A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W  

vacuum

Paper Title Other Keywords Page
MOYKI01 e+e- Factories factory, luminosity, storage-ring, electron 12
 
  • M. K. Sullivan
  Funding: Work supported by USDOE contract DE-AC02-76SF00515

The achievements of the e+e- Factories have been impressive. The KEK B- Factory has achieved a peak luminosity of 1.7x1034 cm2/s and the PEP-II B-Factory has reached 1.2x1034 cm2/s while the Dafne Phi-Factory has obtained 1.5x1032 cm2/s. Early in the B-Factory running, CP violation in the B meson system was found to be consistent with the prediction of the Standard Model. Now all three factories are integrating as much luminosity as they can in order to look for rare decay channels that may have a rate that differs from the value predicted by the Standard Model and therefore hint at New Physics. I will give a status report on the most recent accomplishments of all three factories PEP-II, KEKB and Dafne and will show what the three facilities have for plans to further improve performance.

 
slides icon Slides  
 
MOZAKI03 PEP-II at 1.2·1034/cm2/s Luminosity luminosity, kicker, emittance, lattice 37
 
  • J. Seeman
  • Y. Cai, M. K. Sullivan, U. Wienands
    SLAC, Menlo Park, California
  Funding: Work supported by US DOE contract DE-AC02-76SF00515.

For the PEP-II Operation Staff: PEP-II is an asymmetric e+e- collider operating at the Upsilon 4S and has recently set several performance records. The luminosity has reached 1.2x1034/cm2/s and has delivered an integrated luminosity of 910/pb in one day. PEP-II operates in continuous injection mode for both beams boosting the integrated luminosity. The peak positron current has reached 3.0 A of positrons and 1.9 A of electrons in 1732 bunches. The total integrated luminosity since turn on in 1999 has reached over 410/fb. This paper reviews the present performance issues of PEP-II and also the planned increase of luminosity in the near future to over 2 x 1034/cm2/s.

 
slides icon Slides  
 
MOOAKI02 Overall HOM Measurement at High Beam Currents in the PEP-II SLAC B-Factory radiation, synchrotron, synchrotron-radiation, beam-losses 45
 
  • A. Novokhatski
  Funding: Work supported by US DOE contract DE-AC02-76SF00515

We describe the method to measure total HOM losses and synchrotron losses in a storage ring based on a straightforward model of beam-cavity interaction and precise knowledge of RF power distribution. This method works well at higher currents. The comparison of the measured HOM losses and estimation for cavity and resistive wall losses is given for both LER and HER rings of the PEP-II B-factory.

 
slides icon Slides  
 
MOOAAB03 High Power Operation of the JLab IR FEL Driver Accelerator laser, wiggler, electron, beam-losses 83
 
  • S. V. Benson
  • K. Beard, G. H. Biallas, J. Boyce, D. B. Bullard, J. L. Coleman, D. Douglas, H. F.D. Dylla, R. Evans, P. Evtushenko, C. W. Gould, A. C. Grippo, J. G. Gubeli, D. Hardy, C. Hernandez-Garcia, C. Hovater, K. Jordan, J. M. Klopf, R. Li, S. W. Moore, G. Neil, M. Poelker, T. Powers, J. P. Preble, R. A. Rimmer, D. W. Sexton, M. D. Shinn, C. Tennant, R. L. Walker, G. P. Williams, S. Zhang
    Jefferson Lab, Newport News, Virginia
  Funding: This work supported by the Off. of Naval Research, the Joint Technology Off., the Commonwealth of Virginia, the Air Force Research Lab, Army Night Vision Lab, and by DOE Contract DE-AC05-060R23177.

Operation of the JLab IR Upgrade FEL at CW powers in excess of 10 kW requires sustained production of high electron beam powers by the driver ERL. This in turn demands attention to numerous issues and effects, including: cathode lifetime; control of beamline and RF system vacuum during high current operation; longitudinal space charge; longitudinal and transverse matching of irregular/large volume phase space distributions; halo management; management of remnant dispersive effects; resistive wall, wake-field, and RF heating of beam vacuum chambers; the beam break up instability; the impact of coherent synchrotron radiation (both on beam quality and the performance of laser optics); magnetic component stability and reproducibility; and RF stability and reproducibility. We discuss our experience with these issues and describe the modus vivendi that has evolved during prolonged high current, high power beam and laser operation.

 
slides icon Slides  
 
MOZBAB01 Review of the Worldwide SASE FEL Development undulator, electron, radiation, cathode 89
 
  • T. Shintake
  Talk will review the worldwide efforts towards VUV and X-ray SASE FELs,including low emittance electron source, linear accelerator, bunch compressor, undulator, beam diagnostics, alignment, and control, facility building and seeding technology.  
slides icon Slides  
 
MOPAN007 A Non-intercepting Beam Current Monitor for the ISAC-II SC-linac ion, pick-up, linac, impedance 155
 
  • W. R. Rawnsley
  • R. E. Laxdal, A. K. Mitra
    TRIUMF, Vancouver
  A personnel protection system will monitor the ion beam current into the experimental hall from the ISAC-II SC-linac. It will use continuous self-test and redundancy and have an accuracy of ±10% from 1 to 200enA. The system, based on an Atlas design, will use capacitive pickups with rf resonators and buffer amplifiers. Ion charge, velocity and bunch width will affect the sensitivity so periodic calibration with dc Faraday cups will be needed. The signal from each 13cm long, 5cm diameter pickup tube will pass through a vacuum feedthrough to a helical resonator. An AD8075 IC with an input impedance of 87kΩ at 35MHz will allow a high coil tap. The ISAC beam, bunched at 11.8MHz, is injected into the ISAC-II SC-linac via a 25m long transfer line. Monitors will be placed in the transfer line and downstream of the linac before the experimental hall. A 35MHz and a 70MHz coil (3 and 6 harmonic) have loaded Q's of 600. A test in the transfer line of the 35MHz coil gave a sensitivity 0.09mV/enA from the unity gain buffer using 20Ne+5 ions at 1.5MeV/u. The background was equivalent to 1enA. The 70MHz coil gave 0.04mV/enA using 22Ne+4 ions. System design and test data will be presented.  
 
MOPAN011 Upgrade Plans of the Vacuum System of the ESRF quadrupole, dipole, radiation, storage-ring 164
 
  • R. Kersevan
  • L. Goirand
    ESRF, Grenoble
  The ESRF has been delivering beams to users for well over 12 years. The performance of the storage ring has surpassed the original specifications with respect to many accelerator parameters, such as emittance, beam stability, beam availability and so on. Along the years, many of its sub-systems have been improved in order to cope with these more demanding conditions. Now new experimental techniques and arrangements, such as nanofocusing on the samples, call for a radical upgrade of the machine. Another reason to upgrade is the recent coming into operation of new, more modern machines, and the desire for the ESRF to stay at the forefront of synchrotron radiation research. A study group has been set up, with the aim of producing a conceptual design report for what is called a "Long Term Strategy" for the upgrade of the ESRF. This paper will detail the plans for the LTS upgrade of the storage ring vacuum system.  
 
MOPAN012 Development of the Injection- and Extraction Systems for the Upgrade of SIS18 septum, injection, cathode, electron 167
 
  • U. B. Blell
  • A. V. Batrakov, S. A. Onischenko, G. E. Ozur
    Institute of High Current Electronics, Tomsk
  • J. Florenkowski, U. Kopf, C. Muehle, M. Petryk, I. J. Petzenhauser, P. J. Spiller
    GSI, Darmstadt
  SIS18 will serve as booster synchrotron for the proposed International Accelerator Facility FAIR at GSI. The aim is to provide high intensity proton and heavy ion beams of e.g. U28+-ions with a repetition rate of 2.7 - 4 cycles per second for injection into SIS100. The operation with low charge state heavy ions requires modifications of the injection and extraction systems. The goal is to minimize beam losses and thereby ion induced gas desorption during the injection and extraction processes. In order to increase the acceptance and for an injection at the reference energy it is necessary to build and install a new electrostatic inflector septum and a new inflector magnet. The electrostatic injection septum is designed for an operation at high field strength and enables a bake-out temperature of 300°C. This may be achieved by means of new cathode surface treatment procedures, e.g. with pulsed high intensity electron beams. Another technique is also under investigation, the coating of alumina by a plasma spray technique.  
 
MOPAN026 Critical Issues in Ensuring Reproducible and Reliable Deposition of NEG Coatings for Particle Accelerators cathode, controls, electron, ion 209
 
  • A. Bonucci
  • A. Conte, P. Manini, S. Raimondi
    SAES Getters S.p. A., Lainate
  Non Evaporable getter (NEG) coating technology, developed at CERN in the late 90s, is an effective pumping solution for conductance limited vacuum chambers. It reduces thermal out-gassing and provides distributed pumping ability, allowing the achievement of very low pressure. NEG films do show additional interesting features, like low secondary electron yield and low gas de-sorption rates under ions, electrons and photons bombardment. For these reasons, large scale adoption of NEG coated chambers is now a reality and several leading edge machines will soon benefit from it. A critical issue for the successful application of this technology is the ability to deposit NEG coatings in a reproducible and reliable way all along a pipe. This is particularly important for narrow-gap or specially shaped chambers which pose severe challenges in term of film thickness distribution, chemical composition and sorption properties. A dedicated study was carried out to fully understand the deposition process as a function of the sputtering parameters and the chamber geometry. Results obtained do allow to optimize the coating process and ensure that film requirements in a given application are met.  
 
MOPAN027 NEG Coating of Pipes for RHIC : An Example of Industrialization Process synchrotron, controls, cathode, synchrotron-radiation 212
 
  • A. Conte
  • A. Bonucci, P. Manini, S. Raimondi
    SAES Getters S.p. A., Lainate
  Non Evaporable Getter (NEG) coated chambers have been used in various accelerators facilities and synchrotrons since some years. Initially, NEG coated chambers were mounted in small amounts in specific locations, covering a minor fraction of the accelerator surfaces exposed to vacuum. More recently, NEG coated chambers have been adopted to a larger degree in several projects, becoming an integral part of the machine design. LHC, whose commissioning is expected in 2007, will use 6 km of coated pipes, to be the largest machine ever using this technology. Other examples are the Soleil synchrotron (50% of the ring is NEG coated), ESRF (ongoing replacement of ID with NEG coated chambers) and RHIC (installation of 600 m of NEG coated pipes ongoing).Coating a large number of chambers poses challenges in term of process industrialization, product inspection and quality assurance. In the present paper we report SAES Getters' experience in the NEG coating of pipes delivered to Brookhaven National Lab for RHIC(120 steel chambers, each 5 m long). Main technological issues faced and procedures adopted to ensure product reproducibility and quality are presented and discussed.  
 
MOPAN047 Mechanical Design Considerations for Sesame Main Subsystems dipole, quadrupole, sextupole, storage-ring 263
 
  • M. M. Shehab
  • G. Vignola
    SESAME, Amman
  Recent advances in the design and analysis of SESAME vacuum system engineering as well as magnets and girder system mechanical designs are described. Multi objective optimization techniques for the storage ring vacuum chambers design from mechanical design point view and the vibration and stability issues for the magnets will be presented.  
 
MOPAN060 Compensation of BPM Chamber Motion in PLS Orbit Feedback System feedback, photon, electron, controls 290
 
  • H.-S. Kang
  • J. Choi, K. M. Ha, E.-H. Lee, W. W. Lee, I. S. Park
    PAL, Pohang, Kyungbuk
  The false BPM reading resulting from the BPM vacuum chamber motion due to thermal load change by synchrotron radiation is compensated by the real-time monitoring of the chamber position in the PLS orbit feedback system. The BPM chamber moves up to 20 μm during the beam refill and the chamber motion has a time constant of about one and half hour, which is related to thermal equilibrium of the vacuum chamber. To monitor the BPM chamber motion, LVDTs with 0.2 μm reading accuracy were installed on all BPM chambers, and the measured data are used in the orbit feedback every 1 minute. In this paper, we will describe how serious the BPM chamber motion are and how well it is compensated.  
 
MOPAN065 The Conceptual Design and Thermal Analysis of ALBA Crotch Absorbers radiation, dipole, synchrotron, storage-ring 299
 
  • E. Al-Dmour
  • D. Einfeld, M. Q. Quispe
    ALBA, Bellaterra (Cerdanyola del Valles)
  ALBA is a 3 GeV, 268.8 m storage ring with DBA structure under construction near Barcelona. With the design current of 400 mA, a total power of 407 kW is radiated by the circulating beam from the bending magnets. The design of the vacuum system was done by using the concept of the crotch absorbers which is used in many modern synchrotron light sources. These absorbers are not only going to absorb the power of the unused radiation but also will allow fast vacuum conditioning. 156 absorbers are need all around the machine in order to guarantee that no radiation will hit the chamber walls, the absorbers are grouped into three types, several design criteria have been studied in order to create our own one which is based on the number of allowed cycles before failure with the concept of the strain values. Finite element analysis has been performed to estimate the stress, strain, maximum overall temperature and the maximum cooling temperature for all the types. The results for the critical absorber under conservative conditions: max. overall temperature is 313 C, max. strain is 0.1% and max. stress is 112 MPa. With this strain, the absorber can withstand up to 1.105 cycles of operation.  
 
MOPAN080 Modeling of Flexible Components for Asserting the Stability of Superconducting Magnets alignment, coupling, collider, hadron 341
 
  • A. Kumar
  • S. C. Bapna, S. Dutta, K. Swarna
    RRCAT, Indore (M. P.)
  • A. Poncet
    CERN, Geneva
  Funding: Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, INDIA European Organisation for Nuclear Research (CERN), Geneva, Switzerland

Superconducting magnets are subjected to various forces during their cool down and alignment. Their construction invariably includes bellows, gimbals, hoses and composite supports. A good estimate of the deformations arising out of the cool down and alignment operations is necessary as these induce relative displacements between the fiducialised external vessel and hidden cold mass of the magnet. The nonlinear and orthotropic behaviour of these elements may make the model complicated and if solved as a nonlinear problem, would entail a large solution time as the overall model size runs into million nodes. Authors developed a unified Finite Element Model of the LHC Short Straight Section and during this process many innovative modeling techniques evolved. The developed model uses isotropic material constitutive laws with linear material properties. The paper is presenting some of the salient features of these modeling techniques.

 
 
MOPAN091 Design of Mechanical Structure and Cryostat for IASW Superconducting Wiggler at NSRRC wiggler, cryogenics, superconductivity, shielding 374
 
  • H.-H. Chen
  • C.-H. Chang, T.-C. Fan, M.-H. Huang, C.-S. Hwang, J. C. Jan, F.-Y. Lin
    NSRRC, Hsinchu
  An in-achromatic superconducting wiggler (IASW) was successfully constructed and installed at the Taiwan Light Source (TLS) in January 2006. The cryostat with a 30 L liquid nitrogen aluminum reservoir shielding surrounds the helium vessel, which comprises the cold mass and 100 L liquid helium. The helium vessel is suspended by eight suspension links, which are thermally intercepted at 80 K and can be adjusted by applying tension, such that the center of the cold mass does not move during cooled to 4.2 K. A three-layered stainless tube was designed to prevent the transfer port from freezing and the steam- electricity separation system is designed to supply electricity and return the helium gas to prevent freezing of the power feedthrough.  
 
MOPAN103 New Control System for the 50 MeV Linear Accelerator of TLS controls, linac, gun, booster 404
 
  • C. Y. Wu
  • J. Chen, K. T. Hsu, S. Y. Hsu, J.-Y. Hwang, D. Lee, K.-K. Lin, C.-J. Wang
    NSRRC, Hsinchu
  The preinjector of the Taiwan Light Source(TLS) is consist of a 140 kV themionic gun and a 50 MeV traveling wave type linear accelerator system. In order to improve performance, to decouple the vacuum interlock logic from the linac control system, and to provide a better control functionality for top-up operation and to avoid obsolescence, linac control system have been renew. One VME crate system is dedicated for linac control, new hardware equips with high resolution of analog interface to provide better control. Vacuum interlock logic will be done be a dedicated programmable logic controller(PLC). The remained linac devices have sequential control needed will be done by another PLC, such as door access interlock, klystron warm up, gun warm up, trig interlock, gun high voltage interlock, klystron modulator high voltage interlock, water flow interlock. Both interlock and sequence control PLC will control by the VME crate. All the other functions without interlock or sequence requirement will control by the VME crate directly. New control system expects to provide better control functionality, better performance, easy for maintenance, and useful easy to add new hardware equipments.  
 
MOPAN107 Quadrupole Magnets for the 20 MeV FFAG, 'EMMA' quadrupole, injection, lattice, extraction 413
 
  • N. Marks
  • B. J.A. Shepherd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  EMMA is a 20 MeV non-scaling Fixed Field Alternating Gradient accelerator (nsFFAG) proof-of-principle prototype, to be built at the Daresbury Laboratory as an accelerator physics experiment to explore the behaviour of such machines. Non-scaling FFAGs have potential applications in charged particle cancer therapy and also for particle physics; however, to date, no such accelerator has been constructed. The magnet designs present major challenges - the lattice is made up of 84 quadrupoles, with different horizontal offsets from the magnet centres in the focusing and defocusing quads. These offsets alone provide the necessary bending fields in the ring. The magnets are also very thin (55mm and 65mm yoke lengths) and end field effects therefore dominate. Careful design, followed by prototype construction and measurement, is essential. The magnets have been designed in 3D from the outset, using the CST EM Studio software. The paper will present the results of the design, showing how the magnets have been optimised to improve the integrated good gradient region, and will report on the progress of the prototyping work.  
 
MOPAN115 Aluminum Coating in the Undulator Vacuum Chamber for the LINAC Coherence Light Source cathode, undulator, power-supply, linac 437
 
  • D. R. Walters
  Funding: Work supported by DOE under contract Nos. DE-AC02-06CH11357 and DE-AC03-76SF00515.

A prototype vacuum chamber is under development at the Advanced Photon Source for use in the Linac Coherent Light Source at Stanford Linear Accelerator Center. The chamber will be fabricated from the austenite stainless steels. The chamber requires a continuous aluminum coating on the inner surface in order to reduce the wakefield losses to a level within the resistivity budget. The method being presented here is unique in that it can be applied to a fully fabricated chamber 5 mm high, 11.5 mm wide, and 3460 mm long. In existing methods the chamber aperture has been much larger than is used here. This paper describes a method applicable for these smaller cross sections. This process uses a pair of small electrodes, centered in the aperture, where they are attached to a high frequency AC power supply. In this configuration each electrode is connected to the opposite polarity of the other. The chamber cavity is filled with argon gas to facilitate the formation of a glow discharge causing the aluminum electrodes to sputter onto the chamber walls. This paper presents the laboratory test results from small samples up to the full-sized assemblies.

 
 
MOPAS023 Nb3Sn Accelerator Magnet Technology R&D at Fermilab dipole, sextupole, magnet-design, controls 482
 
  • A. V. Zlobin
  • G. Ambrosio, N. Andreev, E. Barzi, R. Bossert, R. H. Carcagno, G. Chlachidze, J. DiMarco, SF. Feher, V. Kashikhin, V. S. Kashikhin, M. J. Lamm, A. Nobrega, I. Novitski, D. F. Orris, Y. M. Pischalnikov, P. Schlabach, C. Sylvester, M. Tartaglia, J. C. Tompkins, D. Turrioni, G. Velev, R. Yamada
    Fermilab, Batavia, Illinois
  Funding: This work was supported by the U. S. Department of Energy

Accelerator magnets based on Nb3Sn superconductor advances magnet operation fields above 10T and increases the coil temperature margin. Development of a new accelerator magnet technology includes the demonstration of main magnet parameters (maximum field, quench performance, field quality, etc.) and their reproducibility using short models, and then the demonstration of technology scale up using long coils. Fermilab is working on the development of Nb3Sn accelerator magnets using shell-type dipole coils and react-and-wind method. As a part of the first phase of technology development Fermilab built and tested six 1-m long dipole models and several dipole mirror configurations. The last three dipoles and two mirrors reached their design fields of 10-11 T. Reproducibility of magnet field quality was demonstrated by all six short models. The technology scale up phase has started by building 2m and 4m dipole coils and testing them in a mirror configuration. This effort complements the Nb3Sn scale up work being performed in the framework of US LHC Accelerator Research Program (LARP). The status and main results of the Nb3Sn accelerator magnet development at Fermilab are reported.

 
 
MOPAS025 Conceptual Design of ILC Damping Ring Wiggler Straight Vacuum System wiggler, photon, quadrupole, damping 488
 
  • S. Marks
  • K. Kennedy, D. W. Plate, D. Schlueter, M. S. Zisman
    LBNL, Berkeley, California
  Funding: U. S. Department of Energy, Contract No. DE-AC02-05CH11231.

The positron and electron damping rings for the ILC (International Linear Collider) will contain long straight sections consisting of twenty wiggler/quadrupole pairs. The wigglers will be based upon the CESR-C superconducting design* . There are a number of challenges associated with the design of the wiggler straight vacuum system, in particular, the absorption of photon power generated by the wigglers. This paper will present the overall conceptual design of the wiggler straight vacuum system developed for the ILC RDR. Particular emphasis will be placed on photon power load calculations and the absorber design.

* A. Mihailichenko, Optimized Wiggler Magnet for CESR, Proceedings of PAC2001, Chicago, Il, June 18-22, 2001

 
 
MOPAS029 Progress on the Design and Fabrication of the MICE Spectrometer Solenoids superconductivity, emittance, radiation, power-supply 497
 
  • S. P. Virostek
  • M. A. Green, D. Li, M. S. Zisman
    LBNL, Berkeley, California
  Funding: This work was supported by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

The Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling in a short section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory (RAL) in the UK. A five-coil, superconducting spectrometer solenoid magnet at each end of the cooling channel will provide a 4 T uniform field region for the scintillating fiber tracker within the magnet bore tubes. The tracker modules are used to measure the muon beam emittance as it enters and exits the cooling channel. The cold mass for the 400 mm warm bore magnet consists of two sections: a three-coil spectrometer magnet and a two-coil matching section that matches the uniform field of the solenoid into the MICE cooling channel. The detailed design and analysis of the two spectrometer solenoids has been completed, and the fabrication of the magnets is in its final stages. The primary features of the spectrometer solenoid magnetic and mechanical designs are presented along with a summary of key fabrication issues and photos of the fabrication process.

 
 
MOPAS030 Progress on the Design of the Coupling Coils for Mice and Mucool coupling, magnet-design, superconductivity, power-supply 500
 
  • M. A. Green
  • X. L. Guo, G. Han, L. Jia, L. K. Li, S. Y. Li, C. S. Liu, X. K. Liu, L. Wang, H. Wu, F. Y. Xu
    ICST, Harbin
  • S. P. Virostek
    LBNL, Berkeley, California
  Funding: This work was supported by the U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

The Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling in a short section of a realistic cooling channel using a muon beam at Rutherford Appleton Laboratory (RAL) in the UK. The MICE RF and Coupling Coil Module comprises a superconducting solenoid mounted around four normal conducting 201.25-MHz RF cavities. Each cavity has a pair of thin curved beryllium windows to close the conventional open beam irises. The coil package that surrounds the RF cavities is to be mounted on the outside of a 1.4 m diameter vacuum vessel. The coupling coil confines the beam in the cavity module and, in particular, within the radius of the cavity beam windows. The two MICE coupling solenoids will be operated in series using a 300 A, 10 V power supply. The maximum longitudinal force that will be carried by the cold mass support system is 0.5 MN during the expected operating and failure modes of the experiment. The detailed design and analysis of the two coupling coils has been completed, and the fabrication of the magnets is under way. The primary magnetic and mechanical design features of the coils are presented along with a summary of key fabrication issues.

 
 
MOPAS043 Instrumentation for the Cornell ERL Injector Test Cryostats controls, cryogenics, instrumentation, monitoring 527
 
  • P. Quigley
  • S. A. Belomestnykh, M. Liepe, V. Medjidzade, J. Sears, V. Veshcherevich
    CLASSE, Ithaca
  Funding: Work is supported by the National Science Foundation grant PHY 0131508

Cornell is building a 1.3 GHz Injector Cryomodule for an ERL prototype. The cryomodule consists of five two-cell niobium cavities each cavity having two coaxial power input couplers. Cavity and coupler pairs will require acceptance testing at high power prior to assembly in the injector cryomodule. A liquid nitrogen cryostat for testing the couplers at high power has been built and the first input coupler test is complete. In addition, a Horizontal Test Cryostat (HTC) is being built to test input coupler pairs and cavities as a set. The first HTC test is scheduled for spring 2007. Details for instrumentation of the Coupler Test Cryostat (CTC) and HTC are presented.

 
 
MOPAS051 Finite Element Analysis of Metallic Thin Window: An Iterative Process 551
 
  • E. R. Olivas
  Funding: Work supported by the Los Alamos National Security, LLC. (LANS), operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U. S. Department of Energy.

Thin windows are devices required by some particle accelerator physics experiments. These windows must be thin and light enough so they have a minimum effect on the beam. However, due to the boundary and loading conditions a window might observe; nonlinear structural behavior can occur from a number of different causes, such as geometric and material nonlinearities. If a structure experiences large plastic deformation, its changing geometric relationship can cause the structure to respond in a nonlinear manner. Material nonlinearities occur when the material's stress-strain relation depends on the load history as in plasticity models. The method of analysis for this study entails an FEA analysis, in which the stress and displacement are solved for a metallic membrane; these results are then compared to results obtained from an iterative process in relating the stress and strain with respect to the deformed geometry of the membrane. In addition, multiple experimental tests will be carried out to determine the membrane displacement from a prescribed load. Also included in this test will be the burst pressure or failure point of the membrane. The study is conducted on 1100 series Al.

 
 
MOPAS053 LANSCE Vacuum System Improvements for Higher Reliability and Availability ion, linac, proton, storage-ring 557
 
  • T. Tajima
  • M. J. Borden, A. Canabal, J. P. Chamberlin, S. Harrison, F. R. Olivas, M. A. Oothoudt, J. J. Sullivan
    LANL, Los Alamos, New Mexico
  The Los Alamos Neutron Science Center (LANSCE) accelerator, an 800-MeV proton linac with a storage ring, has been operated over 30 years since early 1970s. Due to the aging and radiation damage of equipment, cables and connectors, the number of troubles is increasing. In order to reduce the time for unscheduled maintenance, we have implemented a system to catch a symptom of degrading vacuum and send an email automatically. We have been testing this system since July 2006. This paper describes this alert system and our experience. In addition, we will describe our plan for modernizing the vacuum system in the next few years.  
 
MOPAS058 A Parallel Controls Software Approach for PEP II: AIDA & Matlab Middle Layer controls, feedback, collider, sextupole 566
 
  • W. Wittmer
  • W. S. Colocho, G. R. White
    SLAC, Menlo Park, California
  Funding: US-DOE

The controls software in use at PEP II had originally been developed in the eighties. The functionality and maturity of the applications in that system have made it very successful in routine operation, but this same longevity and orientation toward fixed requirements, make it largely unsuitable for rapid machine development and ad-hoc online experimentation. A successful recent trend at light sources has been to use the so called MATLAB Middle Layer (MML). This package abstracts each underlying control system framework to which it is connected, such as Channel Access. We describe the middle layer implementation for PEP II and LCLS based on AIDA (described elsewhere in these proceedings), which is unusual in that it provides access to the high level functionality of the legacy control system, as well as to a very large assortment of useful data in addition to channel access read and control. The MML had to be adapted for the implementation at PEP II since colliders differ significantly from light sources by scale and symmetry of the lattice, and PEP II is the first collider at which such an implementation is being done.

