has been developed and tested by Toshiba, Japan for the European XFEL and a future linear collider projects.? The Toshiba MBK has six low-perveance beams operated at low voltage of 115kV (for 10MW) and six ring-shaped cavities to enable a higher efficiency than a single-beam klystron for a similar power. After the successful acceptance testing at the Toshiba Nasu factory in March 2006, attended by a DESY stuff, the final acceptance test was done at DESY laboratory in June 2006. In these tests, the output power of 10.2MW, more than the design goal (10MW), has been demonstrated at the standard beam voltage of 115kV at the RF pulse length of 1.5ms and the beam pulse of 1.7ms at 10Hz. The efficiency was 66%. The robustness of the tube was also demonstrated by being operated continuously more than 24 hours above 10MW. A horizontal version of the Toshiba MBK is now under construction.  
 
WEPMN047 Electro-polished Cavities Using China Ningxia Large Grain Niobium Material vacuum, superconducting-RF, linear-collider, collider 2143
 
  • Z. G. Zong
  • F. Furuta, H. Inoue, T. Saeki, K. Saito
    KEK, Ibaraki
  • J. Gao, M. Q. Ge, Q. J. Xu, J. Y. Zhai
    IHEP Beijing, Beijing
  For the International Linear Collider (ILC), superconducting RF cavity technology was chosen. The superconducting cavity is made of polycrystalline niobium material so far. However, the material cost is high and the cavity performance has a rather scatter now. Large grain niobium (LG) cavity is an excellent idea because it simplifies the production process and results in less expensive. JLAB and DESY are pushing the R&D in last two years. KEK also has started to investigate LG. Three cavities with Ichiro shape were made of Chinese large grain niobium (Ningxia). A series of vertical tests has been carried out on several different surfaces treatment procedures by electropolishing. One cavity has reached the high gradient of more than 43 MV/m repeatedly. Other two cavities are still under testing. In this paper, the features of LG on electropolishing will be described with Ningxia large grain niobium material.  
 
WEPMN048 Measurement for the Kanthal Alloy Used for Collinear Load and S-band Load Design resonance, vacuum, emittance, linear-collider 2146
 
  • X. D. He
  • S. Dong, Y. J. Pei, C.-F. Wu
    USTC/NSRL, Hefei, Anhui
  Funding: National Nature Science Foundation No.10675116 No.10375060

We have developed the mathod to determine the permittivity and permeability of Kanthal alloy available. The alloy is coated on the inside walls of disk-loaded cavities,which is used for the collinear load. The collinear load absorbs the remaining rf-power over the last cells of the section while still accelerating the beam. Based on the experimental results of the permittivity and permeability,the computation study of the constant power-loss collinear load has been made by Microwave Studio. The design data about the S-band collinear load are present.

 
 
WEPMN056 PEFP Low-beta SRF Cavity Design linac, coupling, simulation, proton 2164
 
  • S. An
  • Y.-S. Cho, B. H. Choi, C. Gao
    KAERI, Daejon
  Funding: This work was supported by the 21C Frontier R&D program of Korea Ministry of Science and Technology.

An elliptical superconducting RF cavity of 700 MHz with βg=0.42 has been designed for the Linac of Proton Engineering Frontier Project (PEFP). A double-ring stiffening structure is used for a low-beta cavity for a Lorentz force detuning. The results of the electron multipacting analysis of the cavity are presented. A HOM analysis shows that the HOM coupler's Qext is lower than 3·10+5, thus reducing the influence of dangerous modes on the beam instabilities and the HOM-induced power.

 
 
WEPMN060 Fabrication of ICHIRO Nine-cell Cavities in PAL for STF of KEK superconductivity, focusing, cryogenics, linac 2173
 
  • I. S. Park
  • J. Choi, C. W. Chung, M.-S. Hong, W. H. Hwang, D. T. Kim, Y. C. Kim, I. S. Ko, H. C. Kwon, Y. U. Sohn
    PAL, Pohang, Kyungbuk
  • S. W. Kim, S. H. Kim, S. K. Song
    RIST, Pohang
  Funding: Korea Ministry of Science & Technology

Pohang Accelerator Laboratory has studied SRF cavity and set up SRF test laboratory from January 2006. The first activity for SRF research was to develop SRF 3rd harmonic cavity for Pohang Light Source, which was designed, fabricated and tested in 2006. The cryostat are under design. The fabrication of ICHIRO cavity, which is ILC ACD cavity, is PAL's second activity related to SRF. Deep drawing, trimming and welding by electron beam for a 9-cell ICHIRO cavity were done in PAL. The polishing processes for the RF surface including electropolishing were done in KEK under the collaboration between two institutes. This will be tested with real beam in STF-1 of KEK in second half period of 2007. This paper reports the results of fabrication of ICHIRO single- and nine-cell cavities performed in PAL.

 
 
WEPMN062 HOM Analysis and Design of its Removal System for SRF 3rd Harmonic RF Cavity in PLS storage-ring, impedance, superconducting-RF, vacuum 2179
 
  • Y. U. Sohn
  • J. Choi, M.-H. Chun, J. Y. Huang, I. S. Ko, I. S. Park
    PAL, Pohang, Kyungbuk
  Funding: Korea Ministry of Science & Technology

Pohang Accelerator Laboratory has prepared to SRF 3rd harmonic cavity to increase beam lifetime and to damp orbit instability by lengthening electron bunch in PLS. The SRF cavity was developed and its vertical test was done already with success. Higher order modes were analyzed to optimize its performance in beam orbit. Most of them are not effective to electron beam, while the others have possibility to impact orbit stability. These harmful HOMs can be removed by HOM absorber installed in beam pipe. This paper reports the HOM analysis and design of its removal system.

 
 
WEPMN078 RF Cavity Development for FFAG Application on ERLP at Daresbury impedance, klystron, linac, extraction 2209
 
  • E. Wooldridge
  • C. D. Beard, B. D. Fell, P. A. McIntosh, B. Todd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. M. Jones, B. Spencer
    UMAN, Manchester
  Funding for a non-scaling, Fixed Field Alternating Gradient (FFAG) facility has been approved for installation on the Energy Recovery Linac Prototype (ERLP) at Daresbury. The RF system specification for this project requires the development of a high efficiency, 1.3 GHz, normal conducting accelerating structure, capable of delivering the required accelerating voltage, whilst adhering to stringent space limitations imposed by the extremely compact nature of the FFAG ring. We have optimised a cavity design, providing the necessary acceleration and minimising the RF power requirements to match with commercially available power sources.  
 
WEPMN085 The Advanced Photon Source Pulsed Deflecting Cavity RF System photon, klystron, storage-ring, controls 2224
 
  • A. E. Grelick
  • A. R. Cours, N. P. Di Monte, A. Nassiri, T. Smith, G. J. Waldschmidt
    ANL, Argonne, Illinois
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The Phase I Advanced Photon Source Deflecting Cavity System for producing short X-ray pulses uses one multi-cell, S-band cavity to apply a deflecting voltage to the stored electron beam ahead of an undulator that supports a beamline utilizing short picosecond X-rays. Two additional multi-cell cavities are then used to cancel out the perturbation and redirect the electron beam along the path of its nominal orbit. The pulsed rf system driving the deflecting cavities is described. Design tradeoffs are discussed with emphasis on topology considerations and digital control loops making use of sampling technology in a manner consistent with the present state of the art.

 
 
WEPMN089 A General Model of High Gradient Limits plasma, radiation, ion, site 2236
 
  • J. Norem
  • D. Huang
    IIT, Chicago, Illinois
  • P. Stoltz, S. A. Veitzer
    Tech-X, Boulder, Colorado
  Funding: Supported by the USDOE / Office of High Energy Physics

Recent experimental work done to develop high gradient, low frequency cavities for muon cooling, has led to a model of rf breakdown and high gradient limits in warm structures. We have recently been extending this model to try to explain some superconducing rf quench mechanisms, as well as DC and dielectric breakdown. The model assumes that the dominant mechanisms in warm metal systems are fractures caused by the the electric tensile stress, and surface micro-topography that is strongly determined by the the cavity design and history*. We describe how these processes can determine all measurable parameters in warm systems. With superconducting systems, these mechanisms also apply, however field emission, impurities and temperature produce a somewhat different picture of quenching and pulsed power processing. We describe the model and some recent extensions and improvements in some detail and a variety of results accelerators and other applications.

* Hassanein et. al. Phys. Rev. STAB, 9, 062001

 
 
WEPMN092 Capture Cavity II Results at FNAL resonance, controls, linac, feedback 2245
 
  • J. Branlard
  • G. I. Cancelo, R. H. Carcagno, B. Chase, H. Edwards, R. P. Fliller, B. M. Hanna, E. R. Harms, A. Hocker, T. W. Koeth, M. J. Kucera, A. Makulski, U. Mavric, M. McGee, A. H. Paytyan, Y. M. Pischalnikov, P. S. Prieto, R. Rechenmacher, J. Reid, K. R. Treptow, N. G. Wilcer, T. J. Zmuda
    Fermilab, Batavia, Illinois
  Funding: FRA

As part of the research and development towards the International Linear Collider (ILC), several test facilities have been developed at Fermilab. This paper presents the latest LLRF results obtained with Capture Cavity II at these test facilities. The main focus will be on controls and RF operations using the SIMCON based LLRF system. Details about hardware upgrades and overall system performance will be also explained. Finally, design considerations and objectives for the future test facility at the New Muon Laboratory (NML) will be presented.

 
 
WEPMN093 Multipactor Simulations in Superconducting Cavities simulation, RF-structure, linac, radio-frequency 2248
 
  • I. G. Gonin
  • J. F. DeFord, B. Held
    STAR, Inc., Mequon, Wisconsin
  • N. Solyak
    Fermilab, Batavia, Illinois
  The multipactor (MP) is a well-known phenomenon. The existence of resonant trajectories can lead to electron avalanche under certain field level and surface conditions. In this paper we describe features of the extension of Analyst software - PT3P code developed for MP simulations in a real 3D RF structures, such as cavities, couplers, RF windows etc. Also we present the results of MP simulations in HOM couplers of TESLA, SNS β=0.61 and β=0.81 and FNAL 3-rd harmonic cavities. We discuss the comparison of simulations with experimental results.  
 
WEPMN094 Experience with Capture Cavity II resonance, vacuum, superconducting-RF, controls 2251
 
  • T. W. Koeth, T. W. Koeth
    Rutgers University, The State University of New Jersey, Piscataway, New Jersey
  • J. Branlard, H. Edwards, R. P. Fliller, E. R. Harms, A. Hocker, M. McGee, Y. M. Pischalnikov, P. S. Prieto, J. Reid
    Fermilab, Batavia, Illinois
  Funding: This work supported by Universities Research Association Inc. under contract DE-AC02-76CH00300 with the U. S. DOE.

Valuable experience in operating and maintaining superconducting RF cavities in a horizontal test module has been gained with Capture Cavity II. We report on all facets of our experience to date.

 
 
WEPMN097 A Solid State Marx Generator for TEL2 gun, shielding, antiproton, proton 2257
 
  • V. Kamerdzhiev
  • H. Pfeffer, G. W. Saewert, V. D. Shiltsev, D. Wolff
    Fermilab, Batavia, Illinois
  The solid-state Marx generator modulates the anode of the electron gun to produce the electron beam pulses in the second Tevatron Electron Lens (TEL2). It is capable of driving the 60 pf terminal with 600ns pulses of up to 6 kV with a p.r.r. of 50 kHz. The rise and fall times are 150 ns. Stangenes Industries developed the unit and is working on a second version which will go to higher voltage and have the ability to vary its output in 396 ns intervals over a 5 us pulse.  
 
WEPMN100 RF Design and Processing of a Power Coupler for Third Harmonic Superconducting Cavities vacuum, klystron, simulation, pick-up 2265
 
  • J. Li
  • E. R. Harms, T. Kubicki, D. J. Nicklaus, D. R. Olis, P. S. Prieto, J. Reid, N. Solyak
    Fermilab, Batavia, Illinois
  • T. Wong
    Illinois Institute of Technology, Chicago, Illinois
  Funding: U. S. Department of Energy

The FLASH user facility providing free electron laser radiation is built based on the TTF project at DESY. Fermilab has the responsibility for the design and processing of a third harmonic, 3.9 GHz, superconducting cavity which is powered via a coaxial power coupler. Six power couplers have been manufactured at CPI after successful design of the power coupler including RF simulation, multipacting calculation, and thermal analysis. The power couplers are being tested and processed with high pulsed power in an elaborate test stand at Fermilab now. This paper presents the RF design and processing work of the power coupler.

 
 
WEPMN119 Equilibrium Theory of an Intense Elliptic Beam for High-Power Ribbon-Beam Klystron Applications klystron, simulation, focusing, vacuum 2316
 
  • C. Chen
  • J. Z. Zhou
    MIT/PSFC, Cambridge, Massachusetts
  Funding: Research supported by US Department of Energy, Office of High-Energy Physics, Grant No. DE-FG02-95ER40919 and Air Force Office of Scientific Research, Grant No. FA9550-06-1-0269.

A concept for a high-power ribbon-beam klystron (RBK) employing a novel large-aspect ratio elliptic electron beam instead of a conventional circular electron beam is presented. Both cold-fluid and kinetic equilibrium theories are developed and applied in the design of the elliptic electron beam for the RBK. A small-signal theory is developed and applied in the design of the beam tunnel and the input, idler and output cavities. The electron gun and beam matching is being studied. Design results of a 10 MW 1.3 GHz RBK for the International Linear Collider (ILC) and of a 50 MW 22 GHz RBK for high-gradient research will be discussed.

 
 
WEPMS001 Application of Induction Module for Energy Perturbations in the University of Maryland Electron Ring induction, space-charge, simulation, impedance 2322
 
  • B. L. Beaudoin
  • S. Bernal, I. Haber, R. A. Kishek, P. G. O'Shea, M. Reiser, J. C.T. Thangaraj, K. Tian, M. Walter, C. Wu
    UMD, College Park, Maryland
  Funding: Work supported by the U. S. Department of Energy grant numbers: DE-FG02-94ER40855 and DE-FG02-92ER54178, ONR and Joint Technology Office

The University of Maryland Electron Ring (UMER) is a scaled storage ring using low-energy electrons to inexpensively model beams with high-space-charge. With the ability to inject such beams comes the problem of longitudinal end erosion of both the head and tail. It is important therefore to apply suitably designed longitudinal focusing forces to confine the beam and prevent it from its normal expansion. This paper presents the design and prototyping of an induction cell for this purpose. Successful operation of the induction cell would push the achievable number of turns and also enable us to perform studies of the longitudinal physics of such highly space-charge dominated beams. The pulsed voltage requirements for such a system on UMER would require ear-fields that switch 3kV in about 8ns or so for the most intense flat-top rectangular beam injected into the ring. This places a considerable challenge on the electronics used to deliver ideal waveforms with a compact module. Alternate waveforms are also being explored for other various injected beam shapes into UMER.

 
 
WEPMS006 High Gradient Studies for ILC with Single Cell Re-entrant Shape and Elliptical Shape Cavities made of Fine-grain and Large-grain Niobium vacuum, linear-collider, collider 2337
 
  • R. L. Geng
  • G. V. Eremeev, H. Padamsee, V. D. Shemelin
    CLASSE, Ithaca
  Funding: Work supported by DOE

Based on the encouraging results of the first 1300 MHz 70 mm aperture single cell re-entrant cavities*, we continue the high gradient studies for ILC with new re-entrant cavities made of fine-grain as well as large-grain niobium. These new cavities have smaller aperture of 60 mm, providing a further reduced Hpk/Eacc or a further improved ultimate gradient. Four 1300 MHz 60 mm aperture re-entrant cavities are made, two out of fine grain niobium and the other two out of large-grain niobium. In addition, two elliptical shape 1500 MHz cavities are also made out of large-grain niobium. We present the testing results of these cavities.

* R. L. Geng et al., PAC2005, p.653.

 
 
WEPMS007 Manufacture and Performance of Superconducting RF Cavities for Cornell ERL Injector emittance, acceleration, gun, superconducting-RF 2340
 
  • R. L. Geng
  • P. Barnes, B. Clasby, J. Kaminski, M. Liepe, V. Medjidzade, D. Meidlinger, H. Padamsee, J. Sears, V. D. Shemelin, N. Sherwood, M. Tigner
    CLASSE, Ithaca
  Funding: Work supported by NSF

Six 1300 MHz superconducting niobium 2-cell cavities are manufactured for the prototype of Cornell ERL injector to boost the energy of a high current, low emittance beam produced by a DC gun. Designed for high current beam acceleration, these cavities have new characteristics as compared to previously developed low-current cavities such as those for TTF. Precision manufacture is emphasized for a better straightness of the cavity axis so as to avoid unwanted emittance dilution. We present the manufacturing, processing and vertical test performance of these cavities. We also present the impact of new cavity characteristics to the cavity performance as learnt from vertical tests. Solutions for improving cavity performance are discussed.

 
 
WEPMS010 Surface Studies of Contaminants Generated During Electropolishing pick-up, cathode, power-supply 2346
 
  • A. V. Morgan
  • H. Padamsee
    Cornell University, Ithaca, New York
  • A. Romanenko, A. J. Windsor
    CLASSE, Ithaca
  Funding: NSF

Electropolishing is now the preferred method for chemical treatment of niobium cavity surfaces. It provides a very smooth surface and after baking accelerating fields between 35 - 40 MV/m. However the reproducibility of performance needs to be improved substantially. Some of the leading causes are related to contaminant residues after electropolishing, these include sulphur particles, niobium pentoxide particles and traces of aluminum from reaction between the aluminum cathode and the acid electrolyte. We have carried out studies to enhance the deposition of such particles so that we can isolate and study the residues. We will present analysis of these studies using optical microscopy, SEM, and Auger. In at attempt to dissolve these contaminants, we have also conducted studies on the effectiveness of various rinsing agents, such as degreasing agents, dilute HF, hydrogen peroxide.

 
 
WEPMS011 Comparative Surface Studies on Fine-grain and Single Crystal Niobium Using XPS, AES, EBSD and Profilometry superconductivity, survey, synchrotron-radiation 2349
 
  • A. Romanenko
  • G. V. Eremeev
    CLASSE, Ithaca
  • H. Padamsee, J. B. Shu
    Cornell University, Ithaca, New York
  Funding: Supported by NSF

As the surface magnetic field in niobium cavities approaches the theoretical critical field, rf losses begin to grow sensitive to increasingly subtle features of the material and the surface. A striking example is the familiar occurrence of the high-field Q-slope, where rf losses increase exponentially with field above an onset field. A surprising feature of the high-field Q slope is its positive response to mild baking at 120 C. But the Q-slope returns after the first 20 nm of the niobium metal surface is converted to loss-less pentoxide via anodization, a key feature. The latter result suggests that the cause of the fast growing losses resides in the first 20 nm of the rf surface. Although there are several propositions, the exact mechanism for the high-field Q-slope is not yet fully understood and demands further research. We are conducting surface analytic studies with XPS, SIMS, and Auger to shed light on the mechanism of the high-field Q-slope. We are comparing the behavior of fine-grain samples with single crystal samples, BCP treatments with EP treatments and properties before and after 120 C bake. We also study the effect of baking at temperatures up to 400 C.

 
 
WEPMS014 Vacuum Insulator Studies for the Dielectric Wall Accelerator vacuum, beam-transport 2358
 
  • J. R. Harris
  • D. T. Blackfield, G. J. Caporaso, Y.-J. Chen, M. Sanders
    LLNL, Livermore, California
  • M. L. Krogh
    University of Missouri - Rolla, Rolla, Missouri
  Funding: This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

As part of our ongoing development of the Dielectric Wall Accelerator, we are studying the performance of multilayer high-gradient insulators. These vacuum insulating structures are composed of thin, alternating layers of metal and dielectric, and have been shown to withstand higher gradients than conventional vacuum insulator materials. This paper describes these structures and presents some of our recent results.

 
 
WEPMS015 An Improved SF6 System for the FXR Induction Linac Blumlein Switches induction, linac, pulsed-power, controls 2361
 
  • W. J. DeHope
  • K. L. Griffin, R. Kihara, M. M. Ong, O. Ross
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the US Department of Energy by the University of California, Lawrence Livermore National Laboratory, under Contract W-7405-Eng-48.

The now-mature FXR (Flash X-Ray) radiographic facility at Lawrence Livermore National Laboratory will be briefly described with emphasis on its pulsed power system. The heart of each accelerating cell's pulse-forming Blumlein is it's sulfur hexafluoride-based triggered closing switch. FXR's recent upgrade to a recirculating SF6 gas reclamation system will be described and the resulting accelerator performance and reliability improvements documented. This was accompanied by a detailed switch breakdown study on FXR's Test Stand* and the recent analysis of the resulting statistics will be shown.

* W. DeHope, D. Goerz, R. Kihara, M. Ong, G. Vogtlin, J. Zentler, "An Induction Linac Test Stand", 21st Particle Accelerator Conference, Knoxville, TN, May 20, 2005

 
 
WEPMS016 Modeling the Pulse Line Ion Accelerator (PLIA): An Algorithm for Quasi-Static Field Solution ion, simulation, coupling, heavy-ion 2364
 
  • A. Friedman
  • R. J. Briggs
    SAIC, Alamo, California
  • D. P. Grote
    LLNL, Livermore, California
  • E. Henestroza, W. L. Waldron
    LBNL, Berkeley, California
  Funding: Work performed under auspices of U. S. DoE by the Univ. of CA, LLNL & LBNL under Contract Nos. W-7405-Eng-48 and DE-AC02-05CH11231

The Pulse-Line Ion Accelerator* (PLIA) is a helical distributed transmission line. A rising pulse applied to the upstream end appears as a moving spatial voltage ramp, on which an ion pulse can be accelerated. This is a promising approach to acceleration and longitudinal compression of an ion beam at high line charge density. In most of the studies carried out to date, using both a simple code for longitudinal beam dynamics and the Warp PIC code, a circuit model for the wave behavior was employed; in Warp, the helix I and V are source terms in elliptic equations for E and B. However, it appears possible to obtain improved fidelity using a "sheath helix" model in the quasi-static limit. Here we describe an algorithmic approach that may be used to effect such a solution.

*R. J. Briggs, PRST-AB 9, 060401 (2006).

 
 
WEPMS017 High-Power Coupler Component Test Stand Status and Results vacuum, simulation, pick-up, space-charge 2367
 
  • B. Rusnak
  • C. Adolphsen, G. B. Bowden, L. Ge, R. K. Jobe, Z. Li, B. D. McKee, C. D. Nantista, J. Tice, F. Wang
    SLAC, Menlo Park, California
  • R. Swent
    Stanford University, Stanford, Califormia
  Funding: This work was performed under the auspices of the U. S. DOE by the University of California, LLNL under Contract No. W-7405-Eng-48. SLAC Work supported under Contract No. W-7405-Eng-48.

Fundamental power couplers for superconducting accelerator applications like the ILC are complicated RF transmission line assemblies due to their having to simultaneously accommodate demanding RF power, cryogenic, and cleanliness constraints. When these couplers are RF conditioned, the observed response is an aggregate of all the parts of the coupler and the specific features that dominate the conditioning response are unknown. To better understand and characterize RF conditioning phenomena toward improving performance and reducing conditioning time, a high-power coupler component test stand has been built at SLAC. Operating at 1.3 GHz, this test stand was designed to measure the conditioning behavior of select components of the TTFIII coupler independently, including outer-conductor bellows, diameter changes, copper plating and surface preparations, and cold window geometries and coatings. A description of the test stand, the measurement approach, and a summary of the results obtained are presented.

 
 
WEPMS020 Commissioning the DARHT-II Scaled Accelerator target, kicker, emittance, simulation 2373
 
  • C. Ekdahl
  • E. O. Abeyta, P. Aragon, R. Archuleta, R. Bartsch, D. Dalmas, S. Eversole, R. J. Gallegos, J. Harrison, E. Jacquez, J. Johnson, B. T. McCuistian, N. Montoya, S. Nath, D. Oro, L. J. Rowton, M. Sanchez, R. D. Scarpetti, M. Schauer, G. J. Seitz
    LANL, Los Alamos, New Mexico
  • H. Bender, W. Broste, C. Carlson, D. Frayer, D. Johnson, A. Tipton, C.-Y. Tom
    NSTec, Los Alamos, New Mexico
  • M. E. Schulze
    SAIC, Los Alamos, New Mexico
  The DARHT-II accelerator will produce a 2-kA, 17-MeV beam in a 1600-ns pulse when completed this summer. After exiting the accelerator, the long pulse will be sliced into four short pulses by a kicker and quadrupole septum and then transported for several meters to a tantalum target for conversion to bremsstrahlung for radiography. In order to provide early tests of the kicker, septum, transport, and multi-pulse converter target we assembled a short accelerator from the first available refurbished cells, which are now capable of operating of operating at over 200 kV. This scaled accelerator was operated at ~ 8 Mev and ~1 kA, which provides a beam with approximately the same nu/gamma as the final 17-MeV, 2-kA beam, and therefore the same beam dynamics in the downstream transport. In this presentation we will show the results of beam measurements made during the commissioning of this scaled accelerator.  
 
WEPMS030 Design and Initial Testing of Omniguide Traveling-wave Tube Structures vacuum, coupling, higher-order-mode, monitoring 2403
 
  • E. I. Smirnova
  • B. E. Carlsten, L. M. Earley, W. B. Haynes
    LANL, Los Alamos, New Mexico
  Funding: This work was funded in part by the LDRD Director's Postdoctoral Fellowship, Los Alamos National Laboratory.

We propose to use the photonic band gap (PBG) structures for the construction of a traveling-wave tube (TWT) at W-band. Interest in millimeter-waves has increased in recent years due to applications in environmental monitoring and remote sensing. The development of wide-band mm-wave TWT amplifiers is underway at Los Alamos National Laboratory. A TWT would present a wide bandwidth source for remote mm-wave spectroscopy. PBG TWT structures have great potential for very large bandwidth and linear dispersion. In addition, being cheap to fabricate, the PBG structures enhance the commercial transferability of the W-band TWT technology. We employ an omniguide which is a one-dimensional version of the PBG structure representing a periodic system of concentric dielectric tubes as a slow-wave structure. A silica omniguide was designed to support a TM01-like mode with a phase velocity matching the one of a 120keV electron beam. The structure was fabricated, cold-tested and installed at our laboratory for the hot test.

 
 
WEPMS034 Mitigation of Electric Breakdown in an RF Photoinjector by Removal of Tuning Rods in High-Field Regions gun, cathode, coupling, linac 2415
 
  • A. M. Cook
  • M. P. Dunning, J. B. Rosenzweig, K. M. Serratto
    UCLA, Los Angeles, California
  • P. Frigola
    RadiaBeam, Los Angeles, California
  Funding: United States Department of Energy

The pi-mode resonant frequency of the 1.6 cell SLAC/BNL/UCLA style RF photoinjector electron gun is conventionally tuned using cylindrical copper tuning pieces that extend into the full-cell cavity through holes in the side of the gun. This design begins to fail in many versions of this popular gun design at higher voltage levels, when the cavity undergoes electric breakdown in the vicinity of the tuners. In order to remove the tuners from the region of high electric field, mitigating this problem, the full cell geometry must be changed significantly. We report on a method of accomplishing this, in which we use a mechanical device of custom design to stretch the cavity structure of an existing photoinjector in order to tune the resonant frequency up by over 2 MHz. We present results of testing the modified photoinjector in an RF test bed with both copper and magnesium cathodes, succeeding in putting approximately 8 - 10 MW of RF power into the gun. This is an improvement over the 4 MW routinely achieved in a similar gun using conventional tuning methods installed at the UCLA Neptune laboratory.

 
 
WEPMS038 RF Design of Normal Conducting Deflecting Structures for the Advanced Photon Source damping, impedance, photon, gun 2427
 
  • V. A. Dolgashev
  • M. Borland, G. J. Waldschmidt
    ANL, Argonne, Illinois
  Use of normal conducting deflecting structures for production of short x-ray pulses is now being implemented at the Advanced Photon Source (APS). The structures have to produce up to 6 MV maximum deflection per structure at a 1kHz repetition rate. At the same time, the nominal beam quality must be maintained throughout the APS ring. Following these requirements, we proposed 2815 MHz standing wave deflecting structure with heavy wakefield damping. In this paper, we discuss the design considerations and present our current results.  
 
WEPMS041 Multipacting Simulations of TTF-III Coupler Components simulation, pick-up, vacuum, linac 2436
 
  • L. Ge
  • C. Adolphsen, K. Ko, L. Lee, Z. Li, C.-K. Ng, G. L. Schussman, F. Wang
    SLAC, Menlo Park, California
  • B. Rusnak
    LLNL, Livermore, California
  Funding: This work was supported by US DOE contract No. DE-AC02-76SF00515. This work was performed under the auspices of the US DOE by the University of California, LLNL under Contract No. W-7405-Eng-48.

The TTF-III coupler adopted for the ILC baseline cavity design has shown a tendency to have long initial high power processing times. A possible cause for the long processing times is believed to be multipacting in various regions of the coupler. To understand performance limitations during high power processing, SLAC has built a flexible high-power coupler test stand. The plan is to test individual sections of the coupler, which includes the cold and warm coaxes, the cold and warm bellows, and the cold window, using the test stand to identify problematic regions. To provide insights for the high power test, detailed numerical simulations of multipacting for these sections will be performed using the 3D multipacting code Track3P. The simulation results will be compared with measurement data.

 
 
WEPMS054 45 MW, K-Band Second-Harmonic Multiplier for Testing High-Gradient Accelerator Structures coupling, gun, klystron, simulation 2466
 
  • V. P. Yakovlev
  • J. L. Hirshfield
    Omega-P, Inc., New Haven, Connecticut
  • S. Kazakov
    KEK, Ibaraki
  Funding: Research supported by the Department of Energy, Division of High Energy Physics

A relatively simple and inexpensive two-cavity 45 MW, 22.8 GHz second-harmonic multiplier is considered as an RF source for High-Gradient experiments. The design is to be based on use of an existing SLAC electron gun, such as the XL-4 gun. RF drive power would be supplied from a 50 MW SLAC klystron and modulator, and a second modulator would be used to power the gun in the multiplier. An important feature of the harmonic multiplier is TE 01 circular waveguide for output RF power extraction.

 
 
WEPMS056 High Current, Large Aperture, Low HOM, Single Crystal Nb 2.85GHz Superconducting Cavity damping, simulation, higher-order-mode, synchrotron 2472
 
  • Q. S. Shu
  • F. H. Lu, I. M. Phipps, J. L. Shi, J. T. Susta
    AMAC, Newport News, Virginia
  • R. P. Redwine, D. Wang, F. Wang
    MIT, Cambridge, Massachusetts
  Funding: Footnotes: The project was funded by the US Department of Energy under contract DE-FG02-05ER84346

There is an increasing demand for High beam Current, high Radio-Frequency (RF) power S-band cavities in existing and new accelerator projects to produce a very brilliant, broadband, teraherz coherent synchrotron radiation source (CRS). To achieve this goal, the RF cavities must be upgraded to a gap voltage of 1.5 MV in the limited space available in the machine with a high gradient superconducting cavity. At the present time there are no cavities and accessories designed to support the high beam currents of up to 100 mA and at the same time provide a high gap voltage at such a high S-band frequency. AMAC proposed a High Current, Large Aperture, Low HOM, Single Crystal Nb 2.85GHz Superconducting Cavity with high RF Power Coupler and HOM absorber device. Comprehensive simulation and optimization to determine the SRF cavity parameters to meet the requirements, provided two alternate designs for the RF input couplers, performed a detailed Higher Order Modes (HOM) analysis, and proposed an HOM absorber concept to dampen the modes exited in the cavity due to the high beam current and high bunch intensity.

 
 
WEPMS057 Innovative Modular, Multiple Power Levels, 325 MHz Spokes Cavities Power Couplers vacuum, proton, simulation, linac 2475
 
  • Q. S. Shu
  • G. F. Chen, F. H. Lu, I. M. Phipps, J. T. Susta
    AMAC, Newport News, Virginia
  • T. N. Khabiboulline, N. Solyak
    Fermilab, Batavia, Illinois
  Funding: Footnotes: The project was funded by the US Department of Energy under contract DE-FG02-05ER84346

In order to increase the protons energy up to 8 GeV in a driver Linac, the particles must be accelerated through various stages and three different power levels (25kW, 100kW and 210kW) are required for the 325 MHz Fermilab Proton Driver couplers. The problem identified by the project is that no High RF power coupler for these cavities has ever been produced using US industrial capabilities. AMAC proposed a novel resolution by development of innovative modular, multiple power levels, 325 MHz spoke cavities power couplers, which to meet three type cavities with one coupler design. The simulation and concept design are presented. The results of HFSS, MAFIA, ANSYS, and Multipacting are also discussed.

 
 
WEPMS059 Performance of the First Refurbished CEBAF Cryomodule vacuum, target, radiation, linac 2478
 
  • M. A. Drury
  • E. Daly, G. K. Davis, J. F. Fischer, C. Grenoble, W. R. Hicks, J. Hogan, K. King, R. Nichols, T. E. Plawski, J. P. Preble, T. M. Rothgeb, H. Wang
    Jefferson Lab, Newport News, Virginia
  Funding: U. S. DOE Contract No. DE-AC05-06OR23177. This manuscript has been authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.

The Thomas Jefferson National Accelerator Facility has begun a cryomodule refurbishment project. The goal of this project is robust 6 GeV, 5 pass operation of the Continuous Electron Beam Accelerator Facility (CEBAF). The scope of the project includes removing, refurbishing and replacing 10 CEBAF cryomodules at a rate of three per year. Refurbishment includes reprocessing of SRF cavities to eliminate field emission and increase the nominal gradient from the original 5 MV/m to 12.5 MV/m. New "dogleg" couplers between the cavity and helium vessel flanges will intercept secondary electrons that produce arcing on the 2 K ceramic window in the Fundamental Power Coupler (FPC). Modification of the Qext of the FPC will allow higher gradient operations. Other changes include new ceramic RF windows for the air to vacuum interface of the FPC and improvements to the mechanical tuners. Any damaged or worn components will be replaced as well. Currently, the first of the refurbished cryomodules has been installed and tested both in the Cryomodule Test Facility and in place in the North Linac of CEBAF. This paper will summarize the results of these tests.

 
 
WEPMS060 A Digital Self Excited Loop for Accelerating Cavity Field Control controls, feedback, resonance, linac 2481
 
  • C. Hovater
  • T. L. Allison, J. R. Delayen, J. Musson, T. E. Plawski
    Jefferson Lab, Newport News, Virginia
  Funding: Notice: Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.