 
 
MOPAS071 A Precision 75kW, 25kV Power System for a Klystron Amplifier controls, klystron, power-supply, feedback 593
 
  • L. Bees
  • L. Simpson, A. Tydeman
    Lambda, Neptune, New Jersey
  A compact water-cooled high power, high voltage power supply system is described. The system must deliver an output voltage up to 25kV, and a current up to 4A to power a Klystron Amplifier. The amplifier demands very high voltage stability, low output voltage ripple, and low stored energy. The solution presented is based around Lambda's proven 303 series DC supplies to provide the bulk high voltage power, an advanced controller for high performance operation, and a precision filter/feedback assembly for low ripple and high accuracy. The system has demonstrated ripple of less than 0.015%, stability better than 10ppm per degree C, power factor of 0.92 and efficiency of 90%, with an output stored energy of less that 8J.  
 
MOPAS075 RF-Thermal-Structural Analysis of a Waveguide Higher Order Mode Absorber simulation, higher-order-mode, radio-frequency, storage-ring 605
 
  • G. Cheng
  • E. Daly, R. A. Rimmer, M. Stirbet, L. Vogel, H. Wang, K. Wilson
    Jefferson Lab, Newport News, Virginia
  Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177, and by The Office of Naval Research under contract to the Dept. of Energy.

For an ongoing high current cryomodule project, a total of 5 higher order mode (HOM) absorbers are required per cavity. The load is designed to absorb RF heat induced by HOMs in a 748.5MHz cavity. Each load is targeted at a 4 kW dissipation capability. Embedded cooling channels are employed to remove the heat generated in ceramic tiles and by surface losses on the waveguide walls. A sequentially coupled RF-thermal-structural analysis was developed in ANSYS to optimize the HOM load design. Frequency dependent dielectric material properties measured from samples and RF power spectrum calculated by the beam-cavity interaction codes were considered. The coupled field analysis capability of ANSYS avoided mapping of results between separate RF and thermal/structural simulation codes. For verification purposes, RF results obtained from ANSYS were compared to those from MAFIA, HFSS, and Microwave Studio. Good agreement was reached and this confirms that multiple-field coupled analysis is a desirable choice in analysis of HOM loads. Similar analysis could be performed on other particle accelerator components where distributed RF heating and surface current induced losses are inevitable.

 
 
MOPAS082 Status of the Spallation Neutron Source Superconducting RF Facilities cryogenics, controls, radiation, superconducting-RF 623
 
  • D. Stout
  • S. Assadi, I. E. Campisi, F. Casagrande, M. T. Crofford, W. R. DeVan, X. Geng, T. W. Hardek, S. Henderson, M. P. Howell, Y. W. Kang, W. C. Stone, W. H. Strong, D. C. Williams, P. A. Wright
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy

The SNS project was completed with only limited SRF facilities installed as part of the project, namely a 5 MW, 805 MHz RF test stand, a fundamental power coupler processing system, a concrete test cave shell, and temporary cleaning/assembly facilities. A concerted effort has been initiated to install the infrastructure and equipment necessary to maintain and repair the superconducting Linac, and to support power upgrade R&D. Installation of a Class10/100/10,000 cleanroom and outfitting of the test cave with RF, vacuum, controls, personnel protection and cryogenics systems is underway. A horizontal cryostat, which can house a helium vessel/cavity and fundamental power coupler for full power, pulsed testing, is being procured. Equipment for cryomodule assembly/disassembly and cavity processing also is being designed. This effort, while derived from the experience of the SRF community, will provide a unique high power test capability as well as long term maintenance capabilities. This paper presents the current status and the future plans for the SNS SRF facilities.

 
 
MOPAS085 The SNS Insulating Vacuum Design for the Superconducting Linac controls, linac, radiation, monitoring 629
 
  • D. C. Williams
  • X. Geng, P. Ladd
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy

The superconducting linac of the Spallation Neutron Source (SNS) has 23 cryomodules each of which incorporate either 3 or 4 niobium cavities. These cavities are submerged in a bath of liquid helium and maintained at an operating temperature of ~ 2K. This bath is surrounded by heat shields and a multilayer blanket within the cryomodule shell. The pressure in this area needs to be maintained at <5·10-5 torr to limit heat leak due to gas convection. Some cryomodules have developed helium leaks into this vacuum cavity and now need to be actively pumped. This paper provides an overview of the Insulating Vacuum System (IVS) that has been installed for this purpose.

 
 
TUOAAB01 Self-Consistent Simulations of Multipacting in Superconducting Radio Frequencies electron, simulation, plasma, radio-frequency 769
 
  • C. Nieter
  • P. J. Mullowney, S. Ovtchinnikov, D. S. Smithe, P. Stoltz
    Tech-X, Boulder, Colorado
  Multipacting continues to be an important issue in Superconducting Radio Frequency (SRF) cavities, particularly near waveguide couplers. Most modern simulations of multipacting are not self-consistent, using the fields from a purely electromagnetic simulation to drive the motion of multipacting electrons. This approach works well for the onset on multipacting but as the electron density increases in the cavity it can have an effect on the cavity mode. Recently VORPAL* has demonstrated its ability to mode the electrodynamics of SRF cavities using finite difference time domain (FDTD) algorithms coupled with the Dey-Mittra** method for modeling conformal boundaries. The FDTD approach allows us to easily incorporate multipacting electrons as PIC particles in the simulations. To allow multipacting simulations to be done with EM-PIC we have been developing particle boundaries for the cut-cells. Recently we have added particle removal boundaries at the particle sinks which will correct the unphysical build up of image charge at the boundaries. Work has begun on incorporating secondary electron emission into these boundaries so VORPAL can model multipacting trajectories self-consistently.

* C. Nieter, J. R. Cary, J. Comp. Phys. 196 (2004) 448.** S. Dey, R. Mittra, IEEE Microwave and Guided Wave Letters 7 (1997) 273.

 
slides icon Slides  
 
TUOAC02 Development and Testing of the ILC Marx Modulator controls, shielding, klystron, linear-collider 849
 
  • G. Leyh
  Funding: Work supported by the U. S. Department of Energy under contract DE-AC02-76SF00515

Construction of the ILC 'Reference Design' Marx Modulator is complete, and testing is currently underway at SLAC. The Reference Design prototype is oil-free, air-cooled, and capable of delivering 120kV, 140A pulses at a rate of 5Hz. Total energy per pulse is 23,500 joules. Projected efficiency is greater than 96%. The Reference Design Marx modulator employs a stack of 12kV Marx modules that generate high-voltage output pulses directly from a 12kV input supply voltage. This direct switching eliminates the requirement for a massive transformer and reduces the capacitor bank size by more than a factor of four, yielding a considerably cheaper and more compact mechanical solution. Advantages of the Marx design include higher efficiency, smaller physical size, and a modular architecture that provides greater reliability and cost-effective PC board-level integration. This paper outlines the ILC Marx Modulator Development Program currently underway at SLAC. The paper presents detailed mechanical and electrical design diagrams, 3D field simulations, and operational test results for the full-scale Reference Design modulator prototype.

 
slides icon Slides  
 
TUYC01 Studies of the Pulse Line Ion Accelerator ion, acceleration, pick-up, induction 852
 
  • W. L. Waldron
  • R. J. Briggs
    SAIC, Alamo, California
  • A. Friedman
    LLNL, Livermore, California
  • E. Henestroza, L. R. Reginato
    LBNL, Berkeley, California
  Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U. S. Department of Energy under Contracts No. DE-AC02-05CH11231 and W-7405-Eng-48.

The Pulse Line Ion Accelerator concept was motivated by the need for an inexpensive way to accelerate intense short pulse heavy ion beams to regimes of interest for studies of High Energy Density Physics and Warm Dense Matter. A pulse power driver applied to one end of a helical pulse line creates a traveling wave that accelerates and axially confines the heavy ion beam pulse. The concept has been demonstrated with ion beams at modest acceleration gradients. Acceleration scenarios with constant parameter helical lines are described which result in output energies of a single stage much larger than the several hundred kilovolt peak voltages on the line, with a goal of 3-5 MeV/m acceleration gradients. This method has the potential to reduce the length of an equivalent induction accelerator by a factor of 6-10 while simplifying the pulsed power systems. The performance of prototype hardware has been limited by high voltage flashover across the vacuum insulator. Bench tests and analysis have led to significantly improved flashover thresholds. Further studies using a variety of experimental configurations are planned.

 
slides icon Slides  
 
TUYC02 High Gradient Induction Accelerator induction, proton, electron, linac 857
 
  • G. J. Caporaso
  • D. T. Blackfield, Y.-J. Chen, J. R. Harris, S. A. Hawkins, L. Holmes, S. D. Nelson, A. Paul, B. R. Poole, M. A. Rhodes, S. Sampayan, M. Sanders, S. Sullivan, L. Wang, J. A. Watson
    LLNL, Livermore, California
  • M. L. Krogh
    University of Missouri - Rolla, Rolla, Missouri
  • C. Nunnally
    University of Missouri, Columbia, Columbia, Missouri
  • K. Selenes
    TPL, Albuquerque, NM
  Funding: This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Progress in the development of compact induction accelerators employing advanced vacuum insulators and dielectrics will be described. These machines will have average accelerating gradients at least an order of magnitude higher than existing machines and can be used for a variety of applications including flash x-ray radiography and medical treatments. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described.

 
slides icon Slides  
 
TUOBC01 Synchronizable High Voltage Pulser with Laser-Photocathode Trigger laser, gun, electron, photon 862
 
  • P. Chen
  • M. Lundquist, R. Yi, D. Yu
    DULY Research Inc., Rancho Palos Verdes, California
  Funding: Work supported by DOE SBIR grant no. DE-FG02-03ER83878.

High-gradient electron guns can suppress space-charge induced transverse emittance growth when the electron beam is still in the low-energy injection stage. A synchronizable, high-voltage pulser can be used to power up a high-gradient gun. We propose to build a 200 kV pulser using a special trigger that utilizes a laser-photocathode sub-system. A laser trigger beam will first energize a spark gap, and then provide a second trigger signal from a photocathode using its leftover energy, to further close the gap. This system will not only raise the utilization efficiency of the laser beam energy, but also enhance the reliability of the trigger circuit. Our preliminary analysis shows that the proposed system will significantly improve the performance of the laser trigger pulse with the jitter on the order of hundreds of picoseconds. It is expected that the pulser can be used in the applications of high gradient guns as well as in other devices that need high precision trigger such as short pulse lasers, streak cameras, impulse radiating antennas, etc.

 
slides icon Slides  
 
TUZBC03 Self-Consistent Computation of Electromagnetic Fields and Phase Space Densities for Particles on Curved Planar Orbits space-charge, shielding, electron, synchrotron 899
 
  • J. A. Ellison
  • G. Bassi, K. A. Heinemann
    UNM, Albuquerque, New Mexico
  • M. Venturini
    LBNL, Berkeley, California
  • R. L. Warnock
    SLAC, Menlo Park, California
  Funding: Supported by DOE grant DE-FG02-99ER41104 and contracts DE-AC02-05CH11231 and DE-AC02-76SF00515.

We discuss our progress on integration of the coupled Vlasov-Maxwell equations in 4D. We emphasize Coherent Synchrotron Radiation from particle bunches moving on arbitrary curved planar orbits, with shielding from the vacuum chamber, but also include space charge forces. Our approach provides simulations with lower numerical noise than the macroparticle method, and will allow the study of emittance degradation and microbunching in bunch compressors. The 4D phase space density (PSD) is calculated in the beam frame with the method of local characteristics (PF). The excited fields are computed in the lab frame from a new double integral formula. Central issues are a fast evaluation of the fields and a deep understanding of the support of the 4D PSD. As intermediate steps, we have (1) developed a parallel self-consistent code using particles, where an important issue is the support of the charge density*; (2) studied carefully a 2D phase space Vlasov analogue; and (3) derived an improved expression of the field of a 1D charge/current distribution which accounts for the interference of different bends and other effects usually neglected**. Results for bunch compressors are presented.

* Self Consistent Particle Method to Study CSR Effects in Bunch Compressors, Bassi, et.al., this conference.** CSR from a 1-D Bunch on an Arbitrary Planar Orbit, Warnock, this conference.

 
slides icon Slides  
 
TUODC01 Detailed Photoemission Modeling Using the 3D Finite-Element PIC Code MICHELLE cathode, emittance, laser, simulation 904
 
  • J. J. Petillo
  • K. Jensen, B. Levush
    NRL, Washington, DC
  • J. N. P. Panagos
    SAIC, Burlington, Massachusetts
  Funding: We gratefully acknowledge funding by the Joint Technology Office and the Office of Naval Research.

Low emittance, high current density sources are required to achieve the small beam size needed for high frequency vacuum electronic devices and for high power free electron lasers (FELs). Emission models are of particular importance in the emittance-dominated regime, where emission non-uniformity and surface structure of the cathode can have an impact on beam characteristics. We have been developing comprehensive time-dependent photoemission models for the simulation codes that account for laser and cathode material and surface characteristics. MICHELLE* is NRL's finite-element self-consistent electrostatic time-domain code: it has the ability to import an RF field, and has unique capabilities for modeling the emission and the self fields, near the cathode. In particular, some instances of surface irregularities and emission non-uniformity (due to work function variation) leading to such effects as beam emittance and high frequency oscillations are possible to model due to the code's conformal meshing capabilities. We will present results of the implementation of the 'next generation' photoemission models in the MICHELLE code for modeling surface roughness and non-uniformity.

* John Petillo, et al., "The MICHELLE Three-Dimensional Electron and Collector Modeling Tool: Theory and Design", IEEE Trans. Plasma Sci., vol. 30, no. 3, June 2002, pp. 1238-1264.

 
slides icon Slides  
 
TUPMN001 The Australian Synchrotron Project synchrotron, storage-ring, injection, undulator 911
 
  • A. Jackson
  Funding for the Australian Synchrotron, a 3 GeV synchrotron light source, was announced by the Victorian State Government in January 2003, and six months later bulldosers moved onto the green-field site in the South-East suberbs of Melbourne. After a remarkably fast construction and installation period the accelerators that form the heart of the faclity were commissioned in 2006. Installation of the first five beamlines will commence in January 2007 and it is expected that the first experiments will be carried out in April. In this presentation we give an update on the status of the facility and present highlights of the commissioning activities.  
 
TUPMN003 Lifetime Contribution Measurements at the Australian Synchrotron scattering, electron, coupling, synchrotron 914
 
  • M. J. Spencer
  • M. J. Boland, R. T. Dowd, G. LeBlanc, Y. E. Tan
    ASP, Clayton, Victoria
  There are always a number of factors that contribute to the lifetime of a stored particle beam. Measurements presented here show the relative importance of these effects during the commissioning of the Australian Synchrotron storage ring.  
 
TUPMN008 Commissioning of the First Insertion Devices at SOLEIL undulator, storage-ring, coupling, synchrotron 929
 
  • C. Benabderrahmane
  • P. Berteaud, F. Briquez, P. Brunelle, O. V. Chubar, M.-E. Couprie, J.-M. Filhol, M. Girault, O. Marcouille, F. Marteau, M. Massal, F. Paulin, M. Valleau, J. Veteran
    SOLEIL, Gif-sur-Yvette
  The 2.75 GeV storage ring of the SOLEIL third generation light source in France consists of 16 cells and 24 straight sections (4x12m,12x7m, 8x3.6m) for a total circumference of 357 m. 24 insertion devices are planned for providing high brillance radiation from UV to hard X ray. They consist of adjustable polarisation sources in the UV-soft X ray (electromagnetic devices of periods 640 mm and 256 mm, APPLE-II of periods ranging between 80 and 34 mm, and one EMPHU) and planar devices for the production of hard X ray (in vacuum undulators of period 20 or 26 mm and one in vacuum wiggler). During the commissioning of the presently installed seven insertion devices (HU640, 2xHU256, 2 HU80, 2xU20), the effects on the beam have been studied (closed orbit distortions, tune shifts,..), compared with the expectations from magnetic measurements in laboratory, and compensated using feed forward local correctors. The radiation observed on the first photon diagnostic at the beamlines is also analysed.  
 
TUPMN024 Measurements of the Beam Heat Load in the Cold Bore Superconductive Undulator Installed at ANKA electron, undulator, synchrotron, radiation 968
 
  • S. Casalbuoni
  • T. Baumbach, A. Bernhard, D. Wollmann
    University of Karlsruhe, Karlsruhe
  • A. W. Grau, M. Hagelstein, B. K. Kostka, R. Rossmanith
    FZK, Karlsruhe
  • E. Mashkina, E. Steffens
    University of Erlangen-Nurnberg, Physikalisches Institut II, Erlangen
  • F. Zimmermann
    CERN, Geneva
  The beam heat load in the cold bore superconductive undulator installed at ANKA has been monitored for almost two years. The possible sources of the observed heat load as synchrotron radiation from upstream magnets, image currents, photo-excited electrons and ions will be discussed and compared with the experimental results.  
 
TUPMN026 Conditioning of a New Gun Cavity Towards 60 MV/m at PITZ gun, cathode, electron, klystron 971
 
  • S. Lederer
  • G. Asova, J. W. Baehr, C. H. Boulware, H.-J. Grabosch, M. Hanel, S. Khodyachykh, S. A. Korepanov, M. Krasilnikov, B. Petrosyan, S. Rimjaem, T. A. Scholz, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • K. Boyanov
    INRNE, Sofia
  • L. H. Hakobyan
    YerPhI, Yerevan
  • P. Michelato, L. Monaco, C. Pagani, D. Sertore
    INFN/LASA, Segrate (MI)
  • R. Richter
    BESSY GmbH, Berlin
  • J. Roensch
    Uni HH, Hamburg
  Funding: This work has partly been supported by the European Community, contracts RII3-CT-2004-506008 and 011935, and by the 'Impuls- und Vernetzungsfonds' of the Helmholtz Association, contract VH-FZ-005.

Beginning 2007, a new gun cavity will be installed at the photo injector test facility at DESY in Zeuthen (PITZ). It will be conditioned towards gradients as high as 60 MV/m. This gradient is required for the operation of the European XFEL. Results from the conditioning for high peak power and high duty cycle will be reported.

 
 
TUPMN028 The New Photoinjector for the Fermi Project gun, brightness, emittance, cathode 974
 
  • G. D'Auria
  • D. Bacescu, L. Badano, F. Cianciosi, P. Craievich, M. B. Danailov, G. Penco, L. Rumiz, M. Trovo, A. Turchet
    ELETTRA, Basovizza, Trieste
  • H. Badakov, A. Fukasawa, B. D. O'Shea, J. B. Rosenzweig
    UCLA, Los Angeles, California
  FERMI@ELETTRA is a single-pass FEL user facility covering the spectral range 100 10 nm. It will be located near the Italian third generation Synchrotron Light Source facility ELETTRA and will make use of the existing 1.0 GeV normal conducting Linac. To obtain the high beam brightness required by the project, the present Linac electron source will be substituted with a photocathode RF gun now under development in the framework of a collaboration between Sincrotrone Trieste (ST) and Particle Beam Physics Laboratory (PBPL) at UCLA. The new gun will use an improved design of the 1.6 cell accelerating structure already developed at PBPL, scaled to 2998 MHz. We expect that the new gun design will allow a beam brightness increase by a factor 3-4 over the older version of the device. Some technical choices of the new design, including the enhancement of the mode separation, removal of the RF tuners, full cell symmetrization to limit the dipole and quadrupole RF field as well as an improved solenoid yoke design for multipole field corrections, will be discussed.  
 
TUPMN034 Comparison Between SPARC E-Meter Measurements and Simulations emittance, simulation, cathode, site 986
 
  • C. Ronsivalle
  • A. Bacci, A. R. Rossi, L. Serafini
    INFN-Milano, Milano
  • M. Boscolo, E. Chiadroni, M. Ferrario, D. Filippetto, V. Fusco, G. Gatti, M. Migliorati, A. Mostacci, C. Vaccarezza, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Cianchi
    INFN-Roma II, Roma
  • L. Giannessi, M. Quattromini
    ENEA C. R. Frascati, Frascati (Roma)
  • M. Petrarca
    Universita di Roma I La Sapienza, Roma
  For the SPARC photoinjector commissioning the emittance compensation process has been studied experimentally under different beam conditions (variation of charge, spot size, beam shape…) by a novel device called "emittance-meter", consisting in a movable emittance measurement system based on the 1D pepper pot method scanning a region 1.2 m long downstream the RF-gun. The results of a detailed comparison between the measurements and beam dynamics simulations performed by the different codes(PARMELA, HOMDYN, TREDI) employed for SPARC design are presented and discussed here.  
 
TUPMN038 Coherent Cherenkov Radiation as a Temporal Diagnostic for Microbunched Beams radiation, photon, diagnostics, electron 998
 
  • G. Gatti
  • A. M. Cook, J. B. Rosenzweig, R. Tikhoplav
    UCLA, Los Angeles, California
  Cherenkov radiation of a relativistic e-beam traversing a thin section of aerogel is analized, putting the stress on the coherent contribution due to the intra-beam, transverse and longitudinal structure. The use of this tool as a temporal diagnostic for micro-bunched beams makes possible to improve the amount of collected power at the microbunching frequency several orders of magnitude more respect to the uncoherent Cherenkov contribution. The non-idealities of a real beam are taken in account, and some techniques aimed on enhancing the coherent part of radiation are proposed and analized analitically and through simulation codes.  
 
TUPMN042 Simulation Study of Resistive-wall Beam Breakup for ERLs simulation, focusing, insertion-device, insertion 1010
 
  • N. Nakamura
  • H. Sakai, H. Takaki
    ISSP/SRL, Chiba
  For future ERL-based light sources, average beam current is required to be up to 100 mA. Such a high-current multi-bunch beam may generate and cumulate strong long-range wake-fields by interaction with accelerator components such as superconducting cavities and vacuum ducts, and as a result, strong beam breakup(BBU) may occur. Resistive-wall BBU due to narrow and resistive vacuum ducts has been hardly studied, though the effects of BBU due to HOMs of superconducting cavities were much investigated. Asymptotic expressions of transverse resistive-wall BBU were derived for a beam that passes through a uniform resistive pipe under uniform external focusing*. However the expressions are valid only for limited parameter ranges and initial conditions. Therefore we have developed a computer simulation program to study transverse multi-bunch resistive-wall BBU more minutely and generally. In this paper, we will present the simulation results obtained by the simulation program and also compare them with the asymptotic expressions.

* J. M. Wang and J. Wu, PRST-AB 7, 034402(2004)

 
 
TUPMN052 Completion of the Australian Synchrotron Storage Ring RF System Commissioning klystron, controls, storage-ring, synchrotron 1040
 
  • S. Takama
  • R. T. Dowd, A. Jackson, G. LeBlanc, K. Zingre
    ASP, Clayton, Victoria
  • Y. Hirata, H. Kamikubo, Y. Nobusada, H. Suzuki
    Toshiba, Yokohama
  The installation and commissioning of the Australian Synchrotron Storage Ring RF System (SR RF System) was completed. SR RF System consists of four sets of 500MHz 150kW-CW klystron and 750kV normal conducting cavity. After the cavity aging, the RF System achieved 48 hours continuous operation in November 2006. The paper will present the design and commissioning results.  
 
TUPMN066 Status of the ALBA Project storage-ring, injection, septum, booster 1073
 
  • D. Einfeld
  The construction of ALBA, the 3 GeV third generation Synchrotron Light Source near Barcelona (Spain) is proceeding according to schedule. The works for the building started in June 2006 and access to the building for installation of the 100 MeV Linac is expected at the end of 2007. Most of the machine components are already under construction and some have already been delivered. This report will concentrate on recent design developments, component choices and current status. Also the results on the first prototypes will be discussed. Other papers at this conference deal with accelerator physics issues and low level RF.  
 
TUPMN101 A Study of the Minimum Wall Thickness for an Extruded Aluminum Vacuum Chamber undulator, insertion, insertion-device, synchrotron 1151
 
  • E. Trakhtenberg
  • G. E. Wiemerslage
    ANL, Argonne, Illinois
  Funding: Work at Argonne National Laboratory is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract # DE-Ac02-06CH11357.

Multiple vacuum chambers for the insertion devices with 1-mm wall thickness were developed at Argonne for the APS and many other synchrotron radiation facilities.* Using the extrusion for the insertion device vacuum chamber (ID VC) for the DESY FEL project with a 9.5-mm inner diameter, we decreased the wall thickness to 0.6, 0.5, and 0.4 mm to test the vacuum integrity for a thin wall in these extrusions. A special ultrasonic transducer with a 1/8" diameter was required to do the job. Also some additional short samples, machined exactly as the experimental piece, were used to verify wall thickness mechanically. Experimental setup and test results are presented.

* Trakhtenberg E., Wiemerslage G., Den Hartog P. "New insertion device vacuum chambers at the Advanced Photon Source", PAC 2003 Particle Accelerator Physics Conference; Portland, OR.

 
 
TUPMN106 MCP based Electron Gun electron, gun, proton, cathode 1159
 
  • V. D. Shiltsev
  We propose to use micro-channel plate (MCP) as a cathode for electron guns. We suggest possible arrangement of MCP in DC and RF guns and discuss feasibility and possible advantages of the method.  
 
TUPMN112 ALS Top-off Simulation Studies for Radiation Safety simulation, photon, injection, radiation 1173
 
  • H. Nishimura
  • R. J. Donahue, R. M. Duarte, D. Robin, F. Sannibale, C. Steier, W. Wan
    LBNL, Berkeley, California
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC03-76SF00098

We plan to commission top-off injection at the Advanced Light Source in the near future. In order to guarantee radiation safety, we have been simulating the injection process to exclude the possibility of injected electrons traveling down the user's photon beam lines. As the final stage of our simulation study, we use photon beam line CAD drawings to define the beam line's aperture in the phase space which electrons must not enter. Then we virtually inject electrons from within these phase spaces backwards into the storage ring to prove that such electrons can never get back to the real injection point under any possible scenario. This paper summarizes such inverse tracking studies.

 
 
TUPMS021 Performance of a Very High Voltage Photoemission Electron Gun for a High Brightness, High Average Current ERL Injector gun, cathode, electron, emittance 1224
 
  • C. K. Sinclair
  • I. V. Bazarov, B. M. Dunham, Y. Li, X. G. Liu
    Cornell University, Department of Physics, Ithaca, New York
  • K. W. Smolenski
    CLASSE, Ithaca
  Funding: Work supported by the National Science Foundation under contract PHY 0131508

We have constructed a very high voltage photoemission electron gun as the electron source of a high brightness, high average current injector for an energy recovery linac (ERL) synchrotron radiation light source. The source is designed to deliver 100 mA average current in a CW 1300 MHz pulse train (77 pC/bunch). The cathode voltage may be as high as 750 kV. Negative electron affinity photocathodes are employed to obtain small thermal emittances. The electrode structure is assembled without touching any electrode surface. A load-lock system allows cleaning and activation of cathode samples prior to installation in the electron gun. Cathodes are cleaned by heating and exposure to atomic hydrogen, and activated with cesium and nitrogen trifluoride. Two cathode electrode sets, of 316LN stainless steel and Ti4V6Al alloy, have been used. The anode is beryllium. The internal surface of the ceramic insulator of the gun has a high resistivity fired coating, providing a path to drain away charge from field emission. Non-evaporable getters provide a very high pumping speed for hydrogen. Operating experience with this gun will be presented.