We have developed a digital process that emulates an analog oscillator and ultimately a self excited loop (SEL) for field control. The SEL, in its analog form, has been used for many years for accelerating cavity field control. In essence the SEL uses the cavity as a resonant circuit – much like a resonant ?tank? circuit is used to build an oscillator. An oscillating resonant circuit can be forced to oscillate at different, but close, frequencies to resonance by applying a phase shift in the feedback path. This allows the circuit to be phased locked to a master reference, which is crucial for multiple cavity accelerators. For phase and amplitude control the SEL must be forced to the master reference frequency, and feedback provided for in both dimensions. The novelty of this design is in the way digital signal processing (DSP) is structured to emulate an analog system. While the digital signal processing elements are not new, to our knowledge this is the first time that the digital SEL concept has been designed and demonstrated. This paper reports on the progress of the design and implementation of the digital SEL for field control of superconducting accelerating cavities.

 
 
WEPMS062 Development of a Superconducting Connection for Niobium Cavities feedback, vacuum, superconductivity, coupling 2484
 
  • P. Kneisel
  • G. Ciovati, J. S. Sekutowicz
    Jefferson Lab, Newport News, Virginia
  • A. Matheisen, W. Singer, X. Singer
    DESY, Hamburg
  Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.

Several, partially successful attempts have been made to develop a superconducting connection between adjacent niobium cavities with the capability to carry up to 30 mT of the magnetic flux. Such a connection would be particularly of great benefit to layouts of long accelerators like ILC because it would shorten the distances between structures and therefore the total length of an accelerator with the associated cost reductions. In addition the superconducting connection would be ideal for a super-structure, two multi-cell cavities connected through a half wavelength long beam pipe providing the coupling. Two welded prototypes of super-structure have been successfully tested with the beam at DESY. The chemical treatment and water rinsing was rather complicated for these prototypes. We have engaged in a program to develop such a connection based on the Nb55Ti material. Several options are pursued such as e.g.a two-cell cavity is being used to explore the reachable magnetic flux for the TESLA like connection with a squeezed niobium gasket between the flanges. In this contribution we will report about the progress of our investigations.

 
 
WEPMS063 Preliminary Results from Prototype Niobium Cavities for the JLab Ampere-Class FEL vacuum, damping, coupling, cryogenics 2487
 
  • P. Kneisel
  • R. Bundy, G. Ciovati, W. Clemens, D. Forehand, B. Golden, S. Manning, R. Manus, R. B. Overton, R. A. Rimmer, G. Slack, L. Turlington, H. Wang
    Jefferson Lab, Newport News, Virginia
  • F. Marhauser
    JLAB, Newport News, Virginia
  Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177, and by the office of Naval Research under contract to the Department of Energy.

In a previous paper the cavity* design for an Ampere-class cryomodule was introduced. We have since fabricated a 1500 MHz version of a single cell cavity with waveguide couplers for HOM and fundamental power, attached to one end of the cavity, a 5-cell cavity made from large grain niobium without couplers and a complete 5-cell cavity from polycrystalline niobium featuring waveguide couplers on both ends. A 750 MHz single cell cavity without endgroups has also been manufactured to get some information about obtainable Q-values, gradients and multipacting behavior at lower frequency. This contribution reports on the various tests of these cavities.

* R. A.Rimmer et al.; EPAC 2006, paper MOPCH182

 
 
WEPMS071 EVIDENCE FOR FOWLER-NORDHEIM BEHAVIOR IN RF BREAKDOWN vacuum, electromagnetic-fields, ion, superconductivity 2499
 
  • M. BastaniNejad
  • M. Alsharo'a, P. M. Hanlet, R. P. Johnson, M. Kuchnir, D. J. Newsham
    Muons, Inc, Batavia
  • C. M. Ankenbrandt, A. Moretti, M. Popovic, K. Yonehara
    Fermilab, Batavia, Illinois
  • A. A. Elmustafa
    Old Dominion University, Norfolk, Virginia
  • D. M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois
  Funding: Supported in part by DOE STTR grant DE-FG02-05ER86252

Microscopic images of the surfaces of metallic electrodes used in high-pressure gas-filled 800 MHz RF cavity experiments are used to investigate the mechanism of RF breakdown. The images show evidence for melting and boiling in small regions of ~10 micron diameter on tungsten, molybdenum, and beryllium electrode surfaces. In these experiments, the dense hydrogen gas in the cavity prevents electrons or ions from being accelerated to high enough energy to participate in the breakdown process so that the only important variables are the fields and the metallic surfaces. The distributions of breakdown remnants on the electrode surfaces are compared to the maximum surface gradient E predicted by an ANSYS model of the cavity. The surface local density of spark remnants, presumably the probability of breakdown, shows a power law dependence on the maximum gradient, with E10 for tungsten and molybdenum and E7 for beryllium. This is reminiscent of Fowler-Nordheim behavior of electron emission from a cold cathode, which is explained by the quantum-mechanical penetration of a barrier that is characterized by the work function of the metal.

 
 
WEPMS076 Status of the SNS Cryomodule Test cryogenics, vacuum, radiation, linac 2511
 
  • S.-H. Kim
  • I. E. Campisi, F. Casagrande, M. T. Crofford, Y. W. Kang, Z. Kursun, D. Stout, A. V. Vassioutchenko
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy

The cryomodule tests are on going to have better understandings of physics as a whole and eventually to provide safe and reliable operation for neutron production. Some features are revealed to be interesting issues and need more attentions than expected, such as operating condition, collective effects between cavities, HOM coupler issues, end-group stability, cavity-coupler interactions, and vacuum/gas physics, waiting for more investigations. Up to now SNS cryomodules were mainly tested at 4.4 K, 10 pulse per second (pps) and 30 pps/60 pps tests are under progress. This paper presents the experiences and the observations during tests of cryomodules.

 
 
WEPMS086 Design of a 26 GHz Wakefield Power Extractor simulation, coupling, vacuum, single-bunch 2535
 
  • C.-J. Jing
  • W. Gai, F. Gao, R. Konecny
    ANL, Argonne, Illinois
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • S. Kazakov
    KEK, Ibaraki
  High frequency, high output power, and high efficiency RF sources have compelling applications in accelerators for high energy physics. The 26 GHz RF power extractor proposed in this paper provides a practical approach for generating high power RF in this particular frequency range. The extractor is designed to couple out RF power generated from the high charge electron bunch train at the Argonne Wakefield Accelerator (AWA) facility traversing dielectric loaded or corrugated waveguides. In this paper we evaluate two different techniques for extracting the beam energy at the AWA: one is based on a completely metallic corrugated waveguide and coupler; and the other is based on a dielectric lined circular waveguide and coupler. Designs for both RF power extractors will be presented including parameter optimization, the electromagnetic modeling of structures and RF couplers, and the analysis of beam dynamics.  
 
WEPMS088 Challenges Encountered during the Processing of the BNL ERL 5 Cell Accelerating Cavity linac, vacuum, radiation, site 2541
 
  • A. Burrill
  • I. Ben-Zvi, R. Calaga, H. Hahn, V. Litvinenko, G. T. McIntyre
    BNL, Upton, Long Island, New York
  • P. Kneisel, J. Mammosser, J. P. Preble, C. E. Reece, R. A. Rimmer, J. Saunders
    Jefferson Lab, Newport News, Virginia
  Funding: Work done under the auspices of the US DOE

One of the key components for the Energy Recovery Linac being built by the Electron cooling group in the Collider Accelerator Department is the 5 cell accelerating cavity which is designed to accelerate 2 MeV electrons from the gun up to 15-20 MeV, allow them to make one pass through the ring and then decelerate them back down to 2 MeV prior to sending them to the dump. This cavity was designed by BNL and fabricated by AES in Medford, NY. Following fabrication it was sent to Thomas Jefferson Lab in VA for chemical processing, testing and assembly into a string assembly suitable for shipment back to BNL and integration into the ERL. The steps involved in this processing sequence will be reviewed and the deviations from processing of similar SRF cavities will be discussed. The lessons learned from this process are documented to help future projects where the scope is different from that normally encountered.

 
 
WEPMS089 Multipacting Analysis of a Quarter Wave Choke Joint used for Insertion of a Demountable Cathode into a SRF Photoinjector cathode, gun, insertion, simulation 2544
 
  • A. Burrill
  • I. Ben-Zvi
    BNL, Upton, Long Island, New York
  • M. D. Cole, J. Rathke
    AES, Princeton, New Jersey
  • P. Kneisel, R. Manus, R. A. Rimmer
    Jefferson Lab, Newport News, Virginia
  Funding: Work done under the auspices of the US DOE.

The multipacting phenomena in accelerating structures and coaxial lines are well documented and methods of mitigating or suppressing it are understood. The multipacting that occurs in a quarter wave choke joint designed to mount a cathode insertion stalk into a superconducting RF photoinjector has been analyzed via calculations and experimental measurements and the effect of introducing multipacting suppression grooves into the structure is analyzed. Several alternative choke joint designs are analyzed and suggestions made regarding future choke joint development. Furthermore, the problems encountered in cleaning the choke joint surfaces, factors important in changes to the secondary electron yield, are discussed and evaluated. This design is being implemented on the BNL 1.3 GHz photoinjector, previously used for measurement of the quantum efficiency of bare Nb, to allow for the introduction of other cathode materials for study, and to verify the design functions properly prior to constructing our 703 MHz photoinjector with a similar choke joint design.

 
 
WEPMS090 High Average Current Low Emittance Beam Employing CW Normal Conducting Gun emittance, gun, cathode, linac 2547
 
  • X. Chang
  • I. Ben-Zvi, J. Kewisch, C. Pai
    BNL, Upton, Long Island, New York
  CW normal conducting guns usually do not achieve very high field gradient and waste much RF power at high field gradient compared to superconducting cavities. But they have less trapped modes and wakefields compared to the superconducting cavities due to their low Q. The external bucking coil can also be applied very close to the cathode to improve the beam quality. By using a low frequency gun with a recessed cathode and a carefully designed beam line we can get a high average current and a high quality beam with acceptable RF power loss on the cavity wall. This paper shows that the CW normal conducting gun can be a backup solution for those projects which need high peak and average current, low emittance electron beams such as the Relativistic Heavy Ion Collider (RHIC) e-cooling project and Energy Recovery Linac (ERL) project.  
 
WEPMS093 Gridless IOT for Accelerator Applications cathode, controls, klystron, gun 2556
 
  • C. Wilsen
  • M. F. Kirshner, R. D. Kowalczyk
    L-3, Williamsport, Pennsylvania
  The klystron is the established microwave amplifier in accelerator driver applications, enjoying high power, gain and efficiency at saturation. Disadvantages are reduced efficiency in the linear regime and large size. Building on its success in the television broadcast market, the IOT provides a compact, high efficiency alternative for emerging accelerator applications. An integral component of the IOT input cavity is a control grid, which is positioned close to the cathode, not only to enhance the electric field for emission gating at the cathode surface, but also to limit the transit angle. The latter consideration constrains the operation of these devices to the lower frequency end of the microwave spectrum. Power is limited due to grid interception. Therefore, to fully exploit the benefits provided by density modulation, i.e., high efficiency and compact size, without the consequent frequency, power, and gain limitations, an emission gating method that does not rely on a closely spaced control grid is required. The solution is the Vector amplifier, a gridless IOT based on L-3's trajectory modulation technique* and an alternative compact, low cost RF source for the ILC.

* M. F. Kirshner et al., "Apparatus and method for trajectory modulation of an electron beam," U. S. Provisional Patent Application 60/838,580, August 17, 2006. Cleared by DoD/OFOISR for public release under 07-S-0493 on January 22, 2007

 
 
THOAKI01 Advances in Large Grain/Single Crystal SC Resonators at DESY free-electron-laser, laser 2569
 
  • W. Singer
  • A. Brinkmann, A. Ermakov, J. Iversen, G. Kreps, A. Matheisen, D. Proch, D. Reschke, X. Singer, M. Spiwek, H. Wen
    DESY, Hamburg
  • P. Kneisel
    Jefferson Lab, Newport News, Virginia
  • M. Pekeler
    ACCEL, Bergisch Gladbach
  The main aim of the DESY large grain R&D program is to check whether this option is reasonable to apply for fabrication of ca. 1'000 XFEL cavities. Two aspects are being pursued. On one hand the basic material investigation, on the other hand the material availability, fabrication and preparation procedure. Several single cell large grain cavities of TESLA shape have been fabricated and tested. The best accelerating gradients of 41 MV/m was measured on electropolished cavity. First large grain nine-cell cavities worldwide have been produced under contract of DESY with ACCEL Instruments Co. All three cavities fulfil the XFEL specification already in first RF test after only BCP (Buffered Chemical Polishing) treatment and 800 degrees C annealing. Accelerating gradient of 27 - 29 MV/m was reached. A fabrication method of single crystal cavity of ILC like shape was proposed. A single cell single crystal cavity was build at the company ACCEL. Accelerating gradient of 37.5 MV/m reached after only 112 microns BCP and in situ baking 120 degrees C for 6 hrs with the quality factor higher as 2x1010. The developed method can be extended on fabrication of multi cell single crystal cavities.  
slides icon Slides  
 
THYKI02 Laser Stripping of H- beams: Theory and Experiments laser, ion, linac, proton 2582
 
  • V. V. Danilov
  • A. V. Aleksandrov, S. Assadi, W. Blokland, S. M. Cousineau, C. Deibele, W. P. Grice, S. Henderson, J. A. Holmes, Y. Liu, M. A. Plum, A. P. Shishlo, A. Webster
    ORNL, Oak Ridge, Tennessee
  • I. Nesterenko
    BINP SB RAS, Novosibirsk
  • L. Waxer
    LJW, Saint Louis
  Funding: Research sponsored by LDRD Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy under Contract No. DE-AC05-00OR22725.

Thin carbon foils are used as strippers for charge exchange injection into high intensity proton rings. However, the stripping foils become radioactive and produce uncontrolled beam loss, which is one of the main factors limiting beam power in high intensity proton rings. Recently, we presented a scheme for laser stripping an H- beam for the Spallation Neutron Source ring. First, H- atoms are converted to H0 by a magnetic field, then H0 atoms are excited from the ground state to the upper levels by a laser, and the excited states are converted to protons by a magnetic field. In this paper we report on the first successful proof-of-principle demonstration of this scheme to give high efficiency (around 90%) conversion of H- beam into protons at SNS in Oak Ridge. The experimental setup is described, and comparison of the experimental data with simulations is presented. In addition, future plans on building a practical laser stripping device are discussed.

 
slides icon Slides  
 
THOAAB01 Longitudinal Beam Parameters Study in the SNS Linac linac, simulation, emittance, ion 2608
 
  • A. Feschenko
  • A. V. Aleksandrov, S. Assadi, J. Galambos, S. Henderson
    ORNL, Oak Ridge, Tennessee
  • L. V. Kravchuk, A. A. Menshov
    RAS/INR, Moscow
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

SNS Linac utilizes several accelerating structures operating at two frequencies. CCL and SCL operate at 805 MHz while 402.5 MHz is used for RFQ and DTL. Beam transfer from the previous part of the accelerator to the subsequent one requires careful longitudinal matching to improve beam transmission and to minimize beam losses. Longitudinal beam parameters have been investigated with the help of three Bunch Shape Monitors installed in the intersegments of the first CCL Module. The results of bunch shape observations for different accelerator settings are presented. Longitudinal beam emittance has been measured and optimized. Longitudinal beam halo has been evaluated as well.

 
slides icon Slides  
 
THOAC01 ATF Extraction Line Laser-Wire System laser, extraction, photon, background 2636
 
  • L. Deacon, G. A. Blair, S. T. Boogert, A. Bosco, L. Corner, L. Deacon, N. Delerue, F. Gannaway, D. F. Howell, V. Karataev, M. Newman, A. Reichold, R. Senanayake, R. Walczak
    JAI, Egham, Surrey
  • A. Aryshev, H. Hayano, K. Kubo, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • G. E. Boorman
    Royal Holloway, University of London, Surrey
  • B. Foster
    OXFORDphysics, Oxford, Oxon
  Funding: PPARC LC-ABD Collaboration Royal Society Daiwa Foundation Commission of European Communities under the 6th Framework Programme Structuring the European Research Area, contract number RIDS-011899

The ATF extraction line laser-wire (LW) aims to achieve a micron-scale laser spot size and to verify that micron-scale beam profile measurements can be performed at the International Linear Collider beam delivery system. Recent upgrades to the LW system are presented together with recent results including the first use of the LW as a beam diagnostic tool.

 
slides icon Slides  
 
THOAC03 Measurement of the Beam's Trajectory Using the Higher Order Modes it Generates in a Superconducting Accelerating Cavity dipole, higher-order-mode, coupling, linac 2642
 
  • S. Molloy
  • N. Baboi, O. Hensler, R. Paparella, L. M. Petrosyan
    DESY, Hamburg
  • N. E. Eddy, L. Piccoli, R. Rechenmacher, M. Wendt
    Fermilab, Batavia, Illinois
  • J. C. Frisch, J. May, D. J. McCormick, M. C. Ross, T. J. Smith
    SLAC, Menlo Park, California
  • O. Napoly, C. Simon
    CEA, Gif-sur-Yvette
  Funding: US DOE Contract #DE-AC02-76SF00515

It is well known that an electron beam excites Higher Order Modes (HOMs) as it passes through an accelerating cavity~[panofsky68]. The properties of the excited signal depend not only on the cavity geometry, but on the charge and trajectory of the beam. It is, therefore, possible to use these signals as a monitor of the beam's position. Electronics were installed on all forty cavities present in the FLASH~[flashref] linac in DESY. These electronics filter out a mode known to have a strong dependence on the beam's position, and mix this down to a frequency suitable for digitisation. An analysis technique based on Singular Value Decomposition (SVD) was developed to calculate the beam's trajectory from the output of the electronics. The entire system has been integrated into the FLASH control system.

 
slides icon Slides  
 
THOAC04 RMS Emittance Measurements Using Optical Transition Radiation Interferometry at the Jefferson Lab FEL emittance, radiation, linac, diagnostics 2645
 
  • M. A. Holloway
  • S. V. Benson, W. Brock, J. L. Coleman, D. Douglas, R. Evans, P. Evtushenko, K. Jordan, D. W. Sexton
    Jefferson Lab, Newport News, Virginia
  • R. B. Fiorito, P. G. O'Shea, A. G. Shkvarunets
    UMD, College Park, Maryland
  Funding: Office of Naval Research Joint Technology Office

Optical Transition Radiation Interferometry (OTRI) has proven to be effective tool for measuring rms beam divergence. We present rms emittance measurement results of the 115 MeV energy recovery linac at the Thomas Jefferson National Laboratories Free electron Laser using OTRI. OTRI data from both near field beam images and far field angular distribution images give evidence of two spatial and angular distributions within the beam. Using the unique features of OTRI we segregate the two distributions of the beam and estimate separate rms emittance values for each component.

 
slides icon Slides  
 
THYC02 Coherent Radiation Diagnostics for Short Bunches radiation, diagnostics, synchrotron, synchrotron-radiation 2653
 
  • O. Grimm
  Electron bunches less than a few picoseconds emit lots of coherent radiation (CSR, CTR, CDR, etc.) most of which is at terahertz frequencies. This is becoming the diagnostic of choice for bunch compressors in linacs (chicanes). However, at these frequencies the transmission of the radiation can be very challenging. Signifiicant advances, with examples of real measurements at TTF2, will be described.  
slides icon Slides  
 
THOBC02 Absolute Bunch Length Measurements at the ALS by Incoherent Synchrotron Radiation Fluctuation Analysis radiation, photon, synchrotron, synchrotron-radiation 2661
 
  • F. Sannibale
  • D. Filippetto
    INFN/LNF, Frascati (Roma)
  • G. V. Stupakov
    SLAC, Menlo Park, California
  • M. S. Zolotorev
    LBNL, Berkeley, California
  Funding: This work is supported by the Director, Office of Science, High Energy Physics, U. S. Dept. of Energy under Contract no. DE-AC02-05CH1121

By analysing the pulse to pulse intensity fluctuations of the radiation emitted by a charge particle in the incoherent part of the spectrum, it is possible to extract information about the spatial distribution of the beam. At the Advanced Light Source (ALS) of the Lawrence Berkeley National Laboratory, we have developed and tested a simple scheme based on this principle that allows for the absolute measurement of the bunch length. A description of the method and the experimental results are presented.

 
slides icon Slides  
 
THIAKI03 Design and Fabrication of Superconducting Cavities for STF factory, superconducting-RF, vacuum 2674
 
  • K. Sennyu
  • H. Hara, M. Matsuoka
    MHI, Kobe
  Some superconducting cavities developed at MHI recently are introduced. The outline of 4 STF (Superconducting RF Test Facility at KEK) baseline cavities designed and fabricated by MHI are described. Some problems and some improvements in the mass production of the superconducting cavity are reported.  
slides icon Slides  
 
THIBKI01 RF Sources for the ILC klystron, cathode 2684
 
  • A. Balkcum
  • T. W. Habermann
    CPI, Palo Alto, California
  As currently envisioned, approximately 750 10 MW multiple beam klystrons (MBK) will be used to power the ILC accelerator. The critical role of the MBK to the successful operation of the machine makes it a key ILC component. The large quantity required coupled with its technical sophistication also makes it one of the more expensive individual components. CPI has manufactured a prototype MBK that was delivered to DESY in March 2005 for use on the Tesla Test Facility / European X-FEL projects*. This klystron uses six low perveance, off-axis electron beams to produce the high powers required by both the ILC and X-FEL with high efficiency and the low cathode current density loading needed for extended operational life. The large scale production and costs for this klystron were examined as part of the US ILC industrialization cost study. Design for Assembly / Design for Manufacture techniques have been considered to make the klystron more easily manufacturable and less expensive. Many of these ideas are being used in the current design effort to produce a second MBK for DESY that will be horizontally oriented and appropriate for use in the actual X-FEL tunnel.

* A. Balkcum, et al. "Operation of a 1.3 GHz Multiple Beam Klystron," Proc. of 6th IVEC, pp. 505, Noordwijk (2005).

 
slides icon Slides  
 
THIBKI02 Power Couplers for the ILC vacuum, controls, linac, pulsed-power 2685
 
  • T. A. Treado
  • S. J. Einarson
    CPI, Beverley, Massachusetts
  Power couplers are critically important components in all superconducting accelerators. Power couplers provide the vacuum and thermal interface between the superconducting cavity and the room temperature waveguide components and transmit microwaves generated by the high power klystron or IOT. Power couplers must be extraordinarily clean and reliable. CPI power couplers are manufactured to our customer?s specifications using processes which are standard to the electron device industry as well as processes which have been developed specifically for power couplers. We have developed the capability of electroplating high-RRR copper. Our high-RRR copper plating has been qualified by Cornell and DESY. We have developed the capability of applying TiN coatings to ceramic windows for multipactor suppression. Using these processes, CPI has manufactured over 50 power couplers of various designs with an additional 50 power couplers to be built this year. Our talk will focus on power couplers for the ILC. In particular, we will discuss some of the challenges to be faced during the manufacture of tens of thousands of power couplers for the ILC.  
slides icon Slides  
 
THIBKI03 Klystron Development by TETD klystron, linac, proton, controls 2688
 
  • K. Hayashi
  • M. Irikura, Y. Mitsunaka, Y. Okubo, M. Sakamoto, H. Taoka, K. Tetsuka, H. Urakata
    TETD, Otawara
  • M. Y. Miyake, Y. Yano
    Toshiba, Yokohama
  TETD (Toshiba Electron Tubes & Devices Co., LTD.) has been developing vacuum microwave devices such as klystrons, gyrotrons and input couplers in collaboration with some Japanese research institutes. This article describes recent development status of klystrons and input couplers for high-power RF accelerator systems including a 324-MHz and a 972-MHz klystrons for JARC, 1.3-GHz vertical and horizontal MBKs for DESY and a 1.3-GHz TTF-type input coupler for European XFEL. As an application to fusion experimental devices, development of a 5-GHz, 500-kW CW klystron for KSTAR and a 170-GHz quasi-CW gyrotron for ITER are also presented.  
slides icon Slides  
 
THIBKI05 European Industry's Potential Capabilities for High Power RF Systems for the Future IlC klystron, controls, site, target 2693
 
  • M. Wilcox
  Abstract to be supplied by speaker.  
slides icon Slides  
 
THPMN002 Nonlinear Dynamics of Electromagnetic Pulses in Cold Relativistic Plasmas plasma, acceleration, resonance, radiation 2707
 
  • A. Bonatto
  • R. Pakter, F. B. Rizzato
    IF-UFRGS, Porto Alegre
  Funding: CNPq, Brasil

In the present analysis we study the self consistent propagation of nonlinear electromagnetic pulses in a one dimensional relativistic electron-ion plasma, from the perspective of nonlinear dynamics. We show how a series of Hamiltonian bifurcations give rise to the electric fields which are of relevance in the subject of particle acceleration. Nonlinear coupling of plasma waves and electromagnetic pulses triggers strong chaotic dynamics which may detrap the plasma wave from the electromagnetic pulse, leading to wave breaking. Connections with results of earlier analysis are discussed.

 
 
THPMN009 Backscattering of Secondary Particles into the ILC Detectors from Beam Losses Along the Extraction Lines photon, extraction, simulation, collider 2725
 
  • O. Dadoun
  • P. Bambade
    LAL, Orsay
  At the International Linear Collider (ILC) the beams will be focused to extremely small spot sizes in order to achieve the desired luminosity. After the collision the beams must be brought to the dump with minimal losses. In spite of all the attention put into the design of the extraction line, the loss of some disrupted beam particles, beamstrahlung or synchrotron radiation photons is unavoidable. These losses will generate low-energy secondary particles, such as photons, electrons and neutron, a fraction of which can be back-scattered towards the interaction point and generate backgrounds into the detector. In this paper we present an evaluation of such backgrounds, using the BDSIM and Mokka simulations, for several presently considered ILC extraction lines and detectors.  
 
THPMN012 A 0.5 to 50 MeV Electron Linear Accelerator System dipole, beam-transport, quadrupole, bunching 2731
 
  • C. Piel
  • K. Dunkel, C. Schulz
    ACCEL, Bergisch Gladbach
  Since 1998 ACCEL delivers turn key accelerator for scientific applications. After three injector systems for synchrotron light sources have been successfully commissioned, ACCEL is currently producing a 5 to 50 MeV system for the German Metrological Institute in Braunschweig. Beside excellent beam energy qualities the accelerator has to operate in a wide energy range, delivering 1 to 100 W average beam power to the target. The paper will give a description of the system layout and related technical parameters. The status of the project and results of the factory acceptance test of some of the major components will be presented as well.  
 
THPMN016 Study of Fill Patterns for the ILC Electron Damping Ring ion, damping, simulation, ion-effects 2739
 
  • G. X. Xia
  • Eckhard. Elsen, D. Kruecker
    DESY, Hamburg
  Funding: This work is supported by the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area", contract number RIDS-011899

Ion effects are detrimental to the performance of the electron damping ring for the International Linear Collider (ILC). Irregular bunch patterns, e.g. short bunch trains with interleaved gaps, are an effective way to alleviate ion effects. In this paper, we discuss the fill patterns and their impact on the ion effects for the ILC electron damping ring.

 
 
THPMN019 Morphological Changes of Electron-beam Irradiated PMMA Surface ion, vacuum, scattering, plasma 2745
 
  • R. Nathawat
  • A. K. Kumar, Y. K. Vijay
    UOR, Jaipur
  Funding: Author are thankful to DAE-BRNS, India for financial support for research work

Atomic force microscopy (AFM) study of low energy (10 keV) electron beam irradiated Polymethylmethacrylate (PMMA)20 micron thick surface was performed. PMMA film has been used in lithography applicatiion by this technique. AFM in tapping mode has been utilized to investigate the morphological changes on the samples surface as a function of fluence. TM-AFM showed the hills of the nano size surrounded by the craters type features in all the irradiated samples. The shape and size of these features varied with fluence. The root-mean-square (rms) surface roughness of the samples changed from 2.666 nm to 5.617 nm with fluence from 2x1014 electrons/cm2 to 1x1016 electrons/cm2. It shows that roughness increases as increasing fluence.

 
 
THPMN021 Ultrafast Beam Research at the Pegasus Laboratory laser, cathode, emittance, gun 2751
 
  • P. Musumeci
  • J. Moody
    UCLA, Los Angeles, California
  The PEGASUS laboratory at the UCLA Physics Department is a photoinjector laboratory. With a new ultrafast photoinjector laser driver, the laboratory capabilities are greatly expanded. We discuss the near term scientific goals and technical solutions proposed. The marriage of ultra short laser pulse techniques and a high brightness electron source allows also the development of advanced longitudinal beam diagnostics with time-resolution comparable to the ultrashort laser probe pulse derived from the photocathode driver.  
 
THPMN022 Going Towards the Dual Energy X-Ray Radiographic System for Material Recognition Purposes linac, controls, focusing, target 2754
 
  • U. Emanuele, U. Emanuele, A. Italiano
    INFN - Gruppo Messina, S. Agata, Messina
  • L. Auditore, R. C. Barna, D. De Pasquale, D. Loria, A. Trifiro, M. Trimarchi
    Universita di Messina, Messina
  Non Destructive Testing (NDT) has become the most used technique to inspect objects in order to find manufacturing defects (quality control), investigate contents (custom control), detect damages (structural control). However, the mono-energetic NDT can only discover a density variation in the analyzed sample but in most cases no hypothesis can be done on its composition; a complete inspection of an object would require the recognition of the material composing the analyzed sample and this can be achieved by means of the dual energy x-ray radiography. In this context, the INFN Gruppo Collegato di Messina is implementing the radio-tomographic system of the Universita di Messina, based on a 5 MeV electron linac, to the aim to provide dual energy x-ray beams for material recognition purposes. A wide study has been performed to provide different electron energies acting on the linac parameters. According to a theoretical study on the x-ray transmission for two properly chosen x-ray energies, preliminary tests have been performed to evaluate the complementarity of the images obtained with the dual energy technique. Work is still in progress to improve the dual energy system.  
 
THPMN023 Study of an Electron Linac Driven X-Ray Radio-Tomographic System Response as a Function of the Electron Beam Current photon, linac, target, simulation 2757
 
  • L. Auditore, L. Auditore, R. C. Barna, D. De Pasquale, D. Loria, A. Trifiro, M. Trimarchi
    Universita di Messina, Messina
  • U. Emanuele, A. Italiano
    INFN - Gruppo Messina, S. Agata, Messina
  At the Dipartimento di Fisica, Universita di Messina, a high energy x-ray radio-tomography system driven by a 5 MeV electron linac, has been recently assembled. It has been tested and has already provided good results in inspecting heavy materials. In order to achieve good radiographic results, especially when inspecting heavy or thick materials, an enhancement of the x-ray dose at the sample position can be required and most of times this is associated to an enhancement of the grey level in the acquired image according to a linear function. Nevertheless, in the hypothesis to work at the maximum magnetron power, a variation of the x-ray dose, obtained changing the electron beam current, is associated to a variation of the electron beam energy. As a consequence, the x-ray energy spectrum varies thus influencing the response of the radio-tomographic system. This does not allow a linear correspondence between the x-ray fluence (or the electron beam current) and the image grey level. By means of MCNP-4C2 simulations, the influence of electron beam energy variations on the produced bremsstrahlung spectrum has been studied and the theoretical results have been experimentally confirmed.  
 
THPMN024 A Study for the Characterization of High QE Photocathodes cathode, emittance, photon, gun 2760
 
  • D. Sertore
  • P. Michelato, L. Monaco, C. Pagani
    INFN/LASA, Segrate (MI)
  Funding: Work supported by the European Community, contract number RII3-CT-2004-506008

Based on our experience on photocathode production, we present in this paper the results of the application of different optical diagnostic techniques on fresh and used photocathodes. These techniques allow to study effects like non uniformity, cathode aging, etc. In particular, photocathode optical parameters and QE characterization, both done at different wavelengths, give fundamentals information for the construction of a model of the photoemission process to be applied to Cs2Te photocathodes. These studies are useful for further improving key cathode features, such as its robustness and lifetime as well as to study and control the photocathodes thermal emittance.

 
 
THPMN026 C-band Linac in SCSS Prototype Accelerator of the Japanese X-FEL Project klystron, linac, acceleration, power-supply 2766
 
  • T. Inagaki
  • H. Baba, H. Matsumoto
    KEK, Ibaraki
  • A. Miura
    Nihon Koshuha Co., Ltd., Yokohama
  • S. Miura
    MHI, Hiroshima
  • T. Shintake, K. Shirasawa
    RIKEN Spring-8 Harima, Hyogo
  Funding: RIKEN-JASRI Joint-Project for SPring-8 XFEL

C-band (5712-MHz) linac is used as the main accelerator of the Japanese X-FEL facility in SPring-8. Since the C-band linac has high acceleration gradient, our 8-GeV accelerator is compact rather than a conventional S-band accelerator. The system consists of following components; two choke-mode-type 1.8-m accelerating structures, an rf pulse compressor (SLED), a 50-MW klystron, a 100-MW compact modulator, and an rf digital control system. We will use 60 to 70 units for the X-FEL accelerator. Since November 2005, we have operated two C-band units in the 250-MeV FEL prototype accelerator (SCSS). After rf conditioning, the accelerating gradient was achieved to 35-MV/m. We successfully accelerated the electron beam by this gradient of electrical field. In this presentation, we will report the detail of each component and its operation status of the SCSS prototype accelerator.

 
 
THPMN027 Status of C-band Accelerator Module in the KEKB Injector Linac linac, acceleration, positron, klystron 2769
 
  • T. Kamitani
  • T. Higo, M. Ikeda, K. Kakihara, N. Kudoh, S. Ohsawa, T. Sugimura, T. T. Takatomi, K. Yokoyama
    KEK, Ibaraki
  For future upgrade of the KEKB injector linac, components of C-band accelerator module have been developed since 2002. A prototype C-band accelerator module composed of a 50-MW klystron, an RF-pulse compressor and four 1-m long accelerating sections, has been constructed in the present S-band injector linac. It has been operated for 14 months. In a recent beam-acceleration study, it has achieved an energy gain of 151 MeV, which corresponds to an average acceleration field of 39 MV/m.  
 
THPMN029 A DC/Pulse Electron Gun with an Aperture Grid cathode, extraction, gun, simulation 2775
 
  • T. Sugimura
  • M. Ikeda, S. Ohsawa
    KEK, Ibaraki
  A new thermionic-electron gun for a high-brightness X-ray source is under development. Its extraction voltage and design current are 60 keV and 100 mA, respectively. In order to focus beams on a metal target within 1.0 x 0.1 mm2, it is required for the emittance of a beam to be small. A grid electrode is not an orthodox mesh grid but an aperture grid. An increase of the beam emittance and heat generation at a grid will be surpressed. Electrodes dimensions such as shape of Wehnelt electrode and a shape of an aperture grid are determined by the EGUN simulation and parameters were optimized. In this paper a result of beam examination will be reported.  
 