 
 
TUPMS026 Design of Control Instrumentation of two In-Vacuum Undulators IVU25s controls, synchrotron, synchrotron-radiation, undulator 1236
 
  • J. Kulesza
  • N. Chen
    SSRF, Shanghai
  • A. Deyhim
    Advanced Design Consulting, Inc, Lansing, New York
  Funding: Shanghai Institute of Applied Physics

This paper summarizes the primary controller that is based on Schneider Premium PLC for two in-vacuum undulators to be installed at SSRF. The PLC controls a single gap stepper motor and driver, both made by Parker-Hannifin. Position feedback is derived from a TR Electronics linear absolute LTS-240 encoder mounted across the gap. The encoder resolution is programmable down to .1 um per count. Since the encoder is absolute there will be no need to home the gap axis. The advantage of linear encoders is the measurement is more direct and is not subject to wind-up and deflection that a rotary encoder would see on the end of a ball screw. Two encoders are planned, one on each end of the magnet array. One encoder will be the primary feedback for the axis and the other will detect deflection errors and girder taper. Four limits are provided as well as 4 kill switches. The 4 switches (2 limits and 2 kills) at min gap are optical and the 4 outer switches (2 limits and 2 kills) are mechanical. The limits prevent further motion in the direction they protect but allow the axis to be driven in the other direction (off the switch).

 
 
TUPMS043 Design of a 2.1 GeV Electron Storage Ring simulation, emittance, impedance, dynamic-aperture 1284
 
  • R. A. Bosch
  Funding: This research was supported by National Science Foundation Grant no. DMR-0537588.

A 2.1 GeV electron storage ring can serve as a third-generation light source for photon energies of 1-2000 eV. We design a ring with emittance of 1.5 nm-rad, circumference of 215 m, and twelve 5.5 m long straight sections. With a 100 MHz radiofrequency (rf) system, the computed Touschek current-lifetime product is 2800 mA-hr. Two passive fifth-harmonic cavities may be used to suppress parasitic coupled-bunch instabilities while increasing the bunchlength and lifetime by a factor of four. For stable operation with ring currents up to 600 mA, microwave-instability simulations indicate that the reduced longitudinal impedance should not exceed 1.5Ω.

 
 
TUPMS048 Measurement and Analysis of Field Emission Electrons in the LCLS Gun gun, cathode, electron, transverse-dynamics 1299
 
  • D. Dowell
  • E. N. Jongewaard, C. Limborg-Deprey, J. F. Schmerge, A. E. Vlieks
    SLAC, Menlo Park, California
  Funding: SLAC is operated by Stanford University for the Department of Energy under contract number DE-AC03-76SF00515.

The field emission was measured during the high-power testing of the LCLS photocathode RF gun. A careful study and analysis of the field emission electrons, or dark current is important in assessing the gun's internal surface quality in actual operation, especially those surfaces with high fields. The charge per 2 microsecond long RF pulse (the dark charge) was measured as a function of the peak cathode field for the 1.6 cell, 2.856GHz LCLS RF gun. Faraday cup data was taken for cathode peak RF fields up to 120MV/m producing a maximum of 0.6nC/RF pulse for a diamond-turned polycrystalline copper cathode installed in the gun. The field dependence of the dark charge is analyzed using a temperature-dependent Fowler-Nordheim (FN) theory to obtain the field enhancement factor and other emitter parameters. Digitized images of the dark charge were taken using a 100 micron thick YAG crystal for a range of solenoid fields to determine the location and angular distribution of the field emitters. The FN plots and emitter image analysis will be described in this paper.

 
 
TUPMS069 Proposed Tabletop Laser-driven Coherent X-Ray Source undulator, laser, electron, polarization 1332
 
  • T. Plettner
  • R. L. Byer
    Stanford University, Stanford, Califormia
  Laser-driven particle acceleration shows promise for compact ultra-low emittance, GeV/m electron sources. The first proof-of-principle demonstration for this particle acceleration technique has been carried out and a comprehensive experimental program to develop dielectric based micro-accelerator structures is under way. Therefore it is natural to explore the possibility for applying these future accelerators for SASE-FEL based X-ray generation. We employ well-established numerical models based on the standard SASE-FEL theory to find a plausible set of undulator and electron beam parameters to accomplish the desired X-ray pulse structure.  
 
TUPAN006 Design of Slug Tuners for the SPIRAL2 RFQ rfq, simulation, resonance, ion 1398
 
  • A. France
  • O. Delferriere, M. Desmons, O. Piquet
    CEA, Gif-sur-Yvette
  Tuner parameters: number (or separation distance), diameter, position range, are determined in order to fit two main requirements: (1) compensation of construction errors specified between given bounds, and (2) compatibility with magnetic-field bead-pull measurements. Tuner slopes possibly derived from 2D or 3D simulations are compared. RFQ 4-wire transmission line model is used to calculate tuner position range required to compensate for given capacitance relative errors. The position of the bead guiding-wire is deduced from 3D field maps and magnetic-field-to-voltage calibration accuracy requirement.  
 
TUPAN013 FAIR Synchrotron Operation with Low Charge State Heavy Ions ion, beam-losses, synchrotron, lattice 1416
 
  • C. Omet
  • D. Hoffmann, P. J. Spiller
    GSI, Darmstadt
  Funding: Work supported by EU, contract No. 515876

Beam loss caused by charge changing process in connection with dynamic vacuum effects may limit the maximum number of accelerated heavy ions with low charge states in the existing synchrotron SIS18 and the planned SIS100/SIS300 of the FAIR project. With the aim to stabilize the vacuum dynamics and to control ionization beam loss, a substantial upgrade program has been defined for SIS18 and is presently realized. For SIS100, a new lattice design concept has been developed, where each lattice cell acts as a charge seperator and thereby enables the local control of beam loss. Simulation, conducted with the code STRAHLSIM, of the time dependent evolution of beam loss, dynamic residual gas pressure and the effect of the proposed dedicated ion catcher systems will be presented.

 
 
TUPAN020 A RFQ-Decelerator for HITRAP rfq, ion, emittance, linac 1437
 
  • A. Schempp
  • B. Hofmann
    IAP, Frankfurt am Main
  • O. K. Kester
    GSI, Darmstadt
  The HITRAP linac at GSI will decelerate ions from 5 MeV/u to 6 keV/u for experiments with the large GSI Penning trap. The ions are decelerated at first in the existing experimental storage ring (ESR) down to an energy of 5 MeV/u and will be injected into a new Decelerator-Linac consisting of a IH-structure, which decelerates down to 500keV/u, and a 4-Rod RFQ , decelerating to 5 keV/u. The properties of the RFQ decelerator and the status of the project will be discussed.  
 
TUPAN025 Selective Containment Measurements on Xe with the RF Charge Breeder Device BRIC ion, electron, simulation, injection 1445
 
  • V. Variale
  • P. A. Bak, G. I. Kuznetsov, B. A. Skarbo, M. A. Tiunov
    BINP SB RAS, Novosibirsk
  • A. Boggia
    Universita e Politecnico di Bari, Bari
  • T. Clauser, V. Valentino
    INFN-Bari, Bari
  • A. C. Raino
    Bari University, Science Faculty, Bari
  Funding: INFN and UE contract no. 515768 EURISOL_DS (RIDS)

The Radioactive Ion Beam (RIB) production with ISOL technique should require a charge breeder device to increase the ion acceleration efficiency and reduce greatly the production cost. The "charge breeder" is a device designed to accept RIB with charge state +1 and in order to increase their charge state up to +n. Recently, at the INFN section of Bari first and at LNL (Italy) then, a new charge breeder device, based on an EBIS ion source called BRIC, has been developed. The new feature of BRIC, with respect to the classical EBIS, is given by the insertion, in the ion drift chamber, of a Radio Frequency (RF) - Quadrupole aiming to filtering the unwanted masses and then making a selective more efficient containment of the wanted ions. The RF test measurements for Ar gas confirm, as foreseen by simulation results* that the selective containment can be obtained. More measurements on the selective containment of heavier element ions (more close to the radioactive ion produced with ISOL technique) like Xe are needed to study with more details that effect. In this contribution new measurements on the rf selective containement in BRIC for Xe gas will be presented and discussed.

* V. Variale and M. Claudione, "BRICTEST: a code for charge breeding simulations in RF quadrupolar field", NIM in Phys. res. A 543 (2005) 403-414.

 
 
TUPAN036 DAPHNE Upgrade: A New Magnetic and Mechanical Layout quadrupole, kicker, dipole, interaction-region 1466
 
  • S. Tomassini
  • D. Alesini, A. Beatrici, A. Clozza, E. Di Pasquale, G. Fontana, F. Marcellini, G. Mazzitelli, M. Paris, P. Raimondi, C. Sanelli, G. Sensolini, F. Sgamma, M. Troiani, M. Zobov, A. Zolla
    INFN/LNF, Frascati (Roma)
  • M. E. Esposito
    Rome University La Sapienza, Roma
  The DAPHNE Phi-Factory upgrade, foreseen for the Siddharta detector run in 2007, will require a new magnetic and mechanical layout to exploit the "large crossing angle" and "crabbed waist" concepts*. New permanent quadrupole magnets and aluminium vacuum chamber with thin window have been designed for the new interaction region, with the aim to reuse at maximum the present magnetic and vacuum chamber components. A vacuum chamber of novel design will allow separating the beams at the second interaction region. Designs and results for the new layout will be presented.

* DAPHNE Upgrade Team, "DAPHNE Upgrade for Siddharta run", DAPHNE Tech. Note G-68, Dec. 2006.

 
 
TUPAN041 Recent Progress of KEKB luminosity, resonance, sextupole, emittance 1475
 
  • Y. Funakoshi
  In this report, we describe the KEKB status focused on recent progress since the summer shutdown in 2005.  
 
TUPAN056 Fabrication Status of ACS Accelerating Modules of J-PARC Linac coupling, linac, target, impedance 1514
 
  • H. Ao
  • K. Hasegawa
    JAEA, Ibaraki-ken
  • K. Hirano, T. Morishita, A. Ueno
    JAEA/LINAC, Ibaraki-ken
  • M. Ikegami
    KEK, Ibaraki
  • V. V. Paramonov
    RAS/INR, Moscow
  • Y. Yamazaki
    KEK/JAEA, Ibaraki-Ken
  An ACS (Annular Coupled Structure) cavity has been developed for the J-PARC Linac from 190-MeV to 400-MeV. We fabricated a buncher module with two 5-cell accelerating tanks and one 5-cell bridge tank as the first module. The buncher module is shorter than accelerating module that consists of two 17-cell accelerating tanks and one 9-cell bridge tank. The first buncher module achieved the stable operation of 50 Hz, 600 us, 600 kW in the high-power test, which corresponds to the E0 value of 4.8 MV/m. The second buncher module and three accelerating modules are under fabrication continuously. These results of the frequency tuning and assembling are presented in detail.  
 
TUPAN058 High Power Conditioning of the DTL for J-PARC klystron, linac, acceleration, pick-up 1517
 
  • T. Ito
  • H. Ao
    JAEA/LINAC, Ibaraki-ken
  • H. Asano, T. Morishita
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • T. Kato, F. Naito, E. Takasaki, H. Tanaka
    KEK, Ibaraki
  For the J-PARC, DTL (Drift Tube Linac) is used to accelerate an H- ion beam from 3MeV to 50MeV. The DTL consists of 3 tanks and the all tanks were installed in the accelerator tunnel for J-PARC. After the installation, the high power conditioning has been started in Oct. 2006. The required rf power levels for beam acceleration are about 1.08MW, 1.2MW and 1.03MW (the pulse length is 600μsec and the pulse repetition is 25Hz) for the 1st, 2nd and 3rd tanks, respectively. As a result of the conditioning, we have been achieved that the rf power levels are about 1.3MW, 1.45MW and 1.23MW of 1.2 times required power levels (the pulse length is 650μsec and the pulse repetition is 25Hz). In this paper, the results of the high power conditioning of the DTL tanks are described.  
 
TUPAN078 Design and Fabrication of the PEFP DTL II proton, pick-up, linac, alignment 1553
 
  • Y.-H. Kim
  • Y.-S. Cho, J.-H. Jang
    KAERI, Daejon
  Funding: This work is supported by the 21C Frontier R&D program in the Ministry of Science and Technology of the Korean government

The PEFP DTL II which accelerates a proton beam from the energy of 20MeV Beam to 100MeV is now under fabrication. The DTL II which has some similar specifications with the DTL I which accelerates the proton beam to the energy of 20MeV is made of seamless carbon steel with Cu electroplating inside. The DTL tank is divided into 3 sections whose length is about 2.2m. We verified the mechanical and thermal stability using ANSYS code, and we established the fabrication process of the drift tube. The DTL II is now being fabricated.

 
 
TUPAN086 An Improved Beam Screen for the LHC Injection Kickers impedance, kicker, coupling, injection 1574
 
  • M. J. Barnes
  • F. Caspers, L. Ducimetiere, N. Garrel, T. Kroyer
    CERN, Geneva
  The two LHC injection kicker magnet systems must produce a kick of 1.3 T.m with a flattop duration variable up to 7860 ns, and rise and fall times of less than 900 ns and 3000 ns, respectively. Each system is composed of two resonant charging power supplies and four 5 Ω transmission line kicker magnets with matched terminating resistors and pulse forming networks. A beam screen is placed in the aperture of the magnets: the screen consists of a ceramic tube with conductors on the inner wall. The conductors provide a path for the image current of the, high intensity, LHC beam and screen the ferrite against Wake fields. The conductors initially used gave adequately low beam impedance however inter-conductor discharges occurred during pulsing of the magnet: an alternative design was discharge free at the nominal operating voltage but the beam impedance was too high for the ultimate LHC beam. This paper presents the results of a new development undertaken to meet the often conflicting requirements for low beam impedance, shielding of the ferrite, fast field rise time and good electrical behaviour. High voltage test results and thermal measurements are also presented.  
 
TUPAN108 LHC Collimation System Hardware Commissioning collimation, alignment, collider, proton 1625
 
  • Th. Weiler
  • O. Aberle, R. W. Assmann, R. Chamizo, Y. Kadi, J. Lettry, S. Redaelli
    CERN, Geneva
  The stored energy and intensity of the LHC beam exceed the damage level of the machine and the quench level of the magnets by far. Therefore a robust and reliable collimation system is required which prevents the quenching of the magnets during regular operation and protects the accelerator components from damage in the event of beam loss. To assure that the installed collimators will protect the machine and permit the required performance of the collider, an appropriate hardware commissioning has to be implemented. In this contribution we describe the procedures for the hardware commissioning of the LHC collimation system. These procedures will establish the required precision and reliability of collimator movements and settings before the start of beam operation.  
 
TUPAN112 Slow-Wave Chopper Structures for Next Generation High Power Proton Drivers linac, proton, coupling, beam-losses 1637
 
  • M. A. Clarke-Gayther
  Funding: Work supported by CCLRC/RAL/ASTeC and the European Community Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract No. RII3-CT-50295)

A description is given of slow-wave chopper structures for the 3.0 MeV, 60 mA, H- MEBT lines of the CERN Linac 4 and RAL Front-End Test Stands (FETS). Transmission line properties and transverse E-field uniformity for the original European Spallation Source (ESS) designs* have been refined by modelling static, and time dependent electromagnetic fields in the 3D CST 'EM Studio', and 'Microwave Studio' codes**. In addition, the original compact, radiation hard, vacuum compatible designs have been simplified and reconfigured to be compatible with standard NC machining practice. Transmission line properties in the frequency and time domain, together with E-field uniformity in the axial and transverse planes, are presented.

* M. A. Clarke-Gayther, 'Slow-wave electrode structures for the ESS 2.5 MeV fast chopper', Proc. of the 2003 Particle Accelerator Conference (PAC), Portland, Oregon, USA, p. 1473-1475.** www.cst.com

 
 
TUPAS011 Collimation System for the Fermilab Booster to Main Injector Transfer Line booster, collimation, controls, radiation 1673
 
  • B. C. Brown
  • D. Capista, I. Kourbanis, N. V. Mokhov, V. Sidorov
    Fermilab, Batavia, Illinois
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH03000.

A collimation system has been created for removing proton beam halo in the 8 GeV transfer line from the Fermilab Booster to Main Injector. A pair of 1.14 meter collimators with 5.08 cm rectangular apertures are installed in a 5 meter straight section. Horizontal and vertical motion systems allow them to be positioned such that halo can be scraped from four sides. An additional pair of collimators, placed one cell (90 degrees) downstream scrape halo which is of opposite phase. Each collimator pair can scrape about 600 Watts of beam power, limited by long term activation of materials outside of the beam line tunnel. Personnel exposure is reduced by surrounding the iron absorber with a layer of marble. Design features,radiation calculations and instrumentation considerations will be described.

 
 
TUPAS025 Commissioning of the Second Tevatron Electron Lens and Beam Study Results electron, gun, proton, antiproton 1706
 
  • V. Kamerdzhiev
  • R. J. Hively, G. F. Kuznetsov, H. Pfeffer, G. W. Saewert, V. D. Shiltsev, X. Zhang
    Fermilab, Batavia, Illinois
  In the framework of Fermilab's Beam-Beam Compensation project the second Tevatron Electron Lens (TEL2) has been installed in the Tevatron during Spring 2006 shutdown. After successful commissioning a series of beam studies has been carried out in single bunch mode. The paper describes the commissioning process and first beam studies results.  
 
TUPAS052 Radiation Environment at ISOL Target Station of Rare Isotope Facility target, radiation, shielding, ion 1766
 
  • M. A. Kostin
  • L. Ahle, S. Reyes, K. L. Whittaker
    LLNL, Livermore, California
  • I. Baek, V. Blideanu, G. Bollen, D. Lawton, R. M. Ronningen
    NSCL, East Lansing, Michigan
  • T. Burgess, D. L. Conner, T. A. Gabriel, R. Remec
    ORNL, Oak Ridge, Tennessee
  • D. J. Vieira
    LANL, Los Alamos, New Mexico
  Next-generation exotic beam facilities will offer a number of approaches to produce rare isotopes far from stability. One of the approaches is the Isotope Online (ISOL) separation concept, that is, the isotope production by interactions of light ion beams with heavy nuclei of targets. A pre-conceptual design of an ISOL target station was done as part of the research and development work for the Rare Isotope Accelerator (RIA). This report summarizes the results of radiation simulations for the RIA ISOL target station. The above includes radiation effects such as: prompt doses around the target station and from neutron sky-shine; residual activation effects such as ground water, air, and component activation; life-time of target station components; and heating and cooling for target, beam dumps, and shielding.  
 
TUPAS068 A Transverse Beam Instability in the PEP-II HER Induced by Discharges in the Vacuum System monitoring, coupling, background, betatron 1811
 
  • U. Wienands
  • W. S. Colocho, S. DeBarger, F.-J. Decker, S. Ecklund, A. S. Fisher, J. D. Fox, A. Kulikov, A. Novokhatski, M. Stanek, M. K. Sullivan, W. Wittmer, D. Wright, G. Yocky
    SLAC, Menlo Park, California
  Funding: Work supported by US Dept. of Energy

During Run 5, PEP-II has been plagued by beam instabilities causing beam aborts due to radiation in the BaBar detector or due to fast beam loss triggering the dI/dt interlock. The latest of such instabilities occurred in the High Energy Ring (HER), severely curtailing the maximum beam current achievable during physics running. Techniques used in tracking down this instability included fast monitoring of background radiation, temperatures and vacuum pressure. In this way, the origin of the instability was localized and inspection of the vacuum system revealed several damaged bellows shields. Replacing these units significantly reduced the incident rate but did not eliminate it fully. After the end of the run, a number of damaged rf seals were found, possibly having caused the remaining incidents of instability. In this paper we will outline the steps taken to diagnose and remedy the issue and also compare the different signatures of vacuum-induced instabilities we have seen in both rings of PEP-II during the run.

 
 
TUPAS106 Observation of Experimental Background in RHIC Polarized Proton Run 2006 background, proton, interaction-region, collimation 1883
 
  • S. Y. Zhang
  • D. Trbojevic
    BNL, Upton, Long Island, New York
  Funding: * Work supported by U. S. DOE under contract No DE-AC02-98CH1-886

There are three main sources of the experimental background at RHIC. The beam-gas induced background is associated with the vacuum pressure, the beam-chamber-interaction induced background can be improved by collimations, and the beam-beam induced background is somewhat inherent, and probably harmless for the experimental data taking. The zero degree calorimeter (ZDC) is an essential luminosity detector for heavy ion operations in RHIC. It is shown that, however, the ratio of ZDC singles (background) and coincident rate is also useful in proton runs for background evaluations. In this article, the experimental background problem in RHIC polarized proton runs is reported.

 
 
WEOAC01 Secondary Electron Yield and Rectangular Groove Chamber Tests in PEP-II electron, radiation, synchrotron, synchrotron-radiation 1997
 
  • M. T.F. Pivi
  • R. E. Kirby, T. W. Markiewicz, T. O. Raubenheimer, J. Seeman, L. Wang
    SLAC, Menlo Park, California
  • F. Le Pimpec
    PSI, Villigen
  Funding: Work supported by the Director, Office of Science, High Energy Physics, U. S. DOE under Contract No. DE-AC02-76SF00515.

Possible remedies for the electron cloud in the Damping Ring of the International Linear collider includes conditioning of the surface and chamber with grooves. We installed chambers in PEP-II to test the secondary electron yield (SEY) of coated TiN and TiZrV NEG samples and study the effect of electron and photon conditioning in situ. We have also installed vacuum chambers with rectangular groove profile in straight sections to test this possible mitigation technique. In this paper, we will describe the PEP-II test layout, results and impact on impedance.

 
 
WEOAC02 A New Type of Distributed Enamel Based Clearing Electrode impedance, electron, simulation, coupling 2000
 
  • F. Caspers
  • F.-J. Behler
    Eisenwerke Fried. Wilh. Dueker GmbH & Co. KGaA, Laufach
  • P. P. Hellmold
    Clausthal, Inst für Nichtmetall. Werkstoffe, Clausthal-Zellerfeld
  • T. Kroyer, E. Metral, F. Zimmermann
    CERN, Geneva
  • J. Wendel
    Wendel GmbH, Dillenburg
  A practical technology for implanting thin strip-like enamel structures in metallic beam-pipes, to be used for e-cloud clearing, has been developed. We discuss the technical and technological issues of this method. Parameters of particular interest are the beam coupling impedance as a function of the conductive coating resistivity and also the secondary electron yield. A test-stand for multipactoring measurements on a first prototype using the coaxial resonator method is described.  
slides icon Slides  
 
WEOCC04 Recent Progress on the Diamond Amplified Photo-cathode Experiment electron, emittance, laser, lattice 2044
 
  • X. Chang
  • I. Ben-Zvi, A. Burrill, J. G. Grimes, T. Rao, Z. Segalov, J. Smedley
    BNL, Upton, Long Island, New York
  • Q. Wu
    IUCF, Bloomington, Indiana
  We report recent progress on the Diamond Amplified Photo-cathode (DAP). The use of a pulsed electron gun provides detailed information about the DAP physics. The secondary electron gain has been measured under various electric fields. We have achieved gains of a few hundred in the transmission mode and observed evidence of emission of electrons from the surface. A model based on recombination of electrons and holes during generation well describes the field dependence of the gain. The emittance measurement system for the DAP has been designed, constructed and is ready for use. The capsule design of the DAP is also being studied in parallel.  
slides icon Slides  
 
WEPMN005 The SSRF Booster Cavity System booster, controls, electron, synchrotron 2053
 
  • K. Dunkel
  • B. A. Aminov
    CRE, Wuppertal
  • J. Hottenbacher, C. Piel
    ACCEL, Bergisch Gladbach
  In February 2007 a system consisting out of two 5 cell 500MHz cavities has been delivered to SSRF to accelerate the electrons in their booster ring. The two cavities are controlled by a low level RF system, which forms part of the delivery. The paper will describe the general layout of the booster RF system and the architecture of the low level RF system controlling one amplifier and two cavities. Results of the commissioning phase will be presented and compared with expected and guaranteed values of the system.  
 
WEPMN008 Vibration Stability Studies of a Superconducting Accelerating Module at Room Temperature quadrupole, resonance, ground-motion, site 2062
 
  • R. Amirikas
  • A. Bertolini, W. Bialowons
    DESY, Hamburg
  Funding: Work supported by the Commission of the European Communities under the 6th Framework Program Structuring the European Research Area, contract number RIDS-011899.

In this presentation, we will report on a comprehensive vibration measurement program of a superconducting accelerating module designed for the European X-ray Free Electron Laser (XFEL), currently planned at DESY, at room temperature. This module is a type III, high gradient module which is also the basis of module design for the International Linear Collider (ILC). We will discuss stability within the vessel, for example, cold mass vs. He Gas Return Pipe (GRP), as well as stability along the length of the module. Results of this study may be used for the design of future XFEL/ILC module prototypes.

 
 
WEPMN009 Vibration Stability Studies of a Superconducting Accelerating Module Quadrupole Operating at 4.5K quadrupole, cryogenics, damping, linac 2065
 
  • R. Amirikas
  • A. Bertolini, W. Bialowons
    DESY, Hamburg
  Funding: Work supported by the Commission of the European Communities under the 6th Framework Program Structuring the European Research Area, contract number RIDS-011899.

The European X-ray Free Electron Laser (XFEL) and the International Linear Collider (ILC) superconducting accelerating modules, containing a string of Niobium (Nb) cavities and a quadrupole, will operate at 2K. In this paper, we will report on the vibration stability studies of a high gradient XFEL/ILC type III superconducting accelerating module quadrupole operating at 4.5K. Measurements are performed via geophones affixed on the cold mass in both horizontal and vertical directions. This data will be compared with piezoelectric accelerometers for the same module. The goal is to study the stability of the cold quadrupole and to compare the results with room temperature conditions.

 
 
WEPMN022 High Gradient Tests of C-band Accelerating System for Japanese XFEL Project klystron, linac, power-supply, collider 2095
 
  • K. Shirasawa
  • H. Baba, H. Matsumoto
    KEK, Ibaraki
  • T. Inagaki, H. Kitamura, T. Shintake
    RIKEN Spring-8 Harima, Hyogo
  • S. Miura
    MHI, Hiroshima
  The C-band (5712 MHz) choke-mode type accelerating structure will be used for SCSS. Since the C-band accelerator generates higher accelerating gradient than traditional S-band accelerator, it makes the machine size compact and the cost low. In order to confirm the performance of the C-band accelerating system for the 8 GeV XFEL machine, the system including the same accelerating structure and RF system have been installed in the SCSS prototype accelerator. In the prototype machine, four 1.8 m long C-band accelerating structures are used to accelerate electron up to 250 MeV. From November 2005, we have operated the C-band accelerator in the prototype machine with no serious problem. After the RF conditioning, accelerating gradient up to 35 MV/m was achieved. Since a lot of C-band accelerator units, about 70 klystrons and 130 accelerating structures, will be used for 8 GeV XFEL machine, it is necessary to investigate the damage due to the beam operation. Therefore, we plan to observe the inside of the accelerating structure and pulse compressor in early 2007. In this paper, we will report on the achieved performance and the inside observation of the C-band accelerator.  
 