THPMN030 Enhancement of the Positron Intensity by a Tungsten Single Crystal Target at the KEKB Injector Linac target, positron, linac, vacuum 2778
 
  • T. Suwada
  • R. Chehab
    IN2P3 IPNL, Villeurbanne
  • K. Furukawa, T. Kamitani, H. Okuno, M. Satoh, T. Sugimura, K. Umemori
    KEK, Ibaraki
  • R. Hamatsu, T. Haruna, T. Sumiyoshi
    TMU, Hatioji-shi, Tokyo
  • A. Potylitsyn
    INPR, Tomsk
  • I. S. Tropin
    TPU, Tomsk
  • K. Yoshida
    SAGA, Tosu
  Funding: This work was supported by the Grant-in-Aid of Ministry of Education, Culture, Sports, Science and Technology of Japan and by the grant of Ministry of Education and Science of the Russian Federation.

A new tungsten single-crystalline positron target has been successfully employed for generation of the intense positron beam at the KEKB injector linac in September 2006. The target is composed of a tungsten single-crystal with a thickness of 10.5 mm. The positron production target is bombarded at an incident electron energy of 4 GeV, and the produced positrons are collected and accelerated up to the final injection energy of 3.5 GeV in the succeeding sections. A conventional tungsten plate with a thickness of 14 mm has been used previously, and the conversion efficiency (Ne+/Ne-), the ratio between the number of positrons (Ne+) captured in the positron capture section and the number of the incident electrons (Ne-), was 0.20 on average. By replacing the tungsten plate with the tungsten crystal, it increased to 0.25 on average. The increase of the conversion efficiency has boosted the positron intensity to its maximum since the beginning of KEKB operation in 1999. Now this new positron source is stably operating and is contributing to increasing the integrated luminosity of the KEKB B-factory.

 
 
THPMN031 Experiment of X-Ray Source by 9.4 GHz X-Band Linac for Nondestractive Testing System linac, gun, target, power-supply 2781
 
  • T. Natsui
  • M. Akemoto, S. Fukuda, T. Higo, N. Kudoh, T. T. Takatomi, M. Yoshida
    KEK, Ibaraki
  • K. Dobashi, M. Uesaka, T. Yamamoto
    UTNL, Ibaraki
  • F. Sakamoto, A. Sakumi
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken
  • E. Tanabe
    AET Japan, Inc., Kawasaki-City
  We are developing a compact X-ray source for Nondestractive Testing (NDT) system. We aim to develop a portable X-ray NDT system by 950 keV X-band linac to realize in-site inspection. Our system has 20 kV electron gun, and accelerate electron beam to 950 keV with 9.4 GHz X-band linac. RF source of this system is 250kW magnetron. Our target spot size and spatial resolution are 1mm. We adopted APS (Alternative Periodic Structure) tube of pi/2 mode for easy manufacturing. It is difficult to realize a high-shunt-impedance for low-energy-cells, which attributes to manufacturing problems. Instead, we use three pi-mode cavities there. Further, we choose the low power magnetron for small cooling system and the low voltage electron gun for small power supply. For the stability of the X-ray yield the system include the Auto Frequency Control (AFC), which detect and tune the frequency shift at the magnetron. We have also performed X-ray generation calculation by the Monte Carlo code of GEANT and EGS to confirm the X-ray source size. We are going to construct the whole system and verify it experimentally. Updated results are presented at the spot.  
 
THPMN032 Beam Generation and Acceleration Experiments of X-Band Linac and Monochromatic keV X-Ray Source of the University of Tokyo scattering, laser, gun, cathode 2784
 
  • F. Sakamoto
  • M. Akemoto, T. Higo, J. Urakawa
    KEK, Ibaraki
  • D. Ishida, N. Kaneko, H. Nose, H. Sakae, Y. Sakai
    IHI/Yokohama, Kanagawa
  • T. Natsui, Y. Taniguchi, M. Uesaka, T. Yamamoto
    UTNL, Ibaraki
  • M. Yamamoto
    Akita National College of Technology, Akita
  In the Nuclear Professional School, the University of Tokyo, we are constructing an X-band linear accelerator that consists of an X-band thermionic cathode RF gun and X-band accelerating structure. This system is considered for a compact inverse Compton scattering monochromatic X-ray source for the medical application. The injector of this system consists of the 3.5-cell coaxial RF feed coupler type X-band thermionic cathode RF gun and an alpha-magnet. The X-band accelerating structure is round detuned structure (RDS) type that developed for the future linear collider are fully adopted. So far, we have constructed the whole RF system and beam line for the X-band linac and achieved 2 MeV electron beam generation from the X-band thermionic cathode RF gun. In addition, we achieved 40 MW RF feeding to the accelerating structure. The laser system for the X-ray generation via Compton scattering was also constructed and evaluated its properties. In this presentation, we will present the details of our system and progress of beam acceleration experiment and the performance of the laser system for the Compton scattering experiment.  
 
THPMN033 Commissioning a Cartridge-Type Photocathode RF Gun System at University of Tokyo cathode, laser, gun, vacuum 2787
 
  • A. Sakumi
  • Y. Muroya, T. Ueda, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken
  We have been developing a compact-sized cartridge-type cathode exchanging system installed in BNL-type IV photocathode RF gun. We can replace a cathode without breaking the vacuum of RF gun, so that a high quantum efficiency photocathode is not surrounded by oxygen or moisture. The advantage of this system can be controlled the quality of the each cathode by making cathode plugs in a factory. Moreover we can easily change a cathode material, such as visible light driven cathode (AgOCs NaK2Sb) the high QE cathode(Cs2Te) for high brightness beam, metal cathode(Mg) for ultra-fast phenomena. Therefore we can investigate characterization of variable cathode materials in high gradient electric field of ~100MV/m. The cavity with the exchanging port and the beam trajectory is calculated by superfish and GPT, respectively. We found that the parameters of the cavity with a plug is almost same compared with normal back plate. Using this system, we can investigate the cathode material and deliver the stable electron beam by one RF gun.  
 
THPMN034 Manipulation of Electron Beam Generation with Modified Magnetic Circuit on Laser-wakefield Acceleration laser, plasma, acceleration, cathode 2790
 
  • A. Yamazaki
  • T. Hosokai, K. Kinoshita, A. Maekawa, R. Tsujii, M. Uesaka, A. G. Zhidkov
    UTNL, Ibaraki
  Electron beam injection triggered by intense ultrashort laser pulses, which is called as plasma cathode, is presented. We have studied generation of relativistic electrons by interaction between a high intensity ultra-short laser pulse and gas jet. When a static magnetic field of 0.2 T is applied, the modification of the preplasma cavity, and significant enhancement of emittance and an increase of the total charge of electron beams produced by a 12 TW, 40 fs laser pulse tightly focused in a He gas jet, were observed. And very high stability and reproducibility of the characteristics and position of well-collimated electron beams was detected. Now we are planning to experiment with a magnetic circuit that has more intense magnetic field of 1 T. The present report aims at presenting these experimental and analytical results.  
 
THPMN035 Pinpoint keV/MeV X-ray Sources for X-ray Drug Delivery System linac, radiation, laser, scattering 2793
 
  • M. Uesaka
  • F. Sakamoto, A. Sakumi
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken
  X-ray Drug Delivery System (DDS) is the most advanced radiation therapy coming after IMRT (Intensity Modulated Radiation Therapy) and IGRT (Image Guided). DDS uses advanced nano-scaled polymers which contain and deliver drug or contrast agent to cancers without side effects. Several X-ray DDS poses high-Z atoms like Pt and Au to absorb X-rays effectively and used as contrast agent for inspection. Moreover, they have radiation enhancement effect by emission of Auger electron and successive characteristic X-rays. The enhancement factor off Pt and Au is more than five. This can be used for therapy. This new modality must be very important for inspection and therapy of deep cancers. We are making use of our Compton scattering monochromatic keV X-ray source and MeV linac aspinpoint keV/MeV X-ray sources for the purpose. Physical analysis and evaluation of the contrast efficiency and radiation enhancement of the X-ray DDS are under way. Furthermore, a new compact X-band linac with a multi-beam klystron for a pinpoint X-ray source is proposed and designed. Updated research status and result are presented.  
 
THPMN036 Simulation Study on Attosecond Electron Bunch Generation emittance, linac, gun, space-charge 2796
 
  • K. Kan
  • T. Kondoh, J. Yang, Y. Yoshida
    ISIR, Osaka
  Pulse radiolysis, a stroboscopic method with an ultrashort electron bunch and an ultrashort light, is essential for the observation of ultrafast reactions. The time resolution of pulse radiolysis depends on the electron bunch length. In Osaka University, a 98-fs electron bunch was generated by using a photocathode electron linac for a development of femtosecond pulse radiolysis*. Furthermore, a sub-femtosecond/attosecond pulse radiolysis will be proposed to study the ionization and thermalization processes in attosecond time region. In order to realize such a high time resolution, the possibility of attosecond electron bunch generation based on the photocathode RF gun linac and a magnetic bunch compressor was studied. In the simulation, the bunch length growth due to charge, emittance, accelerating phase and magnetic fields were investigated to generate an attosecond electron bunch.

* J. Yang, T. Kondoh, K. Kan, T. Kozawa, Y. Yoshida and S. Tagawa: Nucl. Instrum. Methods Phys. Res., Sect. A 556 (2006) 52-56

 
 
THPMN037 Development of Compact EUV Source based on Laser Compton Scattering laser, scattering, undulator, radiation 2799
 
  • S. Kashiwagi
  • R. Kato, J. Yang
    ISIR, Osaka
  • R. Kuroda
    AIST, Tsukuba, Ibaraki
  • K. Sakaue, M. Washio
    RISE, Tokyo
  • J. Urakawa
    KEK, Ibaraki
  High-power extreme ultraviolet (EUV) source is required for next generation semiconductor lithography. We start to develop a compact EUV source in the spectral range of 13-14 nm, which is based on laser Compton scattering between a 7 MeV electron beam and a high intensity CO2 laser pulse. Electron beam is pre-bunched using two different wavelengths of laser pulses with a dispersion section of beam transport line*,**. In this conference, we describe the results of numerical study for the EUV source and a plan of test experiment generating micro-bunched electron beam.

*M. Goldstein et al., Proc. of the 27th Int. FEL conference, Stanford, California, USA (2005) pp.422-425**A. Endo, Sematic EUV source workshop, Barcelona, Spain (2006)

 
 
THPMN038 Dynamic Optical Modulation of the Electron Beam for the High Performance Intensity Modulated Radiation Therapy radiation, laser, cathode, gun 2802
 
  • T. Kondoh
  • H. Kashima, J. Yang, Y. Yoshida
    ISIR, Osaka
  Radiation therapy attracts attention as one of cancer therapies nowadays. Recently, the radiation therapy of cancer is developing to un-uniform irradiation as IMRT, for reduce dose to normal tissue and concentrate dose to cancer tissue. A photo cathode RF gun is able to generate a low emittance electron beam pulse using a laser light pulse. We thought that a photo cathode RF gun can generate intensity modulated electron beam by optical modulation at the incident optics dynamically. Because of a low emittance, the modulated electron beam pulse is able to accelerate keeping shape. Accelerated electron pulses will be converted to X-ray pulses by a metal target bremsstrahlung method or by a laser inverse Compton scattering method. For the high performance intensity modulated radiation therapy (IMRT), dynamic optical modulation of the electron beam pulse were studied using a Photo cathode RF gun LINAC. Modulated and Moving electron beam will be reported.  
 
THPMN039 Femtosecond Electron Beam Dynamics in Photocathode Accelerator gun, laser, emittance, injection 2805
 
  • J. Yang
  • K. Kan, T. Kondoh, Y. Yoshida
    ISIR, Osaka
  Ultrashort electron beams, of the order of 100 fs, are essential to reveal the hidden dynamics of intricate molecular and atomic processes in nanofabrication through experimentation such as time-resolved electron diffraction and femto-chemistry. The transverse and longitudinal dynamics of ultrashort electron beam in a photocathode linear accelerator were studied for femtosecond electron beam generation. The emittance growth and bunch length increase due to the rf and the space charge effects in the rf gun were investigated with the laser injection phase. The dependences of the emittance, bunch length and energy spread on the bunch charge were measured experimentally and compared with the theoretical simulation. The increase of the bunch length due to the space charge effect was also investigated during the bunch compression in magnetic field.  
 
THPMN040 Development of an S-band Cs2Te-Cathode RF Gun with New RF Tuners gun, cathode, vacuum, laser 2808
 
  • Y. Kamiya
  • Y. Kato, A. Murata, K. Sakaue, M. Washio
    RISE, Tokyo
  • N. Kudoh, M. Kuriki, T. T. Takatomi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • R. Kuroda
    AIST, Tsukuba, Ibaraki
  We have been studying an S-band Cs2Te-Cathode RF Gun with 1.6 cells. The new gun cavity reported in this poster has new RF tuners, which are compact and, therefore, can be attached even on the half-cell. RF balance between the full- and half-cells is adjustable by using the tuners on both cells. Compared to the existing cavity, a Helicoflex seal for half-cell adjustment is not needed for new one. This structure is expected to have advantages for gun machining, for Q factor of the cavity, and for reduction of dark current from the RF gun. The cathode is made by evaporation on a Mo plug, and the plug is attached by a load lock system. We report status of the gun development.  
 
THPMN042 Design of a 200keV High Pulse Current Electron Beam Facility cathode, vacuum, simulation, plasma 2811
 
  • G. Feng
  • Y. Hong, Y. J. Pei, X. Wang
    USTC/NSRL, Hefei, Anhui
  In the paper, design of a 200keV high pulse current electron beam facility is introduced, which is used to generate plasma by interaction between electron beam and gas. Physical parameters of the beam have been selected to satisfy the plasma experiment's need. LaB6 is chosen as cathode because of its high efficient emission and long lifetime. Temperature distribution simulation in the facility has been finished with I-deas code. Because the maximum working temperature in the system is 2400°C, grid is made of heat-resistant metal Mo. In order to get high pulse current and line shaping electron beam, shape of electrodes has been optimized. Electric field distribution in the system and process of electron beam emission have been simulated with opera-3d, which considering space charge effects. Ceramic flange's electrics and mechanics properties have also been analyzed. Metal foil window is made of titanium with 40μm thickness. Relationship between initial energy and energy loss of the electron beam has been obtained by MC simulation during passing through the window. Making of the facility has been finished and some parameters have been measured through testing experiments.  
 
THPMN047 Commissioning Scenario for L-band Electron Accelerator by PARMELA Code linac, simulation, bunching, focusing 2820
 
  • H. R. Yang
  • M.-H. Cho, S. H. Kim, S.-I. Moon, W. Namkung
    POSTECH, Pohang, Kyungbuk
  • S. D. Jang, S. J. Kwon, J.-S. Oh, S. J. Park, Y. G. Son
    PAL, Pohang, Kyungbuk
  Funding: Work supported by KAPRA and PAL

An intense L-band electron accelerator is now being installed at PAL (Pohang Accelerator Laboratory) for initial tests. It is capable of producing 10-MeV electron beams with average 30 kW. This accelerator has a diode-type E-gun, a pre-buncher cavity, and an accelerating column with the built-in bunching section. We conduct simulational study for the commissioning scenario by the PARMELA code. At first, we observe the beam position and the beam current when the beam line is misaligned under no fields. Next, turning on focusing solenoids we observe the beam position change to check the alignments of the solenoids. Finally, varying RF power and phase of the pre-buncher we observe beam energy and beam power to obtain the optimum pre-buncher condition. In this paper, we present simulational results for each step. We also present commissioning strategies based on these results.

 
 
THPMN048 Cold Test on C-band Standing-wave Accelerator coupling, bunching, linac, resonance 2823
 
  • S. H. Kim
  • M.-H. Cho, Y. M. Gil, S.-I. Moon, W. Namkung, H. R. Yang
    POSTECH, Pohang, Kyungbuk
  • J. Jang, J.-S. Oh, S. J. Park
    PAL, Pohang, Kyungbuk
  Funding: Work supported by PAL.

For a compact X-ray source, we designed a C-band standing-wave electron accelerator. It is capable of producing 4-MeV electron beams with 50-mA peak beam current. As an RF source, we use 5-GHz magnetron with duty factor of 0.08%. The accelerating structure is bi-periodic and on-axis coupled structure, operated with π/2-mode standing waves. Each cavity in the bunching and normal cell is designed by the MWS code and measured with aluminium prototype cavity. As per the dispersion relation derived from the measurement results, calibration factor obtained for the actual copper cavity.

 
 
THPMN049 Current Status of Intense L-band Electron Accelerator for Irradiation Source klystron, power-supply, linac, controls 2826
 
  • S. H. Kim
  • M.-H. Cho, W. Namkung, H. R. Yang
    POSTECH, Pohang, Kyungbuk
  • S. D. Jang, S. J. Kwon, J.-S. Oh, S. J. Park, Y. G. Son
    PAL, Pohang, Kyungbuk
  Funding: Work supported by KAPRA.

An intense L-band electron accelerator is designed and under development for CESC (Cheorwon Electron-beam Service Center) irradiation applications. It is capable of producing 10-MeV electron beams with average 30 kW. For an RF source, a Thales klystron is used with 1.3 GHz, pulsed 25 MW, and average 60 kW. The accelerator column, fabricated by IHEP in China, is operated with 2π/3 mode traveling-wave under the fully-beam-loaded condition. The modulator was fabricated with inverter power supplies. The klystron was assembled to the klystron tank with pulse transformer. The high-voltage pulse test was conducted for the klystron tube. In this paper, we present design details of the accelerator and current status.

 
 
THPMN058 Beam Dynamics Studies in the CLIC Injector Linac linac, positron, emittance, quadrupole 2838
 
  • A. Ferrari
  • A. Latina, L. Rinolfi, F. Tecker
    CERN, Geneva
  The CLIC Injector Linac has to accelerate both electron and positron main beams from 200 MeV up to 2.42 GeV prior to their injection into the pre-damping rings. Its 26 accelerating structures operate at 1.875 GHz, with a loaded gradient of 17 MV/m. A FODO lattice that wraps the accelerating structures at the beginning of the linac, followed by a succession of triplet lattices between the accelerating structures, is proposed. The large transverse emittance (9200 mm.mrad), bunch length (5 mm) and energy spread (7 MeV) of the positron beam set constraints on the linac in order to reach acceptable characteristics at 2.42 GeV for the injection into the pre-damping ring. The use of a bunch compressor at the entrance of the linac is an option in order to achieve good performance in both the longitudinal and transverse phase spaces. Tracking studies of both electron and positron beams in the linac have been performed and are presented.  
 
THPMN064 Luminosity Upgrade of CLIC-LHC ep/gp Collider collider, luminosity, photon, proton 2853
 
  • H. Aksakal
  • A. K. Ciftci, Z. Nergiz
    Ankara University, Faculty of Sciences, Tandogan/Ankara
  • D. Schulte, F. Zimmermann
    CERN, Geneva
  An energy-frontier or QCD-exploring ep and gp collider can be realized by colliding high-energy photons generated by Compton back-scattered off a CLIC electron beam, at either 75 GeV or 1.5 TeV, with protons or ions stored in the LHC. In this study we discuss a performance optimization of this type of collider by tailoring the parameters of both CLIC and LHC. An estimate of the ultimately achievable luminosity is given.  
 
THPMN065 Laser Collimation for Linear Colliders laser, collimation, linear-collider, collider 2856
 
  • H. Aksakal
  • J. Resta-Lopez
    IFIC, Valencia
  • F. Zimmermann
    CERN, Geneva
  We explore the possibility of laser-based postlinac beam collimation in future linear colliders. A laser employed as a spoiler can neither be 'destroyed' by the beam impact and nor generate collimator wake fields. In addition, the postlinac collimation section, presently the longest part of linear-collider beam delivery systems, can be shortened. In this paper, we investigate different types of laser modes for use as spoiler. Suitable laser beam parameters and modes are discussed for collimation in both CLIC and ILC.  
 
THPMN068 Beam Impact Studies on ILC Collimators radiation, linear-collider, collider, positron 2859
 
  • G. Ellwood
  • R. J.S. Greenhalgh
    STFC/RAL, Chilton, Didcot, Oxon
  Funding: CCLRC The Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area", contract number RIDS-011899.

Spoilers in the ILC Beam Delivery System are required to survive without failure a minimum of 1-2 direct impacts from each energetic electron or positron bunch of charged particles, in addition to maintaining low geometric and resistive wall wake fields. The transient shock wave resulting from rapid localised beam heating and its implications for spoiler design are studied using ANSYS. Shockwave propagation is modelled in 2 dimensions showing the effect of dilatational shockwaves striking free surfaces, producing reflected dilatational and distortional waves. The implication of these relflected waves on the damage of the collimators is also discussed.

 
 
THPMN074 The Status of the HeLiCal Contribution to the Polarised Positron Source for the International Linear Collider undulator, positron, simulation, damping 2874
 
  • D. J. Scott
  • I. R. Bailey, D. P. Barber, J. B. Dainton, L. J. Jenner
    Cockcroft Institute, Warrington, Cheshire
  • E. Baynham, T. W. Bradshaw, A. J. Brummitt, F. S. Carr, Y. Ivanyushenkov, A. J. Lintern, J. Rochford
    STFC/RAL, Chilton, Didcot, Oxon
  • A. Birch, J. A. Clarke, O. B. Malyshev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • L. I. Malysheva
    Liverpool University, Science Faculty, Liverpool
  • G. A. Moortgat-Pick
    Durham University, Durham
  The positron source for the International Linear Collider is a helical undulator-based design, which can generate unprecedented quantities of polarised positrons. The HeLiCal collaboration takes responsibility for the design and prototyping of the superconducting helical undulator, which is a highly demanding short period device with very small aperture, and also leads the start to end simulations of the polarised electrons and positrons to ensure that the high polarisation levels generated survive from the source up to the collision point. This paper will provide an update on the work of the collaboration, focusing on these two topic areas, and will also discuss future plans.  
 
THPMN085 Proposed Dark Current Studies at the Argonne Wakefield Accelerator Facility cathode, laser, gun, diagnostics 2904
 
  • S. P. Antipov
  • M. E. Conde, W. Gai, J. G. Power, Z. M. Yusof
    ANL, Argonne, Illinois
  • V. A. Dolgashev
    SLAC, Menlo Park, California
  • L. K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois
  Funding: US Department of Energy

A study of breakdown mechanism has been initiated at the Argonne Wakefield Accelerator Facility (AWA). Breakdown may include several factors such as local field enhancement, explosive electron emission, Ohmic heating, tensile stress produced by electric field, and others. The AWA is building a dedicated facility to test various models for breakdown mechanisms and to determine the roles of different factors in the breakdown. An imaging system is being put together to identify single emitters on the cathode surface. This will allow us to study dark current properties in the gun. We also plan to trigger breakdown events with a high-powered laser at various wavelengths (IR to UV). Another experimental idea follows from the recent work on a Schottky-enabled photoemission in an RF photoinjector that allows us to determine in situ the field enhancement factor on a cathode surface. Monitoring the field enhancement factor before and after can shed some light on a modification of metal surface after the breakdown.

 
 
THPMN086 Metamaterial-loaded Waveguides for Accelerator Applications simulation, radiation, dipole, higher-order-mode 2906
 
  • S. P. Antipov
  • M. E. Conde, W. Gai, R. Konecny, W. Liu, J. G. Power, Z. M. Yusof
    ANL, Argonne, Illinois
  • L. K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois
  Funding: US Department of Energy National Science Foundation grant # 0237162

Metamaterials (MTM) are artificial periodic structures made of small elements and designed to obtain specific electromagnetic properties. As long as the periodicity and the size of the elements are much smaller than the wavelength of interest, an artificial structure can be described by a permittivity and permeability, just like natural materials. Metamaterials can be customized to have the permittivity and permeability desired for a particular application. Waveguides loaded with metamaterials are of interest because the metamaterials can change the dispersion relation of the waveguide significantly. Slow backward waves, for example, can be produced in a LHM-loaded waveguide without corrugations. In this paper we present theoretical studies and computer modeling of waveguides loaded with 2D anisotropic metamaterials, including the dispersion relation for a MTM-loaded waveguide. The dispersion relation of a MTM-loaded waveguide has several interesting frequency bands which are described. It is shown theoretically that dipole mode suppression may be possible. Therefore, metamaterials can be used to suppress wakefields in accelerating structures.

 
 
THPMN091 Study on High Flux Accelerator Based Slow Positrons Source positron, target, simulation, radiation 2921
 
  • J. Long
  • S. Chemerisov, W. Gai, C. D. Jonah, W. Liu, H. Wang
    ANL, Argonne, Illinois
  This work represents a new direction in the development of linac-based high intense slow positron source. The approach is to use RF cavities to decelerate positrons (to ~100 keV) which are produced from a high-energy electron (~10 MeV) beam irradiating a heavy-metal target. In this paper, we present simulation works on the technique to decelerate the positrons to energies where techniques such as penning traps, DC deceleration or moderation can be done with high efficiency. Present techniques for decelerating positrons by thermalizing them in tungsten moderator have an efficiency of 10-3 to 10-5 slow positrons per high energy positron, so even modest success in decelerating and trapping positrons can lead to an increase in the production of low-energy positrons. The challenging aspect of this work is the broad energy and angular distribution of the positrons produced by pair-production in the heavy-metal target. We have explored the use of an adiabatic-matching device and a pillbox RF cavity and have obtained promising results.  
 
THPMN098 Modeling and Design of the ILC Test Area Beam Absorbers at Fermilab shielding, simulation, controls, vacuum 2939
 
  • M. Church
  • A. Z. Chen, N. V. Mokhov, S. Nagaitsev, N. Nakao
    Fermilab, Batavia, Illinois
  Detailed MARS15 simulations have been performed on energy deposition and shielding of the proposed ILC Test Area absorbers to deal with up to 50 kW of 800 MeV electron beam power and provide unlimited occupancy conditions in the hall. ANSYS analysis based on the calculated energy deposition maps confirms robustness of the proposed design of the absorbers and beam windows for normal operation and for various failure modes. A non-trivial shielding solution was found for the entire region housing the main and single-bunch absorbers.  
 
THPMN099 Plans for a 750 MeV Electron Beam Test Facility at Fermilab acceleration, gun, diagnostics, controls 2942
 
  • M. Church
  • S. Nagaitsev, P. Piot
    Fermilab, Batavia, Illinois
  A 750 MeV electron beam test facility at Fermilab is in the planning and early construction phase. An existing building is being converted for this facility. The photoinjector currently in use at the Fermilab NICADD Photoinjector Laboratory (FNPL) will be moved to the new facility and upgraded to serve as an injector for a beam acceleration section consisting of 3 Tesla or ILC-type cryomodules. A low energy off-axis beam will be constructed to test ILC crab cavity designs and provide opportunities for other tests. Downstream beamlines will consist of a diagnostic section, a beam test area for additional beam experiments, and a high power beam dump. The initial program for this facility will concentrate on testing ILC-type cryomodules and RF control with full ILC beam intensity. A future building expansion will open up further possibiliities for beam physics and beam technology experiments.  
 
THPMN100 Suppression of Muon Backgrounds Generated in the ILC Beam Delivery System background, positron, simulation, beam-losses 2945
 
  • A. I. Drozhdin
  • L. Keller
    SLAC, Menlo Park, California
  • N. V. Mokhov, N. Nakao, S. I. Striganov
    Fermilab, Batavia, Illinois
  Particle fluxes generated from the interactions of beam halo with the collimators in the ILC Beam Delivery System (BDS) can exceed tolerable levels for the collider detectors and create hostile radiation environment in the interaction region. Thorough analysis of the BDS model, beam loss patterns, driving geometry factors and physics processes along with verification of the simulation codes were performed for the current ILC BDS layout with 250-GeV electron and positron beams crossing at 14 mrad with a push-pull detector option. Muon flux reduction by distributed toroids (doughnut-type spoilers) in comparison with magnetic iron walls filling the BDS tunnel are calculated and analysed in great detail. Shielding conditions which allow occupancy of the interaction region while the full power beam is on the linac tuneup dump are also studied.  
 
THPMN112 Colliding Pulse Injection Experiments in Non-Collinear Geometry for Controlled Laser Plasma Wakefield Acceleration of Electrons plasma, injection, laser, collider 2975
 
  • C. Toth
  • D. L. Bruhwiler, J. R. Cary
    Tech-X, Boulder, Colorado
  • E. Esarey, C. G.R. Geddes, W. Leemans, K. Nakamura, D. Panasenko, C. B. Schroeder
    LBNL, Berkeley, California
  Funding: Supported by DOE grant DE-AC02-05CH11231, DARPA, and and INCITE computational grant.

Colliding laser pulses* have been proposed as a method for controlling injection of electrons into a laser wakefield accelerator (LWFA) and hence producing high quality relativistic electron beams with energy spread below 1% and normalized emittances below 1 micron. The original proposal relied on three coaxial pulsesI. One pulse excites a plasma wake, and a collinear pulse following behind it collides with a counterpropagating pulse forming a beat pattern that boosts background electrons into accelerating phase. A variation of this method uses only two laser pulses** which may be non-collinear. The first pulse drives the wake, and beating of the trailing edge of this pulse with the colliding pulse injects electrons. Non-collinear injection avoids optical elements on the electron beam path (avoiding emittance growth). We report on progress of non-collinear experiments at LBNL, using the Ti:Sapphire laser at the LOASIS facility of LBNL. Preliminary results indicate that electron beam properties are affected by the second beam. Details of the experiment will be presented.

* E. Esarey, et al, Phys. Rev. Lett 79, 2682 (1997).** G. Fubiani, Phys. Rev. E 70, 016402 (2004).

 
 
THPMN113 Performance of Capillary Discharge Guided Laser Plasma Wakefield Accelerator laser, plasma, beam-loading, simulation 2978
 
  • K. Nakamura
  • E. Esarey, C. G.R. Geddes, A. J. Gonsalves, W. Leemans, D. Panasenko, C. B. Schroeder, C. Toth
    LBNL, Berkeley, California
  • S. M. Hooker
    OXFORDphysics, Oxford, Oxon
  Funding: This work is supported by US DoE office of High Energy Physics under contract DE-AC02-05CH11231 and DARPA.

A GeV-class laser-driven plasma-based wakefield accelerator has been realized at the Lawrence Berkeley National Laboratory (LBNL). The device consists of a 100 TW-class high repetition rate Ti:sapphire LOASIS laser system of LBNL and a gas-filled capillary discharge waveguide developed at Oxford University. Results will be presented on the generation of GeV-class electron beams with a 3.3 cm long preformed plasma channel. The use of a discharge-based waveguide permitted operation at an order of magnitude lower density and 15 times longer distance than in previous experiments that relied on laser-preformed plasma channels. Laser pulses with peak power ranging from 10-50 TW were guided over more than 20 Rayleigh ranges and high-quality electron beams with energy up to 1 GeV were obtained. The dependence of the electron beam characteristics on plasma channel properties and laser parameters are discussed.

 
 
THPMN114 Recent Progress at LBNL on Characterization of Laser Wakefield Accelerated Electron Bunches Using Coherent Transition Radiation plasma, radiation, laser, injection 2981
 
  • W. Leemans
  • E. Esarey, C. G.R. Geddes, N. H. Matlis, G. R.D. Plateau, C. B. Schroeder, C. Toth, J. Van Tilborg
    LBNL, Berkeley, California
  Funding: Work supported by US DoE Office of High Energy Physics under contract DE-AC03-76SF0098 and DARPA.

At LBNL, laser wakefield accelerators (LWFA) now produce ultra-short electron bunches with energies up to 1 GeV[1]. As femtosecond electron bunches exit the plasma they radiate a strong burst in the terahertz range[2,3], via coherent transition radiation (CTR). Measuring the CTR properties allows non-invasive bunch-length diagnostics[4], a key to continuing rapid advance in LWFA technology. In addition, this method of CTR generation provides very high peak power that can lead novel THz-based applications. Experimental bunch length characterizations through electro-optic sampling as well as bolometric analysis are presented. Measurements demonstrate both the shot-by-shot stability of bunch parameters, and femtosecond synchronization between bunch, THz pulse, and laser beam.

[1] W. P. Leemans et al., Nature Physics 2, 696(2006)[2] W. P. Leemans et al., PRL 91, 074802(2003)[3] C. B. Schroeder et al., PRE 69, 016501(2004)[4] J. van Tilborg et al., PRL 96, 014801(2006)

 
 
THPMN117 Design of a VHF-band RF Photoinjector with MegaHertz Beam Repetition Rate cathode, emittance, gun, ion 2990
 
  • J. W. Staples
  • K. M. Baptiste, J. N. Corlett, S. Kwiatkowski, S. M. Lidia, J. Qiang, F. Sannibale, K. G. Sonnad, S. P. Virostek, R. P. Wells
    LBNL, Berkeley, California
  Funding: This work is supported by the Director, Office of Science, High Energy Physics, U. S. Dept. of Energy under Contract no. DE-AC02-05CH1121

New generation accelerator-based X-ray light sources require high quality beams with high average brightness. Normal conducting L- and S-band photoinjectors are limited in repetition rate and D-C (photo)injectors are limited in field strength at the cathode. We propose a low frequency normal-conducting cavity, operating at 50 to 100 MHz CW, to provide beam bunches at a rate of one MegaHertz or more. The photoinjector uses a re-entrant cavity structure, requiring less than 100 kW CW, with a peak wall power density less than 10 W/cm2. The cavity will support a vacuum down to 10 picoTorr, with a load-lock mechanism for easy replacement of photocathodes. The photocathode can be embedded in a magnetic field to provide correlations useful for flat beam generation. Beam dynamics simulations indicate that normalized emittances on the order of 1 mm-mrad are possible with gap voltage of 750 kV, with fields up to 20 MV/m at the photocathode, for 1 nanocoulomb charge per bunch after acceleration and emittance compensation. Long-bunch operation (10's of picosecond) is made possible by the low cavity frequency, permitting low bunch current at the 750 kV gap voltage.

 
 
THPMN118 Modelling of E-cloud Build-up in Grooved Vacuum Chambers Using POSINST simulation, vacuum, dipole, accumulation 2993
 
  • M. Venturini
  • M. A. Furman, J.-L. Vay
    LBNL, Berkeley, California
  • M. T.F. Pivi
    SLAC, Menlo Park, California
  Funding: Work supported by DOE contract No. DE-AC02-05CH11231

Electron cloud build-up and related beam instabilities are a serious concern for the positron damping ring of the International Linear Collider (ILC). To mitigate the effect use of grooved vacuum-chamber walls is being actively investigated in addition to more conventional techniques like surface coating, scrubbing, and/or conditioning. Experimental and simulation studies have characterized the effectiveness of the grooved surface by means of an effective secondary emission yield (SEY), which has been measured to be significantly lower than the SEY of a smooth surface of the same material. However, some inconsistencies of the results, and the need to model the experimental testing of the grooved surface concept in more detail, have motivated us to simulate the grooved surfaces directly. Specifically, we have augmented the code POSINST by adding the option to simulate the electron-cloud build-up in the presence of a grooved surface geometry. By computing the accumulated e-cloud density and comparing it with the same quantity computed for a smooth surface, we infer an effective SEY, and we thereby make contact with the effective SEY estimates obtained from previous studies.