WEPMN037 Manufacture and Assembly of the 6 Meter-Long Cryomodules for Superconducting RF Test Facility (STF) at KEK cryogenics, radiation, factory, insertion 2122
 
  • T. Semba
  • Y. Itou, S. Kajiura, T. Masumoto, T. Tagawa
    Hitachi Ltd., Ibaraki-ken
  • S. Noguchi, N. Ohuchi, K. Saito, A. Terashima, K. Tsuchiya
    KEK, Ibaraki
  The Superconducting RF Test Facility (STF) has been developed at KEK as an R&D toward ILC (International Linear Collider). Hitachi carried out the fabrication of STF cryostat components and in si-tu assembly of cryomodules cooperated with KEK. Our objective is obtaining the manufacturing experience of long cryostats for superconducting cavities. STF cryomodules are designed on the basis of TESLA design. Those major components are : vacuum vessels, support posts, 80K radiation shields, 5K radiation shields, helium gas return pipe, cryogenic piping, cavity helium vessels, RF input couplers, various measurement equipments and sensors. Two units of 6-meter long cryostat are designed to contain maximum eight 9-cell cavities in total. At the first step of the cryomodules, two different types of cavities and some equipments have been carefully prepared and installed by KEK. This paper briefly presents the structural design of STF cryostat components, cryomodule assembly procedures with specially designed tooling, and a summary for the next step.  
 
WEPMN040 MA Cavities for J-PARC with Controlled Q-value by External Inductor impedance, resonance, acceleration, controls 2131
 
  • A. Schnase
  • S. Anami, E. Ezura, K. Hara, K. Hasegawa, C. Ohmori, A. Takagi, M. Toda, M. Yoshii
    KEK, Ibaraki
  • M. Nomura, F. Tamura, M. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  The original J-PARC RCS cavity design* used cut-cores to control the Q-value. Adjusting the distance between the C-shaped core parts the optimum Q=2 is reached. Because of problems related to the cut-core surfaces, the "hybrid cavity" was introduced, using tanks with uncut cores (Q=0.6) in parallel to tanks with cut cores with a wider gap (Q=4), resulting in total Q=2. This was successfully tested. The manufacturing procedure for cut-cores involves more steps than for uncut cores. To reduce risks for long-term operation, the RCS cavities will be loaded with uncut cores for day-1 operation. With uncut cores (Q=0.6) the maximum beam power is limited. Therefore we introduce a parallel inductor, placed in the push-pull tube amplifier driving the cavity, to adjust the Q-value to 2. Parallel vacuum capacitors shift the resonance near to 1.7 MHz. Each of the 10 cavity systems for RCS, necessary for day-1 operation, is tested for at least 300 hours to detect initial problems before installation into the RCS tunnel. We report the results of cavity performance tests with external inductor, which simulate 25Hz operation and the optimization of the combined system of cavity and amplifier.

* C. Ohmori at. al, "High Field-Gradient Cavity for J-PARC 3 GeV RCS", PAC 2004

 
 
WEPMN047 Electro-polished Cavities Using China Ningxia Large Grain Niobium Material superconducting-RF, linear-collider, collider, electron 2143
 
  • Z. G. Zong
  • F. Furuta, H. Inoue, T. Saeki, K. Saito
    KEK, Ibaraki
  • J. Gao, M. Q. Ge, Q. J. Xu, J. Y. Zhai
    IHEP Beijing, Beijing
  For the International Linear Collider (ILC), superconducting RF cavity technology was chosen. The superconducting cavity is made of polycrystalline niobium material so far. However, the material cost is high and the cavity performance has a rather scatter now. Large grain niobium (LG) cavity is an excellent idea because it simplifies the production process and results in less expensive. JLAB and DESY are pushing the R&D in last two years. KEK also has started to investigate LG. Three cavities with Ichiro shape were made of Chinese large grain niobium (Ningxia). A series of vertical tests has been carried out on several different surfaces treatment procedures by electropolishing. One cavity has reached the high gradient of more than 43 MV/m repeatedly. Other two cavities are still under testing. In this paper, the features of LG on electropolishing will be described with Ningxia large grain niobium material.  
 
WEPMN048 Measurement for the Kanthal Alloy Used for Collinear Load and S-band Load Design resonance, electron, emittance, linear-collider 2146
 
  • X. D. He
  • S. Dong, Y. J. Pei, C.-F. Wu
    USTC/NSRL, Hefei, Anhui
  Funding: National Nature Science Foundation No.10675116 No.10375060

We have developed the mathod to determine the permittivity and permeability of Kanthal alloy available. The alloy is coated on the inside walls of disk-loaded cavities,which is used for the collinear load. The collinear load absorbs the remaining rf-power over the last cells of the section while still accelerating the beam. Based on the experimental results of the permittivity and permeability,the computation study of the constant power-loss collinear load has been made by Microwave Studio. The design data about the S-band collinear load are present.

 
 
WEPMN053 Test of 700MHz, 1MW Proto-type Klystron for PEFP klystron, cathode, gun, coupling 2158
 
  • B. H. Chung
  • K.-H. Chung
    KAPRA, Cheorwon
  • J. S. Hong, J. H. Jeon, S. J. Noh
    Dankook University, Seoul
  • S. K. Ko
    University of Ulsan, Ulsan
  High power and RF source of 700MHz and 1MW klystron, which has been designed and constructed by Korean Accelerator and Plasma Research Association, has been being tested. To test the primary performance of the klystron, a pulse power supply was used to manipulate a negative high voltage. We are currently reinforcing the protection circuit, and it is going on without much trouble as originally planned. In addition, a baking furnace for the klystron is under fabrication for the ultra high vacuum of better stability. We constructed various infrastructures such as baking furnace for the development of Klystron.  
 
WEPMN062 HOM Analysis and Design of its Removal System for SRF 3rd Harmonic RF Cavity in PLS electron, storage-ring, impedance, superconducting-RF 2179
 
  • Y. U. Sohn
  • J. Choi, M.-H. Chun, J. Y. Huang, I. S. Ko, I. S. Park
    PAL, Pohang, Kyungbuk
  Funding: Korea Ministry of Science & Technology

Pohang Accelerator Laboratory has prepared to SRF 3rd harmonic cavity to increase beam lifetime and to damp orbit instability by lengthening electron bunch in PLS. The SRF cavity was developed and its vertical test was done already with success. Higher order modes were analyzed to optimize its performance in beam orbit. Most of them are not effective to electron beam, while the others have possibility to impact orbit stability. These harmful HOMs can be removed by HOM absorber installed in beam pipe. This paper reports the HOM analysis and design of its removal system.

 
 
WEPMN070 High Power Test of an X-band Slotted-Iris Accelerator Structure at NLCTA damping, controls, linac, higher-order-mode 2191
 
  • S. Doebert
  • C. Adolphsen, L. Laurent
    SLAC, Menlo Park, California
  • R. Fandos, A. Grudiev, S. T. Heikkinen, J. A. Rodriguez, M. Taborelli, W. Wuensch
    CERN, Geneva
  The CLIC study group at CERN has built two X-band HDS (Hybrid Damped Structure) accelerating structures for high-power testing in NLCTA at SLAC. These accelerating structures are novel with respect to their rf-design and their fabrication technique. The eleven-cell constant impedance structures, one made out of copper and one out of molybdenum, are assembled from clamped high-speed milled quadrants. They feature the same heavy higher-order-mode damping as nominal CLIC structures achieved by slotted irises and radial damping waveguides for each cell. The X-band accelerators are exactly scaled versions of structures tested at 30 GHz in the CLIC test facility, CTF3. The results of the X-band tests are presented and compared to those at 30 GHz to determine frequency scaling, and are compared to the extensive copper data from the NLC structure development program to determine material dependence and make a basic validation of the HDS design.  
 
WEPMN086 High-Power Tests of a Single-Cell Copper Accelerating Cavity Driven by Two Input Couplers simulation, radiation, shielding, storage-ring 2227
 
  • D. Horan
  • D. J. Bromberek, D. A. Meyer, G. J. Waldschmidt
    ANL, Argonne, Illinois
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

High-power tests were conducted on a 350MHz, single-cell copper accelerating cavity driven simultaneously by two H-loop input couplers for the purpose of determining the reliability, performance, and power-handling capability of the cavity and related components, which have routinely operated at 100kW power levels. The test was carried out utilizing the APS 350MHz RF Test Stand, which was modified to split the input rf power into two 1/2-power feeds, each supplying power to a separate H-loop coupler on the cavity. Electromagnetic simulations of the two-coupler feed system were used to determine coupler match, peak cavity fields, and the effect of phasing errors between the coupler feedlines. The test was conducted up to a maximum total rf input power to the cavity of 200kW CW. Test apparatus details and performance data will be presented.

 
 
WEPMN087 Variable CW RF Power Coupler for 345 MHz Superconducting Cavities coupling, simulation, beam-loading, cryogenics 2230
 
  • K. W. Shepard
  • Z. A. Conway, J. D. Fuerst, M. P. Kelly, G. J. Waldschmidt
    ANL, Argonne, Illinois
  • A. M. Porcellato
    INFN/LNL, Legnaro, Padova
  Funding: This work was supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC-02-06CH11357.

This paper reports the development of a 5-10 kW cw variable coupler for 345 MHz spoke-loaded superconducting (SC)cavities. The coupler inserts an 80K copper loop into a 5 cm diameter coupling port on several types of spoke-loaded cavity operating at 2 - 4K. The coupling loop can be moved during operation to vary the coupling over a range of 40 dB. The coupler is designed to facilitate high-pressure water rinsing and low-particulate clean assembly. Design details and operating characteristics are discussed.

 
 
WEPMN094 Experience with Capture Cavity II resonance, electron, superconducting-RF, controls 2251
 
  • T. W. Koeth, T. W. Koeth
    Rutgers University, The State University of New Jersey, Piscataway, New Jersey
  • J. Branlard, H. Edwards, R. P. Fliller, E. R. Harms, A. Hocker, M. McGee, Y. M. Pischalnikov, P. S. Prieto, J. Reid
    Fermilab, Batavia, Illinois
  Funding: This work supported by Universities Research Association Inc. under contract DE-AC02-76CH00300 with the U. S. DOE.

Valuable experience in operating and maintaining superconducting RF cavities in a horizontal test module has been gained with Capture Cavity II. We report on all facets of our experience to date.

 
 
WEPMN096 Status of the 3.9-GHz Superconducting RF Cavity Technology at Fermilab superconducting-RF, controls, monitoring, cryogenics 2254
 
  • E. R. Harms
  • T. T. Arkan, L. Bellantoni, H. Carter, H. Edwards, M. Foley, T. N. Khabiboulline, D. V. Mitchell, D. R. Olis, A. M. Rowe, N. Solyak
    Fermilab, Batavia, Illinois
  Funding: This work supported by Universities Research Association Inc. under contract DE-AC02-76CH00300 with the U. S. DOE.

Fermilab is involved in an effort to assemble 3.9 GHz superconducting RF cavities into a four cavity cryomodule for use at the DESY TTF/FLASH facility as a third harmonic structure. The design gradient of these cavities is 14 MV/m limited by thermal heat transfer. This effort involves design, fabrication, intermediate testing, assembly, and eventual delivery of the cryomodule. We report on all facets of this enterprise from design through future plans. Included will be test results of single 9-cell cavities, lessons learned, and current status.

 
 
WEPMN099 Production of 325 MHz Single Spoke Resonators at FNAL linac, target, proton, linear-collider 2262
 
  • G. Lanfranco
  • G. Apollinari, I. G. Gonin, T. N. Khabiboulline, G. Romanov, R. L. Wagner
    Fermilab, Batavia, Illinois
  • A. Bosotti
    INFN/LASA, Segrate (MI)
  Funding: US Department of Energy

The High Intensity Neutrino Source (HINS) project represents the current effort at Fermi National Accelerator Laboratory to produce an 8-GeV proton linac based on about 400 independently phased superconducting resonators. Eighteen β=0.21 single spoke resonators, operating at 325 MHz, comprise the first stage of the linac cold section. We are presenting the production status of the first two of these resonators and the performance of the tuning mechanism prototype. In particular, we will report on the construction phases, the pre-weld tuning process and the comparison of low power RF measurements with calculations made using Microwave Studio*.

* CST MICROWAVE STUDIO (CST MWS), http://www.cst.com/

 
 
WEPMN100 RF Design and Processing of a Power Coupler for Third Harmonic Superconducting Cavities klystron, electron, simulation, pick-up 2265
 
  • J. Li
  • E. R. Harms, T. Kubicki, D. J. Nicklaus, D. R. Olis, P. S. Prieto, J. Reid, N. Solyak
    Fermilab, Batavia, Illinois
  • T. Wong
    Illinois Institute of Technology, Chicago, Illinois
  Funding: U. S. Department of Energy

The FLASH user facility providing free electron laser radiation is built based on the TTF project at DESY. Fermilab has the responsibility for the design and processing of a third harmonic, 3.9 GHz, superconducting cavity which is powered via a coaxial power coupler. Six power couplers have been manufactured at CPI after successful design of the power coupler including RF simulation, multipacting calculation, and thermal analysis. The power couplers are being tested and processed with high pulsed power in an elaborate test stand at Fermilab now. This paper presents the RF design and processing work of the power coupler.

 
 
WEPMN103 Mechanical Stability Study of Capture Cavity II at Fermilab resonance, cryogenics, superconducting-RF, monitoring 2274
 
  • M. McGee
  • Y. M. Pischalnikov
    Fermilab, Batavia, Illinois
  Problematic resonant conditions at both 18 Hz and 180 Hz were encountered and identified early during the commissioning of Capture Cavity II (CC2) at Fermilab. CC2 consists of an external vacuum vessel and a superconducting high gradient (close to 25 MV/m) 9-cell 1.3 GHz niobium cavity, transported from DESY for use in the A0 Photoinjector at Fermilab. An ANSYS modal finite element analysis (FEA) was performed in order to isolate the source of the resonance and directed the effort towards stabilization. A novel idea was implemented, by using a fast piezoelectric tuner to excite (or shake) the cavity at different frequencies (from 10 Hz to 200 Hz) as a low-range sweep for analysis purposes. Both warm (300 K) and cold (1.8 K) accelerometer measurements at the cavity were taken as the resonant 'fix' was applied. FEA results, cultural and technical noise investigation, and stabilization techniques are discussed.

Operated by Universities Research Association, Inc., under Contract No. DE-AC02-76CH03000 with the U. S. Department of Energy#mcgee@fnal.gov

 
 
WEPMN104 Mechanical Stability Study of Type IV Cryomodule (ILC Prototype) quadrupole, linac, alignment, simulation 2277
 
  • M. McGee
  • R. Doremus, R. Wands
    Fermilab, Batavia, Illinois
  An ANSYS modal and harmonic finite element analysis (FEA) was performed in order to investigate cryomodule design mechanical stability for the proposed International Linear Collider (ILC). The current cryomodule, designated Type IV or T4CM, closely follows the Type III TESLA Test Facility (TTF) version used at DESY, with the exception of a proposed location of the superconducting (SC) quadrupole at the center. This analysis considered the stringent stability criteria established for the ILC, where vertical motion for the SC quad is limited to the micron range, at a few Hz. Model validation was achieved through Type II cryomodule vibration measurement studies performed at DESY. The effect of support location, support stiffness and other important parameters were considered in a parametric sensitivity study. FEA results, fast motion investigations and stabilization techniques are discussed.

Operated by Universities Research Association, Inc., under Contract No. DE-AC02-76CH03000 with the U. S. Department of Energy#mcgee@fnal.gov

 
 
WEPMN106 Design and Commissioning of Fermilab's Vertical Test Stand for ILC SRF Cavities radiation, shielding, cryogenics, controls 2283
 
  • J. P. Ozelis
  • R. H. Carcagno, C. M. Ginsburg, Y. Huang, B. Norris, T. Peterson, V. Poloubotko, R. Rabehl, I. Rakhno, C. Reid, D. A. Sergatskov, C. Sylvester, M. Wong, C. Worel
    Fermilab, Batavia, Illinois
  Funding: Operated by Universities Research Association, Inc. for the U. S. Department of Energy under contract DE-AC02-76CH03000

As part of a program to improve cavity performance reproducibility for the ILC, Fermilab is developing a facility for vertical testing of SRF cavities. It operates at a nominal temperature of 2K, using an existing cryoplant that can supply LHe in excess of 20g/sec and provides steady-state bath pumping capacity of 125W at 2K. The below-grade cryostat consists of a 4.9m long vacuum vessel and 4.5m long LHe vessel. The cryostat is equipped with external and internal magnetic shielding to reduce the ambient magnetic field to <10mG. Internal fixed and external movable radiation shielding ensures that radiation levels from heavily field-emitting cavities remain low. In the event that radiation levels exceed allowable limits, an integrated personnel safety system consisting of RF switches, interlocks, and area radiation monitors disables RF power to the cavity. In anticipation of increased throughput requirements that may be met with additional test stand installations, sub-systems have been designed to be easily upgradeable or to already meet these anticipated needs. Detailed facility designs, performance during system commissioning, and results from initial cavity tests are presented.

 
 
WEPMN110 Fabrication and Test of the First Normal-Conducting Crossbar H-type Accelerating Cavity at Fermilab for HINS focusing, linac, lattice, radio-frequency 2292
 
  • L. Ristori
  • G. Apollinari, I. G. Gonin, T. N. Khabiboulline, G. Romanov
    Fermilab, Batavia, Illinois
  Funding: This work was supported by the U. S. Department of Energy under contract number DE-AC02-76CH03000

The proposed High Intensity Neutrino Source at Fermilab is based on an 8 GeV linear proton accelerator which consists of a normal-conducting and a superconducting section. The normal-conducting (warm) section is composed of an ion source, a radio frequency quadrupole, a medium energy beam transport and 16 normal-conducting crossbar H-type cavities that accelerate the beam from 2.5 MeV to 10 MeV (from β=0.0744 to β=0.1422). These warm cavities are separated by superconducting solenoids enclosed in individual cryostats. Beyond 10 MeV, the design uses superconducting spoke resonators to accelerate the beam up to 8 GeV. In this paper, we illustrate the completion of the first normal-conducting crossbar h-type cavity (β=0.0744) explaining in detail the mechanical engineering aspects related to the machining and brazing processes. The radio-frequency measurements and tuning performed at Fermilab on the resonator and the comparisons with the former simulations are also discussed.

 
 
WEPMN111 3.9 GHz Superconducting Accelerating 9-cell Cavity Vertical Test Results simulation, resonance, electromagnetic-fields, pick-up 2295
 
  • T. N. Khabiboulline
  • C. A. Cooper, N. Dhanaraj, H. Edwards, M. Foley, E. R. Harms, D. V. Mitchell, A. M. Rowe, N. Solyak
    Fermilab, Batavia, Illinois
  • W.-D. Moller
    DESY, Hamburg
  The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve beam performances of the FLASH (TTF/DESY) facility. In the frame of collaboration Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. The first results of vertical tests of 9-cell Nb cavities didn?t reached the designed accelerating gradient. The main problem is multipactoring in HOM couplers, which leads to quenching and overheating of the HOM couplers. New HOM couplers with improved design integarated to next 9-cell cavities. In this paper we present all results of vertical tests.  
 
WEPMN115 Results of the ALS Booster Ring RF System Upgrade for Top-Off Mode of Operation booster, controls, power-supply, storage-ring 2307
 
  • K. M. Baptiste
  • P. W. Casey, S. Kwiatkowski, CA. Timossi
    LBNL, Berkeley, California
  Funding: Supported by the U. S. Department of Energy under Contract No. DE-AC03-76SF00098.

ALS, one of the first third generation synchrotron light sources which has been operating since 1992 at Berkeley Lab has been upgraded from its present operation scenario of injecting the 1.5GeV electron beam from the Booster ring into the Storage ring every 8 hours where it is accelerated to the final energy of 1.9GeV to full energy (1.9GeV) injection from the Booster ring into the Storage ring every 3 seconds for filling and every 30-35 seconds for Top-Off mode. Additionally the beam current has been increased from the time averaged value of 250mA to 500mA to increase the brightness. In this paper we will present the results of the new ALS injector RF system set-up for Top-Off mode of operation, the final design and operational results of the Booster RF power source and control system upgrades.

 
 
WEPMN118 Mechanical Design and Analysis of a 200 MHz, Bolt-together RFQ for the Accelerator Driven Neutron Source rfq, quadrupole, target, gun 2313
 
  • S. P. Virostek
  • M. D. Hoff, D. Li, J. W. Staples, R. P. Wells
    LBNL, Berkeley, California
  Funding: This work was supported by the U. S. Dept. of Energy under Contract No. DE-AC02-05CH11231 and by the Dept. of Homeland Security's Domestic Nuclear Detection Office under Award No. HSHQPB-05-X-00033.

A high-yield neutron source to screen sea-land cargo containers for shielded Special Nuclear Materials (SNM) has been designed at LBNL. The Accelerator-Driven Neutron Source (ADNS) utilizes the D(d,n)3He reaction to produce a forward directed neutron beam. Key components are a high-current radio-frequency quadrupole (RFQ) accelerator and a high-power neutron production target capable of delivering a neutron flux of >107 n/(cm2 s) at a distance of 2.5 m. The mechanical design and analysis of the four-module, bolt-together RFQ will be presented here. Operating at 200 MHz, the 5.1 m long RFQ will accelerate a 40 mA deuteron beam to 6 MeV. At a 5% duty factor, the time-average d+ beam current on target is 1.5 mA. Each of the 1.27 m long RFQ modules will consist of four solid OFHC copper vanes. A specially designed 3-D O-ring will be used to provide vacuum sealing between both the vanes and the modules. RF connections are made by means of canted coil spring contacts. Quadrupole mode stabilization is obtained with a series of 60 water-cooled pi-mode rods. A set of 80 evenly spaced fixed slug tuners is used for final frequency adjustment and local field perturbation correction.

 
 
WEPMN119 Equilibrium Theory of an Intense Elliptic Beam for High-Power Ribbon-Beam Klystron Applications klystron, electron, simulation, focusing 2316
 
  • C. Chen
  • J. Z. Zhou
    MIT/PSFC, Cambridge, Massachusetts
  Funding: Research supported by US Department of Energy, Office of High-Energy Physics, Grant No. DE-FG02-95ER40919 and Air Force Office of Scientific Research, Grant No. FA9550-06-1-0269.

A concept for a high-power ribbon-beam klystron (RBK) employing a novel large-aspect ratio elliptic electron beam instead of a conventional circular electron beam is presented. Both cold-fluid and kinetic equilibrium theories are developed and applied in the design of the elliptic electron beam for the RBK. A small-signal theory is developed and applied in the design of the beam tunnel and the input, idler and output cavities. The electron gun and beam matching is being studied. Design results of a 10 MW 1.3 GHz RBK for the International Linear Collider (ILC) and of a 50 MW 22 GHz RBK for high-gradient research will be discussed.

 
 
WEPMS005 Temperature Mapping Results on the High-Field Q-Slope of 1500 MHz Single Cell Superconducting Radiofrequency Cavities Baked In-situ at 400 C. superconductivity, radio-frequency 2334
 
  • G. V. Eremeev
  • H. Padamsee
    CLASSE, Ithaca
  Funding: NSF

The heat treatment of a niobium cavity between 100 C - 120 C for 48 hours substantially improves cavity performance, presumably by healing the nature of the oxide-metal interface, although the nature of the healing is not yet understood. The heat treatment at higher temperatures is found to deteriorate the performance. Our tests on 1500 MHz single cell cavities are always equipped with a temperature mapping system consisting of 700 thermometers. The effect of heat treatment at various temperatures has been studied in detail using the temperature mapping system. In this contribution we report on several interesting findings from studies of a 400 C heat treatment.

 
 
WEPMS006 High Gradient Studies for ILC with Single Cell Re-entrant Shape and Elliptical Shape Cavities made of Fine-grain and Large-grain Niobium linear-collider, collider, electron 2337
 
  • R. L. Geng
  • G. V. Eremeev, H. Padamsee, V. D. Shemelin
    CLASSE, Ithaca
  Funding: Work supported by DOE

Based on the encouraging results of the first 1300 MHz 70 mm aperture single cell re-entrant cavities*, we continue the high gradient studies for ILC with new re-entrant cavities made of fine-grain as well as large-grain niobium. These new cavities have smaller aperture of 60 mm, providing a further reduced Hpk/Eacc or a further improved ultimate gradient. Four 1300 MHz 60 mm aperture re-entrant cavities are made, two out of fine grain niobium and the other two out of large-grain niobium. In addition, two elliptical shape 1500 MHz cavities are also made out of large-grain niobium. We present the testing results of these cavities.

* R. L. Geng et al., PAC2005, p.653.

 
 
WEPMS013 High Power Tests of First Input Couplers for Cornell ERL Injector Cavities coupling, superconductivity, linac, impedance 2355
 
  • V. Veshcherevich
  • S. A. Belomestnykh, P. Quigley, J. J. Reilly, J. Sears
    CLASSE, Ithaca
  • W.-D. Moller
    DESY, Hamburg
  Funding: Work is supported by the National Science Foundation grant PHY 0131508

First RF power couplers for the ERL injector, currently under construction at Cornell University, have been fabricated. The couplers were assembled in pairs in the liquid nitrogen cryostat, built for their tests. A 15 kW CW IOT transmitter was available for coupler tests. A resonant ring was used for additional increase of the power. The couplers were successfully tested up to the goal power level of 50 kW CW. However, the first pair of couplers showed excessive temperature rise in some points. Therefore, minor changes in the design have been done to improve cooling.

 
 
WEPMS014 Vacuum Insulator Studies for the Dielectric Wall Accelerator electron, beam-transport 2358
 
  • J. R. Harris
  • D. T. Blackfield, G. J. Caporaso, Y.-J. Chen, M. Sanders
    LLNL, Livermore, California
  • M. L. Krogh
    University of Missouri - Rolla, Rolla, Missouri
  Funding: This work was performed under the auspices of the U. S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

As part of our ongoing development of the Dielectric Wall Accelerator, we are studying the performance of multilayer high-gradient insulators. These vacuum insulating structures are composed of thin, alternating layers of metal and dielectric, and have been shown to withstand higher gradients than conventional vacuum insulator materials. This paper describes these structures and presents some of our recent results.

 
 
WEPMS017 High-Power Coupler Component Test Stand Status and Results electron, simulation, pick-up, space-charge 2367
 
  • B. Rusnak
  • C. Adolphsen, G. B. Bowden, L. Ge, R. K. Jobe, Z. Li, B. D. McKee, C. D. Nantista, J. Tice, F. Wang
    SLAC, Menlo Park, California
  • R. Swent
    Stanford University, Stanford, Califormia
  Funding: This work was performed under the auspices of the U. S. DOE by the University of California, LLNL under Contract No. W-7405-Eng-48. SLAC Work supported under Contract No. W-7405-Eng-48.

Fundamental power couplers for superconducting accelerator applications like the ILC are complicated RF transmission line assemblies due to their having to simultaneously accommodate demanding RF power, cryogenic, and cleanliness constraints. When these couplers are RF conditioned, the observed response is an aggregate of all the parts of the coupler and the specific features that dominate the conditioning response are unknown. To better understand and characterize RF conditioning phenomena toward improving performance and reducing conditioning time, a high-power coupler component test stand has been built at SLAC. Operating at 1.3 GHz, this test stand was designed to measure the conditioning behavior of select components of the TTFIII coupler independently, including outer-conductor bellows, diameter changes, copper plating and surface preparations, and cold window geometries and coatings. A description of the test stand, the measurement approach, and a summary of the results obtained are presented.