 
 
THPMS001 An Ideal Circular Charged-Particle Beam System simulation, cathode, focusing, ion 2999
 
  • T. Bemis
  • R. Bhatt, C. Chen, J. Z. Zhou
    MIT/PSFC, Cambridge, Massachusetts
  Funding: Research at Massachusetts Institute of Technology was supported by DOE, Office of High-Energy Physics, Grant No. DE-FG02-95ER40919 and AFOSR, Grant No. FA9550-06-1-0269.

A theory is presented for the design of an ideal non-relativistic circular beam system including a charged-particle emitting diode, a diode aperture, a circular beam tunnel, and a focusing magnetic field that matches the beam from the emitter to the beam tunnel. The magnetic field is determined by balancing the forces throughout the gun and transport sections of the beam system. OMNITRAK simulations are performed, validating theory. As applications, a circular electron beam system is discussed for space-charge-dominated beam experiments such as the University of Maryland Electron Ring (UMER), and a circular ion beam system is discussed for high energy density physics (HEDP) research.

 
 
THPMS010 Polarized Pulsed Beam Source for Electron Microscopy cathode, laser, vacuum, simulation 3011
 
  • N. Vinogradov
  • C. L. Bohn, P. Piot
    Northern Illinois University, DeKalb, Illinois
  • J. W. Lewellen, J. Noonan
    ANL, Argonne, Illinois
  A novel source of polarized pulsed electron beam is discussed. Unlike conventional devices based either on a thermionic cathodes or field-emission needle cathodes, in this source the electrons are produced by a laser beam hitting the cathode surface. Using a combination of gallium arsenide (GaAs) planar cathode and a suitable laser one can obtain a polarized picosecond electron bunch. Numerical simulations of the electron dynamics in the optimized cathode-anode geometry have shown that the beam with initial transverse size of a few mm can be focused down to 1 mm RMS at a distance of about 4 cm from the cathode. The suggested source can be installed instead of a tungsten filament source in an existing electron microscope with no modification of any column elements. The main advantages of this approach are that the beam can be easily pulsed, the beam is polarized which makes it an effective probe of some magnetic phenomena, and the laser can be used to provide larger beam intensity. The design of the source and subsequent fabrication has been completed. The paper presents numerical studies, conceptual design of the device, and results of beam measurements.  
 
THPMS011 Design Considerations and Modeling Results for ILC Damping Ring Wigglers Based on the CESR-c Superconducting Wiggler wiggler, damping, linear-collider, collider 3014
 
  • J. A. Crittenden
  • M. A. Palmer, J. T. Urban
    CLASSE, Ithaca
  Funding: Funding provided by NSF grant PHY-0202078

The ILC damping rings require wiggler magnets with large physical aperture and with excellent field quality to maintain the dynamic aperture of the rings. We consider two possible designs derived from the wigglers presently in operation at the Cornell Electron Storage Ring. Design optimization has been performed based on detailed tracking calculations of dynamic aperture and tune footprint in a full model of the damping ring. Results of finite-element modeling, transfer functions, and the accuracy of analytic models of the wiggler field will be discussed.

 
 
THPMS012 Collection Optics for ILC Positron Target target, positron, undulator, optics 3017
 
  • A. A. Mikhailichenko
  Funding: NSF

We are considering the implementation of a Lithium lens and SC solenoidal lens for collection of positrons in ILC undulator-based source. Such a lens installed right after the thin target, which is illuminated by gamma quants from helical undulator.

 
 
THPMS015 Observation of Multi-GeV Breakdown Thresholds in Dielectric Wakefield Structures laser, radiation, alignment, simulation 3026
 
  • M. C. Thompson, H. Badakov, J. B. Rosenzweig, M. C. Thompson, G. Travish
    UCLA, Los Angeles, California
  • M. J. Hogan, R. Ischebeck, N. A. Kirby, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • P. Muggli
    USC, Los Angeles, California
  • A. Scott
    UCSB, Santa Barbara, California
  • R. B. Yoder
    Manhattan College, Riverdale, New York
  Funding: This work was performed under the auspices of the US Department of Energy under Contracts No. DE-FG03-92ER40693, DE-AC02-76SF00515, W-7405-ENG-48, and DE-FG02-92-ER40745.

The breakdown threshold of a dielectric subjected to the GV/m-scale electric-fields of an intense electron-beam has been measured. In this experiment at the Final Focus Test Beam (FFTB) facility, the 30 GeV SLAC electron beam was focused down and propagated through short fused-silica capillary-tubes with internal diameters of as little as 100 microns. The electric field at the inner surface of the tubes was varied from about 1 GV/m to 22 GV/m by adjusting the longitudinal compression of the electron bunch. The onset of breakdown, as indicated by a bright discharge, was found to correlate to a surface field of about 4 GV/m. An analysis of the damage sustained to the beam-exposed fibers, and its correlation to field amplitude, is also reported.

 
 
THPMS016 A Large-Format Imaging Optics System for Fast Neutron Radiography optics, focusing, target, diagnostics 3029
 
  • B. Rusnak
  • P. Fitsos, M. Hall, M. Jong, R. Souza
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

As part of the ongoing development of fast neutron imaging technology for national secu-rity applications at LLNL, a large-format imaging optics system has been designed and built. The system will be used to acquire radiographic images of heavily-shielded low-Z objects irradiated by ~ 10 MeV neutrons and is expected to have an ultimate spatial resolution ~ 1 mm (FWHM). It is comprised of a 65 cm x 65 cm plastic scintillator (e.g. BC-408), an aluminized front-surface turning mirror and a fast (~ f/1.25) optical lens coupled to a CCD camera body with a cryo-cooled, back-illuminated 4096 x 4096 (15 micron) pixel sensor. The lens and camera were developed and purchased from vendors and system integration was done at LLNL. A description of the overall system and its initial performance characteristics shall be presented.

 
 
THPMS018 High Average Current Betatrons for Industrial and Security Applications betatron, acceleration, focusing, injection 3035
 
  • S. Boucher
  • R. B. Agustsson, P. Frigola, A. Y. Murokh, M. Ruelas
    RadiaBeam, Los Angeles, California
  • F. H. O'Shea, J. B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
  Funding: DOE Grant DE-FG02-04ER84051

The fixed-field alternating-gradient (FFAG) betatron has emerged as a viable alternative to RF linacs as a source of high-energy radiation for industrial and security applications. For industrial applications, high average currents at modest relativistic electron beam energies, typically in the 5 to 10 MeV range, are desired for medical product sterilization, food irradiation and materials processing. For security applications, high power x-rays in the 3 to 20 MeV range are needed for rapid screening of cargo containers and vehicles. In a FFAG betatron, high-power output is possible due to high duty factor and fast acceleration cycle: electrons are injected and accelerated in a quasi-CW mode while being confined and focused in the fixed-field alternating-gradient lattice. The beam is accelerated via magnetic induction from a betatron core made with modern low-loss magnetic materials. Here we present the design and status of a prototype FFAG betatron, called the Radiatron, as well as future prospects for these machines.

 
 
THPMS020 Beam-Driven Dielectric Wakefield Accelerating Structure as a THz Radiation Source radiation, dipole, simulation, permanent-magnet 3041
 
  • A. M. Cook
  • H. Badakov, R. J. England, J. B. Rosenzweig, R. Tikhoplav, G. Travish, O. Williams
    UCLA, Los Angeles, California
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • M. C. Thompson
    LLNL, Livermore, California
  Funding: United States Department of Energy

Experimental work is planned to study the performance of a beam-driven cylindrical dielectric wakefield accelerating structure as a source of THz coherent Cerenkov radiation. For an appropriate choice of dielectric tube geometry and driving electron bunch parameters, the device operates in a single-mode regime, producing narrow-band radiation in the THz range. This source can potentially produce high power levels relative to currently available sources, with ~50 μJ radiated energy per pulse achievable using the electron beam currently in operation at the Neptune Advanced Accelerator Research Laboratory at UCLA (~13 MeV beam energy, ~200 μm RMS bunch length, ~500 pC bunch charge). Preparations underway for installation of the experiment are discussed.

 
 
THPMS021 Optimum Electron Bunch Creation in a Photoinjector Using Space Charge Expansion emittance, simulation, laser, space-charge 3044
 
  • J. B. Rosenzweig
  • M. Bellaveglia, M. Boscolo, G. Di Pirro, M. Ferrario, D. Filippetto, G. Gatti, L. Palumbo, C. Vicario
    INFN/LNF, Frascati (Roma)
  • L. Catani, A. Cianchi
    INFN-Roma II, Roma
  • A. M. Cook, M. P. Dunning, R. J. England, P. Musumeci
    UCLA, Los Angeles, California
  • S. M. Jones
    Jet Propulsion Laboratory, Pasadena, California
  Recent studies have shown that by illuminating a photocathode with an ultra-short laser pulse of appropriate transverse profile, a uniform density, ellipsoidally shaped electron bunch can be dynamically formed. Linear space-charge fields then exist in all dimensions inside of the bunch, which minimizes emittance growth. Here we study this process, and its marriage to the standard emittance compensation scenario that is implemented in most modern photoinjectors. We show that the two processes are compatible, with simulations indicating that a very high brightness beam can be obtained. An initial time-resolved experiment has been performed at the SPARC injector in Frascati, involving Cerenkov radiation produced at an aerogel. We discuss the results of this preliminary experiment, as well as plans for future experiments to resolve the ellipsoidal bunch shape at low energy. Future measurements at high energy based on fs resolution RF sweepers are also discussed.  
 
THPMS023 Designing LWFA in the Blowout Regime laser, plasma, acceleration, injection 3050
 
  • W. Lu
  • S. Fonseca, L. O. Silva, J. H. Vieira
    Instituto Superior Tecnico, Lisbon
  • C. Joshi, W. B. Mori, F. S. Tsung, M. Tzoufras
    UCLA, Los Angeles, California
  Funding: This work was supported by DOE and NSF under grant Nos. DE-FG03-92ER40727, DE-FC02-01ER41179, DE-FG02-03ER54721, and NSF-Phy-0321345.

The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than that in current accelerators has been well documented. We develop a phenomenological framework for Laser Wakefield Acceleration (LWFA) in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. This theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels). Based on this theory, we will present scenarios on how to build a single stage accelerator with output energies from GeV to TeV. Particle-In-Cell (PIC) simulations are used to verify our theory. This work was supported by DOE and NSF under grant Nos. DE-FG03-92ER40727, DE-FC02-01ER41179, DE-FG02-03ER54721, and NSF-Phy-0321345.

 
 
THPMS024 Experimental Investigation of Self-guiding using a Matched Laser Beam in a cm Scale Length Underdense Plasma plasma, laser, diagnostics, simulation 3052
 
  • J. E. Ralph
  • C. E. Clayton, F. Fang, C. Joshi, K. A. Marsh, A. E. Pak
    UCLA, Los Angeles, California
  Funding: This work was supported by NNSA Grant no. DE-FG52- 03NA00138, and DOE Grant no. DE-FG02-92ER40727.

High-intensity short-pulse laser guiding in plasma channels has extended the length over which acceleration occurs in laser wake field accelerators*. Recent multidimensional nonlinear plasma wave theory predicts a range of optimal characteristics for self-guiding of laser pulses in the blowout regime for pulses shorter than a plasma wavelength**. This theory predicts a robust, stable parameter space for self-guiding and wake production and has been verified through multidimensional particle-in-cell simulations. We experimentally explore the plasma dynamics and laser pulse propagation using a 50 fs multi-terawatt Ti:Sapphire laser in a helium plasma at plasma densities, laser powers, and spot sizes within this parameter space. Our parameters are in the range where the plasma is underdense and the laser power is much greater than the critical power for self focusing. The evolution of the laser pulse and plasma channel will be followed over several Rayleigh lengths.

* C. Geddes et. al., Nature (London) 431, 538 (2004)** W. Lu et. al., Phys. Plasmas 13, 056709 (2006)

 
 
THPMS026 The UCLA Helical Permanent-Magnet Inverse Free Electron Laser undulator, laser, simulation, permanent-magnet 3055
 
  • R. Tikhoplav
  • J. T. Frederico, G. Reed, J. B. Rosenzweig, S. Tochitsky, G. Travish
    UCLA, Los Angeles, California
  • G. Gatti
    INFN/LNF, Frascati (Roma)
  The Inverse Free Electron Laser (IFEL) is capable, in principle, of reaching accelerating gradients of up to 1 GV/m making it a prospective accelerator scheme for linear colliders. The Neptune IFEL at UCLA utilizes a 15 MeV Photoinjector-generated electron beam of 0.5 nC and a CO2 laser with peak energy of up to 100 J, and will be able to accelerate electrons to 100 MeV over an 80 cm long, novel helical permanent-magnet undulator. Past IFELs have been limited in their average accelerating gradient due to the Gouy phase shift caused by tight focusing of the drive laser. Here, laser guiding is implemented via an innovative Open Iris-Loaded Waveguide Structure scheme which ensures that the laser mode size and wave front are conserved through the undulator. The results of the first phase of the experiment are discussed in this paper, including the design and construction of a short micro-bunching undulator, testing of the OILS waveguide, as well as the results of corresponding simulations.  
 
THPMS027 Dielectric Wakefield Accelerator Experiments at the SABER Facility acceleration, simulation, radiation, emittance 3058
 
  • G. Travish
  • H. Badakov, A. M. Cook, J. B. Rosenzweig, R. Tikhoplav
    UCLA, Los Angeles, California
  • M. K. Berry, I. Blumenfeld, F.-J. Decker, M. J. Hogan, R. Ischebeck, R. H. Iverson, N. A. Kirby, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • P. Muggli
    USC, Los Angeles, California
  • M. C. Thompson
    LLNL, Livermore, California
  Funding: Work supported in part by Department of Energy contracts DE-AC02-76SF00515, DE-FG02-92-ER40745, DE-FG03-92ER40693 and W-7405-ENG-48

Electron bunches with the unparalleled combination of high charge, low emittances, and short time duration, as first produced at the SLAC FFTB, are foreseen to be produced soon at the SABER facility. These types of bunches have enabled wakefield driven accelerating schemes of >10 GV/m. In the context of the Dielectric Wakefield Accelerators (DWA) such beams, having rms bunch length as short as 20 um, have been used to drive 100 μm and 200 μm ID hollow tubes above 20 GV/m surface fields. These FFTB tests enabled the measurement of a breakdown threshold in excess of 4 GV/m (2 GV/m accelerating field) in fused silica. With the construction and commissioning of the SABER facility at SLAC, new experiments are made possible to test further aspects of DWAs including materials, tube geometrical variations, direct measurements of the Cerenkov fields, and proof of acceleration in tubes >10 cm in length. The E169 collaboration will investigate breakdown thresholds and accelerating fields in new materials including CVD diamond. Here we describe the experimental plans, beam parameters, simulations, and progress to date as well as future prospects for machines based of DWA structures.

 
 
THPMS028 The Physical Picture of Beam Loading in the Blowout Regime plasma, beam-loading, laser, simulation 3061
 
  • M. Tzoufras
  • S. Fonseca, L. O. Silva, J. H. Vieira
    Instituto Superior Tecnico, Lisbon
  • C. Huang, W. Lu, W. B. Mori, F. S. Tsung
    UCLA, Los Angeles, California
  Funding: This work is supported by DOE and NSF under grant Nos. DE-FG03-92ER40727, DE-FC02-01ER41179, DE-FG02-03ER54721, and NSF-Phy-0321345.

The realization of high quality LWFA-produced electron beams requires laser pulses that remain focused for distances exceeding the Rayleigh length. It is often thought that a short pulse laser cannot be self-guided and some form of external optical guiding is needed. As short pulse lasers with higher power are rapidly coming online to test the LWFA concept it is vital to understand the nature of their propagation through centimeters of plasma. We argue that a degree of self-guiding is possible for short ultra-intense pulses that have been shown to lead to complete ponderomotive expulsion of plasma electrons. Furthermore, the generation of a high quality electron beam requires proper loading of the wake. We have developed a theoretical framework which predicts the maximum number of electrons which can be loaded in the wake, as well as the optimal charge density profile for beam loading. Using the PIC codes OSIRIS and QuickPIC we present designs of LWFA accelerators that verify our theoretical estimates as well as demonstrate the potential of LWFA to produce high energy electron beams with high beam quality.

 
 
THPMS030 Mitigation of Ion Motion in Future Plasma Wakefield Accelerators ion, plasma, emittance, focusing 3067
 
  • R. Gholizadeh
  • T. C. Katsouleas, P. Muggli
    USC, Los Angeles, California
  • W. B. Mori
    UCLA, Los Angeles, California
  Funding: DoE contract # DE-FG02-92-ER40745

Simulation and analysis of the ion motion and multiple ionization in a plasma wakefield accelerator is presented for the parameters required of a future ILC afterburner. We show that although ion motion leads to substantial emittance growth for extreme parameters of future colliders in the sub-micron spot size regime, several factors that can mitigate the effect are explored. These include sunchrotron damping, plasma density gradient and hot plasma.

 
 
THPMS031 Plasma Wakefield Acceleration Utilizing Multiple Electron Bunches plasma, single-bunch, acceleration, linac 3070
 
  • E. K. Kallos
  • T. C. Katsouleas, P. Muggli
    USC, Los Angeles, California
  • W. D. Kimura
    STI, Washington
  • P. I. Pavlishin, I. Pogorelsky, D. Stolyarov, V. Yakimenko
    BNL, Upton, Long Island, New York
  Funding: DoE contract # DE-FG02-92-ER40745

We investigate various plasma wakefield accelerator schemes that rely on multiple electron bunches to drive a large amplitude plasma wave, which are followed by a witness bunch at a phase where it will sample the high acceleration gradient and gain energy. Experimental verifications of various two bunch schemes are available in the literature; here we provide analytical calculations and numerical simulations of the wakefield dependency and the transformer ratio when M drive bunches and one witness bunch are fed into a high density plasma, where M is between 2 and 10. This is a favorable setup since the bunches can be adjusted such that the transformer ratio and the efficiency of the accelerator are enhanced compared to single bunch schemes. The possibility of a five bunch ILC afterburner to accelerate a witness bunch from 100 GeV to 500 GeV is also examined.

 
 
THPMS032 Plasma Wakefield Acceleration Experiments using Two Subpicosecond Electron Bunches plasma, acceleration, target, inverse-free-electron-laser 3073
 
  • P. Muggli
  • E. K. Kallos, T. C. Katsouleas
    USC, Los Angeles, California
  • W. D. Kimura
    STI, Washington
  • K. Kusche, P. I. Pavlishin, D. Stolyarov, V. Yakimenko
    BNL, Upton, Long Island, New York
  Funding: This work is supported by US DoE under contracts DE-FG02-92-ER40745 and DE-FG02-04ER41294.

Two ~100 fs electron bunches, separated in energy by approximately 1.8 MeV and in time by 0.5-1 ps, were sent through a capillary discharge plasma. The plasma density was varied from ~1·1014/cc to ~1·1017/cc. A 2-D PWFA model indicates the net wakefield produced by the bunches will depend on their relative charge, temporal separation, and the plasma density. This will affect the amount of energy gain or loss of the second bunch. During measurements of the energy spectrum of the second bunch, we observed a difference in the amount of gain or loss depending on the plasma density, which is consistent with the model prediction.

 
 
THPMS034 Generation and Characterization of the Microbunched Beams with a Wire Mesh Target plasma, quadrupole, radiation, emittance 3079
 
  • P. Muggli
  • M. Babzien, K. Kusche, V. Yakimenko
    BNL, Upton, Long Island, New York
  • E. K. Kallos
    USC, Los Angeles, California
  • W. D. Kimura
    STI, Washington
  Funding: Work supported by US Department of Energy contract DE-AC02-98CH10886

The presentation will cover experimental results on generation and measurement of the beams with theμbunches length from 1 to 50 microns at Brookhaven Accelerator Test Facility. Arbitrary number of microbunches is sliced out of 5 ps long beam using wire mesh and slits. The details of beam structure are characterized using CSR interferometer and 6 mm long plasma wakefield channel with the controllable plasma density.

 
 
THPMS037 ON THE POSSIBILITY OF ACCELERATING POSITRON ON AN ELECTRON WAKE AT SABER positron, plasma, simulation, target 3082
 
  • X. Wang
  • R. Ischebeck
    SLAC, Menlo Park, California
  • C. Joshi
    UCLA, Los Angeles, California
  • T. C. Katsouleas, P. Muggli
    USC, Los Angeles, California
  Funding: This work was supported by the Department of Energy contract DE-FG02-92-ER40745

A new approach for positron acceleration in non-linear plasma wakefields driven by electron beams is presented. Positrons can be produced by colliding an electron beam with a thin foil target embedded in the plasma. Integration of positron production and acceleration in one stage is realized by a single relativistic, intense electron beam. Simulations with the parameters of the proposed SABER facility at SLAC suggest that this concept could be tested there.

 
 
THPMS040 Correlation of Beam Parameters to Decelerating Gradient in the E-167 Plasma Wakefield Acceleration Experiment plasma, simulation, radiation, emittance 3091
 
  • I. Blumenfeld
  • M. K. Berry, F.-J. Decker, M. J. Hogan, R. Ischebeck, R. H. Iverson, N. A. Kirby, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • C. E. Clayton, C. Huang, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • T. C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
  Funding: This work was supported by the Department of Energy contracts DE-AC02-76SF00515, DE-FG02-92ER40727, DE-FG02-92-ER40745 DE-FG02-03ER54721, DE-FC02-01ER41179 and NSF grant Phy-0321345

Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch length and beam waist location were varied systematically at constant charge. Here we investigate the correlation of peak beam current to the decelerating gradient. Limits on the transformer ratio will also be discussed. The results are compared to simulation.

 
 
THPMS041 Disruption of Particle Detector Electronics by Beam Generated EMI radiation, collider, linear-collider, factory 3094
 
  • G. R. Bower
  • R. Arnold, M. Woods
    SLAC, Menlo Park, California
  • N. Sinev
    University of Oregon, Eugene, Oregon
  • Y. Sugimoto
    KEK, Ibaraki
  The possibility that beam generated electromagnetic interference (EMI) could disrupt the operation of particle detector electronics has been of some concern since the inception of short pulse electron colliders more than 30 years ago, Some instances have been reported where this may have occurred but convincing evidence has not been available. This possibility is of concern for the ILC. We have conducted test beam studies demonstrating that electronics disruption does occur using the vertex detector electronics from the SLD detector which ran at the SLC at SLAC. We present the results of those tests and we describe the need for EMI standards, for beam and detector instrumentation, at the ILC.  
 
THPMS047 Emittance Growth from Multiple Coulomb Scattering in a Plasma Wakefield Accelerator emittance, ion, scattering, plasma 3097
 
  • N. A. Kirby
  • M. K. Berry, I. Blumenfeld, M. J. Hogan, R. Ischebeck, R. Siemann
    SLAC, Menlo Park, California
  Funding: This work was supported by the Department of Energy contracts DE- AC02-76SF00515

Emittance growth is an important issue for plasma wakefield accelerators (PWFAs). Multiple Coulomb scattering (MCS) is one factor that contributes to this growth. Here, the MCS emittance growth of an electron beam traveling through a PWFA in the blow out regime is calculated. The calculation uses well established formulas for angular scatter in a neutral vapor and then extends the range of Coulomb interaction to include the effects of traveling through an ion column. Emittance growth is negligible for low Z materials; however, becomes important for high Z materials.

 
 
THPMS049 Investigations of the Wideband Spectrum of Higher Order Modes Measured on TESLA-style Cavities at the FLASH Linac dipole, simulation, higher-order-mode, monitoring 3100
 
  • S. Molloy
  • C. Adolphsen, K. L.F. Bane, J. C. Frisch, Z. Li, J. May, D. J. McCormick, T. J. Smith
    SLAC, Menlo Park, California
  • N. Baboi
    DESY, Hamburg
  • N. E. Eddy, L. Piccoli, R. Rechenmacher
    Fermilab, Batavia, Illinois
  • R. M. Jones
    UMAN, Manchester
  Funding: US DOE Contract #DE-AC02-76SF00515

Higher Order Modes (HOMs) excited by the passage of the beam through an accelerating cavity depend on the properties of both the cavity and the beam. It is possible, therefore, to draw conclusions on the inner geometry of the cavities based on observations of the properties of the HOM spectrum. A data acquisition system based on two 20 GS/s, 6 GHz scopes has been set up at the FLASH facility, DESY, in order to measure a significant fraction of the HOM spectrum predicted to be generated by the TESLA cavities used for the acceleration of its beam. The HOMs from a particular cavity at FLASH were measured under a range of known beam conditions. The dipole modes have been identified in the data. 3D simulations of different manufacturing errors have been made, and it has been shown that these simulations can predict the measured modes.

 
 
THPMS052 Optical Wakefield from a Photonic Bandgap Fiber Accelerator simulation, laser, quadrupole, vacuum 3106
 
  • C. M.S. Sears
  • R. L. Byer, T. Plettner
    Stanford University, Stanford, Califormia
  • E. R. Colby, B. M. Cowan, R. Ischebeck, C. Mcguinness, R. J. Noble, R. Siemann, J. E. Spencer, D. R. Walz
    SLAC, Menlo Park, California
  Photonic Bandgap (PBG) structures have recently been proposed as optical accelerators for there high coupling impedance and high damage threshold (>2 GV/m). As a first step in preparing a PBG accelerator, we propose to first observe the optical wakefield induced incoherently by an electron beam traversing the structure in the absence of a coupled laser pulse. The electrons are coupled into the fiber via a permanent magnet quadrupole triplet. The electrons excite fiber modes with speed-of-light phase velocities. By observing the wakefield using a spectrometer, the accelerating mode frequencies are determined.  
 
THPMS053 Compensation of the Effect of a Detector Solenoid on the Beam Size in the ILC simulation, multipole, dipole, quadrupole 3109
 
  • S. Seletskiy
  In the International Linear Collider (ILC) [1] the colliding beams must be focused to the nanometre size in order to reach the desired luminosity. The method of Weak Antisolenoid is used for the compensation of the effect of the Detector Solenoid on the beam size [2, 3]. The studies of this method require the computer simulation of the charged particle's kinematics in the arbitrarily distributed solenoidal, dipole, quadrupole and higher multipole fields. We suggest the mathematical algorithm that allows to optimize parameters of antisolenoid for different configurations of Final Focus magnets and to compensate parasitic effects of the Detector Solenoid on the beam.

[1] 'International Linear Collider Reference Design Report', April 2007
[2] Y Nosochkov, A. Seryi, Phys. Rev. ST Accel. Beams 8, 021001 (2005)
[3] B. Parker, A. Seryi, Phys. Rev. ST Accel. Beams 8, 041001 (2005)

 
 
THPMS055 Beam Dynamics Measurements for the SLAC Laser Acceleration Experiment linac, gun, laser, emittance 3115
 
  • J. E. Spencer
  • E. R. Colby, R. Ischebeck, D. J. McCormick, C. Mcguinness, J. Nelson, R. J. Noble, C. M.S. Sears, R. Siemann
    SLAC, Menlo Park, California
  • T. Plettner
    Stanford University, Stanford, Califormia
  Funding: Work supported by U. S. Dept. of Energy contract DE-AC02-76SF00515.

The NLC Test Accelerator (NLCTA) at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun has been installed with diagnostics and a low energy spectrometer (LES) at 6 MeV together with a large-angle extraction line at 60 MeV. This is followed by a matching section, buncher and final focus for the laser acceleration experiment, E163. The laser-electron interaction area is followed by a broad range (2\%), high resolving power (104) spectrometer (HES) for electron bunch analysis. Emittance compensating solenoids and the LES are used to tune for best operating point and match to the linac. Optical symmetries in the design of the 25.5° extraction line provide 1:1 phase space transfer without use of sextupoles for a large, 6D phase space volume and range of input conditions. Spot sizes of a few microns at the IP (or HES object) allow tests of microscale structures as well as high resolving power at the image of the HES. Tolerances, tuning sensitivities and diagnostics are discussed together with the latest commissioning results and their comparison to design expectations.

 
 
THPMS059 Correlating Pulses from Two Spitfire, 800nm Lasers laser, acceleration, photon, background 3121
 
  • W. D. Zacherl
  • E. R. Colby, C. Mcguinness
    SLAC, Menlo Park, California
  • T. Plettner
    Stanford University, Stanford, Califormia
  Funding: Department of Energy contracts DE-AC02-76SF00515, DE-FG03-97ER41043-III

The E163 laser acceleration experiments conducted at SLAC have stringent requirements on the temporal properties of two regeneratively amplified, 800nm, Spitfire laser systems. To determine the magnitude and cause of timing instabilities between the two Ti:Sapphire amplifiers, we pass the two beams through a cross-correlator and focus the combined beam onto a Hamamatsu G1117 photodiode. The photodiode has a bandgap such that single photon processes are suppressed and only the second order, two-photon process produces an observable response. The response is proportional to the square of the intensity. The diode is also useful as a diagnostic to determine the optimal configuration of the compression cavity.

Yoshihiro Takagi et al, 'Multiple- and Single-shot autocorrelator based on two-photon conductivity in semiconductors.' Optics Letters, Vol. 17, No. 9, May 1, 1992.

 
 
THPMS060 Transport Optics Design and Multi-particle Tracking for the ILC Positron Source positron, linac, target, optics 3124
 
  • F. Zhou
  • Y. K. Batygin, Y. Nosochkov, J. Sheppard, M. Woodley
    SLAC, Menlo Park, California
  • W. Liu
    ANL, Argonne, Illinois
  Funding: U. S. DOE Contract DE-AC02-76SF00515

Undulator-based positron source is adopted as the International Linear Collider baseline design. Complete optics to transport the positron beam having large angular divergence and large energy spread from a thin Ti target to the entrance of the 5 GeV damping ring injection line is developed. Start-to-end multi-particle tracking through the beamline is performed including the optical matching device, capture accelerator system, transport system, superconducting booster linac, spin rotators, and energy compressor. Positron capture efficiency of different schemes (immersed vs shielded target, and flux concentrator vs quarter wave transformation for the optics matching system) is compared. For the scheme of a shielded target and quarter wave transformation, the simulation shows that 15.1% of the positrons from the target are captured within the damping ring 6-D acceptance at the entrance of the damping ring injection line.

 
 
THPMS061 Design of a High-current Injector and Transport Optics for the ILC Electron Source linac, gun, booster, bunching 3127
 
  • F. Zhou
  • Y. K. Batygin, A. Brachmann, J. E. Clendenin, R. H. Miller, J. Sheppard, M. Woodley
    SLAC, Menlo Park, California
  Funding: U. S. DOE Contract DE-AC02-76SF00515

A train of 2-nsμbunches are generated in the DC-gun based injector in the ILC e- source; a bunching system with extremely high bunching efficiency to compress bunch down to 20 ps FWHM is designed. Complete optics to transport the electron beam to the 5-GeV damping ring injection line is developed. Start-to-end multi-particle tracking through the beamline is performed including the bunching system, pre-acceleration, chicane, 5-GeV SC booster linac, spin rotators and energy compressor. It shows more than 95% of electrons from the DC-gun are captured within the 6-D damping ring acceptance at the entrance of damping ring injection line. The field and alignment errors, and orbit correction are analyzed.

 
 
THPMS064 Lifetime Measurements of High Polarization Strained-Superlattice Gallium Arsenide at Beam Current > 1 Milliamp using a New 100kV Load Lock Photogun laser, polarization, vacuum, gun 3130
 
  • J. M. Grames
  • P. A. Adderley, J. Brittian, J. Clark, J. Hansknecht, D. Machie, M. Poelker, M. L. Stutzman, R. Suleiman, K. E.L. Surles-Law
    Jefferson Lab, Newport News, Virginia
  Funding: Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.

A new 100 kV GaAs DC Load Lock Photogun has been constructed at Jefferson Laboratory, with improvements for photocathode preparation and for operation in a high voltage, ultra-high vacuum environment. Although difficult to gauge directly, we believe that the new gun design has better vacuum conditions compared to the previous gun design, as evidenced by longer photocathode lifetime, that is, the amount of charge extracted before the quantum efficiency of the photocathode drops by 1/e of the initial value via the ion back-bombardment mechanism. Photocathode lifetime measurements at DC beam intensity of up to 10 mA have been performed to benchmark operation of the new gun and for fundamental studies of the use of GaAs photocathodes at high average current*. These measurements demonstrate photocathode lifetime longer than one million Coulombs per square centimeter at a beam intensity higher than 1 mA. The photogun has been reconfigured with a high polarization strained superlattice photocathode (GaAs/GaAsP) and a mode-locked Ti:Sapphire laser operating near band-gap. Photocathode lifetime measurements at beam intensity greater than 1 mA are measured and presented for comparison.

"Further Measurements of Photocathode Operational Lifetime at Beam Intensity >1mA using the CEBAF 100 kV DC GaAs Photogun", J. Grames et al., Proc. of the 17th Inter. Spin Symposium, Japan (2006).

 
 
THPMS067 A CW Positron Source for CEBAF positron, target, quadrupole, simulation 3133
 
  • S. Golge
  • A. Freyberger
    Jefferson Lab, Newport News, Virginia
  • C. Hyde-Wright
    ODU, Norfolk, Virginia
  Funding: Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.

A positron source for the 6 GeV (or the proposed 12 GeV upgrade) recirculating linacs at Jefferson Lab is presented. The proposed 100nA CW positron source has several unique characteristics; high incident beam power (100kW), 10 MeV incident electron beam energy, CW incident beam and CW production. Positron production with 10 MeV electrons has several advantages; the energy is below neutron threshold so the production target will not become activated during use and the absolute energy spread is bounded by the low incident energy. These advantages are offset by the large angular distribution of the outgoing positrons. Results of simulations of the positron production, capture, acceleration and injection into the recirculating linac are presented. Energy flow and thermal management of the production target present a challenge and are included in the simulations.

 
 
THPMS070 High Power Testing of a Fully Axisymmetric RF Gun gun, coupling, cathode, emittance 3142
 
  • H. Bluem
  Funding: This work was funded under an SBIR contract from the US Department of Energy.

High power RF testing has been performed on a novel axisymmetric radiofrequency electron gun at a frequency of 11.43 GHz using the magnicon facility at the Naval Research Laboratory. This gun utilizes coaxial coupling from the upstream end of unit and allows for axisymmetric tuning of both the cathode cell and the second cell. The features of the gun have been proven to operate at high gradients. The overall design of the gun will be discussed along with the results of the high power RF testing.