 
 
WEPMS024 Upgrades to the DAHRT Second Axix Induction Cells induction, target, cathode, kicker 2385
 
  • K. Nielsen
  • J. Barraza, M. Kang
    LANL, Los Alamos, New Mexico
  • F. M. Bieniosek, K. Chow, W. M. Fawley, E. Henestroza, L. R. Reginato, W. L. Waldron
    LBNL, Berkeley, California
  • R. J. Briggs, B. A. Prichard
    SAIC, Alamo, California
  • T. E. Genoni, T. P. Hughes
    Voss Scientific, Albuquerque, New Mexico
  The Dual-Axis Radiographic Hydrodynamics Test (DARHT) facility will employ two perpendicular electron Linear Induction Accelerators to produce intense, bremsstrahlung x-ray pulses for flash radiography. The second axis, DARHT II, features a 3-MeV injector and a 15-MeV, 2-kA, 1.6-microsecond accelerator consisting of 74 induction cells and drivers. Major induction cell components include high flux swing magnetic material (Metglas 2605SC) and a MycalexTM insulator. The cell drivers are pulse forming networks (PFNs). The DARHT II accelerator cells have undergone a series of test and modeling efforts to fully understand their operational parameters. Physical changes in the cell oil region, the cell vacuum region, and the cell drivers, together with different operational and maintenance procedures, have been implemented in the prototype. A series of prototype acceptance tests have demonstrated that the required cell lifetime is met at the increased performance levels. Shortcomings of the original design are summarized and improvements to the design, their resultant enhancement in performance, and various test results are discussed.  
 
WEPMS030 Design and Initial Testing of Omniguide Traveling-wave Tube Structures electron, coupling, higher-order-mode, monitoring 2403
 
  • E. I. Smirnova
  • B. E. Carlsten, L. M. Earley, W. B. Haynes
    LANL, Los Alamos, New Mexico
  Funding: This work was funded in part by the LDRD Director's Postdoctoral Fellowship, Los Alamos National Laboratory.

We propose to use the photonic band gap (PBG) structures for the construction of a traveling-wave tube (TWT) at W-band. Interest in millimeter-waves has increased in recent years due to applications in environmental monitoring and remote sensing. The development of wide-band mm-wave TWT amplifiers is underway at Los Alamos National Laboratory. A TWT would present a wide bandwidth source for remote mm-wave spectroscopy. PBG TWT structures have great potential for very large bandwidth and linear dispersion. In addition, being cheap to fabricate, the PBG structures enhance the commercial transferability of the W-band TWT technology. We employ an omniguide which is a one-dimensional version of the PBG structure representing a periodic system of concentric dielectric tubes as a slow-wave structure. A silica omniguide was designed to support a TM01-like mode with a phase velocity matching the one of a 120keV electron beam. The structure was fabricated, cold-tested and installed at our laboratory for the hot test.

 
 
WEPMS032 Pre-conceptual Design of Automated Systems for SRF Cavity Assembly and Optical Inspection linear-collider, superconductivity, radio-frequency, feedback 2409
 
  • T. Tajima
  • M. J. Borden, A. Canabal, T. A. Harden, P. C. Pittman
    LANL, Los Alamos, New Mexico
  The International Linear Collider (ILC) will require ~20,000 Superconducting Radio- Frequency (SRF) cavities. Improving the yield of high-gradient (>35 MV/m) cavities is currently one of the most critical issues for the ILC. The LANL has been tasked to analyze the failure and feedback the results to the industry and academia. We have started an effort to develop a pre-conceptual design of an automated system to optically inspect the inner surface that showed heating with a thermometry system. We have also started a pre-conceptual design of an automated system for assembling and sealing the flanges after high-pressure rinsing in the clean room. This could reduce the chance of particle contamination due to touch labor, leading to a field emission free cavities and higher yield of high-gradient cavities.  
 
WEPMS033 LANSCE 201 MHz and 805 MHz RF System Experience klystron, linac, cathode, acceleration 2412
 
  • K. A. Young
  • G. O. Bolme, J. T.M. Lyles, M. T. Lynch, E. P. Partridge, D. Rees
    LANL, Los Alamos, New Mexico
  Funding: Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396

The LANSCE RF system consists of four RF stations at 201 MHz and 44 klystrons at 805 MHz. In the LANSCE accelerator, the beam source is injected into the RF system at 0.75 MeV. The beam is then accelerated to 100 MeV in four drift tube linac (DTL) tanks, driven at 201.25 MHz. Each 201 MHz RF system consists of a train of amplifiers, including a solid state amplifier, a tetrode, and then at triode. After the DTL, the beam is accelerated from 100 MeV to 800 MeV in the forty-four coupled cavity linac (CCL) tanks at 805 MHz. The machine operates with a normal RF pulse width of 835 microseconds at a repetition rate up to 120 Hz, and sometimes operates with a pulse width up to 1.2 microseconds for single pulses. This RF system has been operating for about 37 years. This paper summarizes the recent operational experience. The reliability of the 805 MHz and 201 MHz RF systems is discussed, and a summary the lifetime data of the 805 MHz klystrons and 201 MHz triodes is presented.

 
 
WEPMS039 High Power Tests of Normal Conducting Single-Cell Structures klystron, radiation, impedance, acceleration 2430
 
  • V. A. Dolgashev
  • Y. Higashi, T. Higo
    KEK, Ibaraki
  • C. D. Nantista, S. G. Tantawi
    SLAC, Menlo Park, California
  Funding: This work was supported by the U. S. Department of Energy contract DE-AC02-76SF00515.

We report results of the first high power tests of single-cell traveling-wave and standing-wave accelerating structures. These tests are part of an experimental and theoretical study of RF breakdown in normal conducting structures at 11.4 GHz*. The goal of this study is to determine the gradient potential of normal conducting, RF powered particle beam accelerators. The test setup consists of reusable mode converters and short test structures powered by SLAC?s XL-4 klystron. This setup was created for economic testing of different cell geometries, cell materials and preparation techniques with short turn-around time. The mode launchers and structures were manufactured at SLAC and KEK and tested in the klystron test laboratory at SLAC.

* V. A. Dolgashev et al., "RF Breakdown In Normal Conducting Single-Cell Structures," SLAC-PUB-11707, Particle Accelerator Conference (PAC 05), Knoxville, Tennessee, 16-20 May 2005, pp. 595- 599.

 
 
WEPMS041 Multipacting Simulations of TTF-III Coupler Components simulation, electron, pick-up, linac 2436
 
  • L. Ge
  • C. Adolphsen, K. Ko, L. Lee, Z. Li, C.-K. Ng, G. L. Schussman, F. Wang
    SLAC, Menlo Park, California
  • B. Rusnak
    LLNL, Livermore, California
  Funding: This work was supported by US DOE contract No. DE-AC02-76SF00515. This work was performed under the auspices of the US DOE by the University of California, LLNL under Contract No. W-7405-Eng-48.

The TTF-III coupler adopted for the ILC baseline cavity design has shown a tendency to have long initial high power processing times. A possible cause for the long processing times is believed to be multipacting in various regions of the coupler. To understand performance limitations during high power processing, SLAC has built a flexible high-power coupler test stand. The plan is to test individual sections of the coupler, which includes the cold and warm coaxes, the cold and warm bellows, and the cold window, using the test stand to identify problematic regions. To provide insights for the high power test, detailed numerical simulations of multipacting for these sections will be performed using the 3D multipacting code Track3P. The simulation results will be compared with measurement data.

 
 
WEPMS045 Power Modulators for FERMI Linac's Klystrons. klystron, controls, linac, induction 2448
 
  • G. C. Pappas
  • G. D'Auria, P. Delgiusto, L. Veljak
    ELETTRA, Basovizza, Trieste
  The conventional line type modulators used for ELETTRA will have to be replaced for FERMI due to the increase in the pulse repetition frequency (PRF) from 10 to 50 Hz. The requirements for the FERMI modulator are as follows. The klystron used is a Thales TH2132 with a microperviance of 1.9-2.1 uA/V**(3/2). The peak voltage from the modulator is 320 kV, and the current is 350 A. The pulse width is 4.5 us, with a PRF of 50 Hz. Flat top should be better than ?0.5 % of the peak voltage. Prototypes for an upgraded line type modulator and a solid state induction type modulator[1] are in fabrication. The solid state design uses eight induction cells, each cell driven by two parallel Insulated Gate Bipolar Transistors (IGBT). Each IGBT will power a METGLAS 2605CO core with 4 kV and 3 kA for up to 5 us. A single turn is passed through the aperture of each of the cells, inductively adding the pulse voltages. The output from the modulator is then fed to a conventional pulse transformer to reach the 320 kV requirement. This paper presents the system design of both modulator types as well as details of the IGBT drivers, control electronics, IGBT and klystron protection and test data.

1. "NLC Hybrdi Solid State Induction Modulator" R. L. Cassel, etal, Lubeck, Germany, Linac 2004.

 
 
WEPMS053 Yale Ka-Band Facility For High-Gradient Accelerator R&D: Status Report gun, shielding, plasma, insertion 2463
 
  • J. L. Hirshfield, J. L. Hirshfield, E. V. Kozyrev, M. A. LaPointe
    Yale University, Physics Department, New Haven, CT
  • S. V. Shchelkunov
    Columbia University, New York
  • M. Y. Shmelyov
    IAP/RAS, Nizhny Novgorod
  • V. P. Yakovlev
    Omega-P, Inc., New Haven, Connecticut
  Funding: Research sponsored by US DoE

Development of a future multi-TeV warm collider demands new technological solutions and new accelerator structure materials. The Ka-Band test facility being put into operation at Yale University that centers on the Yale/Omega-P 34-GHz magnicon allows users to carry out high gradient experiments on RF breakdown, pulse fatigue, tests of new high power pulse manipulation systems, and RF components. The magnicon is now conditioned for a pulse width up to 1 μs, at an output power level high enough for basic studies of electric and magnetic RF field limits at surfaces of conductors and dielectrics. The high-power waveguide transmission system for the facility is assembled and ready for tests. It includes RF windows, phase shifters, 13 mm diameter TE 11 waveguides, mode converters, etc. Recently the assembled system has undergone conditioning in preparation for carrying out first "user" experiments.

 
 
WEPMS057 Innovative Modular, Multiple Power Levels, 325 MHz Spokes Cavities Power Couplers proton, simulation, electron, linac 2475
 
  • Q. S. Shu
  • G. F. Chen, F. H. Lu, I. M. Phipps, J. T. Susta
    AMAC, Newport News, Virginia
  • T. N. Khabiboulline, N. Solyak
    Fermilab, Batavia, Illinois
  Funding: Footnotes: The project was funded by the US Department of Energy under contract DE-FG02-05ER84346

In order to increase the protons energy up to 8 GeV in a driver Linac, the particles must be accelerated through various stages and three different power levels (25kW, 100kW and 210kW) are required for the 325 MHz Fermilab Proton Driver couplers. The problem identified by the project is that no High RF power coupler for these cavities has ever been produced using US industrial capabilities. AMAC proposed a novel resolution by development of innovative modular, multiple power levels, 325 MHz spoke cavities power couplers, which to meet three type cavities with one coupler design. The simulation and concept design are presented. The results of HFSS, MAFIA, ANSYS, and Multipacting are also discussed.

 
 
WEPMS059 Performance of the First Refurbished CEBAF Cryomodule target, radiation, electron, linac 2478
 
  • M. A. Drury
  • E. Daly, G. K. Davis, J. F. Fischer, C. Grenoble, W. R. Hicks, J. Hogan, K. King, R. Nichols, T. E. Plawski, J. P. Preble, T. M. Rothgeb, H. Wang
    Jefferson Lab, Newport News, Virginia
  Funding: U. S. DOE Contract No. DE-AC05-06OR23177. This manuscript has been authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.

The Thomas Jefferson National Accelerator Facility has begun a cryomodule refurbishment project. The goal of this project is robust 6 GeV, 5 pass operation of the Continuous Electron Beam Accelerator Facility (CEBAF). The scope of the project includes removing, refurbishing and replacing 10 CEBAF cryomodules at a rate of three per year. Refurbishment includes reprocessing of SRF cavities to eliminate field emission and increase the nominal gradient from the original 5 MV/m to 12.5 MV/m. New "dogleg" couplers between the cavity and helium vessel flanges will intercept secondary electrons that produce arcing on the 2 K ceramic window in the Fundamental Power Coupler (FPC). Modification of the Qext of the FPC will allow higher gradient operations. Other changes include new ceramic RF windows for the air to vacuum interface of the FPC and improvements to the mechanical tuners. Any damaged or worn components will be replaced as well. Currently, the first of the refurbished cryomodules has been installed and tested both in the Cryomodule Test Facility and in place in the North Linac of CEBAF. This paper will summarize the results of these tests.

 
 
WEPMS062 Development of a Superconducting Connection for Niobium Cavities feedback, electron, superconductivity, coupling 2484
 
  • P. Kneisel
  • G. Ciovati, J. S. Sekutowicz
    Jefferson Lab, Newport News, Virginia
  • A. Matheisen, W. Singer, X. Singer
    DESY, Hamburg
  Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.

Several, partially successful attempts have been made to develop a superconducting connection between adjacent niobium cavities with the capability to carry up to 30 mT of the magnetic flux. Such a connection would be particularly of great benefit to layouts of long accelerators like ILC because it would shorten the distances between structures and therefore the total length of an accelerator with the associated cost reductions. In addition the superconducting connection would be ideal for a super-structure, two multi-cell cavities connected through a half wavelength long beam pipe providing the coupling. Two welded prototypes of super-structure have been successfully tested with the beam at DESY. The chemical treatment and water rinsing was rather complicated for these prototypes. We have engaged in a program to develop such a connection based on the Nb55Ti material. Several options are pursued such as e.g.a two-cell cavity is being used to explore the reachable magnetic flux for the TESLA like connection with a squeezed niobium gasket between the flanges. In this contribution we will report about the progress of our investigations.

 
 
WEPMS063 Preliminary Results from Prototype Niobium Cavities for the JLab Ampere-Class FEL damping, coupling, cryogenics, electron 2487
 
  • P. Kneisel
  • R. Bundy, G. Ciovati, W. Clemens, D. Forehand, B. Golden, S. Manning, R. Manus, R. B. Overton, R. A. Rimmer, G. Slack, L. Turlington, H. Wang
    Jefferson Lab, Newport News, Virginia
  • F. Marhauser
    JLAB, Newport News, Virginia
  Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177, and by the office of Naval Research under contract to the Department of Energy.

In a previous paper the cavity* design for an Ampere-class cryomodule was introduced. We have since fabricated a 1500 MHz version of a single cell cavity with waveguide couplers for HOM and fundamental power, attached to one end of the cavity, a 5-cell cavity made from large grain niobium without couplers and a complete 5-cell cavity from polycrystalline niobium featuring waveguide couplers on both ends. A 750 MHz single cell cavity without endgroups has also been manufactured to get some information about obtainable Q-values, gradients and multipacting behavior at lower frequency. This contribution reports on the various tests of these cavities.

* R. A.Rimmer et al.; EPAC 2006, paper MOPCH182

 
 
WEPMS065 CEBAF New Digital LLRF System Extended Functionality controls, resonance, linac, ion 2490
 
  • T. E. Plawski
  • T. L. Allison, G. K. Davis, H. Dong, C. Hovater, K. King, J. Musson
    Jefferson Lab, Newport News, Virginia
  Funding: JSA/DOE Contract - DE-AC05-06OR23177

The new digital LLRF system for the CEBAF 12GeV accelerator will perform a variety of tasks, beyond field control.* In this paper we present the superconducting cavity resonance control system designed to minimize RF power during gradient ramp and to minimize RF power during steady state operation. Based on the calculated detuning angle, which represents the difference between reference and cavity resonance frequency, the cavity length will be adjusted with a mechanical tuner. The tuner has two mechanical driving devices, a stepper motor and a piezo-tuner, to yield a combination of coarse and fine control. Although LLRF piezo processing speed can achieve 10 kHz bandwidth, only 10 Hz speed is needed for 12 GeV upgrade. There will be a number of additional functions within the LLRF system; heater controls to maintain cryomodule's heat load balance, ceramic window temperature monitoring, waveguide vacuum interlocks, ARC detector interlock and quench detection. The additional functions will be divided between the digital board, incorporating an Altera FPGA and an embedded EPICS IOC. This paper will also address hardware evolution and test results performed with different SC cavities.

*RF Control Requirements for the CEBAF Energy Upgrade Cavities, C. Hovater, J. Delayen, L. Merminga, T. Powers, C. Reece, Proceedings 2000 Linear Accelerator Conference, Monterey, CA , August 2000

 
 
WEPMS068 JLab High-Current CW Cryomodules for ERL and FEL Applications damping, simulation, insertion, linac 2493
 
  • R. A. Rimmer
  • R. Bundy, G. Cheng, G. Ciovati, E. Daly, R. Getz, J. Henry, W. R. Hicks, P. Kneisel, S. Manning, R. Manus, K. Smith, M. Stirbet, L. Turlington, L. Vogel, H. Wang, K. Wilson
    Jefferson Lab, Newport News, Virginia
  • F. Marhauser
    JLAB, Newport News, Virginia
  Funding: Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177, and by The Office of Naval Research under contract to the Dept. of Energy.

We describe the developments underway at JLab to develop new CW cryomodules capable of transporting up to Ampere-levels of beam currents for use in ERLs and FELs. Goals include an efficient cell shape, high packing factor for efficient real-estate gradient and very strong HOM damping to push BBU thresholds up by two or more orders of magnitude compared to existing designs. Cavity shape, HOM damping and ancillary components are optimized for this application. Designs are being developed for low-frequency (750 MHz), Ampere-class compact FELs and for high-frequency (1.5 GHz), 100 mA configurations. These designs and concepts can easily be scaled to other frequencies. We present the results of conceptual design studies, simulations and prototype measurements. These modules are being developed for the next generation ERL based high power FELs but may be useful for other applications such as high energy light sources, electron cooling, electron-ion colliders, industrial processing etc.

 
 
WEPMS071 EVIDENCE FOR FOWLER-NORDHEIM BEHAVIOR IN RF BREAKDOWN electron, electromagnetic-fields, ion, superconductivity 2499
 
  • M. BastaniNejad
  • M. Alsharo'a, P. M. Hanlet, R. P. Johnson, M. Kuchnir, D. J. Newsham
    Muons, Inc, Batavia
  • C. M. Ankenbrandt, A. Moretti, M. Popovic, K. Yonehara
    Fermilab, Batavia, Illinois
  • A. A. Elmustafa
    Old Dominion University, Norfolk, Virginia
  • D. M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois
  Funding: Supported in part by DOE STTR grant DE-FG02-05ER86252

Microscopic images of the surfaces of metallic electrodes used in high-pressure gas-filled 800 MHz RF cavity experiments are used to investigate the mechanism of RF breakdown. The images show evidence for melting and boiling in small regions of ~10 micron diameter on tungsten, molybdenum, and beryllium electrode surfaces. In these experiments, the dense hydrogen gas in the cavity prevents electrons or ions from being accelerated to high enough energy to participate in the breakdown process so that the only important variables are the fields and the metallic surfaces. The distributions of breakdown remnants on the electrode surfaces are compared to the maximum surface gradient E predicted by an ANSYS model of the cavity. The surface local density of spark remnants, presumably the probability of breakdown, shows a power law dependence on the maximum gradient, with E10 for tungsten and molybdenum and E7 for beryllium. This is reminiscent of Fowler-Nordheim behavior of electron emission from a cold cathode, which is explained by the quantum-mechanical penetration of a barrier that is characterized by the work function of the metal.

 
 
WEPMS072 Status and Performance of the Spallation Neutron Source Superconducting Linac linac, radiation, higher-order-mode, cryogenics 2502
 
  • I. E. Campisi
  • S. Assadi, F. Casagrande, M. S. Champion, M. T. Crofford, G. W. Dodson, J. Galambos, M. Giannella, S. Henderson, M. P. Howell, Y. W. Kang, K.-U. Kasemir, S.-H. Kim, Z. Kursun, P. Ladd, H. Ma, D. Stout, W. H. Strong, Y. Zhang
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy

The Superconducting Linac at SNS has been operating with beam for almost two years. As the first operational pulsed superconducting linac, many of the aspect of its performance were unknown and unpredictable. A lot of experience has been gathered during the commissioning of its components, during the beam turn on and during operation at increasingly higher beam power. Some cryomodules have been cold for well over two years and have been extensively tested. The operation has been consistently conducted at 4.4 K and 10 and 15 pulses per second, with some cryomodules tested at 30 and 60 pps and some tests performed at 2 K. Careful balance between safe operational limits and the study of conditions, parameters and components that create physical limits has been achieved. This paper presents the experience and the performance of the superconducting cavities and of the associated systems with and without beam.

 
 
WEPMS074 Design and High Power Processing of RFQ Input Power Couplers coupling, rfq, linac, klystron 2505
 
  • Y. W. Kang
  • A. V. Aleksandrov, D. E. Anderson, M. S. Champion, M. T. Crofford, P. E. Gibson, T. W. Hardek, P. Ladd, M. P. McCarthy, D. Stout, A. V. Vassioutchenko
    ORNL, Oak Ridge, Tennessee
  Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

A RF power coupling system has been developed for future upgrade of input coupling of the RFQ in the SNS linac. The design employs two coaxial loop couplers for 402.5 MHz operation. Each loop is fed through a coaxial ceramic window that is connected to an output of a magic-T waveguide hybrid through a coaxial to waveguide transition. The coaxial loop couplers are designed, manufactured, and high power processed. Two couplers will be used in parallel to power the accelerating structure with up to total 800 kW peak power at 8% duty cycle. RF and mechanical properties of the couplers are discussed. Result of high power RF conditioning that is performed in the RF test facility of the SNS is presented.

 
 
WEPMS076 Status of the SNS Cryomodule Test electron, cryogenics, radiation, linac 2511
 
  • S.-H. Kim
  • I. E. Campisi, F. Casagrande, M. T. Crofford, Y. W. Kang, Z. Kursun, D. Stout, A. V. Vassioutchenko
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy

The cryomodule tests are on going to have better understandings of physics as a whole and eventually to provide safe and reliable operation for neutron production. Some features are revealed to be interesting issues and need more attentions than expected, such as operating condition, collective effects between cavities, HOM coupler issues, end-group stability, cavity-coupler interactions, and vacuum/gas physics, waiting for more investigations. Up to now SNS cryomodules were mainly tested at 4.4 K, 10 pulse per second (pps) and 30 pps/60 pps tests are under progress. This paper presents the experiences and the observations during tests of cryomodules.

 
 
WEPMS086 Design of a 26 GHz Wakefield Power Extractor electron, simulation, coupling, single-bunch 2535
 
  • C.-J. Jing
  • W. Gai, F. Gao, R. Konecny
    ANL, Argonne, Illinois
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • S. Kazakov
    KEK, Ibaraki
  High frequency, high output power, and high efficiency RF sources have compelling applications in accelerators for high energy physics. The 26 GHz RF power extractor proposed in this paper provides a practical approach for generating high power RF in this particular frequency range. The extractor is designed to couple out RF power generated from the high charge electron bunch train at the Argonne Wakefield Accelerator (AWA) facility traversing dielectric loaded or corrugated waveguides. In this paper we evaluate two different techniques for extracting the beam energy at the AWA: one is based on a completely metallic corrugated waveguide and coupler; and the other is based on a dielectric lined circular waveguide and coupler. Designs for both RF power extractors will be presented including parameter optimization, the electromagnetic modeling of structures and RF couplers, and the analysis of beam dynamics.  
 
WEPMS088 Challenges Encountered during the Processing of the BNL ERL 5 Cell Accelerating Cavity electron, linac, radiation, site 2541
 
  • A. Burrill
  • I. Ben-Zvi, R. Calaga, H. Hahn, V. Litvinenko, G. T. McIntyre
    BNL, Upton, Long Island, New York
  • P. Kneisel, J. Mammosser, J. P. Preble, C. E. Reece, R. A. Rimmer, J. Saunders
    Jefferson Lab, Newport News, Virginia
  Funding: Work done under the auspices of the US DOE

One of the key components for the Energy Recovery Linac being built by the Electron cooling group in the Collider Accelerator Department is the 5 cell accelerating cavity which is designed to accelerate 2 MeV electrons from the gun up to 15-20 MeV, allow them to make one pass through the ring and then decelerate them back down to 2 MeV prior to sending them to the dump. This cavity was designed by BNL and fabricated by AES in Medford, NY. Following fabrication it was sent to Thomas Jefferson Lab in VA for chemical processing, testing and assembly into a string assembly suitable for shipment back to BNL and integration into the ERL. The steps involved in this processing sequence will be reviewed and the deviations from processing of similar SRF cavities will be discussed. The lessons learned from this process are documented to help future projects where the scope is different from that normally encountered.