 
 
THPMS071 Laser-Powered Dielectric Structure as a Micron-Scale Electron Source cathode, laser, focusing, coupling 3145
 
  • R. B. Yoder
  • J. B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
  We describe a resonant laser-powered structure, measuring 1 mm or less in every dimension, that is capable of generating and accelerating electron beams to low energies (~1-2 MeV). Like several other recently investigated dielectric-based accelerators,* the device is planar and resonantly excited with a side-coupled laser; however, extensive modifications are necessary for synchronous acceleration and focusing of nonrelativistic particles. Electrons are generated within the device via a novel ferroelectric-based cathode. The accelerator is constructed from dielectric material using conventional microfabrication techniques and powered by a 1μm gigawatt-class laser. The electron beams produced are suitable for a number of existing industrial and medical applications.

*R. Yoder and J. Rosenzweig, Phys. Rev. STAB 8, 111301 (2005); Z. Zhang et al., Phys. Rev. STAB 8, 071302 (2005); A. Mizrahi and L. Schachter, Phys. Rev. E 70, 016505 (2004).

 
 
THPMS078 Status of the Microwave PASER Experiment acceleration, dipole, permanent-magnet, resonance 3166
 
  • P. Schoessow
  • S. P. Antipov, M. E. Conde, W. Gai, J. G. Power
    ANL, Argonne, Illinois
  • E. Bagryanskaya
    International Tomography Center, SB RAS, Novosibirsk
  • V. Gorelik, A. Kovshik, A. V. Tyukhtin, N. Yevlampieva
    Saint-Petersburg State University, Saint-Petersburg
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • L. Schachter
    Technion, Haifa
  Funding: Work supported by US Department of Energy

The PASER is a new method for particle acceleration, in which energy from an active medium is transferred to a charged particle beam. The effect is similar to the action of a maser or laser with the stimulated emission of radiation being produced by the virtual photons in the electromagnetic field of the beam. We are developing a demonstration PASER device operating at X-band, based on the availability of a new class of active materials that exhibit photoinduced electron spin polarization. We will report on the status of active material development and measurements, numerical simulations, and preparations for microwave PASER experiments at the Argonne Wakefield Accelerator facility.

 
 
THPMS080 Inverse-Transition Radiation Laser Acceleration Experiments at SLAC laser, acceleration, radiation, vacuum 3172
 
  • T. Plettner
  • R. L. Byer
    Stanford University, Stanford, Califormia
  • E. R. Colby, R. Ischebeck, C. Mcguinness, R. J. Noble, C. M.S. Sears, R. Siemann, J. E. Spencer, D. R. Walz
    SLAC, Menlo Park, California
  We present a series of laser-driven particle acceleration experiments that are aimed at studying laser-particle acceleration as an inverse-radiation process. To this end we employ a semi-open vacuum setup with a thin planar boundary that interacts with the laser and the electromagnetic field of the electron beam. Particle acceleration from different types of boundaries will be studied and compared to the theoretical expectations from the Inverse-radiation picture and the field path integral method. We plan to measure the particle acceleration effect from transparent, reflective, black, and rough surface boundaries. While the agreement between the two acceleration pictures is straightforward to prove analytically for the transparent and reflective boundaries the equivalence is not clear-cut for the absorbing and rough-surface boundaries. Therefore, experimental observation may be the most reliable method for establishing the appropriate model for the interaction of the laser field with the particle beam in the presence of a loaded vacuum structure.  
 
THPMS081 Proposed Few-cycle Laser-particle Accelerator Structure laser, vacuum, impedance, coupling 3175
 
  • T. Plettner
  • R. L. Byer, P. P. Lu
    Stanford University, Stanford, Califormia
  We describe a proposed transparent dielectric grating accelerator structure that is designed for ultra-short laser pulse operation. The structure is not a waveguide, but rather it is based on the principle of periodic field reversal to achieve phase synchronicity for relativistic particles. To preserve ultra-short pulse operation it does not resonate the laser field in the vacuum channel. The geometry of the structure appears well suited for application with high average power lasers and high thermal loading. It shows potential for an unloaded gradient of several GeV/m with 10 fsec laser pulses and the possibility to accelerate high bunch charges. The fabrication procedure and proposed near-term experiments with this accelerator structure are presented.  
 
THPMS087 Low Emittance Electron Beams for the RHIC Electron Cooler emittance, linac, cathode, space-charge 3187
 
  • J. Kewisch
  • X. Chang
    BNL, Upton, Long Island, New York
  Funding: Work performed under the United Staes Department of Energy Contract No. DE-AC02-98CH1-886.

An electron cooler, based on an Energy Recovery Linac (ERL) is under development for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. This will be the first electron cooler operating at high energy with bunched beams. In order to achieve sufficient cooling of the ion beams the electron have to have a charge of 5 nC and a normalized emittance less than 4 mm mrad. This paper presents the progress in optimizing the injector and the emittance improvements from shaping the charge distribution in the bunch.

 
 
THPMS088 Emittance Compensation for Magnetized Beams emittance, gun, space-charge, cathode 3190
 
  • J. Kewisch
  • X. Chang
    BNL, Upton, Long Island, New York
  Funding: Work performed under the United Staes Department of Energy Contract No. DE-AC02-98CH1-886.

Emittance compensation is a well established technique* for minimizing the emittance of electron beam from a RF photo-cathode gun. Longitudinal slices of a bunch have a small emittance, but due to the longitudinal charge distribution of the bunch and time dependent RF fields they are not focused in the same way, so that the direction of their phase ellipses diverges in phase space and the projected emittance is much larger. Emittance compensation reverses the divergence. At the location where the slopes of the phase ellipses coincides the beam is accelerated, so that the space charge forces are reduced. A recipe for emittance compensation is given in reference**. For magnetized beams (where the angular momentum is non-zero) such emittance compensation is not sufficient because variations in the slice radius lead to variations in the angular speed and therefore to an increase of emittance in the rotating frame. We describe a method and tools for a compensation that includes the beam magnetization.

* L. Serafini, J. B. Rosenzweig, Phys. Rev E 55, 7565, (1997)
** X. Y. Chang, I. Ben-Zvi, J. Kewisch, Phys. Rev ST AB 9, 044201, (2006)

 
 
THPMS094 Acceleration of Electrons with the Racetrack Non-Scaling FFAG for e-RHIC linac, betatron, acceleration, lattice 3205
 
  • D. Trbojevic
  • I. Ben-Zvi, J. S. Berg, M. Blaskiewicz, V. Litvinenko, W. W. MacKay, V. Ptitsyn, T. Roser, A. G. Ruggiero
    BNL, Upton, Long Island, New York
  Funding: Supported by the U. S. Department of Energy under Contract No. DE-AC02-98CH10886

Acceleration of electrons up to 10 GeV for a future electron-ion collider eRHIC (Relativistic Heavy Ion Collider) could be performed with the energy recovery linac with multiple passes. An energy recovery scheme is required if a superconducting linac is used for acceleration. We report on an attempt to make a combination of a multi-pass linac with non-scaling Fixed Field Alternating Gradient (NS-FFAG) arcs. Two NS-FFAG arcs would allow electrons to pass through the same structure with different energies. The beam will be accelerated by the superconducting linac at the top of the sine function, and returned to the front of the linac by the non-scaling FFAG. This process is repeated until the total energy of 10 GeV is reached. After collisions the beam is brought back by the NS-FFAG and decelerated before being dumped.

 
 
THPMS095 Experimental Demonstration of Feasibility of a Polarized Gamma-source for ILC Based on Compton Backscattering Inside a CO2 Laser Cavity laser, positron, photon, scattering 3208
 
  • I. Pogorelsky
  • V. Yakimenko
    BNL, Upton, Long Island, New York
  Funding: Work supported by US Department of Energy contract DE-AC02-98CH10886

Compton interaction point incorporated into a high-average-power laser cavity is the key element of the Polarized Positron Source (PPS) concept proposed for ILC [1]. According to this proposal, circularly polarized gamma rays are produced in Compton backscattering from a 6 GeV linac e-beam inside a CO2 laser amplifier cavity. Intra-cavity positioning of the interaction point allows multiple laser recycling to match the electron bunch train format. We conducted experimental tests of multi-pulse operation of such active Compton cavity upon injection of a picosecond CO2 laser beam. Together with earlier demonstration of a high x-ray yield via the e-beam/CO2-laser backscattering, these new results show a viability of the entire PPS concept and closely prototype the laser source requirements for ILC.

[1] V. Yakimenko and I. V. Pogorelsky, Phys. Rev. ST Accel. Beams 9, 091001 (2006)

 
 
THPMS096 Development of a Dielectric-Loaded Test Accelerator controls, shielding, plasma, cathode 3211
 
  • S. H. Gold
  • W. Gai, R. Konecny, J. Long, J. G. Power
    ANL, Argonne, Illinois
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio
  • A. K. Kinkead
    LET
  • C. D. Nantista, S. G. Tantawi
    SLAC, Menlo Park, California
  Funding: Work supported by DoE and ONR.

A joint project is underway by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a compact X-band accelerator for testing dielectric-loaded accelerator (DLA) structures.* The accelerator will use a 5-MeV injector previously developed by the Tsinghua University in Beijing, China, and will accommodate test structures up to 0.5 m in length. Both the injector and the structures will be powered by an 11.4-GHz magnicon amplifier that can produce 25 MW, 200-ns output pulses at up to 10 Hz. The injector will require ~5 MW of rf power, leaving ~20 MW to power the test structures. This paper will present a progress report on the construction and commissioning of the test accelerator, which will be located in a concrete bunker in the Magnicon Facility at NRL.

* S. H. Gold et al., Proc. PAC 2005.

 
 
THPMS097 Laser Plasma Acceleration Experiment at the Naval Research Laboratory laser, plasma, injection, acceleration 3214
 
  • D. Kaganovich
  • D. F. Gordon, A. Ting
    NRL, Washington, DC
  The traditional long term strategy for producing high quality electron beams in a single stage LWFA involves three elements: operation in the resonant or standard regime, the use of optical guiding to extend the acceleration region, and external injection of a precisely-phased, high quality injection electron bunch. The standard regime and optical guiding has been studied by many research groups and promise good results for the acceleration. The creation of the electron beam for external injection is still a very problematic issue. Recently, quasi-monoenergetic acceleration of particles from the background plasma has been observed in simulations and experiments operating in a shorter pulse regime. Such quasi-monoenergetic electrons could be a candidate for injection into a following stage of standard LWFA. We are in the initial stage of experiments to generate injection electrons using the HD-LIPA schemes with a 10 TW 50 fs laser system. The second stage accelerator is a capillary discharge plasma channel for extended acceleration distance. Preliminary results, including statistics on the stability of quasi-monoenergetic acceleration, will be presented.  
 
THPAN013 Computer-assisted Electron Beam Characterization at AIRIX Facility diagnostics, cathode, beam-transport, extraction 3250
 
  • O. Mouton
  • M. Caron, F. Cartier, D. Collignon, G. Grandpierre, D. Guilhem, L. Hourdin, M. Mouillet, C. Noel, D. Paradis, O. Pierret
    CEA, Pontfaverger-Moronvilliers
  AIRIX is a high current accelerator designed for flash X-ray radiography. The electron beam produced into a vacuum diode (2 kA, 3.5 to 3.8 MV, 60 ns) is extracted from a velvet cold cathode. For a complete beam characterisation at the diode output the following set of data is required: the primary beam current intensity, the primary beam energy, the 2D mean beam divergence, the 2D RMS beam size as well as the 2D transverse beam emittance. Part of these parameters is experimentally given by electrical sensors located into the beam line (I), by time resolved energy spread measurements (E) as well as by a classical beam imaging set-up (XRMS, YRMS). Unfortunately, XRMS and YRMS are measured downstream the diode output. Therefore, in order to get the relevant beam parameters at the right location (diode output) numerical data treatments are required. The TRAJENV beam transport code, coupled with the MINUIT minimization library, computes the unknown beam parameters at the diode output. In this paper, we propose to describe both experimental and theoretical approaches leading to the full beam characterization at the diode output.  
 
THPAN014 Beam Dynamics of the 100 MeV Preinjector for the Spanish Synchrotron ALBA linac, gun, emittance, synchrotron 3253
 
  • A. S. Setty
  A turn key 100 MeV linac is under construction, in order to inject electrons into the booster synchrotron of ALBA [1]. The linac will deliver electron beams according to two operation modes: a single bunch mode (1 to 16 pulses - 0.25nC each) and a multi-bunch mode (112ns - 4nC). We have calculated the beam dynamics, using our in house code, PRODYN [2], from the gun to the end of the linac. The beam behaviour, such as the radial control, the bunching process, the energy spread and emittance are analysed.

[1] D. Einfeld, "Status of the ALBA project", EPAC 06, Scotland, Edinburgh, June 2006.[2] D. Tronc and A. Setty, "Electrons RF auto-focusing and capture in bunchers", Linear Accelerator Conference 1988, Virginia.

 
 
THPAN019 Utilizing a Wien Filter within the Beam Dynamics Simulation Tool V-Code simulation, multipole, dipole, extraction 3265
 
  • W. Ackermann
  • J. Enders, C. Heßler, Y. Poltoratska
    TU Darmstadt, Darmstadt
  • W. F.O. Muller, B. Steiner, T. Weiland
    TEMF, Darmstadt
  Funding: This work was partially funded by EUROFEL (RIDS-011935), DESY Hamburg, and DFG (SFB 634).

Beam dynamics simulations for computationally large problems are challenging tasks. On the one hand, to accurately simulate the electromagnetic field distribution within the whole device and the surrounding environment it is essential to consider all necessary device components including even small geometry details, complicated material distributions and the field excitations. On the other hand, further computational effort has to be put into precise modeling of the injected particle beam for detailed beam dynamics simulations. Under linear conditions, it is possible to separate the field calculation of the device from the computation of the particles self-field which can result in the proper application of diverse numerical schemes for the individual field contributions. In the paper it is demonstrated how the static electric and magnetic fields of a Wien filter beam line element can be treated as applied external fields within the beam dynamics simulation tool V-Code under the assumption that the interaction of the particle beam with the surrounding materials can be neglected.

 
 
THPAN026 Beam Profile Measurements and Analysis at FLASH emittance, undulator, simulation, lattice 3283
 
  • E. Prat
  • W. Decking, T. Limberg, F. Loehl
    DESY, Hamburg
  • K. Honkavaara
    Uni HH, Hamburg
  FLASH (Free Electron LASer in Hamburg) is a SASE FEL user facility at DESY, Hamburg. It serves also as a pilot project for the European XFEL. Although the slice emittance is a more appropriate parameter to characterize the SASE process, the projected emittance is a good indicator of the electron beam quality which can be measured in an easy and fast way. In this paper we present measurements of the projected emittance along FLASH. We also analyze the effect of the dispersion on transverse electron beam profiles.  
 
THPAN031 Optimization of the Beam Line Characteristics by Means of a Genetic Algorithm laser, photon, scattering, emittance 3295
 
  • A. Bacci
  • V. Petrillo
    Universita' degli Studi di Milano, Milano
  • A. R. Rossi, L. Serafini
    INFN-Milano, Milano
  The optimization of the optics in a LINAC requires a very demanding tuning of the involved parameters, particularly in the case of high brightness electron beams applied to the production of X-ray in a Thomson back-scattering source. The relationship between the parameters is non-linear and it is not possible to treat them as independent variables, causing the impossibility of setting them handily. A genetic algorithm is a powerful tool able to circumvent this difficulty. We have applied the genetic algorithm to the case of the SPARC beam line.  
 
THPAN032 Study of the Beam Dynamics in a Linac with the Code RETAR acceleration, radiation, emittance, diagnostics 3298
 
  • A. R. Rossi
  • A. Bacci, C. Maroli, L. Serafini
    INFN-Milano, Milano
  • V. Petrillo
    Universita' degli Studi di Milano, Milano
  The three-dimensional fully relativistic and self-consistent code RETAR has been applied to model the dynamics of high-brightness electron beams and in particular to assess the importance of the retarded radiative part of the emitted electromagnetic fields in all conditions where the electrons experience strong accelerations. In this analysis we evaluate the radiative energy losses in the electron emission process from the photocathode of an injector, during the successive acceleration of the electron beam in the RF cavity and the focalization due to the magnetic field of the solenoid, taking also into account the e.m. field of the laser illuminating the cathode and the inhomogeneities on the cathode surface. The analysis is specifically carried out with parameters of importance in the framework of the SPARC and PLASMONX projects.  
 
THPAN038 Generation and Acceleration of High Brightness Electron Bunch Train in ATF of KEK beam-loading, gun, injection, laser 3312
 
  • S. Liu
  • S. Araki, M. K. Fukuda, M. Takano, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • K. Hirano
    NIRS, Chiba-shi
  Laser Undulator Compact X-ray source (LUCX) is a test bench for compact high brightness X-ray generator at KEK in order to demonstrate the possibility on K-edge digital subtraction angiography, based on the Compton Scattering. For this project, one of the challenging problems is to generate and accelerate high brightness multi-bunch electron beams, compensating the energy difference due to beam loading effect. In this paper, we calculate the transient beam loading voltage and energy gain from RF field in standing wave gun cavity and traveling wave accelerating tube for multi-bunch train, considering the process of propagation, buildup of RF field in them and the special RF pulse shape. We generated and accelerated 100 bunch electron beam train with 50nC, which beam loading effect was compensated effectively by adjusting the laser injection timing. By BPM and OTR system, we measured the electron beam energy bunch by bunch. The average energy of 100 bunch train is 40.5MeV and maximum energy difference bunch to bunch is 0.26MeV, the relative energy spread of single bunch is about 0.13%. The transverse emittance can be optimized roughly to 3.6 pimm.mrad.  
 
THPAN045 Explicit Time Domain Boundary Element Scheme for Dispersion-free Wake Field Calculation of Long Accelerator Structures simulation, linac, scattering, electromagnetic-fields 3330
 
  • K. Fujita
  • T. Enoto, S. Tomioka
    Hokkaido University, Sapporo
  • R. Hampel, W. F.O. Muller, T. Weiland
    TEMF, Darmstadt
  • H. Kawaguchi
    Muroran Institute of Technology, Department of Electrical and Electronic Engineering, Muroran
  This paper introduces a new explicit scheme with a moving window option for wake field calculation of long accelerator structures. This scheme is based on a time domain boundary element method (TDBEM) which uses a retarded Kirchhoff boundary integral equation on interior region problems. As a corollary of this boundary integral equation, our approach allows a conformal modeling of a structure and time domain wake field simulation without numerical grid dispersion errors in all spatial directions. The implementation of a moving window technique in the framework of TDBEM is presented and it is shown that this moving window technique allows to significantly reduce memory requirement of the TDBEM scheme in the short range wake field calculation. Several numerical examples are demonstrated for the TESLA 9-cell cavity and tapered collimators. The results of the new TDBEM scheme are compared with that of finite difference codes.  
 
THPAN052 Study of Generic Front-end Designs for ERL Based Light Sources emittance, space-charge, dipole, cathode 3345
 
  • G. M. Wang, G. M. Wang
    JLAB, Newport News, Virginia
  • Y.-C. Chao, P. Evtushenko, G. Neil
    Jefferson Lab, Newport News, Virginia
  • J.-E. Chen, C. Liu, X. Y. Lu, K. Zhao
    PKU/IHIP, Beijing
  Funding: supported by National 973 Projects and the U. S. Department of Energy Contract No. DE-AC05-06OR23177

We present work directed at examining the performance of various front end components of an ERL based light source. These include electron source, bunch compression, merger, and accelerating sections, with parameter space dictated by proposed facilities (at FSU and Beijing University). These facilities share enough common structural features to make the study applicable to both to a large extent. In this report we will discuss the 6D phase space evolution through the front end based on simulation, with reliable modeling of magnetic and superconducting RF fields. Discussion will be devoted to relative merits of alternative designs, robustness and operational scenarios.

 
 
THPAN054 Experiment on a Cold Test Model of a 2-Cell SC Deflecting Cavity for ALS at LBNL damping, simulation, coupling, RF-structure 3348
 
  • J. Shi
  • H. Chen, C.-X. Tang, S. Zheng
    TUB, Beijing
  • D. Li
    LBNL, Berkeley, California
  Deflecting Cavities can be used to generate sub-pico-second X-ray pulse and are proposed at ALS at LBNL. A 2-cell structure has been simulated earlier to achieve the required deflecting voltage with damping waveguide to get low impedance. An aluminum cold test model has been made to demonstrate the simulation and the idea for damping LOM with waveguide. Field distribution as well as (R/Q)s are measured using 'bead-pull' method. Qs with/without waveguide loaded are measured and compared with simulation. Detailed configuration and experiment progress is presented.  
 
THPAN058 Beam Tracking Simulations for a BPM-based Energy Spectrometer Prototype for ILC dipole, simulation, synchrotron, radiation 3360
 
  • S. A. Kostromin
  T-474 at SLAC is a prototype BPM-based energy spectrometer for the ILC. A 4-dipole chicane is used with mid-chicane dispersion of 5-mm and magnetic fields of ~1 kGauss; these match the current ILC parameters. Better than 100 part-per-million (ppm) accuracy is needed for ILC energy measurements, requiring better than 50 ppm accuracy for magnetic field integral measurements. Code for beam tracking through the spectrometer chicane was developed. Magnetic field maps for dipole magnets obtained from the measurements at SLAC are used. Different aspects of the magnetic field influence to the beam deflection value are discussed. Results of the beam dynamics study using the measured magnetic fields for T-474 chicane to estimate magnetic effects on capabilities for the energy measurements are also reported.  
 
THPAN059 Proposal for an Enhanced Optical Cooling System Test in an Electron Storage Ring undulator, kicker, pick-up, storage-ring 3363
 
  • E. G. Bessonov
  • M. V. Gorbunkov
    LPI, Moscow
  • A. A. Mikhailichenko
    Cornell University, Department of Physics, Ithaca, New York
  We are proposing to check experimentally the new idea of Enhanced Optical Cooling (EOC) in an electron storage ring. The experiment will confirm new fundamental processes in beam physics and demonstrate new unique possibilities in cooling technique. It will open important applications of EOC in nuclear physics, elementary particle physics and in light sources (LS) based on high brightness electron, proton, and ion beams.  
 
THPAN060 3D PIC Method Development for Simulation of Beam-Beam Effects in Supercolliders simulation, positron, focusing, beam-beam-effects 3366
 
  • M. A. Boronina
  • E. Levichev, S. A. Nikitin
    BINP SB RAS, Novosibirsk
  • V. N. Snytnikov
    IC SB RAS, Novosibrsk
  • V. A. Vshivkov
    ICM&MG SB RAS, Novosibirsk
  A new Beam-Beam simulation code based on a 3D PIC method has been developed. Taking into account to the full extent the three-dimensional nature of the interaction can be useful for studies of some thin questions such as a pinch effect at large crossing angles in ILC and Crab Waist properties in SuperB Factory. Colliding electron and positron beams move in the region shaped as parallelepiped. The physical process is described by Vlasov-Liouville equations and a set of Maxwell equations that interrelate of the densities of charge and current, and intensities of electric and magnetic fields. The examples of the electron and positron bunches movement and collision simulation are presented.  
 
THPAN063 Analytic Description of the Phase Slip Effect in Race-Track Microtrons injection, longitudinal-dynamics, microtron, synchrotron 3369
 
  • Yu. A. Kubyshin
  • A. V. Poseryaev, V. I. Shvedunov
    MSU, Moscow
  • J. P. Rigla
    UPC, Barcelona
  Design of modern race-track microtrons (RTMs) requires better understanding of the longitudinal beam dynamics in these machines, in particular of the phase slip effect which is important for low energy beams. We generalize an analytical approach for the description of the synchronous particle motion and synchrotron oscillations, developed in our previous papers, by including the fringe fields of the RTM end magnets. Explicit, though approximate, formulas are derived and an algorithm for improving their accuracy is formulated. The efficiency of the analytic description is checked numerically, in particular by tracking simulations using the RTMTRace code. Explicit examples of low energy injection schemes and applications of this formalism for the injection phase fixing are given.  
 
THPAN066 Improvements in FAKTOR2, a Code to Simulate Collective Effect of Electrons and Ions wiggler, dipole, damping, vacuum 3375
 
  • W. Bruns
  • D. Schulte, F. Zimmermann
    CERN, Geneva
  Funding: Supported by the European Community under the 6th Framework Programme "Structuring the European Research Area".

The electrostatic Particle in Cell code 'Faktor2' is extended to 3D, and is parallelised. Results for electron cloud buildup in end regions of damping ring dipoles for next generation linear colliders are presented.

 
 
THPAN074 Space-Charge Compensation Options for the LHC Injector Complex booster, resonance, proton, emittance 3390
 
  • F. Zimmermann
  • M. Aiba, M. Chanel, U. Dorda, R. Garoby, J.-P. Koutchouk, M. Martini, E. Metral, Y. Papaphilippou, W. Scandale
    CERN, Geneva
  • G. Franchetti
    GSI, Darmstadt
  • V. D. Shiltsev
    Fermilab, Batavia, Illinois
  Space-charge effects have been identified as the most serious intensity limitation in the CERN PS and PS booster, on the way towards ultimate LHC performance and beyond. We here explore the application of several previously proposed space-compensation methods to the two LHC pre-injector rings, for each scheme discussing its potential benefit, ease of implementation, beam-dynamics risk, and the R&D programme required. The methods considered include tune shift and resonance compensation via octupoles, nonlinear chromaticity, or electron lenses, and beam neutralization by an electron cloud, plasma or negative ions.  
 
THPAN075 Modeling Incoherent Electron Cloud Effects emittance, synchrotron, radiation, simulation 3393
 
  • F. Zimmermann
  • E. Benedetto, G. Rumolo, D. Schulte, R. Tomas
    CERN, Geneva
  • W. Fischer
    BNL, Upton, Long Island, New York
  • G. Franchetti
    GSI, Darmstadt
  • K. Ohmi
    KEK, Ibaraki
  • M. T.F. Pivi, T. O. Raubenheimer
    SLAC, Menlo Park, California
  • K. G. Sonnad, J.-L. Vay
    LBNL, Berkeley, California
  Incoherent effects driven by an electron cloud could seriously limit the beam lifetime in proton storage rings or blow up the vertical emittance in positron ones. Different approaches to modeling these effects each have their own merits and drawbacks. We compare the simulation results and computing time requirements from a number of dedicated codes under development over the last years, and describe the respective approximations for the beam-electron cloud interaction, the accelerator structure, and the optical lattice, made in each of these codes. Examples considered include the LHC, CERN SPS, RHIC, and the ILC damping ring. Tentative conclusions are drawn and a strategy for further codes development is outlined.  
 
THPAN087 Study of Turn-by-Turn Vertical Beam Dynamics at Low and High Energy CESR Operation positron, synchrotron, synchrotron-radiation, radiation 3423
 
  • R. Holtzapple
  • G. W. Codner, M. A. Palmer, E. Tanke
    CESR-LEPP, Ithaca, New York
  • J. S. Kern
    Alfred University, Alfred, New York
  Funding: This work was supported by the National Science Foundation.

Presently, CESR is operated at two different beam energies, low energy (E=2GeV) for high energy physics (CESR-c), and high energy (E=5.3GeV) for synchrotron radiation production (CHESS). The electron and positron bunches vertical dynamics at these two energies are vastly different, in part due to the change in the pretzel orbit, the presence of wiggler magnets at low energy, and synchrotron radiation power at two vastly different energies. Using the 32 channel photomultiplier array*, we measured the vertical beam dynamics on a turn-by-turn basis during CHESS and CESR-c operation as well as dedicated machine studies time. For these studies we quantify the electron cloud effects such as vertical tune shift and vertical beam size blow-up along the electron and positron trains at these two vastly different beam energies. In addition, the turn-by-turn capability of the PMT array allows us to study the vertical bunch dynamics over 10k turns.

* Design and Implementation of an Electron and Positron Multibunch Turn-by-Turn Vertical Beam Profile Monitor in CESR-PAC2007 proceedings

 
 
THPAN099 Direct Space-Charge Calculation in Elegant and Its Application to the ILC Damping Ring space-charge, damping, simulation, emittance 3456
 
  • A. Xiao
  • M. Borland, L. Emery, Y. Wang
    ANL, Argonne, Illinois
  • K. Y. Ng
    Fermilab, Batavia, Illinois
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

A direct space-charge force model has been implemented in the tracking code elegant. The user can simulate transverse space-charge effects by inserting space-charge elements in the beamline at any desired position. Application to the International Linear Collider damping ring is presented in this paper. We simulated beam under equilibrium conditions, as well as the entire damping cycle from injection to extraction. Results show that beam halo is generated due to space charge effects. This would be a significant concern for the ILC damping ring and a detailed follow-up study is needed.

 
 
THPAN105 Effects of Space Charge and Magnet Nonlinearities on Beam Dynamics in the Fermilab Booster space-charge, emittance, bunching, booster 3474
 
  • Y. Alexahin
  • A. I. Drozhdin, X. Yang
    Fermilab, Batavia, Illinois
  • N. Yu. Kazarinov
    JINR, Dubna, Moscow Region
  Funding: Work supported by the Universities Research Assoc., Inc., under contract DE-AC02-76CH03000 with the U. S. Dept. of Energy

Presently the Fermilab Booster can accomodate about half the maximum proton beam intensity which the Linac can deliver. One of the limitations is related to large vertical tuneshift produced by space-charge forces at injection energy. In the present report we study the nonlinear beam dynamics in the presence of space charge and magnet imperfections and analyze the possibility of space charge compensation with electron lenses.

 
 
THPAN117 Electron Cloud Studies at Tevatron and Main Injector vacuum, proton, emittance, injection 3501
 
  • X. Zhang
  • A. Z. Chen, W. Chou, B. M. Hanna, K. Y. Ng, J.-F. Ostiguy, L. Valerio, R. M. Zwaska
    Fermilab, Batavia, Illinois
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH03000

Estimates indicate that the electron cloud effect could be a limiting factor for Main Injector intensity upgrades, with or without a the presence of a new 8 GeV superconducting 8GeV Linac injector. The effect may turn out to be an issue of operational relevance for other parts of the Fermilab accelerator complex as well. To improve our understanding of the situation, two sections of specially made vacuum test pipe outfitted for electron cloud detection with ANL provided Retarding Field Analyzers (RFAs), were installed in the Tevatron and the Main Injector. In this report we present some measurements, compare them with simulations and discuss future plans for studies.

 
 
THPAN118 Simulations of the Electron Cloud Buildups and Suppressions in Tevatron and Main Injector vacuum, simulation, proton, storage-ring 3504
 
  • X. Zhang
  • J.-F. Ostiguy
    Fermilab, Batavia, Illinois
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH03000

To assess the effects of the electron cloud on Main Injector intensity upgrades, simulations of the cloud buildup were carried out using POSINST and compared with ECLOUD. Results indicate that even assuming an optimistic 1.3 maximum secondary electron yield, the electron cloud remains a serious concern for the planned future operational of mode of 500 bunches, 3·1011 proton per bunch. Electron cloud buildup can be mitigated in various ways. We consider a plausible scenario involving solenoids in straight section and a single clearing strip electrode (like SNEG in Tevatron)held at a potential of 500V. Simulations with parameters corresponding to Tevatron and Main Injector operating conditions at locations where special electron cloud detectors have been installed have been carried out and are in satisfactory agreement with preliminary measurements.

 
 
THPAS001 Suppression of Terahertz Radiation in Electron Beams with Longitudinal Density Modulation wiggler, simulation, gun, radiation 3507
 
  • C. P. Neuman
  • P. G. O'Shea
    UMD, College Park, Maryland
  Electron beams with periodic longitudinal density modulations may produce terahertz radiation in a linear accelerator. Terahertz radiation is useful for a wide range of applications and research interests. In other cases, it may be desirable to suppress unwanted terahertz radiation caused by unintended fluctuations of the electron beam. This study explores the possibility of using a wiggler to convert the density modulation to energy modulation. Previous studies by the author (*) have shown that energy modulation washes out of the beam as it is transported in a linear accelerator system. Thus, by converting density modulation to energy modulation and then letting it wash out, we will have suppressed density modulation in the beam and thus the possibility of unwanted terahertz radiation. Simulations are performed using PARMELA and other software codes. Results will provide a better understanding of the evolution of modulated electron beams and may provide a method to suppress unwanted terahertz radiation. Parameters in the simulations are chosen to correspond to existing accelerator systems so that the results may be used to support an experimental study.

(*) Simulation of Longitudinally Modulated Electron Beams. C. P. Neuman and P. G. O'Shea. In 2006 Advanced Accelerator Concepts Workshop, AIP Conference Proceedings, 877, 621-627. Melville, AIP (2006).

 
 
THPAS002 Evolution of Longitudinal Modulation in Electron Beams simulation, radiation, gun, linac 3510
 
  • C. P. Neuman
  • P. G. O'Shea
    UMD, College Park, Maryland
  Electron beams with periodic longitudinal density modulations may produce terahertz radiation in a linear accelerator. Whether the radiation is desired or not, it would be useful to understand how the modulations of an electron bunch evolve as the beam is transported through a linac system. Recent studies (*) show that density modulated beams lose their density modulation in favor of energy modulation. Thus, it is instructive to simulate beams that have only density modulation and beams that have only energy modulation. The former is useful for learning how to keep the desired density modulation for beams intended to create terahertz radiation, the latter for learning how to suppress unwanted energy modulation, which may have originated as density modulation. In this study, simulations are performed using PARMELA and other software codes. The study investigates energy ranges that are higher than those studied in the author’s previous work, and the study also focuses on the evolution of the beam in the electron gun. Parameters in the simulations are chosen to correspond to existing accelerator systems so that the results may be used to support an experimental study.

(*) Simulation of Longitudinally Modulated Electron Beams. C. P. Neuman and P. G. O'Shea. In 2006 Advanced Accelerator Concepts Workshop, AIP Conference Proceedings 877, edited by M. Conde and C. Eyberger, 621-627. Melville, NY, AIP (2006).

 
 
THPAS007 Parallel Beam Dynamics Simulation Tools for Future Light Source Linac Modeling simulation, linac, space-charge, emittance 3522
 
  • R. D. Ryne
  • I. V. Pogorelov, J. Qiang
    LBNL, Berkeley, California
  Large-scale modeling on parallel computers is playing an increasingly important role in the design of future light sources. Such modeling provides a means to accurately and efficiently explore issues such as limits to beam brightness, emittance preservation, the growth of instabilities, etc. Recently the IMPACT codes suite was enhanced to be applicable to future light source design. Early simulations with IMPACT-Z were performed using up to 100M simulation particles for the main linac of a future light source. Combined with the time domain code IMPACT-T, it is now possible to perform large-scale start-to-end linac simulations for future sources, including the injector, main linac, chicanes, and transfer lines. In this paper we provide an overview of the IMPACT code suite, its key capabilities, and recent enhancements pertinent to accelerator modeling for future linac-based light sources.  
 
THPAS008 Simulation of the Dynamics of Microwave Transmission Through an Electron Cloud simulation, plasma, diagnostics, polarization 3525
 
  • K. G. Sonnad
  • J. R. Cary
    CIPS, Boulder, Colorado
  • M. A. Furman
    LBNL, Berkeley, California
  • P. Stoltz, S. A. Veitzer
    Tech-X, Boulder, Colorado
  Funding: Work supported by the U. S. DOE under Contract no. DE-AC02-05CH11231

Simulation studies are under way to analyze the dynamics of microwave transmission through a beam channel containing electron clouds. Such an interaction is expected to produce a shift in phase accompanied by attenuation in the amplitude of the microwave radiation. Experimental observation of these phenomena would lead to a useful diagnosis tool for electron clouds. This technique has already been studied* at the CERN SPS. Similar experiments are being proposed at the PEP-II LER at SLAC as well as the Fermilab MI. In this study, simulation results will be presented for a number of cases including those representative of the above mentioned experiments. The code VORPAL is being utilized to perform electromagnetic particle-in-cell (PIC) calculations. The results are expected to provide guidance to the above mentioned experiments as well as lead to a better understanding of the problem.

* T. Kroyer, F. Caspers, E. Mahner , pg 2212 Proc. PAC 2005, Knoxville, TN

 
 
THPAS010 A Multislice Approach for Electromagnetic Green's Function Based Beam Simulations simulation, space-charge, electromagnetic-fields, cathode 3531
 
  • M. Hess
  • C. S. Park
    IUCF, Bloomington, Indiana
  Funding: This research is supported in part by the Department of Energy under grant DE-FG0292ER40747 and in part by the National Science Foundation under grant PHY-0552389.

We present a multislice approach for modeling the space-charge fields of bunched electron beams that are emitted from a metallic cathode using electromagnetic Green's function techniques. The multislice approach approximates a local region of the beam density and current with a slice of zero longitudinal thickness. We show examples of how the multislice approach can be used to accurately compute the space-charge fields for electron bunch lengths in the regime of photocathode sources, i.e. (<10 ps).

 
 
THPAS012 Computational Requirements for Green's Function Based Photocathode Source Simulations simulation, space-charge, electromagnetic-fields, cathode 3537
 
  • C. S. Park
  • M. Hess
    IUCF, Bloomington, Indiana
  Funding: This work is supported by the National Science foundation under contract PHY-0552389 and by the Department of Energy under contract DE-FG02-92ER40747.

We demonstrate the computational requirements for a Green's function based photocathode simulation code called IRPSS. In particular, we show the necessary conditions, e.g. eigenmode number and integration time-step, for accurately computing the space-charge fields in IRPSS to less than 1 % error. We also illustrate how numerical filtering methods can be applied to IRPSS in conjunction with a multislice approach, for dramatically improving computational efficiency of electromagnetic field calculations.

 
 
THPAS013 Electron Cloud Simulations to Cold PSR Proton Bunches proton, simulation, vacuum, beam-losses 3540
 
  • Y. Sato
  • J. A. Holmes
    ORNL, Oak Ridge, Tennessee
  • S.-Y. Lee
    IUCF, Bloomington, Indiana
  • R. J. Macek
    LANL, Los Alamos, New Mexico
  Funding: SNS through UT-Battelle, LLC, DE-AC05-00OR22725 for the U. S. DOE. Indiana University Bloomington, PHY-0552389 for NSF and DE-FG02-92ER40747 for DOE. LANL, W-7405-ENG-36.

We present ORBIT code simulations to examine the sensitivity of electron cloud properties to different proton beam profiles and to reproduce experimental results from the proton storage ring at Los Alamos National Laboratory. We study the recovery of electron clouds after sweeping, and also the characteristics of two types of electrons signals (prompt and swept) as functions of beam charge. The prompt signal means the peak height of electron sweeper signal before high voltage pulse applied on its electrode and after beam accumulation, and the swept signal means the spike height of electron sweeper signal during the high voltage pulse. To concentrate on the electron cloud dynamics, we use a cold proton bunch to generate primary electrons and electromagnetic field for electron dynamics. However, the protons receive no feedback from the electron cloud. Our simulations indicate that the proton loss rate in the field-free straight section might be an exponential function of proton beam charge and may also be lower than the averaged proton loss rate in a whole ring.

 
 
THPAS014 MICE: the International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement emittance, factory, simulation, background 3543
 
  • T. L. Hart
  Muon storage rings have been proposed for use as sources of intense high-energy neutrino beams and as the basis for multi-TeV lepton-antilepton colliding-beam facilities. Optimizing the performance of such facilities is likely to require the phase-space compression (cooling) of the muon beam prior to acceleration and storage. The short muon lifetime makes traditional beam-cooling techniques ineffective. Ionization cooling, a process in which the muon beam is passed through a series of energy absorbers followed by accelerating RF cavities, is thus the technique of choice. The international Muon Ionization Cooling Experiment (MICE) collaboration is constructing the apparatus for a muon ionization-cooling demonstration experiment, to be conducted at Rutherford Appleton Laboratory over the next 3 years. The MICE cooling channel, its instrumentation, and its implementation at the Rutherford Appleton Laboratory are described together with the predicted performance of the channel and the measurements that will be made.  
 
THPAS017 Numerical Algorithms for Modeling Electron Cooling in the Presence of External Fields simulation, undulator, ion, plasma 3549
 
  • G. I. Bell
  • I. Ben-Zvi, A. V. Fedotov, V. Litvinenko
    BNL, Upton, Long Island, New York
  • D. L. Bruhwiler, A. V. Sobol
    Tech-X, Boulder, Colorado
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-FG02-04ER84094.

The design of the high-energy cooler for the Relativistic Heavy Ion Collider (RHIC) recently adopted a non-magnetized approach. To prevent recombination between the fully stripped gold ions and co-propagating electrons, a helical undulator magnet has been proposed. In addition, to counteract space-charge defocusing, weak solenoids are proposed every 10m. To understand the effect of these magnets on the cooling rate, numerical models of cooling in the presence of external fields are needed. We present an approach from first principles using the VORPAL parallel simulation code. We solve the n-body problem by exact calculation of pair-wise collisions. Simulations of the proposed RHIC cooler are discussed, including fringe field and finite interaction time effects.

 
 
THPAS020 3D Simulations of Secondary Electron Generation and Transport in a Diamond Amplifier for Photocathodes scattering, simulation, lattice, acceleration 3555
 
  • D. A. Dimitrov
  • I. Ben-Zvi, X. Chang, T. Rao, J. Smedley, Q. Wu
    BNL, Upton, Long Island, New York
  • D. L. Bruhwiler, R. Busby, J. R. Cary
    Tech-X, Boulder, Colorado
  The Relativistic Heavy Ion Collider (RHIC) contributes fundamental advances to nuclear physics by colliding a wide range of ions. A novel electron cooling section, which is a key component of the proposed luminosity upgrade for RHIC, requires the acceleration of high-charge electron bunches with low emittance and energy spread. A promising candidate for the electron source is the recently developed concept of a high quantum efficiency photoinjector with a diamond amplifier. We have started to implement algorithms, within the VORPAL particle-in-cell framework, for modeling of secondary electron and hole generation, and for charge transport in diamond. The algorithms include elastic and various inelastic scattering processes over a wide range of charge carrier energies. Initial results from the implemented capabilities will be presented and discussed.

The work at Tech-X Corp. is supported by the U. S. Department of Energy under a Phase I SBIR grant.

 
 
THPAS028 Warm-Fluid Equilibrium Theory of an Intense Charged-Particle Beam Propagating through a Periodic Solenodal Focusing Channel focusing, emittance, plasma, beam-losses 3558
 
  • K. R. Samokhvalova
  • C. Chen, J. Z. Zhou
    MIT/PSFC, Cambridge, Massachusetts
  Funding: Research supported by US Department of Energy, Office of High-Energy Physics, Grant No. DE-FG02-95ER40919 and Air Force Office of Scientific Research, Grant No. FA9550-06-1-0269.

A warm-fluid theory of a thermal equilibrium for a rotating charged particle beam in a periodic solenoidal focusing magnetic field is presented. The warm-fluid equilibrium equations are solved in the paraxial approximation. It is shown that the flow velocity for the thermal equilibrium corresponds to periodic rigid rotation and radial pulsation. The equation of state for the thermal equilibrium is adiabatic. The beam envelope equation and self-consistent Poisson's equation are derived. The numerical algorithm for solving self-consistent Poisson's equation is discussed. Density profiles are calculated numerically for high-intensity beams. Temperature effects in such beams are investigated, and the validity of the warm-fluid theory is discussed. Examples of electron and ion beams are presented for space-charge-dominated beam and high energy density physics (HEDP) research.

 
 
THPAS031 Measurement and Simulation of Source-Generated Halos in the University of Maryland Electron Ring (UMER) cathode, gun, simulation, space-charge 3564
 
  • I. Haber
  • S. Bernal, R. Feldman, R. A. Kishek, P. G. O'Shea, C. Papadopoulos, M. Reiser, D. Stratakis, M. Walter
    UMD, College Park, Maryland
  • A. Friedman, D. P. Grote
    LLNL, Livermore, California
  • J.-L. Vay
    LBNL, Berkeley, California
  Funding: This work is supported by the US DOE under contract Nos. DE-FG02-02ER54672 and DE-FG02-94ER40855 (UMD), and DE-AC02-05CH11231 (LBNL) and W-7405-ENG-48 (LLNL)

One of the areas fundamental beam physics that serve as the rationale for recent research on UMER is the study of generation and evolution of beam halos. This physics can be accessed on a scaled basis in UMER at a small fraction of the cost of similar experiments on a much larger machine. Recent experiments and simulations have identified imperfections in the source geometry, particularly in the region near the emitter edge, as a potentially significant source of halo particles. The edge-generated halo particles, both in the experiments and the simulations are found to pass through the center of the beam in the vicinity of the anode plane. Understanding the detailed evolution of these particle orbits is therefore important to designing any aperture to remove the beam halo. Both experimental data and simulations will be presented to illustrate the details of this mechanism for halo formation.

 
 
THPAS032 Modeling Skew Quadrupole Effects on the UMER Beam quadrupole, simulation, emittance, space-charge 3567
 
  • C. Papadopoulos
  • G. Bai, B. L. Beaudoin, I. Haber, R. A. Kishek, P. G. O'Shea, M. Reiser, M. Walter
    UMD, College Park, Maryland
  Funding: US Department of Energy

This is a numerical study of the effects of skew quadrupoles on the beam used in University of Maryland Electron Ring (UMER). As this beam is space-charge dominated, we expect new phenomena to be present compared to the emittance-dominated case. In our studies we find that skew quadrupoles can severely affect the halo of the beam and cause emittance growth, even in the first turn of the beam. For our simulations we used the WARP particle-in-cell code and we compared the results with the experimental study of skew quadrupole effects (to be reported separately).

 
 
THPAS033 Evolution of Laser Induced Perturbation and Experimental Observation of Space Charge Waves in the University of Maryland Electron Ring (UMER) space-charge, laser, simulation, cathode 3570
 
  • J. C.T. Thangaraj
  • G. Bai, B. L. Beaudoin, S. Bernal, D. W. Feldman, R. B. Fiorito, I. Haber, R. A. Kishek, P. G. O'Shea, M. Reiser, D. Stratakis, D. F. Sutter, K. Tian, M. Walter
    UMD, College Park, Maryland
  Funding: This work is funded by US Dept. of Energy grant numbers DE-FG02-94ER40855

The University of Maryland Electron Ring (UMER) is a scaled model to investigate the transverse and longitudinal physics of space charge dominated beams. It uses a 10-keV electron beam along with other scaled beam parameters that model the larger machines but at a lower cost. Understanding collective behavior of intense, charged particle beams due to their space charge effects is crucial for advanced accelerator research and applications. This paper presents the experimental study of longitudinal dynamics of an initial density modulation on a spacecharge dominated beam. A novel experimental technique of producing a perturbation using a laser is discussed. Using a laser to produce a perturbation provides the ability to launch a pure density modulation and to have better control over the amount of perturbation introduced. Collective effects like space charge waves and its propagation over long distances in a quadrupole channel are studied. One dimensional cold fluid model is used for theoretical analysis and simulations are carried out in WARP-RZ.

 
 
THPAS034 Fast Imaging of Time-dependent Distributions of Intense Electron Beams space-charge, gun, diagnostics, coupling 3573
 
  • K. Tian
  • G. Bai, B. L. Beaudoin, D. W. Feldman, R. B. Fiorito, I. Haber, R. A. Kishek, P. G. O'Shea, M. Reiser, D. Stratakis, D. F. Sutter, J. C.T. Thangaraj, M. Walter, C. Wu
    UMD, College Park, Maryland
  Funding: Work supported by the U. S. Department of Energy, the Office of Naval Research and the Joint Technology Office

Longitudinal perturbations can be generated in the space-charge dominated regimes in which most beams of interest are born. To study the modification of transverse beam distributions by longitudinal beam dynamics, we have conducted experimental studies using low energy electron beams by taking time resolved images of a beam with longitudinal density perturbations. Two different diagnostics are used: optical transition radiation (OTR) produced from an intercepting silicon based aluminum screen and a fast (<5ns decay time) phosphor screen. It is found that the beam is significantly affected by the perturbation. However the OTR signal is very weak and requires over 45 minutes of frame integration. The fast phosphor screen has much better sensitivity (~1'000 times enhancement). In this paper, we also report on the time resolved measurement of a parabolic beam, showing interesting correlations between transverse and longitudinal distributions of the beam.

 
 
THPAS046 Transverse-Longitudinal Coupling in an Intense Electron Beam focusing, coupling, space-charge, longitudinal-dynamics 3597
 
  • J. R. Harris
  • R. Feldman, P. G. O'Shea
    UMD, College Park, Maryland
  Funding: This paper was prepared under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

This paper describes the longitudinal expansion of a 10 keV, 100 mA electron beam in the University of Maryland Electron Ring. The expansion of the beam tail was found to be sensitive to the choice of transverse focusing settings due to the presence of an abnormality in the beam current profile. Expansion of the beam head, where no abnormality was observed, is in good agreement with the one-dimensional cold fluid model.

 
 
THPAS047 Adaptive Mesh Refinement for Particle-Tracking Calculation gun, resonance, cathode, controls 3600
 
  • J. F. DeFord
  • B. Held
    STAR, Inc., Mequon, Wisconsin
  • J. J. Petillo
    SAIC, Burlington, Massachusetts
  Funding: U. S. Department of Energy, contract number DE-FG02-05ER84373.

Particle orbit errors in multipacting and dark current computations can arise from inadequate field representation, poor surface modeling, and from the integration algorithm used to advance the particles. Established fields-based adaptive mesh refinement (AMR) methods *,** selectively improve the field and surface representation over several iterations in finite-element codes but they are not optimized for particle tracking. In particular, field emission and secondary emission models require precise surface representations and highly accurate field representations near surfaces, and these requirements are not adequately addressed in standard AMR techniques. In this paper we report on extensions to existing AMR support in the Analyst software package for particle tracking, including adaptive improvement of near-surface and on-surface field representations, and control of element aspect ratios throughout successive iterations. We also discuss the merits of automated identification of important regions of the mesh based on field levels and orbit estimation to guide AMR in multipacting calculations, and multipacting results for a SRF cavity will be presented.

* G. Drago, et al., IEEE Trans. on Mag., 28, 1992, pp. 1743-1746.** D. K. Sun, et al., IEEE Trans. on Mag., 36, July 2000, pp. 1596-1599.

 
 
THPAS050 Simulating Electron Effects in Heavy-Ion Accelerators with Solenoid Focusing simulation, target, diagnostics, lattice 3603
 
  • W. M. Sharp
  • R. H. Cohen, A. Friedman, D. P. Grote, A. W. Molvik
    LLNL, Livermore, California
  • J. E. Coleman, P. K. Roy, P. A. Seidl, J.-L. Vay
    LBNL, Berkeley, California
  • I. Haber
    UMD, College Park, Maryland
  Funding: This work was performed under the auspices of US DOE by the University of California Lawrence Livermore and Lawrence Berkeley National Laboratories under contracts W-7405-Eng-48 and DE-AC03-76SF00098.

Contamination from electrons is a concern for solenoid-focused ion accelerators being developed for experiments in high-energy-density physics (HEDP). These electrons, produced directly by beam ions hitting lattice elements or indirectly by ionization of desorbed neutral gas, can potentially alter the beam dynamics, leading to a time-varying focal spot, increased emittance, halo, and possibly electron-ion instabilities. The electrostatic particle-in-cell code WARP is used to simulate electron-cloud studies on the solenoid-transport experiment (STX) at Lawrence Berkeley National Laboratory. We present self-consistent simulations of several STX configurations to show the evolution of the electron and ion-beam distributions first in idealized 2-D solenoid fields and then in the 3-D field values obtained from probes. Comparisons are made with experimental data, and several techniques to mitigate electron effects are demonstrated numerically.

 
 
THPAS054 QUINDI - A Code to Simulate Coherent Emission from Bending Systems radiation, acceleration, lattice, diagnostics 3612
 
  • D. Schiller
  • S. Reiche, M. Ruelas
    UCLA, Los Angeles, California
  With this, we present a newly developed code, QUINDI, to address the numerical challenge of calculating the radiation spectra from electron bunches in bending magnet systems. This provides a better tool for designing diagnostic systems such as bunch length monitors in magnetic chicanes. The program calculates emission on a first principle basis, combining the dominant emission processes in a bending magnet system - edge and synchrotron radiation. The core algorithm is based on the Lienard-Wiechert potential and utilizes parallel computer architecture to cover complete electron beam distributions with a high resolution spatial grid. The program is aimed towards long frequency components to model the coherence level of the emitted radiation from the electron bunch.  
 
THPAS055 Long Time Electron Cloud Instability Simulation Using QuickPIC With Pipelining Algorithm simulation, plasma, betatron, acceleration 3615
 
  • B. Feng
  • V. K. Decyk, C. Huang, W. B. Mori
    UCLA, Los Angeles, California
  • T. C. Katsouleas, P. Muggli
    USC, Los Angeles, California
  Funding: This work was supported by the Department of Energy contract DE-FG02-92-ER40745

We proposed a novel algorithm, which uses pipelining to reduce the simulation time for beam-electron cloud interaction. In the pipelining algorithm the processors are divided into subgroups, and during the simulation different groups will be on consecutive time steps. The pipelining algorithm is applied to the fully parallelized Particle-In-Cell (PIC) code QuickPIC to overcome the limit of the number of processors that can be used at each time step. With the new algorithm, the accuracy of the simulation is preserved; and the speed of the simulation is improved by a factor proportional to the number of processors available. The long term beam evolution results for the CERN-LHC and the FNAL main injector are presented using the QuickPIC with pipelining algorithm.

 
 
THPAS060 LCLS Beam Dynamics Studies with the 3-D Parallel Impact-T Code space-charge, linac, emittance, simulation 3624
 
  • Y. T. Ding
  • Z. Huang, C. Limborg-Deprey
    SLAC, Menlo Park, California
  • J. Qiang
    LBNL, Berkeley, California
  In 2007, the Linac Coherent Light Source (LCLS) will start to commission the photoinjector, the linacs (up to 250 MeV) and the first bunch compressor (BC1). In this paper, we report on the beam dynamics studies in this low-energy part of the machine with the parallel Impact-T code*, taking into account three-dimensional (3-D) space charge forces, linac wakefields, and coherent synchrotron radiation. We compare the IMPACT-T simulation results with PARMELA and discuss possible space charge effects in the linac and BC1 regions. We also plan to compare with experimental measurements when they become available.

* J. Qiang et al, Phys. Rev. ST Accel. Beams 9,044204 (2006).

 
 
THPAS063 Employment of Second Order Ruled Surfaces in Design of Sheet Beam Guns gun, cathode, klystron, focusing 3630
 
  • A. Krasnykh
  Funding: Work supported by the U. S. Department of Energy under contract number DE-AC03-76SF00515

A novel 3D method of sheet beam (SB) gun design has recently been developed. Second order ruled surfaces (SORS) to define the geometry of the gun electrodes. The gun design process is made simpler if SORS are derived from simple analytical formulas. The coefficients of the mathematical expression are parameters that set the gun optic. A proposed design method is discussed and illustrated.

 
 
THPAS066 CMAD: A New Self-consistent Parallel Code to Simulate the Electron Cloud Build-up and Instabilities simulation, lattice, damping, storage-ring 3636
 
  • M. T.F. Pivi
  Funding: Work supported by the Director, Office of Science, High Energy Physics, U. S. DOE under Contract No. DE-AC02-76SF00515.

We present the features of CMAD, a newly developed self-consistent code which simulates both the electron cloud build-up and related beam instabilities. By means of parallel (Message Passing Interface - MPI) computation, the code tracks the beam in an existing (MAD-type) lattice and continuously resolve the interaction between the beam and the cloud at each element location, with different cloud distributions at each magnet location. CMAD simulates single-and coupled-bunch instability, allows tune shift, dynamic aperture and frequency map analysis and the determination of the secondary electron yield instability threshold. Preliminary results are presented.

 
 
THPAS074 The Effective CSR Forces for an Energy-Chirped Bunch Under Magnetic Compression simulation, optics, dipole, synchrotron 3654
 
  • R. Li
  Funding: The work is supported by JSA/DOE Contract No. DE-AC05-06OR23177.

In this study, we analyze the longitudinal effective CSR force for an energy-chirped Gaussian bunch moving relativistically on a circular orbit. With the geometry of the bunch tilt in dispersive regions (as induced by the initial energy-chirp) included in the retardation relation, the longitudinal effective CSR force thus calculated displays a variety of behaviors depending on the level of bunch compression. The variety ranges from the suppression of the longitudinal CSR force, for an undercompressed thin bunch, to an enhancement of the CSR interaction above that for a projected bunch, in a duration of path length shortly after the bunch crosses over the full compression point. The amplitude and duration of the enhancement depends on the bunch and lattice parameters. During this enhancement, the longitudinal effective CSR force depends sensitively on the particle's transverse position in the bunch. The physical picture of this phenomenon will be discussed.

 
 
THPAS082 Meter-Long Plasma Source for Heavy Ion Beam Space Charge Neutralization plasma, ion, focusing, space-charge 3672
 
  • P. Efthimion
  • R. C. Davidson, E. P. Gilson, L. Grisham
    PPPL, Princeton, New Jersey
  • B. G. Logan, P. A. Seidl, W. L. Waldron, S. Yu
    LBNL, Berkeley, California
  Funding: Research supported by the U. S. Department of Energy.

Plasmas are sources of electrons for charge neutralizing ion beams to allow them to focus to small spot sizes and compress their axial pulse length. Sources must operate at low pressures and without strong electric/magnetic fields. To produce meter-long plasmas, sources based on ferroelectric ceramics with large dielectric coefficients were developed. The sources use BaTiO3 ceramic to form plasma. The drift tube inner wall of the Neutralized Drift Compression Experiment (NDCX) is covered with ceramic and ~7 kV is applied across the wall of the ceramics. A 20-cm-long prototype source produced plasma densities of 5·1011 cm-3. It was integrated into the Neutralized Transport Experiment and successfully neutralized the K+ beam. A one-meter-long source comprised of five 20-cm-long sources has been tested and characterized, producing relatively uniform plasma over the length of the source in the 1·1010 cm-3 range. This source was integrated into NDCX for beam compression experiments. Experiments with this source yielded compression ratios ~80. Future work will consider longer and higher plasma density sources to support beam compression and high energy density experiments.

 
 
THPAS084 Calculation of the Charge-changing Cross Sections of Ions or Atoms colliding with Fast Ions using the Classical Trajectory Method ion, simulation, target, plasma 3678
 
  • A. Shnidman
  • R. C. Davidson, I. Kaganovich
    PPPL, Princeton, New Jersey
  Funding: Research supported by the U. S. Department of Energy under the auspices of the Heavy Ion Fusion Science Virtual National Laboratory.

Evaluation of ion-atom charge-changing cross sections is needed for many accelerator applications. The validity of the classical trajectory approximation has been studied by comparing the results of simulations with available experimental data and full quantum-mechanical calculations [1]. Additionally, a theoretical criterion has been developed for the validity of the classical trajectory approximation [2]. For benchmarking purposes, a Classical Trajectory Monte Carlo simulation (CTMC) is used to calculate ionization and charge exchange cross sections for most simple, hydrogen and helium targets in collisions with various ions. The calculated cross sections compare favorably with the experimental results for projectile velocities near the projectile velocity corresponding to the maximum of cross section as a function of projectile velocity. At higher or lower velocities, quantum-mechanical effects become more significant and the CTMC results agree less well with the experimental values of the cross sections.

[1] I. D. Kaganovich, et al., , New Journal of Physics 8, 278 (2006).
[2] Igor D. Kaganovich, et al., Nucl. Instr. and Methods A 544, 91(2005).

 
 
THPAS086 Beam Emittance Simulations for a High Gradient Pulsed DC/RF Gun gun, emittance, acceleration, simulation 3684
 
  • P. Chen
  • R. Yi, D. Yu
    DULY Research Inc., Rancho Palos Verdes, California
  Funding: Work supported by DOE SBIR Grant No. DE-FG02-03ER83878.

One of the most important targets for building modern particle accelerators is to increase the beam brightness. The purposes of building a dc/rf gun are to seek high bunch charge and low beam transverse emittance, two key parameters for enhancing brightness of accelerators. We present simulation results of the beam emittance changes in a dc/rf gun under different gun voltages. SUPERFISH and PARMELA were used to simulate the beam dynamics in the gun. These simulations indicate that a small beam transverse emittance (< 0.5 mm.mrad) can be obtained when the voltage on the dc gap is lower than 200 kV and the bunch charge is 200 pc, and increments of dc gap voltages will greatly improve the emittances.

 
 
THPAS092 Electron Cooling in the Presence of Undulator Fields ion, undulator, simulation, heavy-ion 3696
 
  • A. V. Fedotov
  • G. I. Bell, D. L. Bruhwiler, A. V. Sobol
    Tech-X, Boulder, Colorado
  • I. Ben-Zvi, D. Kayran, V. Litvinenko, E. Pozdeyev
    BNL, Upton, Long Island, New York
  • A. O. Sidorin, A. V. Smirnov
    JINR, Dubna, Moscow Region
  Funding: Work supported by the U. S. Department of Energy.

The traditional electron cooling system used in low-energy coolers employs an electron beam immersed in a longitudinal magnetic field. In the first relativistic cooler, which was recently commissioned at Fermilab, the friction force is dominated by the non-magnetized collisions between electrons and antiprotons. The design of the higher-energy cooler for Relativistic Heavy Ion Collider (RHIC) recently adopted a non-magnetized approach which requires a low temperature electron beam. However, to avoid significant loss of heavy ions due to recombination with electrons in the cooling section, the temperature of the electron beam should be very high. These two contradictory requirements are satisfied in the design of the RHIC cooler with the help of the undulator fields. The model of the friction force in the presence of an undulator field was benchmarked vs direct numerical simulations with an excellent agreement. Simulations of ion beam dynamics in the presence of such a cooler and helical undulator is discussed in detail, including recombination suppression and resulting luminosities.

 
 
THPAS093 High-Energy Electron Cooling Based on Realistic Six-Dimensional Distribution of Electrons ion, simulation, emittance, space-charge 3699
 
  • A. V. Fedotov
  • I. Ben-Zvi, D. Kayran, E. Pozdeyev
    BNL, Upton, Long Island, New York
  • A. O. Sidorin, A. V. Smirnov
    JINR, Dubna, Moscow Region
  Funding: Work supported by the U. S. Department of Energy.

The low-energy electron cooling system is based on an electron beam immersed in a longitudinal magnetic field of a solenoid. The coupling of the horizontal and vertical motion allows representation of the friction force as a sum of the transverse and longitudinal components. The analytic treatment proceeds by allowing several approximations, for example, uniform transverse density distribution of electron beam and Maxwellian distribution in the velocity space. The high-energy electron cooling system for RHIC is unique compared to standard coolers. It requires bunched electron beam. Electron bunches are produced by an Energy Recovery Linac (ERL), and cooling is planned without a longitudinal magnetic field. To address the unique features of the RHIC cooler, a generalized 3-D treatment of the cooling force was introduced in the BETACOOL code which allows to calculate the friction force from an arbitrary six-dimensional distribution of the electrons. Results based on this treatment are compared to typical approximations. Simulations for the RHIC cooler based on a realistic electron distribution from the ERL are presented.

 
 
THPAS095 Ferrite-lined HOM Absorber for the e-Cool ERL simulation, dipole, resonance, damping 3705
 
  • H. Hahn
  • L. R. Hammons, D. Naik
    BNL, Upton, Long Island, New York
  Funding: Work performed under Contract No. DE-AC02-98CH1-886 with the U. S. Department of Energy.

An R&D facility for an Energy Recovery Linac (ERL) intended as part of the 'Electron-Cooling Xperiment' for RHIC is being constructed at this laboratory. The center piece of the project is the experimental 5-cell 703.75 MHz superconducting ECX cavity. Successful operation will depend on effective HOM suppression, and it is planned to achieve HOM damping exclusively with room temperature ferrite absorbers. A ferrite-lined pillbox model with dimensions reflecting the operational unit was assembled, and the cavity resonances and quality factors were determined from scattering coefficient measurements and were interpreted as surface impedance. Results from a 5-cell copper cavity with an attached ferrite absorber prototype are used for the prediction of the ECX cavity HOM damping. A rotational symmetric ferrite-lined pillbox was analyzed theoretically and compared with the simulation codesμWave Studio, GdfidL, and Superfish. Discrepancies of the resonance frequencies and Q-values were found, and steps to reach agreement are discussed.

 
 
THPAS096 Optics of a Two-Pass ERL as an Electron Source for a Non-Magnetized RHIC-II Electron Cooler linac, emittance, gun, simulation 3708
 
  • D. Kayran
  • I. Ben-Zvi, R. Calaga, X. Chang, J. Kewisch, V. Litvinenko, E. Pozdeyev
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the U. S. Department of Energy contract No DE-AC02-98CH1-886 with support from the US Department of Defense.

Non-magnetized electron cooling of RHIC requires an electron beam energy of 54.3 MeV, electron charge per bunch of 5 nC, normalized rms beam emittance of 4 mm-mrad, and rms energy spread of 3·10-4 *. In this paper we describe a lattice of a two-pass SCRF energy recovery linac (ERL) and results of a PARMELA simulation that provides electron beam parameters satisfying RHIC electron cooling requirements.

* A. Fedotov, Electron Cooling Studies for RHIC II http://www.bnl.gov/cad/ecooling/docs/PDF/Electron_Cooling.pdf

 
 
THPAS097 Merger System Optimization in BNL's High Current R&D ERL emittance, gun, linac, space-charge 3711
 
  • D. Kayran
  • V. Litvinenko
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the U. S. Department of Energy contract No DE-AC02-98CH1-886 with support from the US Department of Defense.

A super-conducting RF R&D Energy recovery linac (ERL) is under construction at Brookhaven National Laboratory (BNL). This ERL will be used as a test facility to study issues relevant to high-current, high-brightness beams. One of the goals is to demonstrate an electron beam with high charge per bunch (~ 5 nC) and extremely low normalized emittance (~ 5 mm-mrad) at an energy of 20 MeV. In contrast with operational high-brightness linear electron accelerators, all presently operating ERLs have an order of magnitude larger emittances for the same charge per bunch. One reason for this emittance growth is that the merger system mixes transverse and longitudinal degrees of freedom, and consequently violates emittance compensation conditions. A merger system based on zigzag scheme* resolves this problem. In this paper we discuss performance of the present design of the BNL R&D ERL injector with a zigzag merger.

* V. N. Litvinenko, R. Hajima, and D. Kayran, Nucl. Instr. and Meth. A 557 (2006) 165.

 
 
THPAS100 Collective Effects in the RHIC-II Electron Cooler ion, space-charge, vacuum, focusing 3717
 
  • E. Pozdeyev
  • I. Ben-Zvi, A. V. Fedotov, D. Kayran, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886

Electron cooling at RHIC-II upgrade imposes strict requirements on the quality of the electron beam at the cooling section. Beam current dependent effects such as the space charge, wake fields, CSR in bending magnets, trapped ions, etc., will tend to spoil the beam quality and decrease the cooling efficiency. In this paper, we estimate the defocusing effect of the space charge at the cooling section and describe our plan to compensate the defocusing space charge force by focusing solenoids. We also estimate the energy spread and emittance growth cased by wake fields. Finally, we discuss ion trapping in the electron cooler and consider different techniques to minimize the effect of ion trapping.

 
 
THPAS104 Simulations of RHIC Coherent Stabilities Due To Wakefield and Electron Cooling simulation, ion, impedance, damping 3726
 
  • G. Wang
  • M. Blaskiewicz
    BNL, Upton, Long Island, New York
  A circulating ion beam in the presence of electron cooling can experience varies instabilities if the electron beam intensity is above a certain threshold. Firstly the electric field generated by the electron beam can introduce two stream instabilities of varies modes; this has already been observed in the Fermilab Recycler ring. Secondly, longitudinal cooling of the momentum spread will reduce the Landau damping efficiency and thus may make the overcooled ion beam unstable. The thresholds and growth rates of varies two stream instability modes are discussed for the existing RHIC electron cooler design. Both simulation and theoretical results are shown for the thresholds of the instabilities caused by overcooling.  
 
FRXAB01 Status of High Polarization DC High Voltage GaAs Photoguns laser, vacuum, gun, polarization 3756
 
  • M. Poelker
  • P. A. Adderley, J. Brittian, J. Clark, J. M. Grames, J. Hansknecht, J. McCarter, M. L. Stutzman, R. Suleiman, K. E.L. Surles-Law
    Jefferson Lab, Newport News, Virginia
  This talk will review the state of the art of high polarization GaAs photoguns used worldwide. Subject matter will include drive laser technology, photocathode material, gun design, vacuum requirements and photocathode lifetime as a function of beam current. Recent results have demonstrated high current, 85% polarized beams with high reliability and long lifetime under operational conditions. Research initiatives for ensuring production of high average and peak current beams for future accelerator facilities such as ELIC and the ILC will be also discussed.  
slides icon Slides  
 
FROAAB01 Towards a 100% Polarization in the RHIC Optically Pumped Polarized Ion Source polarization, proton, emittance, brightness 3771
 
  • A. Zelenski
  • J. G. Alessi, A. Kponou, J. Ritter, V. Zubets
    BNL, Upton, Long Island, New York
  The main depolarization factors in the multi-step spin-transfer polarization technique and basic limitations on maximum polarization in the different OPPIS (Optically-Pumped Polarized H- Ion Source) schemes will be discussed. Detailed studies of polarization losses in the RHIC OPPIS and the source parameters optimization resulted in the OPPIS polarization increase to 86?1.5 %. This contributed to AGS and RHIC polarization increase to 65-70%.  
slides icon Slides  
 
FRYAB02 High-Performance EBIS for RHIC ion, injection, heavy-ion, rfq 3782
 
  • J. G. Alessi
  • E. N. Beebe, O. Gould, A. Kponou, R. Lockey, A. I. Pikin, D. Raparia, J. Ritter, L. Snydstrup
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the U. S. Department of Energy and the U. S. National Aeronautics and Space Administration.