 
 
THOAKI04 Status of the Cryomodules for the SPIRAL 2 Superconducting LINAC linac, heavy-ion, coupling, cryogenics 2578
 
  • P. Bosland
  • P.-E. Bernaudin, G. Devanz, A. Perolat, C. G. Thomas-Madec
    CEA, Gif-sur-Yvette
  • S. Blivet, T. Junquera, D. Longuevergne, F. Lutton, G. Martinet, G. Olry, H. Saugnac
    IPN, Orsay
  • R. Ferdinand
    GANIL, Caen
  • M. Fruneau, Y. Gomez-Martinez, F. Vezzu
    LPSC, Grenoble
  The SPIRAL 2 superconducting linac is composed of 2 cryomodule families. The first family in the low energy section, called cryomodules A, is composed of 12 cryomodules housing a single cavity at β=0.07. The second family in the high energy section, called cryomodules B, is composed of 7 cryomodules housing 2 cavities at β=0.12. The frequency of these QWR resonators is 88.050 MHz, and the design goal for the accelerating field Eacc is 6.5 MV/m. This paper describes the present status of the cryomodules development.  
slides icon Slides  
 
THOBKI01 Development of a Movable Collimator with Low Beam Impedance radiation, simulation, impedance, collider 2587
 
  • Y. Suetsugu
  • K. Shibata
    KEK, Ibaraki
  A movable collimator (mask) with low beam impedance was proposed for high-intensity accelerators. The collimator head is supported by a ceramic rod with a thin metal coating, instead of a metal block or rod so far. Owing to the ceramic rod, beams hardly see the head, and thus the beam impedance decreases. The thin metal coating prevents the head from unwanted charge up. The head is also made of ceramic, but coated by copper to mitigate the Joule heating by beams. The SiC blocks are prepared close to the head to absorb trapped modes. Impedances and loss factors were calculated by simulation codes, and then the growth rates of coupled bunch instabilities were estimated. A trial model was designed based on the calculation, and installed in the KEK B-factory (KEKB) positron ring. The head had a cross section of 5 mm X 4 mm, and a length of 90 mm, which corresponded to about one radiation length. The performance of the trial model was investigated with beams. The temperatures of components near to the collimator were also measured, which was an indication of the intensity of excited HOM.  
slides icon Slides  
 
THXAB01 Commissioning and Early Experiments with ISAC II linac, ion, emittance, acceleration 2593
 
  • R. E. Laxdal
  The first phase of the ISAC-II superconducting accelerator has recently been commissioned. The heavy ion linac adds 20MV to the 1.5MeV/u beam injected from the ISAC post accelerator. The linac is composed of five cryomodules; each cryomodule housing four 106 MHz quarter wave resonators and one 9T superconducting solenoid. On-line performance has confirmed cw operation at a peak surface field in excess of 35MV/m. The talk will describe the very successful commissioning and the early operation with both stable and radioactive beams.  
slides icon Slides  
 
THIAKI02 The US Industrial ILC RF Unit Cost Study factory 2671
 
  • E. C. Bonnema
  • J. J. Sredniawski
    AES, Medford, NY
  A major goal of the ILC Global Design Effort (GDE) is to produce an ILC Reference Design Report and an ILC Technical Design Report. Physicists and policy-makers will use these reports to decide the future of the project. As part of these reports detailed concept, performance assessments, reliable international costing, an industrialization plan, siting analysis, as well as detector concepts and scope must be developed. As part of this effort, a contract for an industrial cost study for fabrication of the Cryomodules and RF Power Systems that make up the RF units of the ILC was commissioned to Advanced Energy Systems and their team partners, CPI and Meyer Tool. This presentation will discuss the methodology of the industrial cost study and summarize important assumptions. The public results and key cost drivers will be presented.  
slides icon Slides  
 
THIAKI03 Design and Fabrication of Superconducting Cavities for STF electron, factory, superconducting-RF 2674
 
  • K. Sennyu
  • H. Hara, M. Matsuoka
    MHI, Kobe
  Some superconducting cavities developed at MHI recently are introduced. The outline of 4 STF (Superconducting RF Test Facility at KEK) baseline cavities designed and fabricated by MHI are described. Some problems and some improvements in the mass production of the superconducting cavity are reported.  
slides icon Slides  
 
THIAKI04 Recent Activities in Accelerator Construction and STF Cryomodule synchrotron, proton, power-supply, linac 2677
 
  • T. Semba
  • Y. Chida, Y. Itou, T. Tagawa, Y. Tsujioka, T. Yoshinari
    Hitachi Ltd., Ibaraki-ken
  • N. Shibata
    Hitachi High-Technologies Corp., Ibaraki-ken
  Hitachi has been involved with construction of various accelerator systems for over forty years, from small apparatuses for laboratory use to the large systems for national projects. Our recent results are: SRC (Superconducting Ring Cyclotron) sector magnets of RIKEN RI Beam Factory, J-PARC (Japan Proton Accelerator Research Complex) magnets and power-supplies in JAEA, etc. And also, we have been developed capacities on manufacturing superconducting and cryogenic equipments. These are the key technologies in fundamental science researches. For these two years, we have been practically participated to construct STF (Superconducting RF Test Facility) cryomodule as an R&D equipment for the future ILC. Its two 6-meter long cryostats are designed to contain maximum eight 9-cell cavities in total. After the high-accuracy manufacturing of large vacuum vessels and cryogenic components, we assembled the entire cryomodules with specially designed jigs. Cavities and some related parts were installed by KEK. Through this work, we shared the valuable experience of manufacturing and assembling process. This paper describes our recent activities in accelerator construction and STF cryomodule.  
slides icon Slides  
 
THIAKI05 European Industries Potential Capabilities on Superconducting RF Accelerator Modules superconducting-RF, linac, synchrotron, RF-structure 2680
 
  • H. Vogel
  European Industry has been supporting accelerator projects in the past and will be supporting future projects. Larger numbers of superconducting accelerator modules with guaranteed performance parameters have been supplied for example for LEP at CERN and superconducting cavities have been supplied also with guarantees for CEBAF at Jefferson Lab, the proton linear accelerator for the Spallation Neutron Source, Oak Ridge, and for the rf system for LHC. A significant number of cavities have been supplied in support of the TTF/ILC activities. With a view to the future European X-FEL linear accelerator it is expected that turn-key accelerator modules will be requested from industry. A review of the European Industries supplies in the past and present will be given to show their capabilities for the future ILC.  
slides icon Slides  
 
THIBKI02 Power Couplers for the ILC electron, controls, linac, pulsed-power 2685
 
  • T. A. Treado
  • S. J. Einarson
    CPI, Beverley, Massachusetts
  Power couplers are critically important components in all superconducting accelerators. Power couplers provide the vacuum and thermal interface between the superconducting cavity and the room temperature waveguide components and transmit microwaves generated by the high power klystron or IOT. Power couplers must be extraordinarily clean and reliable. CPI power couplers are manufactured to our customer?s specifications using processes which are standard to the electron device industry as well as processes which have been developed specifically for power couplers. We have developed the capability of electroplating high-RRR copper. Our high-RRR copper plating has been qualified by Cornell and DESY. We have developed the capability of applying TiN coatings to ceramic windows for multipactor suppression. Using these processes, CPI has manufactured over 50 power couplers of various designs with an additional 50 power couplers to be built this year. Our talk will focus on power couplers for the ILC. In particular, we will discuss some of the challenges to be faced during the manufacture of tens of thousands of power couplers for the ILC.  
slides icon Slides  
 
THICKI04 Development of STF Cryogenic System in KEK cryogenics, controls, superconducting-RF, booster 2701
 
  • J. Yoshida
  • K. Hara, K. Hosoyama, Y. Kojima, H. Nakai, K. Nakanishi
    KEK, Ibaraki
  • T. Ichitani, S. Kaneda
    Taiyo Nippon Sanso Corporation, Kawasaki-city Kanagawa Pref.
  • T. Kanekiyo
    Hitachi Technologies and Services Co., Ltd., Kandatsu, Tsuchiura
  • M. Noguchi
    Mayekawa MFG. Co., Ltd., Moriya
  • S. Sakuma, K. Suzuki
    Taiyo Nippon Sanso Higashikanto Corporation, Hitachi-shi, Ibaraki-Perf.
  Under the leadership of KEK, the collaborating design activity has been performed in KEK in order to develop the STF (Superconducting RF Test Facility) cryogenic system, together with some positive Japanese industrial members. As the first activity of the collaboration, the initial plant of STF cryogenic system with capacity of 30W at 2.0K has been constructed for the testing of STF cryomodule, and been ready for its operation in KEK. In this session, the present status and schedule of STF cryogenic system in KEK shall be briefly reported.  
slides icon Slides  
 
THPMN004 A Synchrotron Based Particle Therapy Accelerator synchrotron, injection, extraction, quadrupole 2713
 
  • S. P. Møller
  • T. Andersen, F. Bødker, A. Baurichter, P. A. Elkiaer, C. E. Hansen, N. Hauge, T. Holst, I. Jensen, L. K. Kruse, S. M. Madsen, M. Sager, S. V. Weber
    Danfysik A/S, Jyllinge
  • K. Blasche
    BTE Heidelberg, Ingeniurburo, Schriesheim
  • B. Franczak
    GSI, Darmstadt
  Danfysik and Siemens have entered a cooperation to market and build Particle Therapy* systems for cancer therapy. The accelerators will consist of an injector (7 MeV/u proton and light ions), a compact and simple synchrotron and a choice of fixed-angle horizontal and semi-vertical beamlines together with gantry systems. The optimized lattice configuration, including the design of injection and extraction systems, provides large transverse phase space acceptance with minimum magnet apertures. The resulting synchrotron will have light magnets, low values of peak power for pulsed operation and minimum dc power consumption. The beam can be accelerated to the maximum magnetic rigidity of 6.6 Tm in less than 1 s. A beam of 48-250 MeV protons and 88-430 MeV/u carbon ions can be slowly extracted during up to 10s. The intensity for protons and carbon ions will be well beyond the needs of scanning beam applications. The design and performance specs of the synchrotron will be described in detail including simulations. Design and manufacture of the subsystems are in progress. *Particle Therapy is a work in progress and requires country-specific regulatory approval prior to clinical use.  
 
THPMN019 Morphological Changes of Electron-beam Irradiated PMMA Surface electron, ion, scattering, plasma 2745
 
  • R. Nathawat
  • A. K. Kumar, Y. K. Vijay
    UOR, Jaipur
  Funding: Author are thankful to DAE-BRNS, India for financial support for research work

Atomic force microscopy (AFM) study of low energy (10 keV) electron beam irradiated Polymethylmethacrylate (PMMA)20 micron thick surface was performed. PMMA film has been used in lithography applicatiion by this technique. AFM in tapping mode has been utilized to investigate the morphological changes on the samples surface as a function of fluence. TM-AFM showed the hills of the nano size surrounded by the craters type features in all the irradiated samples. The shape and size of these features varied with fluence. The root-mean-square (rms) surface roughness of the samples changed from 2.666 nm to 5.617 nm with fluence from 2x1014 electrons/cm2 to 1x1016 electrons/cm2. It shows that roughness increases as increasing fluence.

 
 
THPMN025 High QE Photocathodes Performance during Operation at FLASH/PITZ Photoinjectors cathode, laser, gun, controls 2763
 
  • L. Monaco
  • J. W. Baehr, M. Krasilnikov, S. Lederer, F. Stephan
    DESY Zeuthen, Zeuthen
  • J. H. Han, S. Schreiber
    DESY, Hamburg
  • P. Michelato, C. Pagani, D. Sertore
    INFN/LASA, Segrate (MI)
  Funding: Work supported by the European Community, contract number RII3-CT-2004-506008

The FLASH (DESY-Hamburg) and PITZ (DESY-Zeuthen) photoinjectors routinely use high quantum efficiency (QE) photocathodes produced at LASA (INFN-Milano), since 1998. To further understand the photocathode behavior during beam operation, photocathode QE measurements have been performed at different operating conditions in both RF photoinjectors. The analysis of these measurements will be used to improve the photocathode preparation procedures and to deeper understand the photocathode properties, whose final goal would be the further increase of their lifetime and beam quality preservation during the RF gun operations.

 
 
THPMN030 Enhancement of the Positron Intensity by a Tungsten Single Crystal Target at the KEKB Injector Linac target, positron, electron, linac 2778
 
  • T. Suwada
  • R. Chehab
    IN2P3 IPNL, Villeurbanne
  • K. Furukawa, T. Kamitani, H. Okuno, M. Satoh, T. Sugimura, K. Umemori
    KEK, Ibaraki
  • R. Hamatsu, T. Haruna, T. Sumiyoshi
    TMU, Hatioji-shi, Tokyo
  • A. Potylitsyn
    INPR, Tomsk
  • I. S. Tropin
    TPU, Tomsk
  • K. Yoshida
    SAGA, Tosu
  Funding: This work was supported by the Grant-in-Aid of Ministry of Education, Culture, Sports, Science and Technology of Japan and by the grant of Ministry of Education and Science of the Russian Federation.

A new tungsten single-crystalline positron target has been successfully employed for generation of the intense positron beam at the KEKB injector linac in September 2006. The target is composed of a tungsten single-crystal with a thickness of 10.5 mm. The positron production target is bombarded at an incident electron energy of 4 GeV, and the produced positrons are collected and accelerated up to the final injection energy of 3.5 GeV in the succeeding sections. A conventional tungsten plate with a thickness of 14 mm has been used previously, and the conversion efficiency (Ne+/Ne-), the ratio between the number of positrons (Ne+) captured in the positron capture section and the number of the incident electrons (Ne-), was 0.20 on average. By replacing the tungsten plate with the tungsten crystal, it increased to 0.25 on average. The increase of the conversion efficiency has boosted the positron intensity to its maximum since the beginning of KEKB operation in 1999. Now this new positron source is stably operating and is contributing to increasing the integrated luminosity of the KEKB B-factory.

 
 
THPMN033 Commissioning a Cartridge-Type Photocathode RF Gun System at University of Tokyo cathode, laser, electron, gun 2787
 
  • A. Sakumi
  • Y. Muroya, T. Ueda, M. Uesaka
    The University of Tokyo, Nuclear Professional School, Ibaraki-ken
  We have been developing a compact-sized cartridge-type cathode exchanging system installed in BNL-type IV photocathode RF gun. We can replace a cathode without breaking the vacuum of RF gun, so that a high quantum efficiency photocathode is not surrounded by oxygen or moisture. The advantage of this system can be controlled the quality of the each cathode by making cathode plugs in a factory. Moreover we can easily change a cathode material, such as visible light driven cathode (AgOCs NaK2Sb) the high QE cathode(Cs2Te) for high brightness beam, metal cathode(Mg) for ultra-fast phenomena. Therefore we can investigate characterization of variable cathode materials in high gradient electric field of ~100MV/m. The cavity with the exchanging port and the beam trajectory is calculated by superfish and GPT, respectively. We found that the parameters of the cavity with a plug is almost same compared with normal back plate. Using this system, we can investigate the cathode material and deliver the stable electron beam by one RF gun.  
 
THPMN040 Development of an S-band Cs2Te-Cathode RF Gun with New RF Tuners gun, cathode, electron, laser 2808
 
  • Y. Kamiya
  • Y. Kato, A. Murata, K. Sakaue, M. Washio
    RISE, Tokyo
  • N. Kudoh, M. Kuriki, T. T. Takatomi, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • R. Kuroda
    AIST, Tsukuba, Ibaraki
  We have been studying an S-band Cs2Te-Cathode RF Gun with 1.6 cells. The new gun cavity reported in this poster has new RF tuners, which are compact and, therefore, can be attached even on the half-cell. RF balance between the full- and half-cells is adjustable by using the tuners on both cells. Compared to the existing cavity, a Helicoflex seal for half-cell adjustment is not needed for new one. This structure is expected to have advantages for gun machining, for Q factor of the cavity, and for reduction of dark current from the RF gun. The cathode is made by evaporation on a Mo plug, and the plug is attached by a load lock system. We report status of the gun development.  
 
THPMN042 Design of a 200keV High Pulse Current Electron Beam Facility electron, cathode, simulation, plasma 2811
 
  • G. Feng
  • Y. Hong, Y. J. Pei, X. Wang
    USTC/NSRL, Hefei, Anhui
  In the paper, design of a 200keV high pulse current electron beam facility is introduced, which is used to generate plasma by interaction between electron beam and gas. Physical parameters of the beam have been selected to satisfy the plasma experiment's need. LaB6 is chosen as cathode because of its high efficient emission and long lifetime. Temperature distribution simulation in the facility has been finished with I-deas code. Because the maximum working temperature in the system is 2400°C, grid is made of heat-resistant metal Mo. In order to get high pulse current and line shaping electron beam, shape of electrodes has been optimized. Electric field distribution in the system and process of electron beam emission have been simulated with opera-3d, which considering space charge effects. Ceramic flange's electrics and mechanics properties have also been analyzed. Metal foil window is made of titanium with 40μm thickness. Relationship between initial energy and energy loss of the electron beam has been obtained by MC simulation during passing through the window. Making of the facility has been finished and some parameters have been measured through testing experiments.  
 
THPMN057 New Concept for a CLIC Post-Collision Extraction Line photon, extraction, quadrupole, dipole 2835
 
  • A. Ferrari
  Funding: This work is supported by the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area", with contract number RIDS-011899.

Strong beam-beam effects at the interaction point of a high-energy e+e- linear collider such as CLIC lead to an emittance growth for the outgoing beams, as well as to the production of beamstrahlung photons and e+e- coherent pairs. We present a conceptual design of the post-collision line for CLIC at 3 TeV, which separates the various components of the outgoing beam in a vertical magnetic chicane and then transports them to their respective dump.

 
 
THPMN070 Development of a Full Scale Superconducting Undulator Module for the ILC Positron Source undulator, positron, radiation, linear-collider 2862
 
  • Y. Ivanyushenkov
  • I. R. Bailey, J. A. Clarke, J. B. Dainton, O. B. Malyshev, L. I. Malysheva, G. A. Moortgat-Pick, D. J. Scott
    Cockcroft Institute, Warrington, Cheshire
  • D. P. Barber
    DESY, Hamburg
  • E. Baynham, T. W. Bradshaw, A. J. Brummitt, F. S. Carr, A. J. Lintern, J. Rochford
    STFC/RAL, Chilton, Didcot, Oxon
  • P. Cooke
    Liverpool University, Science Faculty, Liverpool
  • B. J.A. Shepherd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  Funding: This work is supported in part by the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area", contract number RIDS-011899.

An undulator based positron source is a baseline for the International Linear Collider (ILC). The HeliCal collaboration in the UK is working on the development of a full scale 4-m long undulator module. Several prototypes have been built and tested in the R&D phase of the programme that culminated in the development of manufacturing techniques suitable for construction of the first full scale undulator sections. This paper details the design and the construction status of 4-m long undulator module.

 
 
THPMN071 Status of R&D on a Superconducting Helical Undulator for the ILC Positron Source undulator, positron, linear-collider, collider 2865
 
  • Y. Ivanyushenkov
  • I. R. Bailey, J. A. Clarke, J. B. Dainton, O. B. Malyshev, L. I. Malysheva, G. A. Moortgat-Pick, D. J. Scott
    Cockcroft Institute, Warrington, Cheshire
  • D. P. Barber
    DESY, Hamburg
  • E. Baynham, T. W. Bradshaw, A. J. Brummitt, F. S. Carr, A. J. Lintern, J. Rochford
    STFC/RAL, Chilton, Didcot, Oxon
  • P. Cooke
    Liverpool University, Science Faculty, Liverpool
  • B. J.A. Shepherd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  Funding: This work is supported in part by the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area", contract number RIDS-011899.

An undulator based positron source is a baseline for the International Linear Collider (ILC). The HeliCal collaboration in the UK is carrying out an R&D programme on a short period supercoducting helical undulator with the goal to develop manufacturing technique as well as modelling and measurement techniques. Several undulator prototypes have been built and successfully tested. This paper summarizes the results of the R&D phase of the project.

 
 
THPMN072 Material Damage Test for ILC Collimators simulation, target, radiation, single-bunch 2868
 
  • J.-L. Fernandez-Hernando
  • G. A. Blair, S. T. Boogert
    Royal Holloway, University of London, Surrey
  • G. Ellwood, R. J.S. Greenhalgh
    STFC/RAL, Chilton, Didcot, Oxon
  • L. Keller
    SLAC, Menlo Park, California
  • N. K. Watson
    Birmingham University, Birmingham
  Simulations were completed to determine the energy deposition of an ILC bunch using FLUKA , Geant4 and EGS4 to a set of different spoiler designs. These shower simulations were used as inputs to thermal and mechanical studies using ANSYS. This paper presents different proposals to carry out a material damage test beam that would benchmark the energy deposition simulations and the ANSYS studies and give the researchers valuable data which will help achieve a definitive ILC spoiler design.  
 
THPMN088 C-Band High Power RF Generation and Extraction Using a Dielectric Loaded Waveguide acceleration, linac, insertion, extraction 2912
 
  • F. Gao
  • M. E. Conde, W. Gai, R. Konecny, W. Liu, J. G. Power, Z. M. Yusof
    ANL, Argonne, Illinois
  • C.-J. Jing
    Euclid TechLabs, LLC, Solon, Ohio
  • T. Wong
    Illinois Institute of Technology, Chicago, Illinois
  Funding: Department of Energy

We report on the fabrication, simulation, and high-power testing of a C-band RF power extractor recently conducted at the Argonne Wakefield Accelerator (AWA) facility. Dielectric loaded accelerating (DLA) structures can be used for high-power RF generation [*,**] when a high-current electron beam passes through a DLA structure and loses energy into the modes of the structure due to self-wakefields. The AWA generates high charge (up to 100nC), short bunch length (1.5mm~2.5mm) electron beams, which is ideal for high-power RF generation. The generated RF power can be subsequently extracted with a properly designed extraction coupler in order to accelerate a second beam, or for other high power purposes. In this paper, the detailed design of a 7.8 GHz DLA power extractor, MAFIA simulations, and results of the high-power test are presented. Simulation predictions of an 79 MW, 2.2 ns long RF pulse (generated by a single 100 nC electron bunch) and a longer RF pulse of the same power (obtained from a 35 nC periodic bunch train) will be compared to experimental results.

* W. Gai, et al, Experimental Demonstration of Two Beam Acceleration Using Dielectric Step-up Transformer, PAC01, pp.1880-1882.** D. Yu, et al, 21GHz Ceramic RF Power Extractor, AAC02, pp.484-505.

 
 
THPMN098 Modeling and Design of the ILC Test Area Beam Absorbers at Fermilab shielding, simulation, electron, controls 2939
 
  • M. Church
  • A. Z. Chen, N. V. Mokhov, S. Nagaitsev, N. Nakao
    Fermilab, Batavia, Illinois
  Detailed MARS15 simulations have been performed on energy deposition and shielding of the proposed ILC Test Area absorbers to deal with up to 50 kW of 800 MeV electron beam power and provide unlimited occupancy conditions in the hall. ANSYS analysis based on the calculated energy deposition maps confirms robustness of the proposed design of the absorbers and beam windows for normal operation and for various failure modes. A non-trivial shielding solution was found for the entire region housing the main and single-bunch absorbers.  
 
THPMN110 The MANX Muon Cooling Demonstration Experiment emittance, collider, dipole, quadrupole 2969
 
  • K. Yonehara
  • R. J. Abrams, M. A.C. Cummings, R. P. Johnson, S. A. Kahn, T. J. Roberts
    Muons, Inc, Batavia
  • D. R. Broemmelsiek, M. Hu, A. Jansson, V. D. Shiltsev
    Fermilab, Batavia, Illinois
  Funding: Supported in part by DOE STTR grant DE-FG02-06ER86282

MANX is an experiment to prove that effective six-dimensional (6D) muon beam cooling can be achieved a Helical Cooling Channel (HCC) using ionization-cooling with helical and solenoidal magnets in a novel configuration. The aim is to demonstrate that 6D muon beam cooling is understood well enough to plan intense neutrino factories and high-luminosity muon colliders. The experiment consists of the HCC magnets that envelop a liquid helium energy absorber, upstream and downstream instrumentation to measure the particle or beam parameters before and after cooling, and emittance matching sections between the detectors and the HCC. We describe and compare the experimental configuration for both single particle and beam profile measurement techniques based on G4Beamline simulations.

 
 
THPMN118 Modelling of E-cloud Build-up in Grooved Vacuum Chambers Using POSINST electron, simulation, dipole, accumulation 2993
 
  • M. Venturini
  • M. A. Furman, J.-L. Vay
    LBNL, Berkeley, California
  • M. T.F. Pivi
    SLAC, Menlo Park, California
  Funding: Work supported by DOE contract No. DE-AC02-05CH11231

Electron cloud build-up and related beam instabilities are a serious concern for the positron damping ring of the International Linear Collider (ILC). To mitigate the effect use of grooved vacuum-chamber walls is being actively investigated in addition to more conventional techniques like surface coating, scrubbing, and/or conditioning. Experimental and simulation studies have characterized the effectiveness of the grooved surface by means of an effective secondary emission yield (SEY), which has been measured to be significantly lower than the SEY of a smooth surface of the same material. However, some inconsistencies of the results, and the need to model the experimental testing of the grooved surface concept in more detail, have motivated us to simulate the grooved surfaces directly. Specifically, we have augmented the code POSINST by adding the option to simulate the electron-cloud build-up in the presence of a grooved surface geometry. By computing the accumulated e-cloud density and comparing it with the same quantity computed for a smooth surface, we infer an effective SEY, and we thereby make contact with the effective SEY estimates obtained from previous studies.

 
 
THPMN119 Status of the International Muon Ionization Cooling Experiment (MICE) coupling, target, emittance, factory 2996
 
  • M. S. Zisman
  Funding: Work supported by U. S. Dept. of Energy, Office of High Energy Physics, under contract no. DE-AC02-05CH11231.

An international experiment to demonstrate muon ionization cooling is scheduled for beam at Rutherford Appleton Laboratory in 2007. The experiment comprises one cell of the Study II cooling channel*, along with upstream and downstream detectors to identify individual muons and measure their initial and final 6D phase-space parameters to a precision of 0.1%. Magnetic design of the beam line and cooling channel are complete and portions are under construction. The experiment will be described, including hardware designs, fabrication status, and running plans. Phase 1 of the experiment will prepare the beam line and provide detector systems, including time-of-flight, Cherenkov, scintillating-fiber trackers and the spectrometer solenoids, and an electromagnetic calorimeter. The Phase 2 system will add the cooling channel components, including liquid-hydrogen absorbers embedded in superconducting focus solenoids, 201-MHz normal-conducting RF cavities, and their surrounding coupling coil solenoids. The MICE Collaboration goal is to complete the experiment by 2010; progress toward this goal will be indicated. The supporting R&D program and its present results will also be described.

*S. Ozaki, R. Palmer, M. Zisman, and J. Gallardo (eds.), "Feasibility Study II of a Muon-based Neutrino Source," BNL-52623, 2001; http://www.cap.bnl.gov/mumu/studyii/final_draft/The-Report.pdf.

 
 
THPMS005 Observation of Wakefields in a 17 GHz Metallic Photonic Bandgap (PBG) Structure higher-order-mode, radiation, linac, damping 3002
 
  • R. A. Marsh
  • M. A. Shapiro, R. J. Temkin
    MIT/PSFC, Cambridge, Massachusetts
  • E. I. Smirnova
    LANL, Los Alamos, New Mexico
  Funding: Work supported by the Department of Energy, High Energy Physics, under contract DE-FG02-91ER40648.

Results are reported on experimental wakefield measurements made on a 6 cell, 17 GHz metallic PBG accelerator structure. Wakefields were observed using a variety of detectors and methods. The PBG structure is open, containing no outer wall, and radiation has been observed through a window in the surrounding vacuum vessel. The input and output ports have also been used with windows to observe radiation coupling out of the ports. Estimations of radiation are made using HFSS and an EFIE code. Measurements have been made using video diode detectors, wavemeters, heterodyne receivers, and a bolometer. Plans are discussed for future experiments with injected power and longer structures.

 
 
THPMS007 Surface Waves on Interface of 3D Metal-wire Diamond Lattice for Accelerator Applications. lattice, plasma, simulation, resonance 3008
 
  • M. A. Shapiro
  • J. R. Sirigiri, R. J. Temkin
    MIT/PSFC, Cambridge, Massachusetts
  Funding: Dept. of Energy, High Energy Physics

We present the results of our recent research on 3D metal-wire lattices operating at microwave frequencies, with applications to advanced accelerator structures and radiation sources based on the Smith-Purcell effect. Bulk and surface electromagnetic waves supported by a diamond-like lattice are calculated using HFSS. The bulk modes are determined using primitive cell calculations. The surface mode is determined using the simulations of the stack of cells with the perfect-matching layer (PML) boundary.

 
 
THPMS010 Polarized Pulsed Beam Source for Electron Microscopy cathode, electron, laser, simulation 3011
 
  • N. Vinogradov
  • C. L. Bohn, P. Piot
    Northern Illinois University, DeKalb, Illinois
  • J. W. Lewellen, J. Noonan
    ANL, Argonne, Illinois
  A novel source of polarized pulsed electron beam is discussed. Unlike conventional devices based either on a thermionic cathodes or field-emission needle cathodes, in this source the electrons are produced by a laser beam hitting the cathode surface. Using a combination of gallium arsenide (GaAs) planar cathode and a suitable laser one can obtain a polarized picosecond electron bunch. Numerical simulations of the electron dynamics in the optimized cathode-anode geometry have shown that the beam with initial transverse size of a few mm can be focused down to 1 mm RMS at a distance of about 4 cm from the cathode. The suggested source can be installed instead of a tungsten filament source in an existing electron microscope with no modification of any column elements. The main advantages of this approach are that the beam can be easily pulsed, the beam is polarized which makes it an effective probe of some magnetic phenomena, and the laser can be used to provide larger beam intensity. The design of the source and subsequent fabrication has been completed. The paper presents numerical studies, conceptual design of the device, and results of beam measurements.  
 