An Electron Beam Ion Source (EBIS), capable of producing high charge states and high beam currents of any heavy ion species in short pulses, is ideally suited for injection into a synchrotron. An EBIS-based, high current, heavy ion preinjector is now being built at Brookhaven to provide increased capabilities for the Relativistic Heavy Ion Collider (RHIC), and the NASA Space Radiation Laboratory (NSRL). Benefits of the new preinjector include the ability to produce ions of any species, fast switching between species to serve the simultaneous needs of multiple programs, and lower operating and maintenance costs. A state-of-the-art EBIS, operating with an electron beam current of up to 10 A, and producing multi-milliamperes of high charge state heavy ions, has been developed at Brookhaven, and has been operating very successfully on a test bench for several years. The present performance of this high-current EBIS will be presented, along with details of the design of the scaled-up EBIS for RHIC, and the status of its construction. Other aspects of the project, including design and construction of the heavy ion RFQ, Linac, and matching beamlines, will also be mentioned.

 
slides icon Slides  
 
FROBAB01 Simulation-driven Optimization of Heavy-ion Production in ECR Sources ion, plasma, simulation, ion-source 3786
 
  • P. Messmer
  • D. L. Bruhwiler, D. W. Fillmore, P. J. Mullowney, K. Paul, A. V. Sobol
    Tech-X, Boulder, Colorado
  • D. Leitner, D. S. Todd
    LBNL, Berkeley, California
  Funding: Work supported by the U. S. DOE Office of Science, Office of Nuclear Physics, under grant DE-FG02-05ER84173.

Next-generation heavy-ion beam accelerators require a great variety of high charge state ion beams (from protons to uranium) with up to an order of magnitude higher intensity than demonstrated with conventional Electron Cyclotron Resonance (ECR) ion sources. Optimization of the ion beam production for each element is therefore required. Efficient loading of the material into the ECR plasma is one of the key elements for optimizing the ion beam production. High-fidelity simulations provide a means to understanding where along the interior walls the uncaptured metal atoms are deposited and, hence, how to optimize loading of the metal into the ECR plasma. We are currently extending the plasma simulation framework VORPAL with models to investigate effective loading of heavy metals into ECR ion sources via alternate mechanisms, including vapor loading, ion sputtering and laser ablation. Here we will present the models, simulation results of vapor loading and initial comparisons with experiments at the VENUS source at LBNL.

 
slides icon Slides  
 
FROAC04 Sub-10 Femtosecond Stabilization of a Fiber Link Using a Balanced Optical Cross Correlator laser, polarization, free-electron-laser, feedback 3804
 
  • F. Loehl
  • J. Chen, F. X. Kaertner, J. Kim, F. Wong
    MIT, Cambridge, Massachusetts
  • J. M. Mueller
    TUHH, Hamburg
  • H. Schlarb
    DESY, Hamburg
  Synchronization of various components with fs stability is needed for the operation of free-electron-lasers such as FLASH or the European XFEL. One possibility to realize a high precision synchronization is to use a mode-locked Er-doped fiber laser as a master clock and to distribute ultra short laser pulses inside the machine using actively stabilized fiber links. In this paper we demonstrate the stabilization of a 300 m long fiber link with a self-aligned balanced cross-correlator using a single type II phase-matched PPKTP crystal. This approach allowed us to reduce the timing jitter added by the link to below 10 fs.  
slides icon Slides  
 
FRYC01 ILC RF System R&D klystron, simulation, focusing, gun 3813
 
  • C. Adolphsen
  Funding: Work Supported by DOE Contract DE-AC02-76F00515

The ILC Linac Group at SLAC is actively pursuing a broad range of R&D to improve the reliability and reduce the cost of the L-band (1.3 GHz) rf system and normal-conducting accelerators. Current activities include the development of a Marx-style modulator and a 10 MW sheet-beam klystron, operation of an L-band (1.3 GHz) rf source using an SNS HVCM modulator and commercial klystron, construction of an rf distribution system with adjustable power tap-offs and custom hybrids, tests of cavity coupler components to understand rf processing limitations, simulation of multipacting in the couplers, optimization of the cavity fill parameters for operation with a large spread in sustainable cavity gradients and operation of a 5-cell prototype positron capture cavity. This paper surveys the results from the past year and reviews L-band R&D at other labs, in particular, that at DESY for the XFEL project.

 
slides icon Slides  
 
FROBC01 30 GHz High-Gradient Accelerating Structure Test Results linac, acceleration 3818
 
  • J. A. Rodriguez
  • H. Aksakal, Z. Nergiz
    Ankara University, Faculty of Sciences, Tandogan/Ankara
  • G. Arnau-Izquierdo, R. Corsini, S. Doebert, R. Fandos, A. Grudiev, I. Syratchev, M. Taborelli, F. Tecker, P. Urschutz, W. Wuensch
    CERN, Geneva
  • M. A. Johnson
    UU/ISV, Uppsala
  • O. M. Mete
    Ankara University, Faculty of Engineering, Tandogan, Ankara
  The CLIC study is high power testing accelerating structures in a number of different materials and accelerating structure designs to understand the physics of breakdown, determine the appropriate scaling of performance and in particular to find ways to increase achievable accelerating gradient. The most recent 30 GHz structures which have been tested include damped structures in copper, molybdenum, titanium and aluminum. The results from these new structures are presented and compared to previous ones to determine dependencies of quantities such as achievable accelerating gradient, pulse length, power flow, conditioning rate and breakdown rate.  
slides icon Slides  
 
FRZKI04 Plasma Accelerators - Progress and the Future plasma, laser, injection, acceleration 3845
 
  • C. Joshi
  In recent months plasma accelerators have set new records: The first laser wakefield accelerator to demonstarte near GeV beam with large charge and good beam quality in a table-top device at LBNL, and the energy-doubling of the SLAC beam in a short plasma channel by the plasma wakefield acceleration technique. These two events, happening at two different laboratories signifies a coming of age of advanced accelerator R&D.  
slides icon Slides  
 
FRPMN002 Preliminary Studies for Top-up Operations at the Australian Synchrotron synchrotron, injection, diagnostics, storage-ring 3856
 
  • M. J. Boland
  • D. J. Peake
    ASP, Clayton, Victoria
  • R. P. Rassool
    Melbourne
  The Australian Synchrotron is now a fully commissioned synchrotron light source providing beam for users. With the facility now fully operational, the next major advancement in machine operations will be top-up mode. The advantages of running top-up are well documented by other third generation light sources; in broad terms it leads to a better quality beam for users and better experimental results. An overview will be given of the top-up runs that have been conducted and the instrumentation that was used. It has been demonstrated that top-up operation is possible, however improvements in injection efficiency and beam stability during injection are required before this can become a routine mode of operation.  
 
FRPMN016 Wake Field Computations for the PITZ Photoinjector simulation, diagnostics, vacuum, gun 3931
 
  • E. Arevalo
  • W. Ackermann, R. Hampel, W. F.O. Muller, T. Weiland
    TEMF, Darmstadt
  Funding: This work is supported in part by the EU under contract number RIDS-011935 (EUROFEL).

The computation of wake fields excited by ultra short electron bunches in accelerator components with geometrical discontinuities is a challenging problem, as an accurate resolution for both the small bunch and the large model geometry are needed. Several computational codes (PBCI, ROCOCO, CST PARTICLE STUDIO etc.) have been developed to deal with this type of problems. Wake field simulations of the RF electron gun of the Photoinjector Test Facility at DESY Zeuthen (PITZ) are performed whith different specialized codes. Here we present a comparison of the wake potentials calculated numerically obtained from the different codes. Several structures of the photoinjector are considered.

 
 
FRPMN017 Beam Position Monitor Calibration at the FLASH Linac at DESY pick-up, undulator, free-electron-laser, laser 3937
 
  • N. Baboi
  • P. Castro, O. Hensler, J. Lund-Nielsen, D. Noelle, L. M. Petrosyan, E. Prat, T. Traber
    DESY, Hamburg
  • M. Krasilnikov, W. Riesch
    DESY Zeuthen, Zeuthen
  In the FLASH (Free electron LASer in Hamburg) facility at DESY more than 60 beam position monitors (BPM) with single bunch resolution are currently installed, and more are planned for future installation. Their calibration has been initially made by measuring each electronics board in the RF laboratory. However the ultimate calibration of each monitor is made by measuring its response to beam movement. This is a time-consuming procedure depending on the availability and accuracy of other components of the machine such as corrector magnets. On the other hand it has the advantage of getting in one measurement the answer of the monitor with all its components and of being independent of the monitor type. The calibration procedure and particularities for various types of BPMs in various parts of the linac will be discussed. A procedure based on the response matrices is also now under study. This would significantly speed up the calibration procedure, which is particularly important in larger accelerators such as the European XFEL (X-ray Free Electron Laser), to be built at DESY.  
 
FRPMN022 Analysis of Multi-Turn Beam Position Measurements in the ANKA Storage Ring damping, kicker, sextupole, storage-ring 3964
 
  • A.-S. Muller
  • I. Birkel, E. Huttel, P. Wesolowski
    FZK, Karlsruhe
  The observation of betatron oscillations following a deflection by a kicker pulse offers the possibility to study various machine parameters. The damping of the centre-of-charge signal's amplitude for one bunch, for example, depends chromaticity, energy loss, momentum compaction factor and impedance. A new multi-turn acquisition system based on LIBERA ELECTRON units (http://www.i-tech.si) has been installed in the ANKA storage ring. First analyses of the thus acquired data for different machine conditions reveal systematic limitations in the current ANKA multi-turn setup. Measurements preformed under varying conditions are presented and discussed with respect to the influence on future analysis.

* http://www.i-tech.si

 
 
FRPMN023 New Beam Diagnostic Developments at the Photo-Injector Test Facility PITZ diagnostics, dipole, booster, quadrupole 3967
 
  • S. Khodyachykh
  • D. Alesini, L. Ficcadenti
    INFN/LNF, Frascati (Roma)
  • G. Asova, J. W. Baehr, C. H. Boulware, H.-J. Grabosch, M. Hanel, S. A. Korepanov, M. Krasilnikov, S. Lederer, A. Oppelt, B. Petrosyan, S. Rimjaem, J. Roensch, T. A. Scholz, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • T. Garvey
    LAL, Orsay
  • L. H. Hakobyan
    YerPhI, Yerevan
  • D. J. Holder, B. D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Richter
    BESSY GmbH, Berlin
  • R. Spesyvtsev
    KhNU, Kharkov
  Funding: This work has partly been supported by the European Community, contracts RII3-CT-2004-506008 and 011935, and by the "Impuls- und Vernetzungsfonds" of the Helmholtz Association, contract VH-FZ-005.

The Photo-Injector Test Facility at DESY in Zeuthen (PITZ) is an electron accelerator which was built to develop and optimize high brightness electron sources suitable for SASE FEL operation. Currently, in parallel to the operation of the existing setup, a large extension of the facility and its research program is ongoing. The beam line which has a present length of about 13 meters will be extended up to about 21 meters within the next two years. Many additional diagnostics components will be added to the present layout. Two high-energy dispersive arms, an RF deflecting cavity and a phase space tomography module will extend the existing diagnostic system of the photo injector and will contribute to the full characterization of new electron sources. We will report on the latest developments of the beam diagnostics at PITZ.

 
 
FRPMN025 Review of the Longitudinal Impedance Budget of the ELETTRA Storage Ring impedance, storage-ring, closed-orbit, vacuum 3976
 
  • G. Penco
  • C. Bontoiu, P. Craievich, V. Forchi', E. Karantzoulis
    ELETTRA, Basovizza, Trieste
  Changes in the longitudinal impedance budget occur due to the changes in the machine structure. In this paper we update the longitudinal impedance budget of Elettra following the installation of the new vacuum chambers in the last three years. The measurements are performed by mapping the horizontal closed orbit deviation in single bunch operation mode, taking full advantage of the newly installed high resolution BPM electrons system. The current results are compared with those of the previous measurements.  
 
FRPMN027 Non-Intercepting Electron Beam Transverse Diagnostics with Optical Diffraction Radiation at the DESY FLASH Facility background, radiation, target, diagnostics 3982
 
  • E. Chiadroni
  • M. Castellano
    INFN/LNF, Frascati (Roma)
  • A. Cianchi
    INFN-Roma II, Roma
  • K. Honkavaara
    Uni HH, Hamburg
  • G. Kube
    DESY, Hamburg
  • V. M. Merlo, F. Stella
    Universita di Roma II Tor Vergata, Roma
  Funding: Work supported by the European Comunity Infra-structure Activity under the FP6 Structuring the European Research Area program (CARE, contract number RII3-CT-2003-506395)

The characterization of the transverse phase space for high charge density and high energy electron beams is a fundamental requirement in many particle accelerator facilities, since knowledge of the characteristics of the accelerated beams is of great importance for the successful development of the next generation light sources and linear colliders. The development of suitable beam diagnostics, non-invasive and non-intercepting, is therefore necessary to measure the properties of such beams. Optical Diffraction Radiation (ODR) is considered the most promise candidate, as testified by the interest of many laboratories all around the world. An experiment based on the detection of ODR has been set up at DESY FLASH Facility to measure the electron beam transverse parameters. The radiation is emitted by a 700 MeV-energy electron beam passing through a slit of 0.5 mm or 1 mm aperture depending on the beam size. The slit is opened by chemical etching on a screen made of aluminum deposited on a silicon substrate. Radiation is then detected by a air-cooled high sensitivity CCD camera. The status of the experiment and preliminary results are reported.

 
 
FRPMN037 Ion Instability in the ILC Damping Ring ion, damping, simulation, feedback 4030
 
  • E.-S. Kim
  • K. Ohmi
    KEK, Ibaraki
  Ions created by electron beam trapped in a bunch oscillate with a certain frequency, with the result that the beam oscillate with the same frequency. Recent high intensity and low emittance rings, the growth rate of this ion instability is very rapid. Super B factory and ILC damping ring, which are similar design parameter, are extremely low emittance. We discuss the ion instability for these rings.  
 
FRPMN038 Simulation of Synchro-betatron Sideband Instability caused by Electron Clouds at KEKB simulation, betatron, emittance, feedback 4033
 
  • J. W. Flanagan
  • E. Benedetto
    CERN, Geneva
  • J. Hyunchang
    POSTECH, Pohang, Kyungbuk
  • K. Ohmi
    KEK, Ibaraki
  Electron cloud causes a fast head-tail instability above a threshold density. Experiments at KEKB showed synchro-betatron sideband, which indicates the head-tail instability. The sideband appears near νy+kνs, where 1<k<2, that differs from ordinary instability seen near νys. We investigate the origin of the sideband using a computer simulation.  
 
FRPMN042 Continued Study on Photoelectron and Secondary Electron Yield of TiN Coating and NEG (Ti-Zr-V) Coatings at the KEKB Positron Ring photon, simulation, positron, synchrotron 4054
 
  • Y. Suetsugu
  • H. Hisamatsu, K.-I. Kanazawa, K. Shibata
    KEK, Ibaraki
  In order to investigate a way to mitigate the electron-cloud instability (ECI), the secondary electron and photoelectron yields (SEY and PEY) of a TiN coating and a NEG (Ti-Zr-V) coating have been studied at the KEK B-Factory (KEKB) positron ring. Following the previous study at an arc section*, the test chambers were installed a straight section, where the line density was less than 1/10 of that at the arc section. The number of electrons around the beam orbit was measured up to a stored beam current of about 1.7 A (1389 bunches). The electron current of the NEG-coated and TiN-coated chambers were about 60% and 30% of that for a copper chamber, respectively. The difference between the copper and the NEG coating was clearer than the measurement at the arc section, where the intense SR obscured the effect of SEY. The evaluated max values for the TiN coating, the NEG coating and the copper were 0.9 - 1.0, 1.0 - 1.1 and 1.3 - 1.4, respectively, which were almost consistent with the previous results. The experiments using a beam duct with ante-chambers are also briefly touched upon.

* Y. Suetsugu et al., NIM-PR-A, Vol.556 (2006) 399.

 
 
FRPMN043 Measurement of Beam Position Monitor Using HOM Couplers of Superconducting Cavities linac, pick-up, dipole, monitoring 4060
 
  • M. Sawamura
  The offset beam from the axis induces the HOMs in the cavities. These HOMs in superconducting cavities are usually damped by HOM couplers to suppress the beam instability. The induced HOM power is proportional to the beam offset and can be used to measure the beam position inside the cavity. The shifter magnet is installed to the JAEA superconducting ERL-FEL to vary the beam position. The HOM power from the HOM coupler with various beam position is measured. The result of the beam test is presented.  
 
FRPMN044 Measurement of Ultra-short Electron Bunch Duration by Coherent Radiation Analysis in Laser Plasma Catode radiation, laser, plasma, cathode 4066
 
  • R. Tsujii
  • T. Hosokai
    RLNR, Tokyo
  • K. Kinoshita, Y. Kondo, A. Maekawa, Y. Shibata, M. Uesaka, A. Yamazaki
    UTNL, Ibaraki
  • T. Takahashi
    KURRI, Osaka
  • A. G. Zhidkov
    Central Research Institute of Electric Power Industry, Komae
  Laser plasma accelerator can recently generate monochromatic and low-emittanced electron bunchs. Its pulse duration is femtoseconds, 40fs by the PIC simulation and about 250fs by measurement at University of Tokyo. But in such measurements only time-averaged spectrum and pulse duration were obtained by a few bolometers and coherent transition radiation (CTR) interferometer. Since the electron generation and acceleration are not stable yet, we need to know shot-by-shot behavior to improve its mechanism. Here we introduce the polychromator with ten channel-sensors for the single shot measurement. By this polychromator, we can obtain such a discrete spectrum of CTR by a single shot, thus the bunch duration can also be obtained shot-by-shot. This polychromator has ten channels to observe infrared radiation, and is mainly sensitive for the wavelengths around 1~2mm. We select this range of wavelength as the measurement tool, because the electron bunch duration changes shot-by-shot during traveling along the distance between the plasma and Ti foil (CTR emitter) due to their energy spectrum fluctuation. Further results and discussion will be presented on the spot.  
 
FRPMN047 Development of a Beam Induced Heat-Flow Monitor for the Beam Dump of the J-PARC RCS proton, linac, radiation, controls 4084
 
  • K. Satou
  • N. Hayashi, H. Hotchi, Y. Irie, M. Kinsho, M. Kuramochi, P. K. Saha, Y. Yamazaki
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Lee
    KEK, Ibaraki
  A beam induced heat-flow monitor (BIHM) will be installed in front of the beam dump of the RCS (Rapid Cycling Synchrotron) at J-PARC (Japan Particle Accelerator Research Complex), where a power limitation of the beam dump is 4 kW. The purposes of this monitor are to observe a beam current injected into the beam dump and to generate an alarm signal for the main control system of the RCS. At the BIHM the beams penetrate a carbon plate of 1.5 mm in thickness, where the plate is supported by four rods on the monitor chamber. The heat generated by the interactions between the beam and the carbon plate propagates to the outer edge of the plate, and then to the monitor chamber through the four rods. By measuring the temperature differences between upstream and downstream ends of each rod, the total heat flow can be measured. The beam current can be determined by the measured heat flow with the help of the calculated stopping power of a proton in a carbon material. The design of the BIHM and test results of a prototype will be described.  
 
FRPMN050 Multiple parameter characterizations for electron beam with diffraction radiation radiation, target, photon, emittance 4096
 
  • D. Xiang
  • W.-H. Huang
    TUB, Beijing
  There are growing interests in developing non-intercepting method for real-time monitoring electron beam parameters for International linear collider and X-ray free electron lasers. In this paper we present both theorectical considerations and experimental demonstration of the ability of diffraction radiation for measuring electron beam profile, divergence, emittance and bunch length*. The possibility of using optical diffraction radiation to direct image electron beam profile is studied**.A new method for bunch length measurement with diffraction radiation deflector is also proposed and analysed***.

* Dao Xiang and Wen-Hui Huang, Nucl. Instr. and Meth. in Phys. Res. B, 254 (2007) 165.** Dao Xiang and Wen-Hui Huang, Nucl. Instr. and Meth. in Phys. Res. A, 570 (2007) 357.*** Dao Xiang and Wen-Hui Huang, Phys. Rev. ST-AB, 10 (2007) 012801.

 
 
FRPMN052 Bunch Length Measurement in Time Domain for HLS synchrotron, storage-ring, optics, radiation 4108
 
  • B. Y. Wang
  • P. Lu, B. Sun, J. Wang, J. H. Wang, H. Xu
    USTC/NSRL, Hefei, Anhui
  Funding: Supported by the Natural Science Foundation of China (10675118) and by Knowledge Innovation Project of CAS

A simple measurement method of beam bunch length in time domain for HLS (Hefei Light Source) has been proposed. The Bunch length measurement system is composed of an optical system, a high speed photo-receiver and a wide bandwidth oscilloscope. The photo-receiver which is made by FEMTO has high sensitivity and high bandwidth, which converts the synchrotron radiation light into electronic signal. The oscilloscope which is made by Tektronix is TDS7704B, which has a high bandwidth up to 7GHz and show the bunch length in time domain. The measurement results of the bunch length and its analysis are given. We compare the results with that determined by the conventional method using a streak camera.

 
 
FRPMN053 Beam Instability and Correction for "DRAGON-I" induction, simulation, impedance, laser 4114
 
  • W. W. Zhang
  • Y. Li
    CAEP, Mainyang, Sichuan
  'Dragon-I' is a high current pulse electron linear induction accelerator designed and constructed in IFP/CAEP. It generates a 20MeV, 2.5kA, 60ns pulse electron beam. The whole facility has three parts: injector; accelerator and beam focus system. The accelerator consists of 72 induction cells and 18 connection cells. A solenoid was installed inside each cell forming beam transport sysem. During the initial beam test both high frequency and low frequency oscillation were found. A lot of simulation and experiment investigations were done to get the transverse impedance of the cells and the corkscrew motion of the electron beam. Details of both the simulation and the experimental methods to correct the instability are presented.  
 
FRPMN062 OTR Interferometry Diagnostic for the A0 Photoinjector scattering, radiation, simulation, diagnostics 4144
 
  • G. M. Kazakevich
  • H. Edwards, R. P. Fliller, V. A. Lebedev, S. Nagaitsev, R. Thurman-Keup
    Fermilab, Batavia, Illinois
  Funding: Operated by Universities Research Association, Inc. for the U. S. Department of Energy under contract DE-AC02-76CH03000.

OTR interferometry (OTRI) is an attractive diagnostic for investigation of relativistic electron beam parameters. The diagnostic is currently under development at the A0 Photoinjector. This diagnostic is applicable for NML accelerator test facility that will be built at Fermilab. The experimental setups of the OTR interferometers for the Photoinjector prototype are described in the report. Results of simulations and measurements are presented and discussed.

 
 
FRPMN072 LHC Beam Loss Detector Design: Simulations and Measurements simulation, proton, radiation, hadron 4198
 
  • B. Dehning
  • E. Effinger, J. E. Emery, G. Ferioli, E. B. Holzer, D. K. Kramer, L. Ponce, M. Stockner, C. Zamantzas
    CERN, Geneva
  The LHC beam loss monitoring system must prevent the super conducting magnets from quenching and protect the machine components from damage. 4000 gas filled ionization chambers are installed all around the LHC ring. They probe the far transverse tail of the hadronic shower induced by lost beam particles. Secondary emission chambers are placed in very high radiation areas for their lower sensitivity. This paper focuses on the signal response of the chambers to various particle types and energies and the simulated prediction of the hadronic shower tails. Detector responses were measured with continuous and bunched proton and mixed particle beams of 30 MeV to 450 GeV at PSI and CERN. Additional test measurements with 662 keV gammas and 174 MeV neutrons were performed on the ionization chamber. The measured signal speed, shape and absolute height are compared to GEANT4 and Garfield simulations. Aging data of SPS ionization chambers are shown. The far transverse tail of the hadronic shower induced by 40 GeV and 920 GeV protons impacting on the internal beam dump of HERA at DESY have been measured and compared to GEANT4 simulations.  
 
FRPMN076 Nominal LHC Beam Instability Observations in the CERN Proton Synchrotron extraction, feedback, betatron, proton 4222
 
  • R. R. Steerenberg
  • G. Arduini, E. Benedetto, A. Blas, W. Hofle, E. Metral, M. Morvillo, C. Rossi, G. Rumolo
    CERN, Geneva
  The nominal LHC beam has been produced successfully in the CERN Proton Synchrotron since 2003. However, after having restarted the CERN PS in spring 2006, the LHC beam was set-up and observed to be unstable on the 26 GeV/c extraction flat top. An intensive measurement campaign was made to understand the instability and to trace its source. This paper presents the observations, possible explanations and the necessary measures to be taken in order to avoid this instability in the future.  
 
FRPMN086 Beam Position Monitoring System Upgrade for the TLS feedback, controls, diagnostics, power-supply 4276
 
  • C. H. Kuo
  • J. Chen, P. C. Chiu, K. T. Hsu, K. H. Hu
    NSRRC, Hsinchu
  Taiwan light source (TLS) equips with 59 beam position monitors (BPM). Existing Bergos's type multiplexing BPM electronics are working well during last decade. To improve the functionality of the BPM system, new type of BPM electronics (Liberal Electron) will be replace some existing multiplexing BPM electronics. Seamless integration of two kinds of electronics is via reflective memory. The high precision closed orbits were measured by multiplexing BPM via multi-channel PMC form factor 16-bits ADC modules and gigabit Ethernet fast access channel of Libera Electron. Turn-by-turn beam position measurement is also supported by new BPM electronics. Tune measurement is also possible by spectra analysis of the turn-by-turn beam position data. The preliminary version of the orbit data was sampled every millisecond. Fast orbit data were shared by reflective memory network to support fast orbit feedback application. Averaged data were updated to control database at a rate of 10 Hz. The system structure, software environment and preliminary beam test of the BPM system are summarized in this report.  
 
FRPMN094 Beam Profile Measurements with the 2-D Laser-Wire at PETRA laser, photon, positron, simulation 4303
 
  • M. T. Price
  • K. Balewski, Eckhard. Elsen, V. Gharibyan, H.-C. Lewin, F. Poirier, S. Schreiber, N. J. Walker, K. Wittenburg
    DESY, Hamburg
  • G. A. Blair, S. T. Boogert, G. E. Boorman, A. Bosco, S. Malton
    Royal Holloway, University of London, Surrey
  • T. Kamps
    BESSY GmbH, Berlin
  Funding: Work supported by the PPARC LC-ABD collaboration and the Commission of the European Communities under the 6th Framework Programme Structuring the European Research Area, contract number RIDS-011899.

The current PETRA II Laser-Wire system, being developed for the ILC and PETRA III, uses a piezo-driven mirror to scan laser light across an electron bunch. This paper reports on the recently installed electron-beam finding system, presenting recent horizontal and vertical profile scans with corresponding studies.

 
 
FRPMN102 An Instrument Design for the Accurate Determination of the Electron Beam Location in the Linac Coherent Light Source Undulator undulator, alignment, vacuum, linac 4324
 
  • J. L. Bailey
  • D. Capatina, J. W. Morgan
    ANL, Argonne, Illinois
  • H.-D. Nuhn
    SLAC, Menlo Park, California
  Funding: Work supported by U. S. Department of Energy, under Contract Nos. DE-AC02-06CH11357 and DE-AC03-76SF00515.

The Linac Coherent Light Source (LCLS), currently under design, requires accurate alignment between the electron beam and the undulator magnetic centerline. A Beam Finder Wire (BFW) instrument has been developed to provide beam location information that is used to move the undulators to their appropriate positions. A BFW instrument is mounted at each of the 33 magnets in the undulator section. Beam detection is achieved by electrons impacting two carbon fiber wires and then sensing the downstream radiation. The wires are mounted vertically and horizontally on a wire card similar to that of a traditional wire scanner instrument. The development of the BFW presents several design challenges due to the need for high accuracy of the wires' location and the need for removal of the wires during actual operation of the LCLS (30 microns repeatability is required for the wire locations). In this paper, we present the technical specification, design criteria, mechanical design, and results from prototype tests for the BFW.

 
 
FRPMN107 Observations of Rising Tune During the Injection Instability of the IPNS RCS Proton Bunch injection, proton, background, space-charge 4345
 
  • J. C. Dooling
  • F. R. Brumwell, L. Donley, K. C. Harkay, R. Kustom, M. K. Lien, G. E. McMichael, M. E. Middendorf, A. Nassiri, S. Wang
    ANL, Argonne, Illinois
  Funding: This work is supported by the U. S. DOE under contract no. W-31-109-ENG-38.

In the IPNS RCS, a single proton bunch (h=1) is accelerated from 50 MeV to 450 MeV in 14.2 ms. The bunch experiences an instability shortly after injection (<1 ms). During the first 1 ms, the beam is bunched but little acceleration takes place; thus, this period of operation is similar to that of a storage ring. Natural vertical oscillations (assumed to be tune lines) show the vertical tune to be rising toward the bare tune value, suggesting neutralization of space charge and a reduction of its detuning effects. Neutralization time near injection ranges from 0.25 ms - 0.5 ms, depending on the background gas pressure. Oscillations move from the LSB to the USB before disappearing. Measurements made with a recently installed pinger system show the horizontal chromaticity to be positive early but approaching zero later in the cycle. The vertical chromaticity is negative throughout the cycle. During pinger studies, two lines are observed, suggesting the formation of islands. Neutralization of the beam space charge implies the generation of plasma in the beam volume early in the cycle which may then dissipate as the time-varying electric fields of the beam become stronger.

 
 
FRPMN114 Feasibility of Near-field ODR Imaging of Multi-GeV Electron Beams at CEBAF radiation, polarization, target, linac 4381
 
  • A. H. Lumpkin
  • P. Evtushenko, A. Freyberger
    Jefferson Lab, Newport News, Virginia
  • C. Liu
    PKU/IHIP, Beijing
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 and U. S. DOE Contract No. DE-AC05-06OR23177.

We have evaluated the feasibility of using the optical diffraction radiation (ODR) generated as a 1- to 6-GeV CW electron beam passes nearby the edge of a single metal conducting plane as a nonintercepting (NI) relative beam size monitor for CEBAF. Previous experiments were successfully done using near-field imaging on the lower-current, 7-GeV beam at APS, and an analytical model was developed for near-field imaging. Calculations from this model indicate sufficient beam-size sensitivity in the ODR profiles for beam sizes in the 30-50 micron regime as found in the transport lines of CEBAF before the experimental targets. With anticipated beam currents of 100 microamps, the ODR signal from the charge integrated over the video field time should be ~500 times larger than in the APS case. These signal strengths will allow a series of experiments to be done on beam energy dependencies, impact parameters, polarization effects, and wavelength effects that should further elucidate the working regime of this technique and test the model. Plans for the diagnostics station that will also provide reference optical transition radiation (OTR) images will also be described.

 
 
FRPMN115 A Novel FPGA-Based Bunch Purity Monitor System at the APS Storage Ring storage-ring, photon, controls, injection 4384
 
  • W. E. Norum
  • B. X. Yang
    ANL, Argonne, Illinois
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357

Bunch purity is an important source quality factor for the magnetic resonance experiments at the Advanced Photon Source. Conventional bunch-purity monitors utilizing time-to-amplitude converters are subject to dead time. We present a novel design based on a single field-programmable gate array (FPGA) that continuously processes pulses at the full speed of the detector and front-end electronics. The FPGA provides 7778 single-channel analyzers (six per RF bucket). The starting time and width of each single-channel analyzer window can be set to a resolution of 178 ps. A detector pulse arriving inside the window of a single-channel analyzer is recorded in an associated 32-bit counter. The analyzer makes no contribution to the system dead time. Two channels for each RF bucket count pulses originating from the electrons in the bucket. The other four channels on the early and late side of the bucket provide estimates of the background. A single-chip microcontroller attached to the FPGA acts as an EPICS IOC to make the information in the FPGA available to the EPICS clients.

 
 
FRPMS001 Numerical Simulation of Optical Diffraction Radiation from a 7-GeV Beam radiation, simulation, polarization, photon 3850
 
  • C. Yao
  • A. H. Lumpkin
    ANL, Argonne, Illinois
  • D. W. Rule
    NSWC, West Bethesda, Maryland
  Funding: Work supported by U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

Interest in nonintercepting (NI) beam size monitoring for top-up operations at the Advanced Photon Source (APS) motivated our investigations of optical diffraction radiation (ODR) techniques. We have reported our experiment results earlier. In particular, we wanted to monitor the beam size in the booster-to-storage ring (BTS) transport line using near-field ODR. An analytical model was numerically evaluated for the APS BTS beam size cases. In addition, the simulations show that near-field ODR profiles have sensitivity to beam size in the 20- to 50-μm region, which are relevant to X-ray FELs and the international linear collider (ILC). The simulation indicates that the orthogonal polarization component is close to a Gaussian distribution and more sensitive to beam size variations, and therefore is more suitable for beam size measurement. Under some circumstances the parallel polarization component shows a non-Gaussian distribution that is also beam size dependent. This report describes the simulation method, the results, and the comparison with experiment results.

 
 
FRPMS002 Parametric Modeling of Electron Beam Loss in Synchrotron Light Sources beam-losses, synchrotron, scattering, simulation 3853
 
  • B. Sayyar-Rodsari
  • W. J. Corbett, M. J. Lee, P. Lui, J. M. Paterson
    SLAC, Menlo Park, California
  • E. Hartman, C. A. Schweiger
    Pavilion Technologies, Inc, Austin, Texas
  Funding: DOE Phase II STTR: DE-FG02-04ER86225

Synchrotron light is used for a wide variety of scientific disciplines ranging from physical chemistry to molecular biology and industrial applications. As the electron beam circulates, random single-particle collisional processes lead to decay of the beam current in time. We report a simulation study in which a combined neural network (NN) and first-principles (FP) model is used to capture the decay in beam current due to Touschek, Bremsstralung, and Coulomb effects. The FP block in the combined model is a parametric description of the beam current decay where model parameters vary as a function of beam operating conditions (e.g. vertical scraper position, RF voltage, number of the bunches, and total beam current). The NN block provides the parameters of the FP model and is trained (through constrained nonlinear optimization) to capture the variation in model parameters as operating condition of the beam changes. Simulation results will be presented to demonstrate that the proposed combined framework accurately models beam decay as well as variation to model parameters without direct access to parameter values in the model.

 
 
FRPMS010 Electron Cloud in the Fermilab Booster space-charge, booster, impedance, octupole 3895
 
  • K. Y. Ng
  Simulations reveal a substantial build up of electron cloud in the Fermilab Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets. The neutralization can be appreciable depending on the second-emission yield of the magnet pole faces and the beam pipe surfaces. The implication of the electron-cloud effects on the beam emittances and collective instabilities is discussed.  
 
FRPMS011 Design of an Electro-Optical Sampling Experiment at the AWA Facility laser, background, monitoring, alignment 3901
 
  • J. Ruan
  • H. Edwards, V. E. Scarpine, C.-Y. Tan, R. Thurman-Keup
    Fermilab, Batavia, Illinois
  • YL. Li, J. G. Power
    ANL, Argonne, Illinois
  • T. J. Maxwell
    Northern Illinois University, DeKalb, Illinois
  Funding: Supported by US DOE

The free space electro-optical (EO) sampling technique is a powerful tool for analyzing the longitudinal charge density of an ultrashort e-beam. In this paper, we present

  1. experimental results for a laser-based mock-up of the EO experiment* and
  2. a design for a beam-based, single-shot, EO sampling experiment using the e-beam from the Argonne Wakefield Accelerator (AWA) RF photoinjector.
For the mock-up, a tabletop terahertz experiment is conducted in the AWA laser room. The mock-up uses an IR beam incident on <110> ZnTe crystal to produce a THz pulse via optical rectification. Detection is based on the cross correlation between the THz field and the probe IR laser field in a second <110> ZnTe crystal. Potential application of this technique to the ILC accelerator test facility at Fermilab is also presented.

* Yuelin Li, Appl. Phys. Lett. 88, 251108, 2006

 
 
FRPMS019 Measurement of the Propagation of EM Waves Through the Vacuum Chamber of the PEP-II Low Energy Ring for Beam Diagnostics vacuum, simulation, positron, plasma 3946
 
  • S. De Santis
  • J. M. Byrd
    LBNL, Berkeley, California
  • M. T.F. Pivi
    SLAC, Menlo Park, California
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC0-05CH11231.

We present the results of measurements of the electron cloud intensity in the PEP-II low energy ring (LER) by propagating a TE wave into the beam pipe. Connecting a pulse generator to a beam position monitor button we can excite a signal above the vacuum chamber cut-off and measure its propagation with a spectrum analyzer connected to another button a few meters away. The measurement can be performed with different beam conditions and also at different settings of the solenoids used to reduce the build up of electrons. The presence of a modulation in the TE wave transmission, synchronous with the beam revolution frequency and only measurable with the solenoids off, would be directly correlated to the intensity of the electron cloud phenomenon in the relative region of the ring. In this paper we present and discuss our measurements taken near Interaction Region 12 on the LER, during 2006 and early 2007.

 
 
FRPMS022 Progress on Modeling of Ultrafast X-Ray Streak Cameras simulation, cathode, acceleration, space-charge 3961
 
  • G. Huang
  • J. M. Byrd, J. Feng, J. Qiang, W. Wan
    LBNL, Berkeley, California
  Streak cameras continue to be useful tools for studying ultra phenomena on the sub-picosecond time scale and beyond. We have employed accelerator modeling tools to understand the key parts of the streak camera in order to improve the time resolution. This effort has resulted in an start-to-end model of the camera including a dedicated 3D modeling of time-dependent fields. This model has contributed to the recent achievement of 230 fsec (FWHM) resolution measured using 266 nm laserat the Advanced Light Source Streak Camera Laboratory. We will report on our model and its comparison with experiments. We also extrapolate the performance of this camera including several possible improvements.  
 
FRPMS025 Streak Camera Temporal Resolution Improvement Using a Time-Dependent Field cathode, space-charge, laser, acceleration 3973
 
  • J. Qiang
  • J. M. Byrd, J. Feng, G. Huang
    LBNL, Berkeley, California
  Funding: This work was supported by the U. S. Department of Energy under Contract no. DE-AC02-05CH11231.

Streak camera is an important diagnostic device in the studies of laser plasma interaction, the detailed structure of photo reaction from material science to biochemistry, and in the measurement of the longitudinal distribution of a beam in accelerators. In this paper, we report on a new method which can potentially improve the temporal resolution of a streak camera down to femtoseconds. This method uses a time-dependent acceleration field to defocus the photo electrons longitudinally. This not only reduces the time dispersion distortion caused by initial energy spread but also mitigates the effects from the space-charge forces. An illustration of the method shows significant improvement of the modulation transfer function (MFT) compared with the conventional design.

 
 
FRPMS028 Simulations of Electron Cloud Effects on the Beam Dynamics for the FNAL Main Injector Upgrade emittance, synchrotron, injection, simulation 3985
 
  • K. G. Sonnad
  • C. M. Celata, M. A. Furman, D. P. Grote, J.-L. Vay, M. Venturini
    LBNL, Berkeley, California
  Funding: Work supported by the U. S. DOE under Contract no. DE-AC02-05CH11231.

The Fermilab main injector (MI) is being considered for an upgrade as part of the high intensity neutrino source (HINS) effort. This upgrade will involve a significant increasing of the bunch intensity relative to its present value. Such an increase will place the MI in a regime in which electron-cloud effects are expected to become important. We have used the electrostatic particle-in-cell code WARP, recently augmented with new modeling capabilities and simulation techniques, to study the dynamics of beam-electron cloud interaction. This study involves a systematic assesment of beam instabilities due to the presence of electron clouds.

 
 
FRPMS032 High-Order Modeling of an ERL for Electron Cooling in the RHIC Luminosity Upgrade using MaryLie/IMPACT space-charge, linac, luminosity, simulation 4000
 
  • V. H. Ranjbar
  • D. T. Abell, K. Paul
    Tech-X, Boulder, Colorado
  • I. Ben-Zvi, J. Kewisch
    BNL, Upton, Long Island, New York
  • J. Qiang, R. D. Ryne
    LBNL, Berkeley, California
  Funding: Work supported by the U. S. DOE Office of Science, Office of Nuclear Physics under grant DE-FG02-03ER83796.

Plans for the RHIC luminosity upgrade call for an electron cooling system that will place substantial demands on the energy, current, brightness, and beam quality of the electron beam. In particular, the requirements demand a new level of fidelity in beam dynamics simulations. New developments in MaryLie/IMPACT have improved the space-charge computations for beams with large aspect ratios and the beam dynamic computations for rf cavities. We present the results of beam dynamics simulations that include the effects of space charge and nonlinearities, and aim to assess the tolerance for errors and nonlinearities on current designs for a super-conducting ERL.

 
 
FRPMS033 OTR Measurements of the 10 keV Electron Beam at the University of Maryland Electron Ring (UMER) radiation, target, diagnostics, polarization 4006
 
  • R. B. Fiorito
  • B. L. Beaudoin, S. J. Casey, D. W. Feldman, P. G. O'Shea, B. Quinn, A. G. Shkvarunets
    UMD, College Park, Maryland
  Funding: Research supported by Office of Naval Research, Joint Technology Office, and the Department of Energy

We present strong evidence of the observation of optical transition radiation (OTR) from aluminized silicon targets intercepting the UMER 10 keV, 100 ns pulsed electron beam, using fast (300ps and 1ns rise time) photomultiplier tubes. An intensified gated (3ns-1ms) CCD camera is used to image the beam using OTR and to study its time evolution throughout the beam pulse. A comparison of wave forms and time resolved OTR images is presented along with time integrated images obtained with phosphor screens for different initial conditions, i.e. beam currents and gun bias voltages.

correspondance email: rfiorito@umd.edu

 
 
FRPMS034 Optical Diffraction-Dielectric Foil Radiation Interferometry Diagnostic for Low Energy Electron Beams radiation, scattering, simulation, optics 4012
 
  • A. G. Shkvarunets
  • M. E. Conde, W. Gai, J. G. Power
    ANL, Argonne, Illinois
  • R. B. Fiorito, P. G. O'Shea
    UMD, College Park, Maryland
  Funding: ONR and the DOD/Joint Technology Office

We have developed a new optical diffraction radiation (ODR) - dielectric foil radiation interferometer to measure the divergence of the low energy (8 - 14 MeV) ANL - Advanced Wakefield Accelerator electron beam. The interferometer employs an electro-formed micromesh first foil, which overcomes the inherent scattering limitation in the solid first foil of a conventional OTR interferometer, and an optically transparent second foil. The interference of forward directed ODR from the mesh and optical radiation from the dielectric foil is observed in transmission. This geometry allows a small gap between the foils (1 - 2 mm), which is required to observe fringes from two foils at low beam energies. Our measurements indicate that a single Gaussian distribution is sufficient to fit the data.

correspondance email: shkvar@umd.edu

 
 
FRPMS035 Vector Diffraction Theory and Coherent Transition Radiation Interferometry in Electron Linacs radiation, simulation, laser, photon 4015
 
  • T. J. Maxwell
  • C. L. Bohn, D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois
  Funding: Work supported by US. Department of Energy, under Contract No. DE-FG02-06ER41435 with Northern Illinois University

Electrons impinging on a thin metallic foil are seen to deliver small bursts of transition radiation (TR) as they cross the boundary from one medium to the next. A popular diagnostic application is found for compact electron bunches. In this case they will emit radiation more or less coherently with an N-squared enhancement of the intensity on wavelengths comparable to the bunch size, generating coherent transition radiation (CTR). Several detailed analytical descriptions have been proposed for describing the resulting spectral distribution, often making different simplifying assumptions. Given that bunches tenths of millimeters long can generate measurable spectra into the millimeter range, concern may arise as to weak diffraction effects produced by optical interference devices containing elements with dimensions in the centimeter range. The work presented here is a report on an upcoming graduate thesis exploring these effects as they apply to the Fermilab/NICADD photoinjector laboratory using a minimal C++ code that implements the methods of virtual quanta and vector diffraction theory.

 
 
FRPMS039 Growth Time of Longitudinal Coupled Bunch Mode Instability in the Duke FEL Facility storage-ring, kicker, feedback, damping 4036
 
  • Y. Kim
  • J. Li, Y. K. Wu
    FEL/Duke University, Durham, North Carolina
  To determine the required power of an RF amplifier for the longitudinal feedback system (LFS), the growth time of the longitudinal coupled bunch mode instability (CBMI) in the Duke storage ring should be known in advance. In 2005, we measured the longitudinal beam instability with four and eight symmetrically filled buckets in the Duke storage ring. By analyzing measured data, the growth time of the longitudinal CBMI can be estimated. At a beam energy of 274 MeV, the projected growth time is about 0.37 ms for a total stored current of 160 mA. To damp harmful longitudinal CBMI with a relative energy deviation of 0.1% (rms) within the growth time, a sufficient RF power of 135 W (rms) should be delivered to an LFS kicker at a central frequency of 758.8375 MHz. In this paper, we describe measurements of the growth time and the estimation of the RF power requirement for the LFS.  
 
FRPMS041 A Direct Electron Beam Energy Spread Measurement System for Beam Instability and FEL Research wiggler, storage-ring, klystron, radiation 4045
 
  • S. Huang, S. Huang
    PKU/IHIP, Beijing
  • J. Li, Y. K. Wu
    FEL/Duke University, Durham, North Carolina
  Funding: Supported by US AFOSR MFEL grant #FA9550-04-01-0086.

One of critical beam parameters for the storage ring based light sources is the energy spread of the electron beam. An accurate measurement of the energy spread remains a challenge. It is well known that the electrons with different energies can degrade the spontaneous emission spectrum of a two-wiggler system in an optical-klystron configuration. The reduced modulation in the spectrum can be used to determine the energy spread of the beam. This paper describes our newly developed energy spread measurement system employing a scanning spectrometer and a fast CCD. A fast CCD with a burst mode of operation is used so that dynamical changes of the energy spread from tens of microseconds to tens of milliseconds can be measured. This system will be used in the beam instability research and free-electron laser research. Together with compact wigglers, such a system can be developed as a dedicated beam diagnostic for storage rings and linacs.

 
 
FRPMS043 The Feasibility Study of Measuring the Polarization of a Relativistic Electron Beam using a Compton Scattering Gamma-Ray Source photon, polarization, scattering, laser 4057
 
  • C. Sun
  • Y. K. Wu
    FEL/Duke University, Durham, North Carolina
  The Compton scattering of a circularly polarized photon beam and a polarized electron beam leads to an asymmetric distribution of the gamma rays. This asymmetry has been calculated for the High Intensity Gamma-ray Source (HIGS) beam at Duke University. Owing to the high intensity of the HIGS beam, this asymmetry is determined to be measurable with a small statistic error using a simple gamma-ray beam imaging system. We propose to set up this system to measure the polarization of the electron beam in the Duke storage ring.  
 
FRPMS044 A Tune Measurement System for Low Current and Energy Ramping Operation of a Booster Synchrotron booster, synchrotron, betatron, storage-ring 4063
 
  • Y. K. Wu
  • J. Li, S. F. Mikhailov, V. Popov, P. Wang
    FEL/Duke University, Durham, North Carolina
  Funding: This work is supported by the US AFOSR MFEL grant #FA9550-04-01-0086 and by U. S. DOE grant DE-FG05-91ER40665.

The betatron tune measurement system is one of the most important diagnostics for any circular accelerator. During the commissioning of a booster synchrotron newly developed for top-off injection into the Duke storage ring, a versatile tune measurement system employing a photomultiplier tube (PMT) and a space filter has been developed to provide reliable measurements for low current operation at a few micro-amperes of beam-current. Using the turn-by-turn technique, this tune measurement system is being used as a live tune monitor during the booster energy ramping. This system has also be used to measure chromaticity and other important beam parameters. In this paper, we describe the tune measurement system in detail and report our most recent experimental results using this system.

 
 
FRPMS045 Non-Destructive Single Shot Bunch Length Measurements for the CLIC Test Facility 3 klystron, pick-up, linac, radiation 4069
 
  • A. E. Dabrowski
  • H.-H. Braun, R. Corsini, S. Doebert, T. Lefevre, F. Tecker, P. Urschutz
    CERN, Geneva
  • M. Velasco
    NU, Evanston
  Funding: DOE

A non-destructive bunch length detector has been installed in the CLIC Test Facility (CTF3). Using a series of down-converting mixing stages and filters, the detector analyzes the power spectrum of the electromagnetic field picked-up by a single waveguide. This detector evolved from an earlier system which was regularly used for bunch length measurements in CTF2. Major improvements are increase of frequency reach from 90 GHz to 170 GHz, allowing for sub-pico second sensitivity, and single shot measurement capability using FFT analysis from large bandwidth waveform digitisers. The results of the commissioning of the detector in 2006 are presented.

 
 
FRPMS047 Design and Implementation of an Electron and Positron Multibunch Turn-by-Turn Vertical Beam Profile Monitor in CESR background, positron, synchrotron, radiation 4081
 
  • M. A. Palmer
  • B. Cerio, R. Holtzapple, J. S. Kern
    Alfred University, Alfred, New York
  • J. Dobbins, D. L. Hartill, C. R. Strohman
    CLASSE, Ithaca
  • E. Tanke
    CESR-LEPP, Ithaca, New York
  • M. E. Watkins
    CMU, Pittsburgh, Pennsylvania
  Funding: This work is supported by the National Science Foundation.

A fast vertical beam profile monitor has been implemented at the Cornell Electron Storage Ring (CESR). Readout is based on the Hamamatsu H7260K multianode photomultiplier. This device has a 32 channel linear anode array with 1 mm channel pitch and sub-nanosecond rise time. It provides the ability to probe individual electron and position bunches which are separated by 14 ns within the trains in CESR. A custom 72 MHz digitizer unit allows synchronous multibunch and turn-by-turn data acquisition. An on-board digital signal processor provides local data processing capability. This system provides the capability to probe a range of single bunch and multibunch beam dynamics issues as well as machine stability issues. In this paper we describe the profile monitor hardware, data acquisition system, calibration of the profile monitor, and data analysis software.

 
 
FRPMS048 Characterization of a High Current Induction Accelerator Electron Beam via Optical Transition Radiation from Dielectric Foils diagnostics, radiation, simulation, induction 4087
 
  • V. Tang
  • C. G. Brown, T. L. Houck
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Traditionally, thin metal foils are employed for optical transition radiation (OTR) beam diagnostics but the possibility of plating or shorting accelerator insulating surfaces precludes their routine use on high-demand machines. The successful utilization of dielectric foils in place of metal ones would alleviate this issue but necessitates more modeling and understanding of the OTR data for inferring desired beam parameters because of the dielectric's finite permittivity. Additionally, the temperature dependence of the relevant foil parameters must be accounted for due to instantaneous beam heating. Here, we analyze quartz and kapton foil OTR data from the Flash X-Ray (FXR) induction linear accelerator using a model that includes these effects and discuss the resultant FXR beam profiles.

 
 
FRPMS054 PSR Electron Cloud Detector and Suppressor Mechanical Design and Fabrication quadrupole, vacuum, diagnostics, beam-transport 4117
 
  • J. F. O'Hara
  • M. J. Borden, A. A. Browman, N. A. Gillespie, D. Martinez, K. G. McKeown, F. R. Olivas
    LANL, Los Alamos, New Mexico
  • J. E. Ledford, R. J. Macek
    TechSource, Santa Fe, New Mexico
  Funding: Work supported by DOE SBIR Grant No. DE-FG02-04ER84105 and CRADA No. LA05C10535 between TechSource, Inc. and the Los Alamos National Laboratory.

In order to better understand the two stream e-p instability issue in the LANSCE Proton Storage Ring, a new diagnostic instrument has been developed to measure the electron cloud formation and trapping in a quadrupole magnet at the LANSCE, PSR. The device called the Electron Cloud Detector (ECD) was fabricated and has successfully been installed in the PSR. Along with the Electron Cloud Detector, an additional device was developed to manipulate electrons ejected from the quadrupole and allow additional information to be obtained from ECD measurements. This paper will discuss the mechanical design and fabrication issues encountered during the course of developing both devices.

 
 
FRPMS059 Generation and Analysis of Subpicosecond Double Electron Bunch at the Brookhaven Accelerator Test Facility simulation, linac, radiation, synchrotron 4132
 
  • X. P. Ding
  • M. Babzien, K. Kusche, V. Yakimenko
    BNL, Upton, Long Island, New York
  • D. B. Cline
    UCLA, Los Angeles, California
  • W. D. Kimura
    STI, Washington
  • F. Zhou
    SLAC, Menlo Park, California
  Funding: U. S.DOE of Science

Two compressed electron beam bunches from a single 60-MeV bunch have been generated in a reproducible manner during compression in the magnetic chicane - "dog leg" arrangement at ATF. Measurements indicate they have comparable bunch lengths (~100-200 fs) and are separated in energy by ~1.8 MeV with the higher-energy bunch preceding the lower-energy bunch by 0.5-1 ps. Some simulation results for analyzing the double-bunch formation process are also presented.

 
 
FRPMS060 Commissioning of the UCLA Neptune X-Band Deflecting Cavity and Applications to Current Profile Measurement of Ramped Electron Bunches sextupole, plasma, linac, laser 4135
 
  • R. J. England
  • D. Alesini
    INFN/LNF, Frascati (Roma)
  • B. D. O'Shea, J. B. Rosenzweig, G. Travish
    UCLA, Los Angeles, California
  Funding: Department of Energy Grant # DE-FG02-92ER40693

A 9-cell standing wave deflecting cavity has recently been constructed and installed at the UCLA Neptune Laboratory for use as a temporal diagnostic for the 13 MeV, 300 to 700 pC electron bunches generated by the Neptune photoinjector beamline. The cavity is a center-fed Glid-Cop structure operating in at TM110-like deflecting mode at 9.59616 GHz with a pi phase advance per cell. At the maximum deflecting voltage of 500 kV, the theoretical resolution limit of the device is 50 fs, although with current beam parameters and a spot size of 460 microns RMS the effective resolution is approximately 400 fs. We discuss the operation and testing of the cavity as well as its intended application: measuring the temporal current profile of ramped electron bunches generated using the Neptune dogleg compressor, and we present the first measurements of the electron beam current profile obtained using the deflecting cavity.

 
 
FRPMS063 Material Effects and Detector Response Corrections for Bunch Length Measurements vacuum, radiation, resonance, simulation 4147
 
  • W. D. Zacherl
  • I. Blumenfeld, M. J. Hogan, R. Ischebeck
    SLAC, Menlo Park, California
  • C. E. Clayton, P. Muggli, M. Zhou
    UCLA, Los Angeles, California
  Funding: Department of Energy contract DE-AC02-76SF00515

A typical diagnostic used to determine the bunch length of ultra-short electron bunches is the autocorrelation of coherent transition radiation. This technique can produce artificially short bunch length results due to the attenuation of low frequency radiation if corrections for the material properties of the Michelson interferometer and detector response are not made. Measurements were taken using FTIR spectroscopy to determine the absorption spectrum of various materials and the response of a Molectron P1-45 pyroelectric detector. The material absorption data will be presented and limitations on the detector calibration discussed.

 
 
FRPMS064 Electron Beam Lifeime in SPEAR3: Measurement and Simulation optics, scattering, beam-losses, coupling 4153
 
  • W. J. Corbett
  • X. Huang, M. J. Lee, P. Lui
    SLAC, Menlo Park, California
  • B. Sayyar-Rodsari
    Pavilion Technologies, Inc, Austin, Texas
  Funding: Work supported by US Department of Energy Contract DE-AC03-76SF00515 and Office of Basic Energy Sciences, Division of Chemical Sciences.

The primary contributing factors to electron beam lifetime in a storage ring are elastic and inelastic gas scattering, and intrabeam scattering. In order to further quantify the relative contributions of each mechanism, a series of measurements using vertical scraper position and rf-voltage sweeps were performed in SPEAR3 with fill patterns featuring different single-bunch and total beam currents. In parallel, an analytic beam-lifetime simulator was developed taking scattering cross-sections, rf-bucket height and bunch lengthening effects into account. In this paper, we compare measured results with the simulated results in an effort to develop a comprehensive model for electron beam lifetime under a variety of operating conditions.

 
 
FRPMS066 Commissioning the Fast Luminosity Dither for PEP-II luminosity, feedback, positron, controls 4165
 
  • A. S. Fisher
  • S. Ecklund, R. C. Field, S. M. Gierman, P. Grossberg, K. E. Krauter, E. S. Miller, M. Petree, N. Spencer, M. K. Sullivan, K. K. Underwood, U. Wienands
    SLAC, Menlo Park, California
  • K. G. Sonnad
    LBNL, Berkeley, California
  Funding: Supported by US DOE under contract DE-AC03-76SF00515.

To maximize luminosity, a feedback system adjusts the relative transverse (x,y) position and vertical angle (y') of the electron and positron beams at the interaction point (IP) of PEP-II. The original system sequentially moved ("dithered") the electrons in four steps per coordinate. Communication with DC corrector magnets and field penetration through copper vacuum chambers led to a full-cycle time of 10 s. Machine tuning can move the beams at the IP and so had to be slowed to wait for the feedback. A new system installed in 2006 simultaneously applies a small sinusoidal dither to all three coordinates at 73, 87 and 103 Hz. Air-core coils around stainless-steel chambers give rapid field penetration. A lock-in amplifier at each frequency detects the magnitude and phase of the luminosity's response. Then corrections for all coordinates are determined using Newton's method, based on convergence from prior steps, and are applied by the same DC correctors used previously but with only one adjustment per cycle for an expected ten-fold increase in speed. We report on the commissioning of this system and on its performance in maintaining peak luminosity and aiding machine tuning.

 
 
FRPMS067 Energy Measurement in a Plasma Wakefield Accelerator plasma, acceleration, radiation, linac 4168
 
  • R. Ischebeck
  • M. K. Berry, I. Blumenfeld, F.-J. Decker, M. J. Hogan, R. H. Iverson, N. A. Kirby, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • C. E. Clayton, C. Huang, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • T. C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
  Funding: DOE DE-AC02-76SF00515 (SLAC), DE-FG02-92-ER40745, DE-FG03-92ER40745, DE-FC02-01ER41179, DE-FG03-92ER40727, DE-FG02-03ER54721, DE-F52-03NA00065:A004, DE-AC-0376SF0098, NSF ECS-9632735, NSF-Phy-0321345

Particles are leaving the meter-long plasma wakefield accelerator with a large energy spread. To determine the spectrum of these particles, four diagnostics have been set up. These were used to determine energies of the particles that gain energy in the plasma, those that lose energy by driving the wake and the self-injected particles that are accelerated from rest.

 
 
FRPMS070 Emittance Measurement of Trapped Electrons from a Plasma Wakefield Accelerator plasma, emittance, scattering, focusing 4183
 
  • N. A. Kirby
  • M. K. Berry, I. Blumenfeld, F.-J. Decker, M. J. Hogan, R. Ischebeck, R. H. Iverson, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • C. E. Clayton, C. Huang, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • T. C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
  Funding: This work was supported by the Department of Energy contracts DE- AC02-76SF00515, DE-FG02-92ER40727, DE-FG02-92-ER40745. DE- FG02-03ER54721, DE-FC02-01ER41179 and NSF grant Phy-0321345

Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC showed trapping of plasma electrons. These trapped electrons appeared on an energy spectrometer with smaller transverse size than the beam driving the wake. A connection is made between transverse size and emittance; due to the spectrometer?s resolution, this connection allows for placing an upper limit on the trapped electron emittance. The upper limit for the lowest normalized emittance measured in the experiment is 1 mm∙mrad.

 
 
FRPMS071 Relative Bunch Length Monitor for the Linac Coherent Light Source (LCLS) using Coherent Edge Radiation radiation, dipole, synchrotron, synchrotron-radiation 4189
 
  • H. Loos
  • T. Borden, P. Emma, J. C. Frisch, J. Wu
    SLAC, Menlo Park, California
  Funding: This work was supported by U. S. Department of Energy, Office of Basic Energy Sciences, under Contract DE-AC03-76SF00515

The ultra-short bunches of the electron beam for LCLS are generated in two 4-dipole bunch compressors located at energies of 250 MeV and 4.3 GeV. Although an absolute measurement of the bunch length can be done by using a transverse deflecting cavity in an interceptive mode, a non-interceptive single shot method is needed as a relative measurement of the bunch length used in the continuous feedback for beam energy and peak current. We report on the design and implementation of two monitors measuring the integrated power of coherent edge radiation from the last dipole in each chicane. The first monitor is installed in early 2007 and we compare its performance with the transverse cavity measurement and other techniques.

 
 
FRPMS072 Timing Stability and Control at the E163 Laser Acceleration Experiment laser, gun, controls, radiation 4195
 
  • C. Mcguinness
  • R. L. Byer, T. Plettner
    Stanford University, Stanford, Califormia
  • E. R. Colby, R. Ischebeck, R. J. Noble, C. M.S. Sears, R. Siemann, J. E. Spencer, D. R. Walz
    SLAC, Menlo Park, California
  Funding: DOE: DE-AC02-76SF00515 and DE-FG06-97ER41276

The laser acceleration experiments conducted for the E163 project at the NLC Test Accelerator facility at SLAC have stringent requirements on the temporal properties of the electron and laser beams. A system has been implemented to measure the relative phase stability between the RF sent to the gun, the RF sent to the accelerator, and the laser used to generate the electrons. This system shows rms timing stability better than 1 psec. Temporal synchronicity between the 0.5 psec electron bunch, and the 0.5 psec laser pulse is also of great importance. Cherenkov radiation is used to measure the arrival time of the electron bunch with respect to the laser pulse, and the path length of the laser transport is adjusted to optimize temporal overlap. A linear stage mounted onto a voice coil is used to make shot-by-shot fine timing adjustments to the laser path. The final verification of the desired time stability and control is demonstrated by observing the peak of the laser-electron interaction signal over the course of several minutes.

 
 
FRPMS073 Picosecond Bunch Length and Energy-z Correlation Measurements at SLAC's A-Line and End Station A linac, synchrotron, feedback, simulation 4201
 
  • S. Molloy
  • V. Blackmore
    OXFORDphysics, Oxford, Oxon
  • P. Emma, J. C. Frisch, R. H. Iverson, D. J. McCormick, M. Woods
    SLAC, Menlo Park, California
  • M. C. Ross
    Fermilab, Batavia, Illinois
  • S. Walston
    LLNL, Livermore, California
  Funding: US DOE Contract #DE-AC02-76FS00515

We report on measurements of picosecond bunch lengths and the energy-z correlation of the bunch with a high energy electron test beam to the A-line and End Station A (ESA) facilities at SLAC. The bunch length and the energy-z correlation of the bunch are measured at the end of the linac using a synchrotron light monitor diagnostic at a high dispersion point in the A-line and a transverse RF deflecting cavity at the end of the linac. Measurements of the bunch length in ESA were made using high frequency diodes (up to 100 GHz) and pyroelectric detectors at a ceramic gap in the beamline. Modelling of the beam's longitudinal phase space through the linac and A-line to ESA is done using the 2-dimensional tracking program LiTrack, and LiTrack simulation results are compared with data. High frequency diode and pyroelectric detectors are planned to be used as part of a bunch length feedback system for the LCLS FEL at SLAC. The LCLS also plans precise bunch length and energy-z correlation measurements using transverse RF deflecting cavities.

 
 
FRPMS078 Numerical Study of RF-Focusing Using Fokker-Plank Equation simulation, focusing, damping, synchrotron 4228
 
  • A. Novokhatski
  Funding: Work supported by US DOE contract DE-AC02-76SF00515

Based on numerical solution of the Fokker-Plank Equation we study the effect of longitudinal damping on the modulation of the bunch length in a storage ring with high RF voltage and momentum compaction

 
 
FRPMS079 SUPPRESSION OF SECONDARY ELECTRON EMISSION USING TRIANGULAR GROOVED SURFACE IN THE ILC DIPOLE AND WIGGLER MAGNETS dipole, impedance, wiggler, simulation 4234
 
  • L. Wang
  • K. L.F. Bane, C. Chen, T. M. Himel, M. Munro, M. T.F. Pivi, T. O. Raubenheimer, G. V. Stupakov
    SLAC, Menlo Park, California
  Funding: Work supported by the U. S. Department of Energy under contract DE-AC02-76SF00515

The development of an electron cloud in the vacuum chambers of high intensity positron and proton storage rings may limit machine performance. The suppression of electrons in a magnet is a challenge for the positron damping ring of the International Linear Collider (ILC) as well as the Large Hadron Collider. Simulation show that grooved surfaces can significantly reduce the electron yield in a magnet. Some of the secondary electrons emitted from the grooved surface return to the surface within a few gyrations, resulting in a low effective secondary electron yield (SEY) of below 1.0 A triangular surface is an effective, technologically attractive mitigation with a low SEY and a weak dependence on the scale of the corrugations and the external magnetic field. A chamber with triangular grooved surface is proposed for the dipole and wiggler sections of the ILC and will be tested in PEP-II in 2007. The strategy of electron cloud control in ILC and the optimization of the grooved chamber such as the SEY, impedance as well as the manufacturing of the chamber, are also discussed.

SLAC-PUB-11933 & NIMA in publication

 
 
FRPMS080 Simulation of the Beam-Ion Instability in the Electron Damping Ring of the International Linear Collider ion, damping, emittance, simulation 4240
 
  • L. Wang
  • Y. Cai, T. O. Raubenheimer
    SLAC, Menlo Park, California
  Funding: Work supported by the U. S. Department of Energy under contract DE-AC02-76SF00515

Ion induced beam instability is one critical issue for the electron damping ring of the International Linear Collider (ILC) due to its ultra small emittance of 2pm. Bunch train filling pattern is proposed to mitigate the instability and bunch-by-bunch feedback is applied to suppress it. Multi-bunch train fill pattern is introduced in the electron beam to reduce the number of trapped ions. Our study shows that the ion effects can be significantly mitigated by using multiple gaps. However, the beam can still suffer from the beam-ion instability driven by the accumulated ions that cannot escape from the beam during the gaps. The effects of beam fill pattern, emittance, vacuum and various damping mechanism are studied using self-consistent program, which includes the optics of the ring.

 
 
FRPMS081 Geometric Effects on Electron Cloud beam-losses, vacuum, simulation, positron 4243
 
  • L. Wang
  • A. Chao
    SLAC, Menlo Park, California
  • J. Wei
    BNL, Upton, Long Island, New York
  The development of an electron cloud in the vacuum chambers of high intensity positron and proton storage rings may limit the machine performances by inducing beam instabilities, beam emittance increase, beam loss, vacuum pressure increases and increased heat load on the vacuum chamber wall. The electron multipacting is a kind of geometric resonance phenomenon and thus is sensitive to the geometric parameters such as the aperture of the beam pipe, beam shape and beam bunch fill pattern, etc. This paper discusses the geometric effects on the electron cloud build-up in a beam chamber and examples are given for different beams and accelerators.  
 
FRPMS085 Transverse Effect due to Short-range Resistive Wall Wakefield impedance, dipole, vacuum, focusing 4267
 
  • J. Wu
  • A. Chao
    SLAC, Menlo Park, California
  • J. R. Delayen
    Jefferson Lab, Newport News, Virginia
  Funding: AWC and JW were supported by US DOE under contract No. DE-AC02-76SF00515. JRD was supported by US DOE under contract No. DE-AC05-84-ER40150 and No. DE-AC05-00-OR22725.

For accelerator projects with ultra short electron beam, beam dynamics study has to invoke the short-range wakefield. In this paper, we first obtain the short-range dipole mode resistive wall wakefield. Analytical approach is then developed to study the single bunch transverse beam dynamics due to this short-range resistive wall wake. The results are applied to the LCLS undulator and some other proposed accelerators.

 
 
FRPMS093 Numerical Studies of the Electromagnetic Weibel Instability in Intense Charged Particle Beams with Large Temperature Anisotropy Using the Nonlinear BEST Darwin Delta-f Code plasma, simulation, background, heavy-ion 4297
 
  • E. Startsev
  • R. C. Davidson, H. Qin
    PPPL, Princeton, New Jersey
  Funding: Research supported by the U. S.Department of Energy.

A numerical scheme for the electromagnetic particle simulation of high-intensity charged-particle beams has been developed which is a modification of the Darwin model. The Darwin model neglects the transverse induction current in Ampere?s law and therefore eliminates fast electromagnetic (light) waves from the simulations. The model has been incorporated into the nonlinear delta-f Beam Equilibrium Stability and Transport(BEST) code. As a benchmark, we have applied the model to simulate the transverse electromagnetic Weibel-type instability in a single-species charged-particle beam with large temperature anisotropy. Results are compared with previous theoretical and numerical studies using the eighenmode code bEASt. The nonlinear stage of the Weibel instability is also studied using BEST code, and the mechanism for nonlinear saturation is identified.

 
 
FRPMS102 Preliminary Impedance Budget for the NSLS-II Storage Ring impedance, vacuum, undulator, storage-ring 4321
 
  • A. Blednykh
  • S. Krinsky
    BNL, Upton, Long Island, New York
  Extensive calculations have been performed of the wakefield and impedance produced by the storage ring components for the rms bunch length of 3mm. Calculated data are presented for the NSLS-II storage ring components such as dipole vacuum chamber, quadrupole vacuum chamber, sextupole vacuum chamber, tapered elliptic vacuum chamber for superconducting undulator, cryo permanent magnet mini-gap undulator, CESR-B RF cavity, beam position monitor, infrared beam extraction chamber and resistive wall. The loss factor, the kick factor and imaginary part of the longitudinal impedance at low frequency divided by harmonic number are given per component and have been entered into a table.