THPMS022 6 Dimensional Muon Phase Space Cooling by Using Curved Lithium Lenses emittance, simulation, target, scattering 3047
 
  • Y. Fukui
  • D. B. Cline, A. A. Garren
    UCLA, Los Angeles, California
  • H. G. Kirk
    BNL, Upton, Long Island, New York
  A curved Lithium lens ring model can provide the emittance exchange mechanism in obtaining the muon 6 dimensional phase space cooling. With straight Lithium lenses in a muon cooling ring, only transverse phase space cooling has been demonstrated. We demonstrate the 6 dimensional phase space cooling with various parameters of a muon cooling ring in tracking simulation.  
 
THPMS029 Beam Head Erosion in Self-ionized Plasma Wakefield Accelerators plasma, simulation, ion, emittance 3064
 
  • M. Zhou
  • M. K. Berry, I. Blumenfeld, F.-J. Decker, M. J. Hogan, R. Ischebeck, R. H. Iverson, N. A. Kirby, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • C. E. Clayton, C. Huang, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori
    UCLA, Los Angeles, California
  • T. C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
  Funding: Work supported by Department of Energy contracts DE-AC02-76SF00515, DE-FG02-92ER40727, DE-FG02-92-ER40745 DE-FG02-03ER54721, DE-FC02-01ER41179 and NSF grant Phy-0321345

In the recent plasma wakefield accelerator experiments at SLAC, the energy of the particles in the tail of the 42 GeV electron beam were doubled in less than one meter [1]. Simulations suggest that the acceleration length was limited by a new phenomenon – beam head erosion in self-ionized plasmas. In vacuum, a particle beam expands transversely in a distance given by beta*. In the blowout regime of a plasma wakefield [2], the majority of the beam is focused by the ion channel, while the beam head slowly spreads since it takes a finite time for the ion channel to form. It is observed that in self-ionized plasmas, the head spreading is exacerbated compared to that in pre-ionized plasmas, causing the ionization front to move backward (erode). A simple theoretical model is used to estimate the upper limit of the erosion rate for a bi-gaussian beam by assuming free expansion of the beam head before the ionization front. Comparison with simulations suggests that half this maximum value can serve as an estimate for the erosion rate. Critical parameters to the erosion rate are discussed.

[1] I. Blumenfeld et al., Nature 445, 741(2007)[2] J. B. Rosenzweig et al., Phys. Rev. A 44, R6189 (1991)

 
 
THPMS039 Wakefield Effects in the Beam Delivery System of the ILC emittance, injection, focusing, simulation 3088
 
  • K. L.F. Bane
  • A. Seryi
    SLAC, Menlo Park, California
  Funding: Work supported by US Department of Energy contract DE-AC02-76SF00515

The main linac of the International Linear Collider (ILC) accelerates short, high peak current bunches into the Beam Deliver System (BDS) on the way to the interaction point. In the BDS wakefields are excited by the resistance of the beam pipe walls and by beam pipe transitions that will tend to degrade the emittance of the beam bunches. In this report we calculate the effect on emittance of incoming jitter or drift, and of misalignments of the beam pipes with respect to the beam axis, both analytically and through multi-particle tracking. Finally, we discuss ways of ameliorating the wake effects in the BDS.

 
 
THPMS050 Designing Photonic Bandgap Fibers for Particle Acceleration lattice, acceleration, emittance, impedance 3103
 
  • R. J. Noble
  • E. R. Colby, B. M. Cowan, C. M.S. Sears, R. Siemann, J. E. Spencer
    SLAC, Menlo Park, California
  Funding: Supported by U. S. Dept. of Energy contract DE-AC02-76SF00515

Photonic bandgap (PBG) fibers with hollow core defects have been suggested for use as laser driven accelerator structures. The modes of a periodic PBG fiber lie in a set of allowed bands. A fiber with a central vacuum defect can support so-called defect modes with frequencies in the bandgap and electromagnetic fields confined spatially near the central defect. A defect mode suitable for relativistic particle acceleration must have a longitudinal electric field in the central defect and a phase velocity near the speed of light (SOL). We explore the design of the defect geometry to support well-confined accelerating modes in such PBG fibers. The details of the surface boundary separating the defect from the surrounding matrix are found to be the critical ingredients for optimizing the accelerating mode properties. We give examples of improved accelerating modes in fiber geometries with modified defect surfaces.

 
 
THPMS052 Optical Wakefield from a Photonic Bandgap Fiber Accelerator electron, simulation, laser, quadrupole 3106
 
  • C. M.S. Sears
  • R. L. Byer, T. Plettner
    Stanford University, Stanford, Califormia
  • E. R. Colby, B. M. Cowan, R. Ischebeck, C. Mcguinness, R. J. Noble, R. Siemann, J. E. Spencer, D. R. Walz
    SLAC, Menlo Park, California
  Photonic Bandgap (PBG) structures have recently been proposed as optical accelerators for there high coupling impedance and high damage threshold (>2 GV/m). As a first step in preparing a PBG accelerator, we propose to first observe the optical wakefield induced incoherently by an electron beam traversing the structure in the absence of a coupled laser pulse. The electrons are coupled into the fiber via a permanent magnet quadrupole triplet. The electrons excite fiber modes with speed-of-light phase velocities. By observing the wakefield using a spectrometer, the accelerating mode frequencies are determined.  
 
THPMS064 Lifetime Measurements of High Polarization Strained-Superlattice Gallium Arsenide at Beam Current > 1 Milliamp using a New 100kV Load Lock Photogun laser, polarization, electron, gun 3130
 
  • J. M. Grames
  • P. A. Adderley, J. Brittian, J. Clark, J. Hansknecht, D. Machie, M. Poelker, M. L. Stutzman, R. Suleiman, K. E.L. Surles-Law
    Jefferson Lab, Newport News, Virginia
  Funding: Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.

A new 100 kV GaAs DC Load Lock Photogun has been constructed at Jefferson Laboratory, with improvements for photocathode preparation and for operation in a high voltage, ultra-high vacuum environment. Although difficult to gauge directly, we believe that the new gun design has better vacuum conditions compared to the previous gun design, as evidenced by longer photocathode lifetime, that is, the amount of charge extracted before the quantum efficiency of the photocathode drops by 1/e of the initial value via the ion back-bombardment mechanism. Photocathode lifetime measurements at DC beam intensity of up to 10 mA have been performed to benchmark operation of the new gun and for fundamental studies of the use of GaAs photocathodes at high average current*. These measurements demonstrate photocathode lifetime longer than one million Coulombs per square centimeter at a beam intensity higher than 1 mA. The photogun has been reconfigured with a high polarization strained superlattice photocathode (GaAs/GaAsP) and a mode-locked Ti:Sapphire laser operating near band-gap. Photocathode lifetime measurements at beam intensity greater than 1 mA are measured and presented for comparison.

"Further Measurements of Photocathode Operational Lifetime at Beam Intensity >1mA using the CEBAF 100 kV DC GaAs Photogun", J. Grames et al., Proc. of the 17th Inter. Spin Symposium, Japan (2006).

 
 
THPMS069 The New ORNL Multicharged Ion Research Facility Floating Beamline controls, ion, extraction, ion-source 3139
 
  • F. W. Meyer
  • M. R. Fogle, J. W. Hale
    ORNL, Oak Ridge, Tennessee
  Funding: Sponsored by the OBES and the OFES of the U. S. DOE under contract No. DE-AC05-00OR22725 with UT-Battelle, LLC. MRF was appointed through the ORNL Postdoctoral Research Associates Program administered jointly by ORISE and ORNL.

We report on the development and implementation of a new beam line floatable at up to -15 kV and injected by a 10 GHz CAPRICE ECR ion source at the ORNL Multicharged Ion Research Facility MIRF as part of a major facility upgrade project [1]. With the floating beamline operating at negative high voltage, and the ECR source at ground potential, intense dc beam deceleration into grounded experimental chambers to energies as low as a few eV/q is made possible. The primary application of these ion beams is to study fundamental collisional interactions [2] of multicharged ions with electrons, atoms, and surfaces. Design details of the floating beam line, including source extraction, deceleration optics and voltage isolation will be presented at the conference. The novel features of a LABVIEW-based supervisory control and data acquisition (SCADA) system developed for the floating beam line will be described as well.

[1]F. W. Meyer et al. "The ORNL MIRF Upgrade project," NIMB B242,71(2006).[2]F. W. Meyer,"ECR-Based Atomic Collisions Research at ORNL MIRF," in Trapping Highly Charged Ions: Fundamentals & Applications, Nova Sci. Pub., New York, 2000, pp. 117-164.

 
 
THPMS073 Progress towards a Gap Free Dielectric-Loaded Accelerator coupling, impedance, simulation, acceleration 3151
 
  • C.-J. Jing
  • S. H. Gold
    NRL, Washington, DC
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • S. Kazakov
    KEK, Ibaraki
  • R. Konecny, J. G. Power
    ANL, Argonne, Illinois
  One of the major concerns in the development of Dielectric-Loaded Accelerating (DLA) structures is the destructive breakdown at dielectric joints caused by a local electric field enhancement induced by the discontinuity of the dielectric constant on the surface of the joint gap. Our previous X-band traveling wave DLA structure design*, for example, incorporated two separate impedance matching sections with at least two dielectric joints. In this paper, we present a new design to avoid this problem. This scheme is based on a coaxial type coupler which is able to implement mode conversion and impedance matching at the same time and therefore to eliminate joint gap induced breakdown. The new structure is under construction; bench test results will be presented

* C. Jing, W. Gai, J. Power, R. Konecny, S. Gold, W. Liu and A. Kinkead, IEEE, Trans. PS, vol.33 No.4, Aug. 2005, pp.1155-1160.

 
 
THPMS075 High Power Testing of a Fused Quartz-based Dielectric-loaded Accelerating Structure plasma, impedance, klystron, coupling 3157
 
  • C.-J. Jing
  • V. A. Dolgashev, S. G. Tantawi
    SLAC, Menlo Park, California
  • W. Gai, R. Konecny, J. G. Power, Z. M. Yusof
    ANL, Argonne, Illinois
  • S. H. Gold
    NRL, Washington, DC
  • A. K. Kinkead
    LET
  We report on the most recent results from a series of high power tests being carried out on RF-driven dielectric-loaded accelerating (DLA) structures. The purpose of these tests is to determine the viability of the DLA as a traveling-wave accelerator and is a collaborative effort between Argonne National Laboratory (ANL), Naval Research Laboratory (NRL), and Stanford Linear Accelerator Center (SLAC). In this paper, we report on the recent high power tests of a fused quartz-based DLA structure that was carried out at incident powers of up to 12 MW at NRL and 37 MW at SLAC. We report experimental details of the RF conditioning process and make comparison of our multipactor model to the experiment, including tests of geometrical scaling laws and the time evolution of multipactor. Finally, we discuss future plans for the program including a planned test of new quartz-based DLA with a different geometry to both reach higher accelerating gradients and to continue the parametric study of multipactor.  
 
THPMS076 Development of Dual Layered Dielectric-Loaded Accelerating Structure simulation, impedance, coupling, RF-structure 3160
 
  • C.-J. Jing
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • S. Kazakov
    KEK, Ibaraki
  Funding: DOE SBIR Phase I, DOE Grant No. DE-FG02-05ER84356

Due to the high magnetic field-induced surface currents on its conducting sleeve, a conventional single layer Dielectric-Loaded Accelerating (DLA) structure exhibits a relatively high RF loss. One possible way to solve this problem is to use multilayered DLA structures*. In these devices, the RF power attenuation is reduced by making use of the Bragg Fiber concept: the EM fields are well confined by multiple reflections from multiple dielectric layers. This paper presents the design of an X-band dual layer DLA structure as well as the results of bench tests of the device. We will also present results on the design, numerical modeling, and fabrication of structures for coupling RF into multilayer DLAs such as a novel TM03 mode launcher and a TM01-TM03 mode converter using dielectric-loaded corrugated waveguide.

* C. Jing, W. Liu, W. Gai, J. G. Power, and T. Wong, Nucl. Instr. Meth. Phy. Res. A 539 (2005) 445-454.

 
 
THPMS077 Progress towards Development of a Diamond-Based Cylindrical Dielectric Accelerating Structure plasma, impedance, acceleration, controls 3163
 
  • A. Kanareykin
  • M. E. Conde, W. Gai
    ANL, Argonne, Illinois
  • R. Gat
    Coating Technology Solution, Inc., Somerville
  • C.-J. Jing, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio
  Funding: This research is supported by the US Department of Energy

In this talk, we present our recent developments on a high gradient diamond-based cylindrical dielectric loaded accelerator (DLA). The final goal of this research is to achieve a record accelerating gradient (~ 600 MV/m) in a demonstration of the structure at high power and with accelerated beam. We discuss here a new technology for the development of cylindrical diamond-based waveguides and the design, fabrication and high power testing of a cylindrical diamond-based DLA accelerating structure. The electrical and mechanical properties of diamond make it an ideal candidate material for use in dielectric accelerators: high RF breakdown level, extremely low dielectric losses and the highest thermoconductive coefficient available. Multipacting of the CVD diamond can be suppressed by diamond surface dehydrogenation. A plasma supported Chemical Vapor Deposition (CVD) technology to produce low loss high quality cylindrical diamond layers is presented. Special attention is devoted to the numerical optimization of the coupling section, where the surface magnetic and electric fields are minimized relative to the accelerating gradient and within known metal surface breakdown limits.

 
 
THPMS080 Inverse-Transition Radiation Laser Acceleration Experiments at SLAC laser, electron, acceleration, radiation 3172
 
  • T. Plettner
  • R. L. Byer
    Stanford University, Stanford, Califormia
  • E. R. Colby, R. Ischebeck, C. Mcguinness, R. J. Noble, C. M.S. Sears, R. Siemann, J. E. Spencer, D. R. Walz
    SLAC, Menlo Park, California
  We present a series of laser-driven particle acceleration experiments that are aimed at studying laser-particle acceleration as an inverse-radiation process. To this end we employ a semi-open vacuum setup with a thin planar boundary that interacts with the laser and the electromagnetic field of the electron beam. Particle acceleration from different types of boundaries will be studied and compared to the theoretical expectations from the Inverse-radiation picture and the field path integral method. We plan to measure the particle acceleration effect from transparent, reflective, black, and rough surface boundaries. While the agreement between the two acceleration pictures is straightforward to prove analytically for the transparent and reflective boundaries the equivalence is not clear-cut for the absorbing and rough-surface boundaries. Therefore, experimental observation may be the most reliable method for establishing the appropriate model for the interaction of the laser field with the particle beam in the presence of a loaded vacuum structure.  
 
THPMS081 Proposed Few-cycle Laser-particle Accelerator Structure laser, electron, impedance, coupling 3175
 
  • T. Plettner
  • R. L. Byer, P. P. Lu
    Stanford University, Stanford, Califormia
  We describe a proposed transparent dielectric grating accelerator structure that is designed for ultra-short laser pulse operation. The structure is not a waveguide, but rather it is based on the principle of periodic field reversal to achieve phase synchronicity for relativistic particles. To preserve ultra-short pulse operation it does not resonate the laser field in the vacuum channel. The geometry of the structure appears well suited for application with high average power lasers and high thermal loading. It shows potential for an unloaded gradient of several GeV/m with 10 fsec laser pulses and the possibility to accelerate high bunch charges. The fabrication procedure and proposed near-term experiments with this accelerator structure are presented.  
 
THPAN003 Image Effects on the Transport of Intense Beams focusing, simulation, multipole, beam-transport 3223
 
  • R. Pakter
  • Y. Levin, F. B. Rizzato
    IF-UFRGS, Porto Alegre
  Funding: CNPq and FAPERGS, Brazil, and U. S. AFOSR Grant No. FA9550-06-1-0345.

We start by analyzing the image effects of a cylindrical conducting pipe on a continuous beam with elliptical symmetry. In particular, we derive an exact expression for the self-field potential of the beam inside the pipe without using any sort of multipole expansion. By means of a variational method, the potential for beams with varying density profiles along an elliptical shape is used to search for equilibrium solutions for intense beams. For that, we assume a uniform focusing in the smooth-focusing approximation. A curious result is that the product of the rms sizes along the ellipsis semi-axis stays constant as the pipe radius is varied. Finally, we prove that despite the nonlinear forces imposed by the image charges of an arbitrary shape conducting pipe, intense beams in uniform focusing fields preserve a uniform density in the equilibrium.

 
 
THPAN009 Orbit Properties of Non-Scaling FFAG Accelerators Using Constant-Gradient Magnets lattice, quadrupole, betatron, synchrotron 3241
 
  • M. K. Craddock
  • S. R. Koscielniak
    TRIUMF, Vancouver
  Very high momentum compaction can be obtained in non-scaling FFAG accelerators using constant-gradient magnets with their field strengths decreasing outwards - sufficiently high that the magnet apertures (and vacuum chamber) need be little wider than in a strong-focusing synchrotron. Such machines are of great potential interest for applications in the 0.1 - 50 GeV energy range requiring higher intensities or pulse repetition rates than synchrotrons can provide. Analytic formulae have been developed for the basic orbit properties, particularly their momentum dependence, in various lattices, and give accurate enough results to provide a useful tool for choosing the magnet parameters. In this paper the dependences of orbit offset and circumference on momentum are explored for doublet lattices, and numerical results from the formulae are compared with those from lattice codes.  
 
THPAN036 ABCI Progresses and Plans: Parallel Computing and Transverse Napoly-Shobuda Integral dipole, impedance 3306
 
  • Y. H. Chin
  • Y. Shobuda
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • K. Takata
    KEK, Ibaraki
  In this paper, we report the recent progress and future plans of ABCI. First, ABCI now supports parallel processing in OpenMP for a shared memory system, such as a PC with multiple CPUs or a CPU with multiple cores. The new ABCI also supports the dynamic memory allocation for nearly all arrays for field calculations so that the amount of memory needed for a run is determined dynamically during runtime. A user can use any number of mesh points as far as the total allocated memory is within a physical memory of his PC. As a important progress of the features, the transverse extension of Napoly integral (derived by Shobuda) has been implemented to the new ABCI: it permits calculations of wake potentials in structures extending to the inside of the beam tube radius or having unequal tube radii at the two sides not only for longitudinal but also for transverse cases, and still the integration path can be confined to a finite length, by having the integration contour beginning and ending on the beam tubes. The future upgrade plans will be also discussed. The new ABCI is available as a Windows stand-alone executable module so that no installation of the program is necessary.  
 
THPAN066 Improvements in FAKTOR2, a Code to Simulate Collective Effect of Electrons and Ions electron, wiggler, dipole, damping 3375
 
  • W. Bruns
  • D. Schulte, F. Zimmermann
    CERN, Geneva
  Funding: Supported by the European Community under the 6th Framework Programme "Structuring the European Research Area".

The electrostatic Particle in Cell code 'Faktor2' is extended to 3D, and is parallelised. Results for electron cloud buildup in end regions of damping ring dipoles for next generation linear colliders are presented.

 
 
THPAN084 Self Consistent Monte Carlo Method to Study CSR Effects in Bunch Compressors shielding, simulation 3414
 
  • G. Bassi
  • J. A. Ellison, K. A. Heinemann
    UNM, Albuquerque, New Mexico
  • R. L. Warnock
    SLAC, Menlo Park, California
  Funding: Supported by DOE grant DE-FG02-99ER41104 and contract DE-AC02-76SF00515.

We report on the implementation of a self consistent particle code to study CSR effects on particle bunches traveling on arbitrary planar orbits. Shielding effects are modeled with parallel perfectly conducting plates. The "vertical" charge distribution is assumed to be stationary. The macroscopic Maxwell equations are solved in the lab frame while the equations of motion are integrated in the beam frame interaction picture where the dynamics is governed by the self fields alone. We study different methods to construct a smooth charge density from particles, e.g. gridless nonparametric curve estimation and charge deposition plus filtering. We present numerical results for bunch compressors. In particular, we study different initial distributions. The transverse initial distribution is Gaussian and we study different initial longitudinal distributions: Gaussian, parabolic and nonlinear chirp. A parallel version of the code has been implemented and this will speed up parameter analysis and allow micro-bunching studies.

 
 
THPAN090 Fourier Spectral Simulation for Wake Field in Conducting Cavities simulation, impedance, coupling, electromagnetic-fields 3432
 
  • M. Min
  • Y.-C. Chae, P. F. Fischer, K.-J. Kim
    ANL, Argonne, Illinois
  • Y. H. Chin
    KEK, Ibaraki
  Recent demand of short-bunch beams poses high-order computational tools for investigating beam dynamics in order to improve the beam quality. We have studied a new computational approach with spectrally accurate high-order approximation for wake field calculations. The technique employs the standard Fourier basis combined with a post-processing procedure for noise reduction by Gegenbauer reconstruction. We integrate this scheme into the existing 2D wake field calculation code ABCI and investigate possible enhancemance of its performance on the same grid base. We will demontrate 2D wake potential simulations for various cylindrically symmetric structures with the quality improvement in comparison to the conventional lower-order method.  
 
THPAN108 TBT Optics and Impedance Measurements at the Fermilab Main Injector impedance, closed-orbit, injection, optics 3480
 
  • E. Gianfelice-Wendt
  • Y. Alexahin
    Fermilab, Batavia, Illinois
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH03000.

The Main Injector (MI) is a rapid cycling multipurpose accelerator. After completion of the Tevatron Run II, its primary application will be the acceleration of high intensity proton beams for neutrino experiments. To achieve the intensity goal a detailed knowledge of the optics and transverse impedances is necessary which can be obtained from Turn-By-Turn (TBT) beam position measurements. The recent MI Beam Position Monitor system upgrade made it possible to apply the TBT data analysis methods which were successfully used by the authors for the Tevatron. We present the results of MI optics measurements and the impedance estimates obtained from the betatron phase advance dependence on beam current.

 
 
THPAN117 Electron Cloud Studies at Tevatron and Main Injector electron, proton, emittance, injection 3501
 
  • X. Zhang
  • A. Z. Chen, W. Chou, B. M. Hanna, K. Y. Ng, J.-F. Ostiguy, L. Valerio, R. M. Zwaska
    Fermilab, Batavia, Illinois
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH03000

Estimates indicate that the electron cloud effect could be a limiting factor for Main Injector intensity upgrades, with or without a the presence of a new 8 GeV superconducting 8GeV Linac injector. The effect may turn out to be an issue of operational relevance for other parts of the Fermilab accelerator complex as well. To improve our understanding of the situation, two sections of specially made vacuum test pipe outfitted for electron cloud detection with ANL provided Retarding Field Analyzers (RFAs), were installed in the Tevatron and the Main Injector. In this report we present some measurements, compare them with simulations and discuss future plans for studies.

 
 
THPAN118 Simulations of the Electron Cloud Buildups and Suppressions in Tevatron and Main Injector electron, simulation, proton, storage-ring 3504
 
  • X. Zhang
  • J.-F. Ostiguy
    Fermilab, Batavia, Illinois
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH03000

To assess the effects of the electron cloud on Main Injector intensity upgrades, simulations of the cloud buildup were carried out using POSINST and compared with ECLOUD. Results indicate that even assuming an optimistic 1.3 maximum secondary electron yield, the electron cloud remains a serious concern for the planned future operational of mode of 500 bunches, 3·1011 proton per bunch. Electron cloud buildup can be mitigated in various ways. We consider a plausible scenario involving solenoids in straight section and a single clearing strip electrode (like SNEG in Tevatron)held at a potential of 500V. Simulations with parameters corresponding to Tevatron and Main Injector operating conditions at locations where special electron cloud detectors have been installed have been carried out and are in satisfactory agreement with preliminary measurements.

 
 
THPAS013 Electron Cloud Simulations to Cold PSR Proton Bunches electron, proton, simulation, beam-losses 3540
 
  • Y. Sato
  • J. A. Holmes
    ORNL, Oak Ridge, Tennessee
  • S.-Y. Lee
    IUCF, Bloomington, Indiana
  • R. J. Macek
    LANL, Los Alamos, New Mexico
  Funding: SNS through UT-Battelle, LLC, DE-AC05-00OR22725 for the U. S. DOE. Indiana University Bloomington, PHY-0552389 for NSF and DE-FG02-92ER40747 for DOE. LANL, W-7405-ENG-36.

We present ORBIT code simulations to examine the sensitivity of electron cloud properties to different proton beam profiles and to reproduce experimental results from the proton storage ring at Los Alamos National Laboratory. We study the recovery of electron clouds after sweeping, and also the characteristics of two types of electrons signals (prompt and swept) as functions of beam charge. The prompt signal means the peak height of electron sweeper signal before high voltage pulse applied on its electrode and after beam accumulation, and the swept signal means the spike height of electron sweeper signal during the high voltage pulse. To concentrate on the electron cloud dynamics, we use a cold proton bunch to generate primary electrons and electromagnetic field for electron dynamics. However, the protons receive no feedback from the electron cloud. Our simulations indicate that the proton loss rate in the field-free straight section might be an exponential function of proton beam charge and may also be lower than the averaged proton loss rate in a whole ring.

 
 
THPAS079 A Copper 3.9 GHz TM110 Cavity for Emittance Exchange polarization, coupling, emittance, klystron 3663
 
  • T. W. Koeth
  • L. Bellantoni, D. A. Edwards, H. Edwards, R. P. Fliller
    Fermilab, Batavia, Illinois
  Funding: Work supported by Universities Research Association Inc. under contract DE-AC02-76CH00300 with the U. S. DOE.

An experiment is being constructed at Fermilab's A0 Photoinjector to exchange longitudinal and transverse beam emittances. The exchange is preformed by an optics channel consisting of two dogleg bend sections with a transverse deflecting mode cavity between them. In this paper we discuss the construction of the TM110 Mode Cavity. The cavity, based on a superconducting design will be constructed of copper. In addition, the cavity will be cooled with liquid nitrogen to fit within power and mode spacing requirements. The TM110 cavity operating requirements are presented as will the detail of the design, construction, tuning, and commissioning of the TM110 cavity.

 
 
THPAS100 Collective Effects in the RHIC-II Electron Cooler electron, ion, space-charge, focusing 3717
 
  • E. Pozdeyev
  • I. Ben-Zvi, A. V. Fedotov, D. Kayran, V. Litvinenko, G. Wang
    BNL, Upton, Long Island, New York
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886

Electron cooling at RHIC-II upgrade imposes strict requirements on the quality of the electron beam at the cooling section. Beam current dependent effects such as the space charge, wake fields, CSR in bending magnets, trapped ions, etc., will tend to spoil the beam quality and decrease the cooling efficiency. In this paper, we estimate the defocusing effect of the space charge at the cooling section and describe our plan to compensate the defocusing space charge force by focusing solenoids. We also estimate the energy spread and emittance growth cased by wake fields. Finally, we discuss ion trapping in the electron cooler and consider different techniques to minimize the effect of ion trapping.

 
 
FRXAB01 Status of High Polarization DC High Voltage GaAs Photoguns laser, gun, polarization, electron 3756
 
  • M. Poelker
  • P. A. Adderley, J. Brittian, J. Clark, J. M. Grames, J. Hansknecht, J. McCarter, M. L. Stutzman, R. Suleiman, K. E.L. Surles-Law
    Jefferson Lab, Newport News, Virginia
  This talk will review the state of the art of high polarization GaAs photoguns used worldwide. Subject matter will include drive laser technology, photocathode material, gun design, vacuum requirements and photocathode lifetime as a function of beam current. Recent results have demonstrated high current, 85% polarized beams with high reliability and long lifetime under operational conditions. Research initiatives for ensuring production of high average and peak current beams for future accelerator facilities such as ELIC and the ILC will be also discussed.  
slides icon Slides  
 
FROBC04 Thermomechanical Design of Normal-Conducting Deflecting Cavities at the Advanced Photon Source for Short X-ray Pulse Generation undulator, controls, storage-ring, coupling 3827
 
  • B. Brajuskovic
  • J. T. Collins, P. K. Den Hartog, L. H. Morrison, G. J. Waldschmidt
    ANL, Argonne, Illinois
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357

A normal-conducting deflecting cavity is being designed at the Advanced Photon Source (APS) as a part of the short x-ray pulse project intended to provide users with approximately 2 picosecond x-rays. The system will use two pairs of 3-cell cavities in sectors 6ID and 7ID for the generation of the x-ray pulse in the 7ID beamline. The 3-cell cavities are designed to provide the desired beam deflection while absorbing in excess of 4 kW of power from a pulsed rf system and up to 2.6 kW in the damper system of high-order mode (HOM) and low-order mode (LOM) waveguides. Since the cavity frequency is very sensitive to thermal expansion, the cooling water system is designed so that it is able to control cavity temperature to within 0.1?C. This paper describes the optimization of the thermomechanical design of the cavity based on calculation of thermal stresses and displacement caused by the generated heat loads, and presents the design of a cooling water system required for the proper operation of the cavities.

 
slides icon Slides  
 
FRPMN005 Design of Button Beam Position Monitor for the Brazilian Synchrotron Light Source impedance, storage-ring, coupling, synchrotron 3871
 
  • S. R. Marques
  • O. R. Bagnato, R. H.A. Farias, M. J. Ferreira, J. B. Gonzalez, C. Rodrigues, P. F. Tavares
    LNLS, Campinas
  We present the electric and mechanical design of a button beam position monitor (BPM) recently developed and installed in the UVX electron storage ring at the Brazilian Synchrotron Light Laboratory (LNLS). The first commissioning results will also be presented. This development started when we observed strong correlation between false stripline BPM readings and the external temperature of this BPM. Simulations indicate that the temperature gradient in the BPM body can cause deformations that could explain the false readings in some BPMs. The small dimension of the button compared to the stripline and the better thermal isolation between the button and the BPM body should contribute to minimize this problem.  
 
FRPMN015 Simulation of Synchrotron Radiation at the First Bunch Compressor of FLASH simulation, radiation, synchrotron, synchrotron-radiation 3925
 
  • A. Paech
  • W. Ackermann, T. Weiland
    TEMF, Darmstadt
  • O. Grimm
    DESY, Hamburg
  Funding: This project is supported by the Helmholtz Association under contract HGF-VH-FZ-006

One method to measure the bunch shape at the FLASH facility at DESY, Hamburg is based on the observation of synchrotron radiation generated at the first bunch compressor. For the correct interpretation of the results it is mandatory to know how various parameters of the real setup, in contrast to theoretical assumptions, influence the observed spectrum. The aim of this work therefore is to calculate the generation of synchrotron radiation of a moving point charge inside the bunch compressor with the emphasis of including the effects of the vertical and horizontal vacuum chamber walls in the vicinity of the last dipole magnet. Because of the small wavelength in comparison with the chamber geometries this is a demanding task. One idea to cope with the difficulties is to use optical methods such as the uniform theory of diffraction (UTD). In this paper the applicability and limitations of the proposed method are discussed. Furthermore a comparison of simulated and new measured fields is shown.

 
 
FRPMN016 Wake Field Computations for the PITZ Photoinjector simulation, diagnostics, electron, gun 3931
 
  • E. Arevalo
  • W. Ackermann, R. Hampel, W. F.O. Muller, T. Weiland
    TEMF, Darmstadt
  Funding: This work is supported in part by the EU under contract number RIDS-011935 (EUROFEL).

The computation of wake fields excited by ultra short electron bunches in accelerator components with geometrical discontinuities is a challenging problem, as an accurate resolution for both the small bunch and the large model geometry are needed. Several computational codes (PBCI, ROCOCO, CST PARTICLE STUDIO etc.) have been developed to deal with this type of problems. Wake field simulations of the RF electron gun of the Photoinjector Test Facility at DESY Zeuthen (PITZ) are performed whith different specialized codes. Here we present a comparison of the wake potentials calculated numerically obtained from the different codes. Several structures of the photoinjector are considered.

 
 
FRPMN018 Wake Computations for Undulator Vacuum Chambers of PETRA III undulator, synchrotron, impedance, insertion 3943
 
  • R. Wanzenberg
  • K. Balewski
    DESY, Hamburg
  • E. Gjonaj, T. Weiland
    TEMF, Darmstadt
  At DESY it is planned to convert the PETRA ring into a synchrotron radiation facility, called PETRA III. The wake fields of a tapered transition from the standard vacuum chamber to the small gap chamber of the insertion devices contribute significantly to the impedance budget of PETRA III. The computer codes MAFIA and PBCI have been used to determine the loss and kick parameter of the tapered transition. PBCI is a recently developed parallelized, fully 3D wake field code, which is using a purely explicit, split-operator scheme to solve the Maxwell equation in the time domain.  
 
FRPMN024 Trapped modes analysis for the ELETTRA booster DCCT installation booster, impedance, coupling, single-bunch 3970
 
  • P. Craievich
  • C. Bontoiu, G. Ciani, M. Ferianis
    ELETTRA, Basovizza, Trieste
  In the new Elettra full energy injector, bunch charge measurements will be performed by different types of current transformers (CT), depending on their position (single pass or multi pass sections). In the single pass sections (Linac and Transfer lines) a new type of current transformer (in-flange CT by Bergoz) will be used. Main advantage of this device is a compact and reliable design; they are also specially suited in space critical application. For the booster ring a standard DC current transformer will be used to measure the DC component of the circulating beam current. The housing has been developed in house, including the magnetic shield and the ceramic gap in the vacuum chamber. Furthermore, calculations of the trapped modes in the current monitor housing are described. Longitudinal coupling impedance and loss factors for these resonant modes are estimated and we showed that dissipated power is not critical with ELETTRA booster parameters.  
 
FRPMN025 Review of the Longitudinal Impedance Budget of the ELETTRA Storage Ring impedance, storage-ring, closed-orbit, electron 3976
 
  • G. Penco
  • C. Bontoiu, P. Craievich, V. Forchi', E. Karantzoulis
    ELETTRA, Basovizza, Trieste
  Changes in the longitudinal impedance budget occur due to the changes in the machine structure. In this paper we update the longitudinal impedance budget of Elettra following the installation of the new vacuum chambers in the last three years. The measurements are performed by mapping the horizontal closed orbit deviation in single bunch operation mode, taking full advantage of the newly installed high resolution BPM electrons system. The current results are compared with those of the previous measurements.  
 
FRPMN028 Design and E. M. Analysis of the New DAFNE Interaction Region impedance, simulation, coupling, shielding 3988
 
  • F. Marcellini
  A new interaction region (IR) vacuum chamber has been designed for the DAFNE upgrade aimed at testing of the crabbed waist collision scheme. Compared to the existing IR vacuum chamber, the new one has a simplified design and consists essentially of the confluence of straight tubes, having a double Y shape. Sharp discontinuities have been avoided to limit the beam impedance of the structure. However, the study of the electromagnetic interaction with the beam is necessary in order to avoid excessive power loss due to eventual higher order modes (HOM) trapped in the Y-shape chamber. With HFSS the first design of the chamber has been analyzed and HOMs have been found and characterized. On the basis of these results some modifications in the geometry of the IR chamber have been introduced to eliminate or attenuate these trapped resonances. The results of these simulations are presented.  
 
FRPMN055 Proton Beam Energy Measurement Using Semiconductor Detectors at the 45MeV Test Beam Line of PEFP proton, cyclotron, radiation, energy-calibration 4126
 
  • K. R. Kim
  • Y.-S. Cho, I.-S. Hong, H. S. Kim, B.-S. Park, S. P. Yun
    KAERI, Daejon
  • H. J. Kim, J. H. So
    Kyungpook National University, Daegu
  Funding: This research was supported by MOST (Ministry of Science and Technology) of Korea as a sub-project of PEFP (Proton Engineering Frontier Project).

The test beam line was installed at the MC-50 cyclotron of KIRAMS (Korea Institute of Radiological And Medical Sciences). It has been supporting many pilot and feasibility studies on the development of beam utilization technologies of PEFP (Proton Engineering Frontier Project). The energy measurement with high accuracy is very important for the some experiments such as radiation hardness test of semiconductor devices, nuclear physics, detector test, etc. SSB and Si(Li) detector was used as del-E and E detector and the thickness of detectors are 2mm and 5mm each. The available energy range is 10MeV~39MeV and the flux was controlled not to be exceed 1·10+05/cm2-sec using a 0.5mm diameter collimator.

 
 
FRPMN071 The LHC Beam Loss Measurement System beam-losses, radiation, quadrupole, simulation 4192
 
  • B. Dehning
  • E. Effinger, J. E. Emery, G. Ferioli, G. Guaglio, E. B. Holzer, D. K. Kramer, L. Ponce, V. Prieto, M. Stockner, C. Zamantzas
    CERN, Geneva
  One of the most important elements for the protection of CERN's Large Hadron Collider (LHC) is its beam loss monitoring system. It aims to prevent the super conducting magnets from quenching and to protect the machine components from damages, as a result of critical beam losses. This contribution reviews the design requirements: a high reliability to insure a safe protection and a high availability, a high dynamic range required by the beam dump trigger generation and beam tuning and finally a high radiation tolerance to be able to install the front-end electronics in the LHC tunnel. Examples of the reliability studies using the reliability ISOGRAPH fault tree software package are shown to explain the particular design. Measurement results from the LHC beam loss system installed at HERA (DESY) and at the SPS (CERN) are given to demonstrate its functionality. The detector design of the ionisation chambers and the secondary emission monitors are summarized and measurements with high and low intensity beams as well as with continuous and pulsed proton, muon and neutron beams are discussed.  
 
FRPMN075 Resistive-Wall Impedance of an Infinitely Long Multi-Layer Cylindrical Beam Pipe impedance, space-charge, proton, collider 4216
 
  • E. Metral
  • B. Salvant
    EPFL, Lausanne
  • B. Zotter
    Honorary CERN Staff Member, Grand-Saconnex
  The resistive wall impedance of cylindrical vacuum chambers was first calculated more than forty years ago under some approximations. Since then many papers have been published to extend its range of validity. In the last few years, the interest in this subject has again been revived for the LHC graphite collimators, for which a new physical regime is predicted. The first unstable betatron line in the LHC is at 8 kHz, where the skin depth for graphite is 1.8 cm, which is smaller than the collimator thickness of 2.5 cm. Hence one could think that the resistive thick-wall formula would be about right. It is found that it is not, and that the resistive impedance is about two orders of magnitude lower at this frequency, which is explained by the fact that the skin depth is much larger than the beam pipe radius. Starting from the Maxwell equations and using field matching, a consistent derivation of the transverse resistive wall impedance of an infinitely long cylindrical beam pipe is presented in this paper. The results, which should be valid for any number of layers, beam velocity, frequency, conductivity, permittivity and permeability, have been compared to previous ones.  
 
FRPMN079 Two-Beam Resistive-Wall Wake Field impedance, coupling, collider, proton 4237
 
  • F. Zimmermann
  In all storage-ring colliders, two beams propagating in opposite direction share a common beam pipe over parts or all of the ring circumference. The resistive-wall wake field coupling bunches of these two beams is different from the conventional single-beam wake field, as the magnetic force and the longitudinal electric force experienced by a probe bunch invert their sign, while the transverse electric force does not. In addition, the distance between driving and probing bunches is not constant, but the net wake field must be obtained via an integration of the force experienced over the drive-probe distance. We derive the two-beam resistive-wall wake field for a round beam pipe.  
 
FRPMN081 A Preliminary Study of Beam Instabilities in Top-up Operation at Taiwan Light Source feedback, storage-ring, ion, synchrotron 4246
 
  • P. J. Chou
  • H.-P. Chang, K. T. Hsu, K. H. Hu, C.-C. Kuo, G.-H. Luo, M.-H. Wang
    NSRRC, Hsinchu
  The storage ring of Taiwan Light Source started to operate fully in top-up mode since October 2005. The beam current has been gradually increased to 300 mA in routine user operation. Phenomena of collective effects were observed at 300 mA in top-up operation mode. Active feedback systems were implemented to stabilize the beam in top-up mode. Results of beam observation and analysis will be presented.  
 
FRPMN099 Equilibrium Fluctuations in an N-Particle Coasting Beam: Schottky Noise Effects impedance, collective-effects, plasma, longitudinal-dynamics 4318
 
  • G. Bassi
  • J. A. Ellison, K. A. Heinemann
    UNM, Albuquerque, New Mexico
  Funding: Supported by DOE grant DE-FG02-99ER41104

We discuss the longitudinal dynamics of an unbunched beam with a collective effect due to the vacuum chamber and with the discretness of an N-particle beam (Schottky noise) included. We start with the 2N equations of motion (in angle and energy) with random initial conditions. The 2D phase space density for the N-Particles is a sum of delta functions and satisfies the Klimontovich equation. An arbitrary function of the energy also satisfies the Klimontovich equation and we linearize about a convenient equilibrium density taking the initial conditions to be independent, identically distributed random vaiables with the equilibrium distribution. The linearized equations can be solved using a Laplace transform in time and a Fourier series in angle. The resultant stochastic process for the phase space density is analyzed and compared with a known result*. Work is in progress to study the full nonlinear problem. To gain further insight we are studying three alternative approaches: (1) a BBGKY approach, (2) an approach due to Elskens and Escande** and (3) the 'three-level-approach' of Donsker and Varadhan (see "Entropy, Large Deviations and Statistical Mechanics'', by R. S. Ellis).

* V. V. Parkhomchuk and D. V. Pestrikov, Sov. Phys. Tech. Phys. 25(7), July 1980 ** "Microscopic Dynamics of Plasmas and Chaos", Y. Elskens and D. Escande, IoP, Series in Plasma Physics, 2003.

 
 
FRPMN102 An Instrument Design for the Accurate Determination of the Electron Beam Location in the Linac Coherent Light Source Undulator undulator, alignment, electron, linac 4324
 
  • J. L. Bailey
  • D. Capatina, J. W. Morgan
    ANL, Argonne, Illinois
  • H.-D. Nuhn
    SLAC, Menlo Park, California
  Funding: Work supported by U. S. Department of Energy, under Contract Nos. DE-AC02-06CH11357 and DE-AC03-76SF00515.

The Linac Coherent Light Source (LCLS), currently under design, requires accurate alignment between the electron beam and the undulator magnetic centerline. A Beam Finder Wire (BFW) instrument has been developed to provide beam location information that is used to move the undulators to their appropriate positions. A BFW instrument is mounted at each of the 33 magnets in the undulator section. Beam detection is achieved by electrons impacting two carbon fiber wires and then sensing the downstream radiation. The wires are mounted vertically and horizontally on a wire card similar to that of a traditional wire scanner instrument. The development of the BFW presents several design challenges due to the need for high accuracy of the wires' location and the need for removal of the wires during actual operation of the LCLS (30 microns repeatability is required for the wire locations). In this paper, we present the technical specification, design criteria, mechanical design, and results from prototype tests for the BFW.

 
 
FRPMN109 200-mA Studies in the APS Storage Ring impedance, storage-ring, kicker, injection 4354
 
  • K. C. Harkay
  • Y.-C. Chae, L. Emery, L. H. Morrison, A. Nassiri, G. J. Waldschmidt
    ANL, Argonne, Illinois
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The Advanced Photon Source storage ring is normally operated with 100 mA of beam current. A number of high-current studies were carried out to determine the multibunch instability limits. The longitudinal multibunch instability is dominated by the rf cavity higher-order modes (HOMs), and the coupled-bunch instability (CBI) threshold is bunch-pattern dependent. We can stably store 200 mA with 324 bunches, and the CBI threshold is 245 mA. With 24 bunches, several components are approaching temperature limits above 160 mA, including the HOM dampers. We do not see any CBI at this current. The transverse multibunch instabilities are most likely driven by the resistive wall impedance; there is little evidence that the dipole HOMs contribute. Presently, we rely on the chromaticity to stabilize the transverse multibunch instabilities. When we stored beam up to 245 mA, we used high chromaticity, and the beam was transversely stable. The stabilizing chromaticity was studied as a function of current. We can use these experimental results to predict multibunch instability thresholds for various upgrade options, such as smaller-gap or longer ID chambers and the associated increased impedance.

 
 
FRPMN110 Transverse Multibunch Bursting Instability in the APS Storage Ring single-bunch, damping, coupling, emittance 4360
 
  • K. C. Harkay
  • V. Sajaev, B. X. Yang
    ANL, Argonne, Illinois
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The horizontal bursting instability was first observed in a single bunch in the APS in 1998, soon after operation began. Above the instability threshold, the bursting is characterized by exponentially growing bunch centroid oscillations that saturate, then decay, repeating quasi-periodically. More recently, bursting was also observed with multiple bunches in both the horizontal and vertical planes, showing that this is not purely a single-bunch phenomenon. On the other hand, the multibunch instability threshold is strongly dependent on bunch spacing, and the dependence is markedly different for the two transverse planes. Depending on the bunch spacing, the bunch-to-bunch oscillations are sometimes coupled, sometimes not. In this paper, we discuss the threshold in terms of the chromaticity required to stabilize the beam. We present instability imaging data using a streak camera that shows the bunch-to-bunch oscillation phase, and turn-by-turn beam position histories that give the bursting time dependence for different bunch spacings. Finally, we discuss the machine impedance and measured tune shift with current.

 
 
FRPMS019 Measurement of the Propagation of EM Waves Through the Vacuum Chamber of the PEP-II Low Energy Ring for Beam Diagnostics electron, simulation, positron, plasma 3946
 
  • S. De Santis
  • J. M. Byrd
    LBNL, Berkeley, California
  • M. T.F. Pivi
    SLAC, Menlo Park, California
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC0-05CH11231.

We present the results of measurements of the electron cloud intensity in the PEP-II low energy ring (LER) by propagating a TE wave into the beam pipe. Connecting a pulse generator to a beam position monitor button we can excite a signal above the vacuum chamber cut-off and measure its propagation with a spectrum analyzer connected to another button a few meters away. The measurement can be performed with different beam conditions and also at different settings of the solenoids used to reduce the build up of electrons. The presence of a modulation in the TE wave transmission, synchronous with the beam revolution frequency and only measurable with the solenoids off, would be directly correlated to the intensity of the electron cloud phenomenon in the relative region of the ring. In this paper we present and discuss our measurements taken near Interaction Region 12 on the LER, during 2006 and early 2007.

 
 
FRPMS054 PSR Electron Cloud Detector and Suppressor Mechanical Design and Fabrication electron, quadrupole, diagnostics, beam-transport 4117
 
  • J. F. O'Hara
  • M. J. Borden, A. A. Browman, N. A. Gillespie, D. Martinez, K. G. McKeown, F. R. Olivas
    LANL, Los Alamos, New Mexico
  • J. E. Ledford, R. J. Macek
    TechSource, Santa Fe, New Mexico
  Funding: Work supported by DOE SBIR Grant No. DE-FG02-04ER84105 and CRADA No. LA05C10535 between TechSource, Inc. and the Los Alamos National Laboratory.

In order to better understand the two stream e-p instability issue in the LANSCE Proton Storage Ring, a new diagnostic instrument has been developed to measure the electron cloud formation and trapping in a quadrupole magnet at the LANSCE, PSR. The device called the Electron Cloud Detector (ECD) was fabricated and has successfully been installed in the PSR. Along with the Electron Cloud Detector, an additional device was developed to manipulate electrons ejected from the quadrupole and allow additional information to be obtained from ECD measurements. This paper will discuss the mechanical design and fabrication issues encountered during the course of developing both devices.

 
 
FRPMS055 LANSCE Prototype Beam Position and Phase Monitor (BPPM) Mechanical Design alignment, isotope-production, linac, pick-up 4123
 
  • J. F. O'Hara
  • M. J. Borden, D. C. Bruhn, J. L. Erickson, J. D. Gilpatrick, S. S. Kurennoy
    LANL, Los Alamos, New Mexico
  Funding: Work supported by United States Department of Energy

A prototype Beam Position and Phase Monitor (BPPM) beam line device is being designed to go in the LANSCE 805-MHz linac. The concept is to install two beam line devices in locations where their measurements can be compared with older existing Delta-T loop and wire scanner measurements. The plan is to install two devices so that transverse position, angular trajectory, as well as central beam phase and energy will be measured. The mechanical design will combine features from previous LANL designs that were done for the LANSCE Isotope Production Facility, LANSCE Switchyard project, and those done for the SNS linac. This paper will discuss the mechanical design and fabrication issues encountered during the course of developing the BPPM.

 
 
FRPMS063 Material Effects and Detector Response Corrections for Bunch Length Measurements radiation, electron, resonance, simulation 4147
 
  • W. D. Zacherl
  • I. Blumenfeld, M. J. Hogan, R. Ischebeck
    SLAC, Menlo Park, California
  • C. E. Clayton, P. Muggli, M. Zhou
    UCLA, Los Angeles, California
  Funding: Department of Energy contract DE-AC02-76SF00515

A typical diagnostic used to determine the bunch length of ultra-short electron bunches is the autocorrelation of coherent transition radiation. This technique can produce artificially short bunch length results due to the attenuation of low frequency radiation if corrections for the material properties of the Michelson interferometer and detector response are not made. Measurements were taken using FTIR spectroscopy to determine the absorption spectrum of various materials and the response of a Molectron P1-45 pyroelectric detector. The material absorption data will be presented and limitations on the detector calibration discussed.

 
 
FRPMS075 Modeling of the Sparks in Q2-bellows of the PEP-II SLAC B-factory simulation, radiation, electromagnetic-fields, luminosity 4213
 
  • A. Novokhatski
  • J. Seeman, M. K. Sullivan
    SLAC, Menlo Park, California
  Funding: Work supported by USDOE contract DE-AC02-76SF00515

The PEP-II B-factory at SLAC has recently experienced unexpected aborts due to anomalously high radiation levels at the BaBar detector. Before the problem was finally traced we performed the wake field analysis of the Q-2 bellows, which is situated at a distance of 2.2 m from the interaction point. Analysis showed that electric field in a small gap between a ceramic tile and metal flange can be high enough to produce sparks or even breakdowns. Later the traces of sparks were found in this bellows.

 
 
FRPMS077 High Current Effects in the PEP-II SLAC B-factory synchrotron, luminosity, impedance, optics 4225
 
  • A. Novokhatski
  • S. A. Heifets, D. Teytelman
    SLAC, Menlo Park, California
  Funding: Work supported by US DOE contract DE-AC02-76SF00515.

Wake fields defining beam stability affect also the beam optics and beam properties in high current machines. We present observations and analysis of the optical effects in the PEP-II SLAC B-factory, which has the record in achievement of high electron and positron currents. We study the synchronous phase and the bunch length variation along the train of bunches, overall bunch lengthening and effects of the wakes on the tune and on the Twiss parameters. This analysis is being used in upgrades of PEP II and may be applied to future B-factories and damping rings for Linear Colliders.

 
 
FRPMS081 Geometric Effects on Electron Cloud electron, beam-losses, simulation, positron 4243
 
  • L. Wang
  • A. Chao
    SLAC, Menlo Park, California
  • J. Wei
    BNL, Upton, Long Island, New York
  The development of an electron cloud in the vacuum chambers of high intensity positron and proton storage rings may limit the machine performances by inducing beam instabilities, beam emittance increase, beam loss, vacuum pressure increases and increased heat load on the vacuum chamber wall. The electron multipacting is a kind of geometric resonance phenomenon and thus is sensitive to the geometric parameters such as the aperture of the beam pipe, beam shape and beam bunch fill pattern, etc. This paper discusses the geometric effects on the electron cloud build-up in a beam chamber and examples are given for different beams and accelerators.  
 
FRPMS083 Coherent Synchrotron Radiation and Space Charge for a 1-D Bunch on an Arbitrary Planar Orbit space-charge, radiation, synchrotron, synchrotron-radiation 4255
 
  • R. L. Warnock
  Funding: Supported in part by Department of Energy contract DE-AC02-76SF00515.

Realistic modeling of coherent synchrotron radiation (CSR) and the space charge force in single-pass systems and rings usually requires at least a two-dimensional (2-D) description of the charge/current density of the bunch. Since that leads to costly computations, one often resorts to a 1-D model of the bunch for first explorations. This paper provides several improvements to previous 1-D theories, eliminating unnecessary approximations and physical restrictions.

 
 
FRPMS085 Transverse Effect due to Short-range Resistive Wall Wakefield impedance, dipole, focusing, electron 4267
 
  • J. Wu
  • A. Chao
    SLAC, Menlo Park, California
  • J. R. Delayen
    Jefferson Lab, Newport News, Virginia
  Funding: AWC and JW were supported by US DOE under contract No. DE-AC02-76SF00515. JRD was supported by US DOE under contract No. DE-AC05-84-ER40150 and No. DE-AC05-00-OR22725.

For accelerator projects with ultra short electron beam, beam dynamics study has to invoke the short-range wakefield. In this paper, we first obtain the short-range dipole mode resistive wall wakefield. Analytical approach is then developed to study the single bunch transverse beam dynamics due to this short-range resistive wall wake. The results are applied to the LCLS undulator and some other proposed accelerators.

 
 
FRPMS102 Preliminary Impedance Budget for the NSLS-II Storage Ring impedance, undulator, storage-ring, electron 4321
 
  • A. Blednykh
  • S. Krinsky
    BNL, Upton, Long Island, New York
  Extensive calculations have been performed of the wakefield and impedance produced by the storage ring components for the rms bunch length of 3mm. Calculated data are presented for the NSLS-II storage ring components such as dipole vacuum chamber, quadrupole vacuum chamber, sextupole vacuum chamber, tapered elliptic vacuum chamber for superconducting undulator, cryo permanent magnet mini-gap undulator, CESR-B RF cavity, beam position monitor, infrared beam extraction chamber and resistive wall. The loss factor, the kick factor and imaginary part of the longitudinal impedance at low frequency divided by harmonic number are given per component and have been entered into a table.  
 
FRPMS103 Coupling Impedance of the CESR-B RF Cavities for the NSLS-II Storage Ring impedance, storage-ring, coupling, damping 4327
 
  • A. Blednykh
  • S. Krinsky, J. Rose
    BNL, Upton, Long Island, New York
  CESR-B type superconducting cavities are under discussion for acceleration of the electron beam in the 3-GeV NSLS-II storage ring. In this paper we present a detailed investigation of longitudinal and transverse impedances of the cavity and transition assembly. Ferrite material is included in impedance analysis. Its effect on the short range wakepotential has been studied using the GdfidL code. Results of loss factors and kick factors are presented for a 3mm rms bunch length.  
 
FRPMS104 Impedance of Electron Beam Vacuum Chambers for the NSLS-II Storage Ring impedance, extraction, dipole, storage-ring 4333
 
  • A. Blednykh
  • S. Krinsky
    BNL, Upton, Long Island, New York
  In this paper we discuss computation of the coupling impedance of the vacuum chambers for the NSLS-II storage ring using the electromagnetic simulator GdfidL. The impedance of the vacuum chambers depends on the geometric dimensions of the cross-section and height of the slot in the chamber wall. Of particular concern is the complex geometry of the infrared extraction chambers to be installed in special large-gap dipole magnets. In this case, wakefields are generated due to tapered transitions and large vertical-aperture ports with mirrors near the electron beam.